**
MATHEMATICA BOHEMICA, Vol. 132, No. 1, pp. 13-26 (2007)
**

#
Semisimplicity and global dimension of a finite

von Neumann algebra

##
Lia Vas

* Lia Vas*, Department of Mathematics, Physics and Computer Science, University of the Sciences in Philadelphia, 600 S. 43rd St., Philadelphia, PA 19104, e-mail: ` l.vas@usip.edu`

**Abstract:** We prove that a finite von Neumann algebra ${\mathcal A}$ is semisimple if the algebra of affiliated operators ${\mathcal U}$ of ${\mathcal A}$ is semisimple. When ${\mathcal A}$ is not semisimple, we give the upper and lower bounds for the global dimensions of ${\mathcal A}$ and ${\mathcal U}.$ This last result requires the use of the Continuum Hypothesis.

**Keywords:** finite von Neumann algebra, algebra of affiliated operators, semisimple ring, global dimension

**Classification (MSC2000):** 16W99, 46L10, 46L99, 16K99

**Full text of the article:**

[Previous Article] [Next Article] [Contents of this Number] [Journals Homepage]

*
© 2007–2010
FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition
*