ON SOLUTIONS OF THE DIFFERENCE EQUATION

$$
x_{n+1}=x_{n-3} /\left(-1+x_{n} x_{n-1} x_{n-2} x_{n-3}\right)
$$

Cengiz Cinar, Ramazan Karatas, Ibrahim Yalçinkaya, Konya
(Received March 13, 2006)

Abstract. We study the solutions and attractivity of the difference equation $x_{n+1}=$ $x_{n-3} /\left(-1+x_{n} x_{n-1} x_{n-2} x_{n-3}\right)$ for $n=0,1,2, \ldots$ where x_{-3}, x_{-2}, x_{-1} and x_{0} are real numbers such that $x_{0} x_{-1} x_{-2} x_{-3} \neq 1$.

Keywords: difference equation, recursive sequence, solutions, equilibrium point

MSC 2000: 39A11

1. Introduction

A lot of work has been done concerning the attractivity and solutions of the rational difference equations, for example in [1]-[9]. In [3] Cinar studied the positive solutions of the difference equation $x_{n+1}=x_{n-1} /\left(1+x_{n} x_{n-1}\right)$ for $n=0,1,2, \ldots$ and proved by induction the formula

In [6] Stevic studied the stability properties of the solutions of Cinar's equation. Also in [7] Stevic investigated the solutions of the difference equation $x_{n+1}=$
$B x_{n-1} / B+x_{n}$ and gave the formulas

$$
\begin{aligned}
x_{2 n} & =x_{0}\left(1-x_{1} \sum_{j=1}^{n} \prod_{i=1}^{2 j-1} \frac{1}{1+x_{i}}\right) \\
x_{2 n+1} & =x_{-1}\left(1-\frac{x_{0}}{1+x_{0}} \sum_{j=0}^{n} \prod_{i=1}^{2 j} \frac{1}{1+x_{i}}\right)
\end{aligned}
$$

Moreover, in [1] Aloqeili generalized the results from [3], [6] to the k th order case and investigated the solutions, stability character and semicycle behavior of the difference equation $x_{n+1}=x_{n-k} /\left(A+x_{n-k} x_{n}\right)$ where $x_{-k}, \ldots, x_{0}>0$ and $A>0, k$ being any positive integer.

Our aim in this paper is to investigate the solutions of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3}}{-1+x_{n} x_{n-1} x_{n-2} x_{n-3}} \quad \text { for } \quad n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

where x_{-3}, x_{-2}, x_{-1} and x_{0} are real numbers such that $x_{0} x_{-1} x_{-2} x_{-3} \neq 1$.
First, we give two definitions which will be useful in our investigation of the behavior of solutions of Eq. (1.1).

Definition 1. Let I be an interval of real numbers and let $f: I^{4} \rightarrow I$ be a continuously differentiable function. Then for every $x_{-i} \in I, i=0,1,2,3$, the difference equation $x_{n+1}=f\left(x_{n}, x_{n-1}, x_{n-2}, x_{n-3}\right), n=0,1,2, \ldots$, has a unique solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$.

Definition 2. The equilibrium point \bar{x} of the equation $x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots\right.$, $\left.x_{n-k}\right), n=0,1,2, \ldots$, is the point that satisfies the condition $\bar{x}=f(\bar{x}, \ldots, \bar{x})$.

2. Main Results

Theorem 1. Assume that $x_{0} x_{-1} x_{-2} x_{-3} \neq 1$ and let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a solution of Eq. (1.1). Then for $n=0,1,2, \ldots$ all solutions of Eq. (1.1) are of the form

$$
\begin{align*}
& x_{4 n+1}=x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}, \tag{2.1}\\
& x_{4 n+2}=x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}, \tag{2.2}\\
& x_{4 n+3}=x_{-1} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}, \tag{2.3}\\
& x_{4 n+4}=x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} . \tag{2.4}
\end{align*}
$$

Proof. $\quad x_{1}, x_{2}, x_{3}$ and x_{4} are clear from Eq. (1.1). Also, for $n=1$ the result holds. Now suppose that $n>1$ and our assumption holds for $(n-1)$. We shall show
that the result holds for n. From our assumption for $(n-1)$ we have

$$
\begin{aligned}
x_{4 n-3} & =x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}, \\
x_{4 n-2} & =x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}, \\
x_{4 n-1} & =x_{-1} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}, \\
x_{4 n} & =x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n} .
\end{aligned}
$$

Then, from Eq. (1.1) and the above equality, we have

$$
\begin{aligned}
x_{4 n+1} & =x_{4 n-3} /\left(-1+x_{4 n} x_{4 n-1} x_{4 n-2} x_{4 n-3}\right) \\
& =\frac{x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}}{-1+x_{0} x_{-1} x_{-2} x_{-3}}=\frac{x_{-3}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} .
\end{aligned}
$$

That is,

$$
x_{4 n+1}=\frac{x_{-3}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} .
$$

Also,

$$
\begin{aligned}
x_{4 n+2} & =\frac{x_{4 n-2}}{-1+x_{4 n+1} x_{4 n} x_{4 n-1} x_{4 n-2}} \\
& =\frac{x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}}{-1+x_{0} x_{-1} x_{-2} x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)} \\
& =x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} .
\end{aligned}
$$

Hence, we have

$$
x_{4 n+2}=x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} .
$$

Similarly,

$$
\begin{aligned}
x_{4 n+3}=\frac{x_{4 n-1}}{-1+x_{4 n+2} x_{4 n+1} x_{4 n} x_{4 n-1}} & =\frac{x_{-1} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}}{-1+x_{0} x_{-1} x_{-2} x_{-3}} \\
& =\frac{x_{-1}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} .
\end{aligned}
$$

Consequently, we have

$$
x_{4 n+3}=\frac{x_{-1}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} .
$$

Now we prove the last formula. Since

$$
\begin{aligned}
x_{4 n+4} & =\frac{x_{4 n}}{-1+x_{4 n+3} x_{4 n+2} x_{4 n+1} x_{4 n}} \\
& =\frac{x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}}{-1+x_{0} x_{-1} x_{-2} x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)} \\
& =x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1},
\end{aligned}
$$

we have

$$
x_{4 n+4}=x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} .
$$

Thus, we have proved (2.1), (2.2), (2.3) and (2.4).
Theorem 2. Eq.(1.1) has three equilibrium points which are $0, \sqrt[4]{2}$ and $-\sqrt[4]{2}$.
Proof. For the equilibrium points of Eq.(1.1) we write

$$
\bar{x}=\bar{x} /(-1+\bar{x} \bar{x} \bar{x} \bar{x}) .
$$

Then we have

$$
\bar{x}^{5}-2 \bar{x}=0 .
$$

Thus, the equilibrium points of Eq. (1.1) are $0, \sqrt[4]{2}$ and $-\sqrt[4]{2}$.
Corollary 1. Let $\left\{x_{n}\right\}$ be a solution of Eq.(1.1). Assume that x_{-3}, x_{-2}, x_{-1}, $x_{0}>0$ and $x_{-3} x_{-2} x_{-1} x_{0}>1$. Then all solutions of Eq.(1.1) are positive.

Proof. This is clear from Eqs. (2.1), (2.2), (2.3) and (2.4).
Corollary 2. Let $\left\{x_{n}\right\}$ be a solution of Eq.(1.1). Assume that x_{-3}, x_{-2}, x_{-1}, $x_{0}<0$ and $x_{-3} x_{-2} x_{-1} x_{0}>1$. Then all solutions of Eq.(1.1) are negative.

Proof. This is clear from Eqs. (2.1), (2.2), (2.3) and (2.4).
Corollary 3. Let $\left\{x_{n}\right\}$ be a solution of Eq.(1.1). Assume that x_{-3}, x_{-2}, x_{-1}, $x_{0}>0$ and $x_{-3} x_{-2} x_{-1} x_{0}>2$. Then

$$
\lim _{n \rightarrow \infty} x_{4 n+1}=0, \lim _{n \rightarrow \infty} x_{4 n+2}=\infty, \lim _{n \rightarrow \infty} x_{4 n+3}=0 \text { and } \lim _{n \rightarrow \infty} x_{4 n+4}=\infty .
$$

Proof. Let $x_{-3}, x_{-2}, x_{-1}, x_{0}>0$ and $x_{-3} x_{-2} x_{-1} x_{0}>2$.
Then $x_{-3} x_{-2} x_{-1} x_{0}-1>1$ and Eq. (2.1), (2.2), (2.3) and (2.4) imply

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{4 n+1}=\lim _{n \rightarrow \infty} \frac{x_{-3}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}=0,} \\
& \lim _{n \rightarrow \infty} x_{4 n+2}=\lim _{n \rightarrow \infty} x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}=\infty, \\
& \lim _{n \rightarrow \infty} x_{4 n+3}=\lim _{n \rightarrow \infty} \frac{x_{-1}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}}=0, \\
& \lim _{n \rightarrow \infty} x_{4 n+4}=\lim _{n \rightarrow \infty} x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}=\infty .
\end{aligned}
$$

Corollary 4. Let $\left\{x_{n}\right\}$ be a solution of Eq.(1.1). Assume that x_{-3}, x_{-2}, x_{-1}, $x_{0}<0$ and $x_{-3} x_{-2} x_{-1} x_{0}>2$. Then

$$
\lim _{n \rightarrow \infty} x_{4 n+1}=0, \lim _{n \rightarrow \infty} x_{4 n+2}=-\infty, \lim _{n \rightarrow \infty} x_{4 n+3}=0 \text { and } \lim _{n \rightarrow \infty} x_{4 n+4}=-\infty
$$

The proof is similar to that of Corollary 3. Thus it is omitted.
Now, we give the following result about the product of solutions of Eq. (1.1).
Corollary 5. $\prod_{n=0}^{s} x_{4 n+1} x_{4 n+2} x_{4 n+3} x_{4 n+4}=\left(x_{0} x_{-1} x_{-2} x_{-3}\right)^{s+1}$ where $s \in \mathbb{Z}^{+}$.
Proof. From Eqs. (2.1), (2.2), (2.3) and (2.4) we obtain

$$
\begin{gathered}
x_{4 n+1} x_{4 n+2} x_{4 n+3} x_{4 n+4}=\frac{x_{-3}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} \\
\times \frac{x_{-1}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}=x_{0} x_{-1} x_{-2} x_{-3}
\end{gathered}
$$

and the above equality yields

$$
\prod_{n=0}^{s} x_{4 n+1} x_{4 n+2} x_{4 n+3} x_{4 n+4}=\left(x_{0} x_{-1} x_{-2} x_{-3}\right)^{s+1}
$$

Thus, the proof is complete.

References

[1] Aloqeili M.: Dynamics of a k th order rational difference equation. Appl. Math. Comput. (In press.).
[2] Camouzis E., Ladas G., Rodrigues I. W., Northshield S.: The rational recursive sequence $x_{n+1}=b x_{n}^{2} / 1+x_{n-1}^{2}$. Comput. Math. Appl. 28 (1994), 37-43.
[3] Cinar C.: On the positive solutions of the difference equation $x_{n+1}=x_{n-1} /\left(1+x_{n}\right.$ $\left.\times x_{n-1}\right)$. Appl. Math. Comput. 150 (2004), 21-24.
[4] Cinar C.: On the positive solutions of the difference equation $x_{n+1}=a x_{n-1} /\left(1+b x_{n}\right.$ $\left.\times x_{n-1}\right)$. Appl. Math. Comput. 156 (2004), 587-590.
[5] Cinar C.: On the difference equation $x_{n+1}=x_{n-1} /\left(-1+x_{n} x_{n-1}\right)$. Appl. Math. Comput. 158 (2004), 813-816.
[6] Stevic S.: More on a rational recurence relation $x_{n+1}=x_{n-1} /\left(1+x_{n-1} x_{n}\right)$. Appl. Math. E-Notes 4 (2004), 80-84.
7] Stevic S.: On the recursive sequence $x_{n+1}=x_{n-1} / g\left(x_{n}\right)$. Taiwanese J. Math. 6 (2002),
[8] Stevic S.: On the recursive sequence $x_{n+1}=\alpha+x_{n-1}^{p} / x_{n}^{p}$. J. Appl. Math. Comput. 18
[9] Yang X., Su W., Chen B., Megson G., Evans D.: On the recursive sequences $x_{n+1}=$ $a x_{n-1}+b x_{n-2} /\left(c+d x_{n-1} x_{n-2}\right)$. Appl. Math. Comput. 162 (2005), 1485-1497.

Authors' addresses: Cengiz Cinar, Ramazan Karatas, Ibrahim Yalçınkaya, Selcuk University, Education Faculty, Mathematics Department, 42099, Meram Yeni Yol, Konya, Turkiye, e-mail: ccinar25@yahoo.com, rckaratas@yahoo.com, iyalcinkaya1708@yahoo. com.

