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Consider the linear hyperbolic equation
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By a solution of the equation (1) we understand a locally absolutely continuous func-
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Theorem 1. Let p
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take place. Then the problem (1
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); (2) is uniquely solvable.
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Below we study the problem (1),(2) in the case where the following conditions take

place:

!

2

Z

0

p

1

(x; t) dt > 0 for x 2 [0; !

1

]; p

2

(y) > 0 for y 2 [0; !

2

];

!

1

Z

0

p

0

(s; y) ds � 0;

!

1

Z

0

p

1

(s; y) ds � 0 for y 2 [0; !

2

]

and

!

1

Z

0

!

2

Z

0

p

0

(s; t) dsdt 6= 0:

Introduce the following notation:
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Theorem 2. Let p
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be an absolutely continuous function and let
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Then the problem (1); (2) is uniquely solvable.
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