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ON UNIQUE SOLVABILITY OF THE PERIODIC PROBLEM IN THE
PLANE FOR LINEAR HYPERBOLIC EQUATIONS

(Reported on May 13-20, 1996)

Consider the linear hyperbolic equation

92y ou ou
=po(z, y)u +p1(®,¥) = +p2(y) = + a(z,y), )
Oz 0y ox 9y

where p; : R?2 - R (j = 0,1), p2 : R — R are essentially bounded measurable functions
and ¢ : R? — R is a locally summable function. Besides, let there exist constants wj > 0
wo > 0 such that

pj(z+wi,y) =pj(z,y) =pj(z,y +ws) (j=0,1) for (z,y)€R?
p2(y +w2) =p2(y) for yeER

By a solution of the equation (1) we understand a locally absolutely continuous func-
tion u : R2 — R satisfying the equation (1) almost everywhere in R%. Below we formulate
sufficient conditions of existence and uniqueness of a solution of the equation (1) satisfying
the conditions

w@+wi,y) = u(e,y), ulz,y+w:)=ule,y) for (z,y)€R>. )

First we consider the case where pi(z,y) = 1 and p2(z,y) = 1, i.e., the equation (1)
has the form

RN ou  Ou
= —_— —_— . 1’
900y po(z,y)u + o T o9 +a(z,y) (1"

Theorem 1. Let po(z,y) Z 0 be an absolutely continuous function and let either of
following two conditions

<0 for (z,y) eR?

1 Opo(x,
z

2

or

<0 for (z,y)€ R

1 9po(z,y)
po(z,y) + 2 oy

take place. Then the problem (1'),(2) is uniquely solvable.
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Below we study the problem (1),(2) in the case where the following conditions take
place:

w2

/pl(x,t) dt >0 for x€[0,w1], p2(y) >0 for y € [0,ws],
0
w1 w1
/pO(S,y) ds S 07 /pl(say) ds 2 0 for Yy € [0,0.)2]
0 0
and
w1 w2

po(s,t) dsdt # 0.

Introduce the following notation:

w1 w1

1 1
poo(y) = — /Po(say) ds, poi(y) = — /pl(Syy) ds,
w1 w1
0 0
2
%m%m(y) —poo(y)p2(y) 1
pm(y) = 0} y am(y) = ———— for meEZ,
41 m? + p3(y) 422 m2 + p3(y)
1 1
k2
Bmk(y) = for m#k, mkeZ,

(S22 + 93w (m - 2

vt exp ( -2 fty pm(T) d'r)
( n;Z (exp (fOWZ pm(T) dT) - 1)

Yt exp (72fty pm (T) d'r) 1
Zi(po,p1,p2)= sup sup Bme(t)dt | .
( ) </kez > 5 Bmi (1) )

y€[0,wo] ; mEL,m#k (exp (fow2 pm(7) dT) B 1)

1
2

5 am (1) dt) ,

To(po, p1,p2) = sup
y€[0,wa]

Theorem 2. Let p1 be an absolutely continuous function and let

w1 wo 1
1 2
Io(p07p1,p2)<w—//|po(s,t)—poo(t)Istdt> +
1
0 o
w1 W 5 1
1 Ip1(s,t 2
+Il(p0,p1,p2)<—//‘w‘ dsdt) < 1.
w1 Os
0 0

Then the problem (1),(2) is uniquely solvable.
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