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Abstract. Observability of a general nonlinear system—given in terms of an ODE ẋ =
f(x) and an output map y = c(x)—is defined as in linear system theory (i.e. if f(x) = Ax

and c(x) = Cx). In contrast to standard treatment of the subject we present a criterion
for observability which is not a generalization of a known linear test. It is obtained by
evaluation of “approximate first integrals”. This concept is borrowed from nonlinear control
theory where it appears under the label “Dissipation Inequality” and serves as a link with
Hamilton-Jacobi theory.
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1. Introduction

Observability is a property of a system given by two data: A differential equation

and an output (i.e. one or several functions of the state, cf. Sec. 2 for details). It

is concerned with the problem of reconstructing the full trajectory from measured

output. The reader finds in Sec. 2 of this paper a short review of the basic facts

related to observability. A new angle on the subject is then presented based on a

source of information which so far seems not to have been exploited: The study

of what one may call “approximate first integrals” and which we call—for reasons

of agreement with existing definitions—“dissipation equalities” (DE’s). A careful

explanation is provided in Sec. 3, the origin is the control theoretic concept of “dissi-

pation inequality”, see [2] for details. Thereby this paper is a further example of the

fruitful interrelation between the fields of ordinary differential equations and control

theory which is an important aspect of the work of Jaroslav Kurzweil.
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2. Observability

Starting point is the standard state-to-output scenario of control theory which is

defined by writing down a dynamic law for the state:

(1) ẋ = f(x)

and a mapping

(2) x 7→ y = c(x).

A system given by (1), (2) is called observable if the following statement is true: Let

x1(t), x2(t) be two solutions of (1) such that

(3) y1(t) := c(x1(t)) = c(x2(t)) =: y2(t)

on some interval [0, δ], δ > 0, then x1(t) = x2(t) for all t. In order to avoid discussions

which have nothing to do with the main objective of this paper, we assume sufficient

smoothness of f, c as functions of x.

The standard approach to observability questions is based on the fact that together

with (3) all time derivatives of y1, y2 agree on [0, δ]. These time derivatives can be

written as functions of x and these functions are the repeated Lie-derivatives of c

which are defined as follows:

(4) (Lf c)(x) = cx(x)f(x),

L
(ν)
f c = Lf (L

(ν−1)
f c),

ν > 2. Bringing Lie-derivatives into play allows to relate observability questions to

algebraic ones, e.g.whether the differentiable map

(5) x 7→ (c(x), (Lf c)(x), (L2
f c)(x), . . .)

can be inverted.

We do not aim in this paper at a criterion for (full) observability, instead we

propose a method to generate new observable functions of the state from given ones,

and this method is not the same as repeated Lie-differentiation. This method has a

practical aspect: It may lead to a reconstruction of the state from measured output

with less time derivatives (which are ill-posed procedures from a numerical viewpoint)

involved than usual. By an observable function w(x) of the state we mean a function

with this property:
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If x1(t), x2(t) are two solutions of (1) and (3) holds true on some interval [0, δ],

then w(x1(0)) = w(x2(0)).

We say also: w(x) can be observed from c(x). We assume that the output is part

of the state, i.e. the system description runs as follows:

(6) ẋ1 = f1(x),

ẋ2 = f2(x),

y = x2

with x = (x1, x2)
T .

3. Dissipation equalities and the algebraic generation

of observable elements

The role of dissipation inequalities in nonlinear H∞ theory is well understood,

cf. [2]. These are relations connecting integrals for functions of the state and of the

inputs of a control system with the boundary values of these quantities. Typically one

can pass from the integral form of a classical dissipation inequality to a pointwise

form which can be written as a Hamilton-Jacobi partial differential equation. A

new way of employing Hamilton-Jacobi theory into the study of systems with two

inputs—control and disturbance—is proposed in [1]. These are the main features of

what is called a DE (“dissipation equality”) in [1]:

(i) It is a relation—not an inequality but an approximate equality—, the formal

structure being the same as of traditional dissipation inequalities. The length

of the time interval is δ � 1, however one cannot pass to the limit δ → 0 as

in the standard H∞ theory since the control functions involved are of the open

loop type introduced in [1] (cf. Sec. 1, formula (3)). The limit for δ → 0 of such

a function is not a point but a set.

(ii) The basic mathematical tool in setting up a DE is integration of a Hamilton-

Jacobi partial differential equation along the classical “method of characteris-

tics”. However in applying the results of [1] to concrete situations no explicit

integration of such a differential equation is required. Instead one has to find

parameters such that certain algebraic relations are satisfied.

The main result of this section is based on a special case of the main result from

Sec. 9 in [1], quoted as Proposition 9.1 henceforth. One arrives at this situation if

the two integers m and n2 which appear in [1] coincide and if the n2-dimensional

parameter b is equal to 0. And b = 0 implies that the control function r̃(t) which

appears in the dynamic law is equal to zero. To begin with we wish to restate

Proposition 9.1 for this special case:
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First observation. If r̃(t) = 0 the system description underlying the considerations

in [1] reads

(7) ẋ1 = p1(x) + G1(x)w(x),

ẋ2 = p2(x),

x(0) = x(0), and does not depend upon the coefficients of r̃(t). These coefficients

are matrices B1(x) (of type n1 × n2) and B2(x) (of type n2 × n2). In the present

context the symbols B1, B2, (Bi)x (with (B2)x1 = 0) take the place of the values

of the Bi(x) and their partial derivatives at x = x(0) and can be regarded as “free”

parameters which can be used to meet e.g. the hypotheses of Proposition 9.1. In the

sequel θ is a fixed parameter 6= 0, δ, π are positive parameters subject to restrictions

(8) δ � 1, π � 1.

We assume throughout this paper that w(x) is a scalar (⇒ G1(x) is a n1-dimensional

column vector). We write pi, Gi, w for pi(x
(0)), G1(x

(0)), w(x(0)), and use the

abbreviation

(9) P := (p2)x1 ,

ẍ2 = L2
fx2atx = x(0).

Note that because of r̃(t) = 0 the n2-dimensional vector which carried the symbol

ξ0 in [1] is now equal to
1
2 ẍ2 + O(δ).

Next we turn to a discussion of the hypotheses (ii)–(iv) of Proposition 9.1:

(iv) is satisfied trivially because of b = 0.

(ii) concerns parameters λ0, y0 which in the present context can be chosen freely in

order to meet the two conditions listed in [1]. It is easily confirmed by inspection

that this can be done if

(10) l̂T PB1 6= 0,

l̂ defined by (13) below.

(iii) follows from

(11) l̂T Pp1 6= 0,

as is also easily confirmed.

We now are in the position to write down the statement of Proposition 9.1 for the

special case under consideration. We write (PG1, 0, . . . , 0) for the n2 × n1 matrix

whose first column is the n1-dimensional vector PG1 and the remaining columns

are 0. We put x(0) = (x
(0)
1 , x

(0)
2 )T .
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Proposition 3.1. Let S, B2 be invertible matrices of the type n2 × n2, S sym-

metric, and

(12) P̂ := P −
1

2
(PG1, 0, . . . , 0),

l̂ := SP̂ (p1 − B1B
−1
2 p2).

Hypotheses:

(i) p1, G1 and the n2 columns of B1 are linearly independent n1-dimensional vec-

tors,

(ii)

(13) l̂T PG1 = 0, (10), (11) hold true.

Conclusion:

(14)
1

8
ẍT

2 SPG1w − (1 − θπ)
{1

8
l̂T S−1 l̂ +

1

4
l̂T ẍ2 −

1

8
l̂T Pp1

+
1

2
kT 1

δ4

∫ δ

0

t2(x2(t) − x
(0)
2 ) dt

}
= O1(π

−1) + O2(δ),

where

(15) kT = l̂T PB1B
−1
2 .

The two terms on the rhs (= right hand side) of (14) admits estimates K1π
−1,

K2δ. The Ki depend upon the rhs of (7) and upon the Bi, K2 in addition may

depend upon π.

In order to bring the statement of the proposition into a form which is more suited

for applications we eliminate B2 from (12), (15). We deal with the following question:

Given k, d, can one find B2 such that

(16) kT = l̂T PB1B
−1
2 ,

B−1
2 p2 = d.

In other words: One wants to know whether two linear matrix equations can be

solved subject to the side condition that the solution should be invertible. The

answer is provided by
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Lemma 3.1. Given four vectors a, b, c, d of the same dimension ν. Then one can

find a ν × ν matrix X satisfying

(17) aT X = bT ,

Xc = d,

det(X) 6= 0

if

(18) aT d = bT c 6= 0.

���������
. By standard arguments after the problem has been reduced (orthogonal

transformation!) to the case aT = (α, 0, . . . , 0). �

(16) can be considered as a system of the form (17), the unknown X now being

B−1
2 . Condition (18) reads then

(19) kT p2 = l̂PB1d 6= 0.

In passing we note that (10) is implied by (19) and hence will not be mentioned

anymore. We assume from now on that the n2 × n2 matrix

(20) P̂B1 is invertible.

The linear map (cf. (12), (16))

(21) d 7→ SP̂p1 − S(P̂B1)d = l̂

is then invertible and one can express d in terms of l̂. Furthermore we have—in view

of (12), (13)—

(22) l̂T P̂ = l̂T P.

One can now eliminate d from (19) with the help of (21), (22) and obtains then

a condition which does not contain B2 explicitly but guarantees that (16) can be

fullfilled by a proper choice of B2. It runs as follows:

(23) kT p2 = l̂T Pp1 − l̂T S−1 l̂ 6= 0.

Finally we specialize S as

(24) S = (αI + l̂l̂T ), α > 0
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I the n2-dimensional unit matrix. S is symmetric and invertible and we have

(25) SPG1 = αPG1,

l̂T S−1l̂ =
‖l̂‖2

α + ‖l̂‖2

(under the constraint l̂T PG1 = 0!). Thereby we can now express the lhs of (14)

completely in terms of the parameter α, l̂, k which are free subject to the side

conditions

(26) α > 0, l̂T PG1 = 0, l̂T Pp1 6= 0 and (23).

In additions (20) and hypothesis (i) of Proposition 3.1 must hold true.

We are now in a position to state the main result—Proposition 3.2—of this section

and let x(0) vary in an open and connected subset X of the x space. Parameter α

and B1 may depend upon x(0) but we suppress mostly this argument as we do it

with pi, G1, P . Note that also ẍ2 = L2
fx2 is actually a function of x

(0).

Our general hypothesis is now

(a) p2 6= 0,

(b) ẍ2, PG1, Pp1 are linearly independent,

(c) p1, G1, and the columns of B1 are linearly independent,

(d) (20) is satisfied, P̂ defined by (12).

As a preparation we need

Lemma 3.2. Let (a)–(d) hold true and n2 > 5. Let x(0), x′(0) be two points in

X . Then one can find l̂, l̂′ such that

(27) l̂T PG1 = l̂′T (PG1)
′ = 0,

l̂T Pp1 = l̂′T (Pp1)
′ 6= 0

l̂T ẍ2 = l̂T (ẍ2)
′

where the arguments on the lhs are x(0), on the rhs are x′(0). Furthermore, we have

(28)
‖l̂‖2

α + ‖l̂‖2
=

‖l̂′‖2

α′ + ‖l̂′‖2
,

α = α(x(0)), α′ = α(x′(0)).

���������
. The statement is clear, if x(0) = x′(0). If this is not the case we choose

x? ∈ X and connect this point with x(0), x′(0) by a curve which is situated in X and
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parametrized by the same parameter τ, 0 6 τ 6 1. The two points which correspond

to the same parameter τ are then considered in the place of x(0), x′(0). Using the

IFT (implicit function theorem) and a standard analytic continuation argument one

sees that one can meet the requirements of the lemma by appropriate l̂(τ), l̂′(τ). �

Proposition 3.2. Hypotheses: n2 > 5, (a)–(d) hold true and ẍT
2 PG1 6= 0 hold

true on X . Conclusion: w(x) can be observed from x2 on X .

���������
. Let x(0), x′(0) be two points in X such that the solution x(t), x′(t) with

the initial value x(0), x′(0) respectively satisfy x2(t) = x′

2(t). We choose α(x) > 0

such that

(29) α(x)ẍT
2 PG1|x=x(0) = α(x)ẍT

2 PG1|x=x′(0) 6= 0.

Next we employ Lemma 3.2 and construct l̂, l̂′ such that the DE set up for x(0)

and the one set up for x′(0) have the same coefficients. This is possible since these

coefficients are determined by the same linear equations, cf. (23), (25), (27), (28),

note that p2 = Lfx2 is observable. We subtract the two DE’s to obtain

(30) α(x)ẍT
2 PG1|x=x(0) − α(x)ẍT

2 PG1|x=x′(0) = O1(π
−1) + O2(δ).

Now the lhs of the last relation does not depend upon π, δ and the coefficient of w

is the same and 6= 0, cf. (29). Hence we must have w(x(0)) = w(x′(0)). �
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