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Let b > 0 and D

b

= R� [0; b]. In the strip D

b

, consider the hyperbolic equation
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! R is continuous for
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and the function
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is summable on the rectangle [�a; a]� [0; b] for any � > 0 a > 0.

By solution of the equation (1) we understand a locally absolutely continuous function

u : D

b

! R (see [2]) satisfying the equation (1) almost everywhere in D

b

.

We study the case where f is !-periodic in the �rst argument for some ! > 0, i.e.,
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Let ' : R ! R be a locally absolutely continuous !-periodic function. Below we

formulate su�cient conditions of existence and uniqueness of the solution of the equation

(1) satisfying

u(x; 0) = '(x); u(x+ !; y) = u(x; y) for (x; y) 2 D

b

: (2)

Note that earlier the problem (1),(2) has been investigated when f is linear or quasi-

linear with respect to the last two arguments (see. [1,4-10]).

Theorem 1. Let the inequalities
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take place on D

b

�R

2

, where p

0

: [0; !]� [0; b]! R

+

is summable, � : [0; b]! f�1; 1g is

measurable and p : [0; !]�[0; b]! R is a measurable function such that p(x; �) : [0; b]! R

is continuous almost for every x, maxfjp(�; t)j : t 2 [0; b]g : [0; !]! R

+

is summable and

!

Z

0

p(s; y) ds < 0 for y 2 [0; b]: (5)

Then the problem (1); (2) is solvable.
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Remark 1: The conditions (3) and (5) are essential and cannot be weakened. Violation

of the condition (3) may result in the loss of global solvability in the whole strip D

b

. As

an example, consider the problem
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� 1; u(x; 0) = 0; u(x+ !; y) = u(x; y);

in the strip D

b

, where b = 2

R

+1

0
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, " > 0 is an arbitrary constant. The given

problem may have at most one solution (see Theorem 2 below). Therefore if u(x; y) is a

solution of the given problem, then u(x; y) = u(y) and it is simultaneously the solution

of the Cauchy problem

du

dy

= u

1+"

+ 1; u(0) = 0;

de�ned on the segment [0; b]. But it is impossible since lim

y!

b

2

u(y) = +1:

On the other hand, violation of the condition (5) may result in the loss of solvability

of the problem (1),(2). To convince ourselves that is so, consider the problem

@

2

u

@x@y

= y

@u

@y

+ 1; u(x; 0) = 0; u(x+ !; y) = u(x; y)

for which all conditions of Theorem 1, except of (5), are ful�lled. Nevertheless, the above

problem has no solution. In fact, otherwise we should have

@u(x; y)

@y

= �

1

y

for 0 < y � b:

But this contradicts the absolute continuity of u.

Theorem 2. Let the conditions (4) and (5) hold and let there exist nonnegative

summable functions c
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: [0; !]� [0; b]! R
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+

such that the inequality
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holds on D

b

� R

2

. Then the problem (1); (2) has at most one solution.

Finally, consider the case where f(x; y; z

0

; z

1

) � f(x; y; z

0

), i.e., where the equation

(1) has the form
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= f(x; y; u): (6)

In addition, assume that f has partial derivatives in the second and the third arguments

satisfying local Carath�eodory conditions. Put

g
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(x; y; z) =

@f(x; y; z)

@y

; g

1

(x; y; z) =
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Theorem 3. Let there exist a positive constant l and a measurable function � :

[0; b]! f�1; 1g such that the inequalities
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(x; y; z)j � l(1 + jzj); jg
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hold on [0; !] � [0; b] � R, where g(x) = ess inff�(y)g

1

(x; t; z) : t 2 [0; b]; z 2 Rg. Then

the problem (6); (2) is solvable if and only if

!

Z

0

f(s; 0; '(s)) ds = 0:

If, besides, g

i

(i = 0; 1) are locally Lipschitz continuous in z, then the problem (6); (2) is

uniquely solvable.

Remark 2: The condition (7) in Theorem 3 is essential and cannot be neglected. For

example, it is obvious that the problem
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has no solution, although all conditions of Theorem 3, except (7), hold since
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