ON SOLUTIONS OF THE DIFFERENCE EQUATION

 $x_{n+1} = x_{n-3} / (-1 + x_n x_{n-1} x_{n-2} x_{n-3})$

CENGIZ CINAR, RAMAZAN KARATAS, IBRAHIM YALÇINKAYA, KONYA

(Received March 13, 2006)

Abstract. We study the solutions and attractivity of the difference equation $x_{n+1} = x_{n-3}/(-1+x_nx_{n-1}x_{n-2}x_{n-3})$ for $n = 0, 1, 2, \ldots$ where x_{-3}, x_{-2}, x_{-1} and x_0 are real numbers such that $x_0x_{-1}x_{-2}x_{-3} \neq 1$.

Keywords: difference equation, recursive sequence, solutions, equilibrium point

MSC 2000: 39A11

1. INTRODUCTION

A lot of work has been done concerning the attractivity and solutions of the rational difference equations, for example in [1]–[9]. In [3] Cinar studied the positive solutions of the difference equation $x_{n+1} = x_{n-1}/(1+x_nx_{n-1})$ for n = 0, 1, 2, ... and proved by induction the formula

$$x_{n} = \begin{cases} x_{-1} \frac{\prod\limits_{i=0}^{[(n+1)/2]-1} (2x_{-1}x_{0}i+1)}{\prod\limits_{i=0}^{[(n+1)/2]-1} ((2i+1)x_{-1}x_{0}+1)} & \text{for } n \text{ odd,} \\ \\ \prod\limits_{i=0}^{n/2} ((2i-1)x_{-1}x_{0}+1) \\ x_{0} \frac{\prod\limits_{i=1}^{n/2} ((2ix_{-1}x_{0}+1))}{\prod\limits_{i=1}^{n/2} (2ix_{-1}x_{0}+1)} & \text{for } n \text{ is even.} \end{cases}$$

In [6] Stevic studied the stability properties of the solutions of Cinar's equation. Also in [7] Stevic investigated the solutions of the difference equation $x_{n+1} =$

 $Bx_{n-1}/B + x_n$ and gave the formulas

$$x_{2n} = x_0 \left(1 - x_1 \sum_{j=1}^n \prod_{i=1}^{2j-1} \frac{1}{1+x_i} \right),$$
$$x_{2n+1} = x_{-1} \left(1 - \frac{x_0}{1+x_0} \sum_{j=0}^n \prod_{i=1}^{2j} \frac{1}{1+x_i} \right).$$

Moreover, in [1] Aloqeili generalized the results from [3], [6] to the kth order case and investigated the solutions, stability character and semicycle behavior of the difference equation $x_{n+1} = x_{n-k}/(A + x_{n-k}x_n)$ where $x_{-k}, \ldots, x_0 > 0$ and A > 0, k being any positive integer.

Our aim in this paper is to investigate the solutions of the difference equation

(1.1)
$$x_{n+1} = \frac{x_{n-3}}{-1 + x_n x_{n-1} x_{n-2} x_{n-3}}$$
 for $n = 0, 1, 2, ...$

where x_{-3}, x_{-2}, x_{-1} and x_0 are real numbers such that $x_0x_{-1}x_{-2}x_{-3} \neq 1$.

First, we give two definitions which will be useful in our investigation of the behavior of solutions of Eq. (1.1).

Definition 1. Let *I* be an interval of real numbers and let $f: I^4 \to I$ be a continuously differentiable function. Then for every $x_{-i} \in I$, i = 0, 1, 2, 3, the difference equation $x_{n+1} = f(x_n, x_{n-1}, x_{n-2}, x_{n-3})$, n = 0, 1, 2, ..., has a unique solution $\{x_n\}_{n=-3}^{\infty}$.

Definition 2. The equilibrium point \bar{x} of the equation $x_{n+1} = f(x_n, x_{n-1}, \ldots, x_{n-k}), n = 0, 1, 2, \ldots$, is the point that satisfies the condition $\bar{x} = f(\bar{x}, \ldots, \bar{x})$.

2. Main results

Theorem 1. Assume that $x_0x_{-1}x_{-2}x_{-3} \neq 1$ and let $\{x_n\}_{n=-3}^{\infty}$ be a solution of Eq. (1.1). Then for n = 0, 1, 2, ... all solutions of Eq. (1.1) are of the form

(2.1)
$$x_{4n+1} = x_{-3} / \left(-1 + x_0 x_{-1} x_{-2} x_{-3} \right)^{n+1}$$

(2.2)
$$x_{4n+2} = x_{-2} \left(-1 + x_0 x_{-1} x_{-2} x_{-3} \right)^{n+1}$$

(2.3)
$$x_{4n+3} = x_{-1}/(-1+x_0x_{-1}x_{-2}x_{-3})^{n+1},$$

(2.4) $x_{4n+4} = x_0 \left(-1 + x_0 x_{-1} x_{-2} x_{-3} \right)^{n+1}.$

Proof. x_1, x_2, x_3 and x_4 are clear from Eq. (1.1). Also, for n = 1 the result holds. Now suppose that n > 1 and our assumption holds for (n - 1). We shall show

that the result holds for n. From our assumption for (n-1) we have

$$\begin{aligned} x_{4n-3} &= x_{-3} / \left(-1 + x_0 x_{-1} x_{-2} x_{-3} \right)^n, \\ x_{4n-2} &= x_{-2} (-1 + x_0 x_{-1} x_{-2} x_{-3})^n, \\ x_{4n-1} &= x_{-1} / \left(-1 + x_0 x_{-1} x_{-2} x_{-3} \right)^n, \\ x_{4n} &= x_0 \left(-1 + x_0 x_{-1} x_{-2} x_{-3} \right)^n. \end{aligned}$$

Then, from Eq. (1.1) and the above equality, we have

$$x_{4n+1} = x_{4n-3}/(-1 + x_{4n}x_{4n-1}x_{4n-2}x_{4n-3})$$

= $\frac{x_{-3}/(-1 + x_0x_{-1}x_{-2}x_{-3})^n}{-1 + x_0x_{-1}x_{-2}x_{-3}} = \frac{x_{-3}}{(-1 + x_0x_{-1}x_{-2}x_{-3})^{n+1}}.$

That is,

$$x_{4n+1} = \frac{x_{-3}}{\left(-1 + x_0 x_{-1} x_{-2} x_{-3}\right)^{n+1}}.$$

Also,

$$x_{4n+2} = \frac{x_{4n-2}}{-1 + x_{4n+1}x_{4n}x_{4n-1}x_{4n-2}}$$
$$= \frac{x_{-2} \left(-1 + x_{0}x_{-1}x_{-2}x_{-3}\right)^{n}}{-1 + x_{0}x_{-1}x_{-2}x_{-3}/(-1 + x_{0}x_{-1}x_{-2}x_{-3})}$$
$$= x_{-2} \left(-1 + x_{0}x_{-1}x_{-2}x_{-3}\right)^{n+1}.$$

Hence, we have

$$x_{4n+2} = x_{-2} \left(-1 + x_0 x_{-1} x_{-2} x_{-3} \right)^{n+1}.$$

Similarly,

$$x_{4n+3} = \frac{x_{4n-1}}{-1 + x_{4n+2}x_{4n+1}x_{4n}x_{4n-1}} = \frac{x_{-1}/\left(-1 + x_0x_{-1}x_{-2}x_{-3}\right)^n}{-1 + x_0x_{-1}x_{-2}x_{-3}}$$
$$= \frac{x_{-1}}{\left(-1 + x_0x_{-1}x_{-2}x_{-3}\right)^{n+1}}.$$

Consequently, we have

$$x_{4n+3} = \frac{x_{-1}}{\left(-1 + x_0 x_{-1} x_{-2} x_{-3}\right)^{n+1}}.$$

Now we prove the last formula. Since

$$x_{4n+4} = \frac{x_{4n}}{-1 + x_{4n+3}x_{4n+2}x_{4n+1}x_{4n}}$$

= $\frac{x_0 (-1 + x_0 x_{-1} x_{-2} x_{-3})^n}{-1 + x_0 x_{-1} x_{-2} x_{-3}/(-1 + x_0 x_{-1} x_{-2} x_{-3})}$
= $x_0 (-1 + x_0 x_{-1} x_{-2} x_{-3})^{n+1}$,

we have

$$x_{4n+4} = x_0 \left(-1 + x_0 x_{-1} x_{-2} x_{-3}\right)^{n+1}$$

Thus, we have proved (2.1), (2.2), (2.3) and (2.4).

Theorem 2. Eq. (1.1) has three equilibrium points which are $0, \sqrt[4]{2}$ and $-\sqrt[4]{2}$.

Proof. For the equilibrium points of Eq. (1.1) we write

$$\bar{x} = \bar{x}/(-1 + \bar{x}\bar{x}\bar{x}\bar{x}).$$

Then we have

$$\bar{x}^5 - 2\bar{x} = 0.$$

Thus, the equilibrium points of Eq. (1.1) are $0, \sqrt[4]{2}$ and $-\sqrt[4]{2}$.

Corollary 1. Let $\{x_n\}$ be a solution of Eq. (1.1). Assume that $x_{-3}, x_{-2}, x_{-1}, x_0 > 0$ and $x_{-3}x_{-2}x_{-1}x_0 > 1$. Then all solutions of Eq. (1.1) are positive.

Proof. This is clear from Eqs. (2.1), (2.2), (2.3) and (2.4).

Corollary 2. Let $\{x_n\}$ be a solution of Eq. (1.1). Assume that $x_{-3}, x_{-2}, x_{-1}, x_0 < 0$ and $x_{-3}x_{-2}x_{-1}x_0 > 1$. Then all solutions of Eq. (1.1) are negative.

Proof. This is clear from Eqs. (2.1), (2.2), (2.3) and (2.4).

Corollary 3. Let $\{x_n\}$ be a solution of Eq. (1.1). Assume that $x_{-3}, x_{-2}, x_{-1}, x_0 > 0$ and $x_{-3}x_{-2}x_{-1}x_0 > 2$. Then

 $\lim_{n \to \infty} x_{4n+1} = 0, \ \lim_{n \to \infty} x_{4n+2} = \infty, \ \lim_{n \to \infty} x_{4n+3} = 0 \ and \ \lim_{n \to \infty} x_{4n+4} = \infty.$

Proof. Let $x_{-3}, x_{-2}, x_{-1}, x_0 > 0$ and $x_{-3}x_{-2}x_{-1}x_0 > 2$. Then $x_{-3}x_{-2}x_{-1}x_0 - 1 > 1$ and Eq. (2.1), (2.2), (2.3) and (2.4) imply

$$\lim_{n \to \infty} x_{4n+1} = \lim_{n \to \infty} \frac{x_{-3}}{(-1 + x_0 x_{-1} x_{-2} x_{-3})^{n+1}} = 0,$$

$$\lim_{n \to \infty} x_{4n+2} = \lim_{n \to \infty} x_{-2} (-1 + x_0 x_{-1} x_{-2} x_{-3})^{n+1} = \infty,$$

$$\lim_{n \to \infty} x_{4n+3} = \lim_{n \to \infty} \frac{x_{-1}}{(-1 + x_0 x_{-1} x_{-2} x_{-3})^{n+1}} = 0,$$

$$\lim_{n \to \infty} x_{4n+4} = \lim_{n \to \infty} x_0 (-1 + x_0 x_{-1} x_{-2} x_{-3})^{n+1} = \infty.$$

260

Corollary 4. Let $\{x_n\}$ be a solution of Eq. (1.1). Assume that $x_{-3}, x_{-2}, x_{-1}, x_0 < 0$ and $x_{-3}x_{-2}x_{-1}x_0 > 2$. Then

$$\lim_{n \to \infty} x_{4n+1} = 0, \lim_{n \to \infty} x_{4n+2} = -\infty, \lim_{n \to \infty} x_{4n+3} = 0 \text{ and } \lim_{n \to \infty} x_{4n+4} = -\infty.$$

The proof is similar to that of Corollary 3. Thus it is omitted.

Now, we give the following result about the product of solutions of Eq. (1.1).

Corollary 5.
$$\prod_{n=0}^{\circ} x_{4n+1} x_{4n+2} x_{4n+3} x_{4n+4} = (x_0 x_{-1} x_{-2} x_{-3})^{s+1}$$
 where $s \in \mathbb{Z}^+$.

Proof. From Eqs. (2.1), (2.2), (2.3) and (2.4) we obtain

$$x_{4n+1}x_{4n+2}x_{4n+3}x_{4n+4} = \frac{x_{-3}}{\left(-1 + x_0x_{-1}x_{-2}x_{-3}\right)^{n+1}} x_{-2} \left(-1 + x_0x_{-1}x_{-2}x_{-3}\right)^{n+1} \\ \times \frac{x_{-1}}{\left(-1 + x_0x_{-1}x_{-2}x_{-3}\right)^{n+1}} x_0 \left(-1 + x_0x_{-1}x_{-2}x_{-3}\right)^{n+1} = x_0x_{-1}x_{-2}x_{-3}$$

and the above equality yields

$$\prod_{n=0}^{s} x_{4n+1} x_{4n+2} x_{4n+3} x_{4n+4} = (x_0 x_{-1} x_{-2} x_{-3})^{s+1}.$$

Thus, the proof is complete.

References

- [1] Aloqeili M.: Dynamics of a kth order rational difference equation. Appl. Math. Comput. (In press.).
- [2] Camouzis E., Ladas G., Rodrigues I. W., Northshield S.: The rational recursive sequence $x_{n+1} = bx_n^2/1 + x_{n-1}^2$. Comput. Math. Appl. 28 (1994), 37–43. zbl
- [3] Cinar C.: On the positive solutions of the difference equation $x_{n+1} = x_{n-1}/(1 + x_n \times x_{n-1})$. Appl. Math. Comput. 150 (2004), 21–24. zbl
- [4] Cinar C.: On the positive solutions of the difference equation $x_{n+1} = ax_{n-1}/(1 + bx_n \times x_{n-1})$. Appl. Math. Comput. 156 (2004), 587–590. Zbl
- [5] Cinar C.: On the difference equation $x_{n+1} = x_{n-1}/(-1 + x_n x_{n-1})$. Appl. Math. Comput. 158 (2004), 813–816.
- [6] Stevic S.: More on a rational recurrence relation $x_{n+1} = x_{n-1}/(1 + x_{n-1}x_n)$. Appl. Math. E-Notes 4 (2004), 80–84. zbl
- [7] Stevic S.: On the recursive sequence $x_{n+1} = x_{n-1}/g(x_n)$. Taiwanese J. Math. 6 (2002), 405–414. zbl
- [8] Stevic S.: On the recursive sequence $x_{n+1} = \alpha + x_{n-1}^p / x_n^p$. J. Appl. Math. Comput. 18 (2005), 229–234. zbl
- [9] Yang X., Su W., Chen B., Megson G., Evans D.: On the recursive sequences $x_{n+1} = ax_{n-1} + bx_{n-2}/(c + dx_{n-1}x_{n-2})$. Appl. Math. Comput. 162 (2005), 1485–1497.

Authors' addresses: Cengiz Cinar, Ramazan Karatas, Ibrahim Yalçınkaya, Selcuk University, Education Faculty, Mathematics Department, 42099, Meram Yeni Yol, Konya, Turkiye, e-mail: ccinar25@yahoo.com, rckaratas@yahoo.com, iyalcinkaya1708@yahoo.com.

261

 $^{\mathrm{zbl}}$