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Abstract. The first boundary value problem is studied for second order
general elliptic equations degenerating on the whole boundary. In accor-
dance with the type of degeneration, the cases are distinguished where the
whole boundary becomes free of boundary conditions. For a class of second
order degenerating elliptic equations, a new approach is proposed which
enables one to prove the correctness of the Dirichlet problem. For second
order general elliptic equations degenerating on a part of the boundary, con-
ditions are found guaranteeing the correctness of the problem with oblique
derivative. For the solution of this problem, an a priori estimate is obtained.
A boundary value problem of conjugation type is studied in weighted spaces
for a class of degenerating second order hyperbolic systems with discontinu-
ous coefficients. The problems with oblique derivative are also investigated
for mixed type equations with a Lavrent’ev-Bitsadze operator as the prin-
cipal part.
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INTRODUCTION

In the theory of partial differential equations, under a degenerating equa-
tion is usually understood an equation which changes its type on the closure
of the range of independent variables. Degeneration character may be so
diverse that no successful classification of the types of degeneration has been
described as yet.

Degenerating partial differential equations, in particular degenerating el-
liptic, hyperbolic and mixed type equations are encountered in solving many
important problems in the membrane theory of shells of alternating cunr-
vature, the theory of infinitely small deformation of surfaces, in transonic
and supersonic gas mechanics, in the theory of magnetohydrodynamic flows
with passage over critical velocities, and in other divisions of mechanics.

Individual special classes of equations not coinciding with the well- stud-
ied equations of elliptic and hyperbolic type have been considered for a long
time, for example, in Picone’s work [60] published about 80 years ago.

Tricomi’s work [62], as well as further investigation of equations of mixed
type, evoked great interest in the study of elliptic and hyperbolic equations
which degenerate on the boundary of a domain.

Boundary value problems for mixed type equations lead to new mixed
boundary value problems for elliptic equations not satisfying the condition
of uniform ellipticity, in particular, to boundary value problems for elliptic
equations degenerating on a part of the boundary.

In a certain sense, Keldysh’s fundamental work [40] has become a turning-
point in the theory of degenerating elliptic equations. Having considered a
specific second order equation in a hemisphere whose plane part of the
boundary is a characteristic manifold, M. V. Keldysh has shown that under
certain conditions imposed on the lower terms of the equation one should,
when searching for a smooth solution of the equation, remove boundary
conditions on the manifold of degeneration. Thus in his work M. V. Keldish
has clearly shown that the statement of the boundary value problems for
degenerating elliptic equations depends actually on the behavior of the lower
terms of the equation in the vicinity of a degenerating manifold. This work
has stimulated further investigation in the direction indicated by him.

In 1956, in his summarizing report at the 3rd All-Union Congress of
Mathematicians, A. V. Bitsadze [8] placed emphasis upon the importance
of the subsequent study of various new problems for degenerating elliptic
equations. In particular, it has been indicated that in the cases where the
Dirichlet problem is not always solvable, one can naturally replace the con-
dition of boundedness of a solution in the vicinity of the boundary of degen-
eration by a boundary condition which is satisfied by some weight function.
Later on, these questions turned out to be topical for many specialists.

The next stage in the development of the theory of degenerating elliptic
equations starts from the works of G. Fichera [22] and O. A. Oleinik [58]
who proved the existence and uniqueness of a generalized solution of the
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Dirichlet problem for second order equations with nonnegative characteristic
form. Noteworthy is also an approach to the investigation of boundary value
problems for degenerating elliptic equations on the basis of the theory of
embedding of weighted functional spaces, suggested by M. I. Vishik and
L. D. Kudryavtsev which was subsequently developed by their pupils and
followers.

As for the theory of initial, initial-boundary value and the Goursat and
Darboux problems for degenerating hyperbolic equations, it has a long-
standing history. These problems were investigated in the works by Dar-
boux [17], Tricomi [63, 64], Gellerstedt [25, 26], A. V. Bitsadze [9], A. M.
Nakhushev [53, 54], etc.

Passage to the second order hyperbolic systems leads us to additional
difficulties. A. V. Bitsadze [10] was the first who constructed examples of
second order hyperbolic systems for which the corresponding homogeneous
Goursat problem has infinitely many independent solutions. Of particular
note in this direction are the works of S. S. Kharibegashvili [41, 42] in which
he investigates different versions of the Goursat and Darboux problems for
second order degenerating hyperbolic systems.

First fundamental investigation in the theory of equations equations of
mixed type was carried on in the early 20s by Tricomi [65], and continued
in the 30s by Cibrario [15, 16], Gellerstedt [27] and Holmgren [35].

The next, not less significant step in the development of the theory
of mixed type equations was made by M. A. Lavrent’ev and A. V. Bit-
sadze [47], A. V. Bitsadze [11], K. I. Babenko [5], F. I. Frankl [23, 24] and
others. In those works, besides a fundamental investigation of various es-
sential problems of this theory, much attention was given to the practical
importance of the problem of mixed type equations.

In the development of this theory, A.V. Bitsadze’s investigations are of
special interest. He has formulated and studied a wide class of boundary
value problems both in two-dimensional and in spatial cases.

The present paper is devoted to the investigation of boundary value prob-
lems for degenerating elliptic and hyperbolic equations and systems, as well
as for equations of mixed type.

The first boundary value problem for a general second order elliptic equa-
tion degenerating on the entire boundary is studied in Chapter I. Depending
on the type of degeneration, we distinguish the cases where the boundary
of the domain is wholly free from boundary conditions. Next, for a class of
second order degenerating elliptic systems, we suggest a new approach en-
abling one to prove the unique solvability of the Dirichlet problem for these
systems. Finally, for the second order ellipitic equation of the general type
degenerating on a part of the boundary, conditions are found which guar-
antee the correctness of the problem with oblique derivative. An a priori
estimate of the solution of this problem is obtained.

In Chapter I, we deal with the boundary value problem of conjugation for
a class of second order degenerating hyperbolic systems with discontinuous
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coefficients. Conditions ensuring the unique solvability of this problem in
the weight spaces determined by the character of degeneration of the system
are also obtained.

Finally, in Chapter III, we investigate the problems with oblique deriva-
tive for mixed equations with Lavrent’ev—Bitsadze’s operator in the princi-
pal part.
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CHAPTER I

BOUNDARY VALUE PROBLEMS

FOR A SECOND ORDER LINEAR ELLIPTIC
EQUATION OF THE DEGENERATING

ON THE BOUNDARY OF A DOMAIN

1. ON SOLVABILITY OF THE DIRICHLET PROBLEM FOR SECOND ORDER
ELLiPTIC EQUATIONS WITH DEGENERATION ON THE WHOLE
BoUNDARY

Let us consider an equation of the form
L(u) = Augy + 2Bugy + Cuyy + auy + buy +cu = f (1.1)

in a bounded simply connected domain D of the plane of the variables z,y,
where

A,B,C,a,b,ce HY(D), 0<a<1, fe C(D)NH*D), c¢<0. (1.2)

In what follows, the equation (1.1) is assumed to be elliptic in D and
degenerating on the boundary I' = 9D, i.e.,

(B> — AC)|p < 0 (1.3)
and
(B* — AC)|sp = 0. (1.4)

Obviously, due to the ellipticity of (1.1) in D, without loss of generality
one may assume that A|p > 0.
Let 0D be given in terms of the equation H(z,y) = 0, where

H|p >0, He C*(D), Hlr =0, VH|r #0.

The Dirichlet problem. Find a regular in D solution u € C?(D) N C(D)
of the equation (1.1) by the boundary condition

ulr =, ¢ € C(I). (1.5)

It should be noted that for some classes of degenerating elliptic equations,
these questions have been considered in the works by M. I. Aliev [3,4],
D. K. Gvazava [33,34], G. V. Jaiani [36-38], G. G.Devdariani [18, 19]. An
approach to the investigation of boundary value problems for degenerating
differential equations on the basis of the theory of embedding of weighted
functional spaces has been first realized in the works by M. I. Vishik [73,
74] and L. D. Kudryavtsev [44, 45]. The results of these papers were later
generalized and supplemented by S.M. Nikol’skii [57], L. N. Lizorkin and
N. V. Miroshin [48], V. T. Glushko [29-31], N. V. Miroshin [50], S. G.
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Mikhlin [51], V. V. Grushin [32], S. N. Kruzhkov [43], A. A. Vasharin and
P. I. Lizorkin [70] etc.

When investigating the Dirichlet problem, one should distinguish two
cases

(AH? + 2BH,H, + CH,)|r #0, (1.6)
and
(AH? + 2BH,H, + CH,)|r = 0. (1.7)

Remark. The equality (1.4) together with the condition (1.6) means that
the equation (1.1) degenerates on I' = D parabolically and at every point of
the boundary, the tangent direction does not coincide with the characteristic
one. The conditions (1.4) and (1.7) are equivalent to the fact that either the
order of the equation degenerates at some points of the boundary or there
takes place parabolic degeneration. In this case the characteristic direction
coincides with the tangent one.

Owing to the condition (1.2), the uniqueness of the solution of the Dirich-
let problem is obvious.

In order to prove the existence of the solution of the problem (1.1), (1.5),
let us consider two auxiliary problems: 1. L(u) =0, ulr = ¢; 2. L(u) =
f, ulr = 0. Below, when considering Problem 2, we will assume that

¢ < —k, k=const>D0. (1.8)

To prove the existence of a solution of Problem 1 in the case (1.6), we
denote by Dy, the domain consisting of the points of the domain D satisfying
the condition H (z,y) > h, where h is a sufficiently small positive number. It
is clear that for sufficiently small h, the domain D}, is simply connected. Let
us take an arbitrary extension of the function ¢ to D of the class C*°(D).
Under our assumptions imposed both on the coefficients of the equation
(1.1) and on the domain D, for sufficiently small h there exists a regular
in Dy, solution uy € C'(Dy) N C?%(Dy) coinciding on the boundary Dj, with
the function ¢, because of the extremum principle. Moreover, |uy(z,y)| <
M, (z,y) € Dy, where M = m[_z)ix|g0|. Consider a sequence of domains
Dy, n=0,1,..., where hg > hy > --- > h, > --- and lim h, = 0.

n—o00

Since Dy, is a compactum and Dy, C Dy, for p > n, we may by virtue
of the inequality |up, (z,y)] < M select from the sequence up, in Dy, a
uniformly converging subsequence uj) ,up ,...,uy ,... whose limit is also
a solution of the class C?(Dp,) of the equation (1.1) [46]. Similarly, we
may select from the sequence uf) ,uj ,...,uj ,... a uniformly converging
on the compactum Dy, subsequence u,ll0 , u}“, cs ,u}tn, ..., etc. Evidently,
the diagonal subsequence uj) ,uy, ,...,uj ,... uniformly converges on every
compactum of the domain D, and its limit u(z,y) is a regular solution of
the class C?(D) of the equation (1.1).
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As it is known, when the condition (1.8) is fulfilled, then for the solution
of Problem 2, if it exists, the estimate [3]

maxu] < max ]

D D k
is valid, whence repeating the above arguments, we obtain a solution u(zx, y)
of the class C*(D) of the equation (1.1) as the limit of the sequence uj_,
u}“, ..., up uniformly converging on every compactum of D. Clearly, the

sum of solutions of Problems 1 and 2 will be a solution of problem (1.1),
(1.5). Below we will restrict ourselves to the consideration of Problem 1.

As it is known [61], in order for the above constructed solution u(z,y)
of the equation (1.1) to satisfy the boundary condition (1.5), it suffices to
construct at every point Q(zo,yo) of the boundary of D a so-called barrier,
i.e., a function v(z,y) satisfying the following conditions: a) it is continuous
in some neighborhood of the point wg = {P € D : |P — Q| < }; b) it
equals zero at the point @; ¢) v(z,y) > 0 in wg\Q; d) everywhere in this
neighborhood L(v) < 0.

As a barrier, we consider the function

v(z,y) = (x = 20)* + (y — y0)* + H’(,y), 0 < 3 = const < 1.

It is obvious that this function satisfies the conditions a), b) and c).
Let us check the condition d). In the case (1.6), substituting in (1.1) the
expression for v(z,y), we get

L(v) = B(B—1)H°"'(AH] + 2BH,H, + CH,) +
+BHP~Y(AH,, + 2BH,, + CHy, + aH, +bH,) + 2A + 2C +
+2a(z — 20) + 2b(y — yo) + c((z — z0)” + (y — yo)?) + cH?, (1.9)

whence it immediately follows that for sufficiently small H(z,y), the sign
of L(v) coincides with that of (8 — 1), and by virtue of 0 < 8 < 1, there
exists a neighborhood of the point @ such that L(v) < 0.

When considering the case (1.7), we assume that in some neighborhood
of the boundary I" the representation

AH} +2BH.H, + CH, = H’G (1.10)

holds, where p = const > 0, GG is a positive, continuous and bounded in that
neighborhood function.

Taking into account the representation (1.10), the expression (1.9) takes
the form

L(v) = B(8 — 1)HP*P=2G + BHP~Y[L(H) — cH]+
+24 4 20 + 2a(x — x0) + 2b(y — yo) + c((z — 20)% + (y — yo)?) + cHP.
For 0 < p < 1, the sign of L(v) coincides with that of (3 — 1) HPA~2 ie.,

L(v) <0. Ifp=1and (1 - IG™")|r > 0, where I = L(H) — cH, then the
sign of L(v) coincides with that of 3[(8 — 1)G + I|H°!, and if we assume
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that 8 < (1 — IG™!)|r, then we will have L(v) < 0. For 1 < p < 2 and
Ilr <0, we take 8 < 2 —p. Then L(v) < 0. In the case p > 2 and I|r <0,
the sign of L(v) coincides with that of BH®~'I, i.e., L(v) < 0.

Thus the following theorems are valid (see [66, 67]).

Theorem 1.1. Let (1.6) be fulfilled and ¢ < 0 on D. Then there exists a
solution of the Dirichlet problem.

Theorem 1.2. Let (1.7) be fulfilled, ¢ < 0 on D and one of the following
conditions is fulfilled: 1) 0 < p < 1;2)p=1, 1 —-IG YH|p >0, =
LH)—cH;3)1<p<2,Ilr <0;4) p>2, I|r <0. Then there exists a
solution of the Dirichlet problem.

Below we assume that (1.7), (1.10) and
HP™'G —T < AgH, p>1, Ay = const > 0,

hold. It can be easily verified that if the coefficients of the equation (1.1) are
analytic, then the above inequality is fulfilled for sufficiently large Ag > 0,
when (HP~'G — I)|r < 0.

The following lemma holds [66, 67].

Lemma 1.1. Let one of the following conditions be fulfilled: 1) p = 1,
IG i r >1;2)1<p<2,Ilr >0;3) p>2 Ir >0, and at every
point Py € D either ®(Py) = (Ag2 + 2Bg.gy + Cg2)(Py) # 0, where g €
C%*(D), g > 1, or ®(Py) = 0 and ¢(Py) < 0. Then there ezists a function
W (z,y) possessing the following properties: (a) W(P) > 0, P € D; (b)

lim W(P)=+o0; (¢) L(W) <0, PeD.
p(P,0D)—0

Theorem 1.3. Under the conditions of Lemma 1.1, the homogeneous equa-
tion L(u) = 0 in the class of bounded functions has only the trivial solution.

Proof. For any positive e, everywhere on the boundary I' = 9D of D the
inequality eW 4 ug > 0 holds, where ug is any bounded solution and W
is a function satisfying the conditions of Lemma 1.1. On the other hand,
in the domain D the inequality L(W) < 0 is fulfilled. Therefore, due to
the extremum principle, the inequality |ug| < W holds everywhere in the
domain D. This implies that u(z,y) = 0 in D because ¢ is taken to be
arbitrary. W

Corollary. Every non-trivial solution of the equation L(u) = 0 is un-
bounded.

Remark. If ¢ = 0, then the assertion of Theorem 1.3 is invalid, since
u = const # 0 satisfies the equation L(u) = 0.

Theorem 1.4. Let ¢ < 0 in D and the conditions of Theorem 1.3 be ful-
filled. Then the equation (1.1) is uniquely solvable in the class of bounded
functions.
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2. THE PROBLEM WITH OBLIQUE DERIVATIVE FOR A SECOND ORDER
ELLiPTIC EQUATION DEGENERATING ON A PORTION OF THE
BOUNDARY OF A DOMAIN

Consider an equation of the form
L(u) = Augy + 2Bugy + Cuyy + auy + buy +cu = F (2.1)

in a bounded simply connected domain D of the plane of the variables
z,y, where A, B,C € C*>%(D), a,b € C»*(D), ¢ € C%*(D), F € C(D),
0 < a=const <1,

¢ < ¢p = const < 0. (2.2)

Let 0D =T UTYyUP,UP,, 'y N\I's = @, where I'y and I’y are open arcs
with the ends at the points P; and P,. Note that 'y and T belong to the
class C%,

Below the equation (2.1) is assumed to be elliptic in the domain D U Ty
and degenerating on a part of the boundary I's C 0D, i.e.,

(B*> — AC)|pur, <0 (2.3)
and
(B> — AO)|g, = 0. (2.4)

Evidently, because the equation (2.1) is elliptic in D, we may without
restriction of generality assume that A|pur, > 0.

Let the equation I'; be given in terms of H;(z,y) = 0, where H;|p > 0,
H; € 02(1_)), Hi|Fi =0,:=1,2, VH1|f~1 #0, VH2|f2 # 0.

Below we assume that the points P; and P, are not cusps for the curve
oD.

Problem with Oblique Derivative. Find a regular in the domain D so-
lution w € C(D) N C*(D UTy) N C?(D) of the equation (2.1) satisfying the
following boundary conditions:

Aw) = (%—3‘ n du) — (2.5)
u|1-«2 = fo. (2.6)

Here % is the derivative with respect to the direction [ forming an acute

angle with the interior normal to the curve T'y; d, f € C([';) and f» € C(T)
are given functions, and

d<0. (2.7)

The components of the unit vector [ are assumed to belong to the class
C(Ty).
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In investigating the problem (2.1), (2.5), (2.6), one should distinguish
two cases:

(AH3, + 2BHy, Hyy + CH;,) |5, # 0, (2.8)
and
(AH3, + 2BH,, Hs, + CH3,) |, = 0. (2.9)

Lemma 2.1. For a solution u of the class C(D)NC'(DUT,)NC?(D) of
the problem (2.1), (2.5), (2.6), the following a priori estimate is valid:

lullepy < C* (Il fullesy + 1 f2 llog,) + T F llep) ,  (2.10)

where C* is a positive constant independent of u.

Proof. Since the direction / forms an acute angle with the interior normal
to the curve I'y while the components of this vector are continuous on a
closed arc I'1, there exists dy such that

0H;

Wh’“l = (I-grad Hi)p, > o = const > 0. (2.11)
Let
max|fil  suplF| max|fi
[ = max - C+ 2 ; — C> + max|fa] p, (2.12)
|co|do |co do T,

where C; = max|L(Hy)|, C2 = max |H;|, and because of (2.2), min|c| >
D D D

|col-
Consider the function w =yt — AH; —u, where A = max|f1|/do. Then by
Iy

virtue of (2.7), (2.11), (2.12) and also the equality Hi|r, = 0, we have

A(W)[r, = dp = A(Hy)|r, = A(w)lr, =

=dp— /\(% +dHy)|r, — f1 <
<dp— M\ — f1 <O0. (2.13)
In the domain D
max | f1|
L(w) = pc — AL(H,) — L(u) = pe — 150 L(H,) — F,
whence because of (2.12) the inequality
L(w) <0 (2.14)

holds in D.
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It follows from (2.12) that

H
wlp, = p — (max|fi|- = +u) |r, > 0. (2.15)
r ]
1 0

Let us now show that in the domain D the function w > 0. Indeed,
by (2.2), (2.3), (2.14) and Hopf’s extremum principle [11], the function w
would otherwise take at some point @@ of the boundary of D its minimal
negative value.

Next, consider two cases: 1) @ € I'1; and 2) Q € Ty U P, U P,. In the
first case, according to Zaremba—Giraud’s principle [11], at the point ) we
have 22 > 0. Therefore A(w) = 22 + dw > 0 which because of (2.13) is

al
impossible. In the second case, we have w(Q) = minw < 0 which contradicts
D

(2.15). Thus u < pin D.
On the other hand, if u is a solution of the problem (2.1), (2.5), (2.6),
then —u will be a solution of the problem

L(—u) = —F,
A(=uw)lr, = —f1,
(—u)lr, = —fo,

for which p is given by the same expression (2.12) as for the problem (2.1),
(2.5), (2.6). Therefore from the above reasoning we have either —u < p or
—p <wuin D. Thus we have obtained that in the domain D

ful < p. (2.16)

By virtue of (2.12) from (2.16), there immediately follows the a priori esti-
mate (2.10) with a positive constant C* not depending on u. W

When considering the case (2.9), we will assume that along with the
condition (2.4) the following representation holds in Ts:

AH3, + 2BH, Hyy, + CH;, = HYG,

where p = const > 0, G is a positive, continuous and bounded in this
neighborhood function. Moreover, we suppose that one of the following
conditions is fulfilled: 1) 0 < p < 1;2)p =1, (1 -IG )|g, > 0,1 =
L(Hy) —cH»;3) 1<p<2, 1|5, <0;4) p>2,I|g, <0;

Then we have

Theorem 2.1. Let at the points Py and P the direction | € C1*(T)
form with an interior normal to the curve Ty an obtuse angle. Then for any
F € C%(D), fi € CH*(Ty) and fo € C(Ty), there exists a unique solution
u(z,y) of the problem (2.1), (2.5), (2.6) of the class C**1(D\I'y) N C(D),
O0< o <a.
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Proof. The uniqueness of the solution of the problem (2.1), (2.5), (2.6) in a
more wide class of functions C'(D) N C'(D UT;) N C?(D) follows from the
a priori estimate (2.10).

Let us prove the existence of the problem (2.1), (2.5), (2.6). To this
end, we construct domains D, C D (Dy, = D as h — 40 and Dy, C Dy,
Tin, C Tip, Ton, C Dy, if hy > h) with smooth boundaries S = 'y, U
Tsp, U Py, U Py, of the class C?@, where 'y, and I's;, are open arcs with the
ends Py, and Psp; moreover, Py, Pop, € T'y, T'yp, C Ty, I'yp, C D.

As is known, since I'; € C*®, i = 1,2, for an arbitrary function fo €
C(T3) there exists its extension to D (we denote it by f») such that fy €
C?2(Dy) for any h > 0. In particular, the solution of the Dirichlet problem
for the Laplace equation

A’LL:O, ’u‘|(9D:j’;7

may serve as an example of such an extension, where f~'2|f2 = fs, f2|r1 €
C?*(T1), folp, € C(T).

It is known [7] that in the domain Dj there exists a solution of the
boundary value problem

L(us) = F, (2.17)
<% + duh> L =h (2.18)
uh|F2h = f27 (219)

which belongs to the class C%%(Dy) N C*%(Dy UT 1, UTsp).
Using the Green function Gy, (z, y; o, yo), for the solution uy of the prob-
lem (2.17), (2.18), (2.19) in Dy, we can write the following representation

[7]

oG
(@) = /thlds+/a—yhf2ds+
Tin

Iap
+//Gh(x,y;zo,yO)F(xo,yo)dwodyo, (2.20)
Dy,

where v is the unit vector of the conormal for the operator L.
By the representation (2.20) for the solution up in Dp, with hy > h, we
have

oG
uh(x,y) = / G, frds + / 6;1 Yhh, ds +

Cing Lony
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+ / /Ghl(%y;wo,yo)F(ﬂ«”o,yo)dzodym (2.21)
Dhl
where
Yhhy = Un|rsy,, - (2.22)
Obviously,
max | fo| < C3 max | fo| (2.23)
D T

for some C5 = const > 0.
From the a priori estimate (2.10) and also by (2.23), for the solution up,
of the problem (2.17), (2.18), (2.19) in D}, we have
lun| < C* (I fillew,) + 1 f2lle@an) + 1Fllem,)) <
< C*(|fille,) + Csllfalle(ry) + 1Fllop)) = M (2.24)
with the same constant C* as in (2.10) since max |L(H;)| < max |L(Hy)|
Dy, D
and max |H:| < max |H1|.
Dy, D
Due to (2.22) and (2.24), we get
nnlle(@an, ) = llunllo@an,) <
< C*(IAllor,) + Csllf2llor,) + 1Fllemn))- (2.25)

Let us consider the second integral operator in the right-hand side of
(2.21) which acts by the formula

Ty = / 8gjl¢ds. (2.26)
Cin,

According to the results of [7], the operator T is continuous and acts from
the space C(Tay, ) into the space C%%(Dy,), where hy > hy,

1Tl py,) < Cillplloran, s (2.27)

and Cy is a positive constant not depending on ¢.
From (2.22), (2.25) and (2.27), it follows

1T Ynm 020D,y <
< CiC* ([l filleryy + Csll falles) + 1Fllcp)) (2.28)

for h < h;. Since every bounded in C*%(Dp,) set S is precompact in
C%*%1(Dy,) for 0 < a; < a [28], by virtue of (2.28) it follows from the
representation (2.21) that one can select from the sequence {up}o<n<n, as
h — 0 a subsequence converging in the space C%(Dy,), a1 < a. Turning
now ha — 0 (he > h1y > h > 0), we select exactly as in §1 a subsequence
Ups, Uhg,y -5 Upx, ... cODvVerging to a solution u of the equation (2.1) from
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the space C2*1 (D\T'5). Tt is evident that this solution satisfies the boundary
condition (2.5), and because of (2.24) it is bounded in D. It remains to
determine whether the function u(z,y) equals fo on T's U P, U Ps.

This question, as is known [11], depends on the existence of a so-called
barrier function v(z,y) at every point of 'y U P; U P;.

When considering the case (2.9), we will assume that in some neighbor-
hood of T's, the following representation holds:

AH3, + 2BH,,H», + CH3, = HYG,

where p = const > 0, G > 0. Then, as is shown in §1, in the case (2.8) as
well as in the case (2.9), when one of the conditions 1) 0 <p < 1;2) p=1,
(1—IG g, >0, T = L(Hy) —cHy; 3) 1 < p < 2, I|p, <0;4) p>2,
Ils, < 05 is fulfilled, the function

v(z,y) = (z —20)> + (y —wo)? + HY, 0< B <1,

may be a barrier in some neighborhood P(x,y0) € ' of the point o,. By
the definition, the barrier function v(z, y) possesses the following properties:
a) it is continuous in gp; b) it equals zero at the point P; c) v(z,y) > 0
in 6p\P; d) it satisfies the condition L(v) < 0 everywhere in this neighbor-
hood.

The fact that at every point P € I's the solution u(z,y) takes in the
above considered cases the value f» can be proved in exactly the same way
as in the case of the Dirichlet problem in §1.

It remains to clarify whether the function u(z,y) admits the values f> at
the end points P;(x;,y;) (1 = 1,2) of the arc T',. W

Lemma 2.2. If at the point P; (i = 1,2) the direction | makes with the
interior to the curve I's normal an obtuse angle, i.e.,

(I-grad H»)(P;) < 0, (2.29)
then

PP, 1113H€16piﬂf‘1 A('Uz) = —00, (230)

where v;(x,y) = (¢ — ;)2 + (y —y)? + HY, 0 < B < 1, 1= (Ih,1»).
Proof. We have

A(vg) =211 (z — m3) + 2o (y — ;) + BHE (1 - grad Hy) + dv;.  (2.31)
Since for 0 < 8 < 1

. ~1
lim Hf = +o00,
P—P;, PEsp, NIy

from (2.31) by virtue of (2.29) it follows (2.30). Thus the lemma is complete.
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Further, owing to the continuity of the function f»(P), making the neigh-
borhood op, smaller, we will arrive for a given positive number ¢ at the
inequality

f2(Pi)_€Sf2(P)Sf2(Pi)+€, PEUpl.. (232)
Let us consider two functions:

Vi(P) = f2(P;) + € + kv (P),
¢i(P) = fo(P;) — e — kivy(P),
where k1 and k are arbitrary positive numbers.
Since PliHIID (L(v;))(P) = —o0, we have
— I

(2.33)

(L(v:))(P) < max|Fl, (L(¢:))(P) > max|F|, P €op,  (2.34)

if the neighborhood op, is small enough.
In the neighborhood op,, because of (2.32) and (2.33) we have

$i(P) > fa(P). (2.35)

Denote by wp C D the domain which is bounded by the curves y1 =
op, NTap, 72 = ap, Ny and 3 = (Jop, ﬁDh)\(’yl U~2). Since v; € C(73)
and v;|5, > 0, we have v;|5, > 09 = const > 0. Therefore the number £ in
the first formula (2.33) may be chosen such that

VYilys > M, (2.36)

where M is taken from the estimate (2.24).
By (2.30), we have

A(i/)l - ’U,h)|72 <0 (237)

if the domain op, is small enough.
It follows from (2.19) and (2.35) that

(% — un)loy > 0. (2.39)
Analogously, (2.24) and (2.36) imply that
(’(/}Z - uh)|;y3 Z 0. (239)

Next, from (2.34) we obtain that in wp
L(h; — up) < 0. (2.40)

Let us now show that (¢; —up) > 0 in the domain @j,. Really, because
of (2.2), (2.40) and the Hopf extremum principle, the function (¢; — up)
would otherwise take at some point () of the boundary ;1 U~ys U3 of wy, its
minimal negative value. By (2.38) and (2.39), the point @ does not belong
to v1 U¥s. But according to Zaremba—Giraud’s principle, this point because
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of (2.37) cannot likewise belong to v2. The obtained contradiction shows
that

up(P) < (P), P € wy. (2.41)

Similarly, the number k; in the second formula (2.33) may be chosen in
such a way that the inequality

¢i(P) <up(P), P€wy (2.42)

would hold.
Now, on the basis of (2.41) and (2.42), we can conclude that in wy, either

@i(P) <up(P) <4pi(P), (i=1,2)

or

|un(P) — f2(P;)| < e+ kovi(P), P € wy,
ko = max(k,kl).

Passing in this inequality to the limit as h — 0, we obtain
[u(P) — f2(P;)| < e+ kovi(P), P € op,. (2.43)

According to the properties of the barrier v;, there exists 6 = d(e) > 0
such that for ||P — P;|| < § and P € op, we have

kovi(p) <e
which, because of (2.43), implies that
[u(P) = fa(Pi)| < 2¢
for |[P—PF||<é,Pcop. N

In this direction, one should note the works of S. Zaremba [76], O. A.
Oleinik [58, 59], A. D. Vedenskaya [71], and others.

3. THE DIRICHLET PROBLEM FOR SECOND ORDER DEGENERATING
ELLIPTIC SYSTEMS

Consider the systems of the form
Ly (u) = Y™ gy + Uyy + atty + buy +cu =0, m >0, (3.1)
and
Ly(u) = Ugg + Yy uyy + augy + buy +cu =0, m >0, (3.2)

in a simply connected domain D bounded by a segment AB of the z-axis
of the line of their degeneration and by a smooth arc o lying in the half
plane y > 0 and ending at the points A(0,0) and B(1,0). Here a and b are
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scalar functions of the class C* (_D), and ¢(z) is a given negatively definite
(n x n)-matrix of the class C'(D), n > 1, that is,

(u,cu) < co(u,u), co = const < 0, (3.3)

u = (ug,u2,...,u,) is an unknown n-dimensional vector and (.,.) is the
scalar product.

The vector u(z,y) of the class C?°(D) satisfying the system (3.1) (or
(3.2)) in D is referred to as a regular solution of this system.

The Dirichlet Problem. Find in the domain D a regular solution of the
equation (3.1) (or (3.2)) which is continuous in a closed domain D and
satisfies the boundary condition

ulp = f, ' =0D, (3.4)
where f = (f1, f2,--, fn) 15 a given, continuous on T vector function.

The following extremum principle holds [12]: when the condition (3.3) is
fulfilled, the norm

2

R(z,y) = (Z |Ui($,y)|2>

of a regular in D solution w = (u1,us, ..., u,) of the system (3.1) (or (3.2))
cannot reach a nonzero relative maximum at any point P € D.

The uniqueness of the solution of the Dirichlet problem for the system
(3.1) (or (3.2)) follows from the above-quoted extremum principle.

To construct a solution of the Dirichlet problem for the system (3.1) (or
(3.2)), we take an arbitrary continuous extension of the function f to D and
construct an increasing, as h — 0, sequence of domains D;, C D with the
smooth boundaries. For all points of the domain Dj and of its boundary,
we have y > 0. The boundary 0Dy, of Dy coincides with T for y > h, and
beyond some neighborhood of the points A and B runs along the straight
line y = h.

Let up(z,y) be a solution of the Dirichlet problem for the system (3.1)
(or (3.2)) admitting the value f on the boundary of the domain Dj. The
solution up(z,y) in Dy, as is known, does exist and is unique because the
system (3.1) (or (3.2)) in the domain Dy, does not degenerate [12]. By virtue
of (3.3), in Dy, the inequality [Juy|| < M is valid, where M = max||f(z,y)||
in D. Let us show that the set of functions {us(z,y)} is compact in D.
Indeed, let ho be an arbitrarily fixed value of h. The set {up(z,y)} for
h < ho will be uniformly bounded in Dy,

llun(z, y)l| < M. (3.5)

Owing to the extremum principle formulated above for the system (3.1)
(or (3.2)), there exists in the domain Dj, a Green function Gp,(x,y;&,n) of
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the Dirichlet problem for the system (3.1) (or (3.2)) and there takes place
the following representation [11, 61]:

un(z,y) = / uh(s)st (h < ho), (3.6)

aDhO

where v is a conormal direction. It follows from (3.5) and (3.6) that the set
of functions {up} is equicontinuous in Dp,. By Arzela’s theorem [46], one
can select from this set a subsequence uniformly converging to a function
u(z,y) which because of (3.6) is a solution of the equation (3.1) (or (3.2))
in D.

To prove that the solution u equals f at every point Q(zo,0) € AB, we
construct a so-called barrier function v(z,y) satisfying the following prop-
erties:

a) v(z,y) is continuous in some neighborhood o, of the point @);

b) v(z,y) > 0 at all points of o,, with the exclusion of @ where it
vanishes;

¢) LY(v) = y"™ vz + vyy + av, + b, < 0 everywhere in the neighborhood
Oag-

Let us show that we can take as a barrier the function [11]

v(z,y) = (x —x0)? +9°, 0< B < 1. (3.7)

Indeed, the function v(z,y) obviously satisfies the conditions a) and b). Let
us check the condition c). Substituting the expression v(z,y) in L9(v), we
get
LY(v) = 2y™ + B(B — 1)y"~ + 2( — zo)a + Sby”" ",

whence because of 0 < 8 < 1 it immediately follows that there exists a
neighborhood o, of the point @ at which L{(v) < 0.

Given a positive number ¢, one can find, due to the continuity of the
function f, a semicircular neighborhood o), C o, of the point @ at which
the inequality

If(P) = f(@) <&, PEoy,,, 0<e<1, (3-8)

holds.
Consider two functions:

vi(P)=¢e¢+ Kv(P), K >0, and uj(P)=up(P)— f(Q),

where P € o, . In the domain wy, = o7, N Dy, where h is a sufficiently small
positive number, we have

sup  LY(v) < e = const < 0, (3.9)
(z,y)Ewn

LY (up) = L (un), (3.10)

luillo,) < 2M, M = max||f]]. (3.11)
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Assume g(P) = (uy,(P),u},(P)), P € wy. By virtue of (3.3), (3.9)(3.11),
for sufficiently large K we have
LY(v - g) = Li(e) + KL{(v) = L}(g) = KL (v) —
=2y (s Upg) + (Whs Upge)] = 2[(hy, uhy) + (Uhs gy, )] —
h

h
—2a(uj,, uh,) — 2b(uj, uj,) = KLY (v) = 2[y"™ (uj,, uh,) +

h

)

= KL(v) — 2(un(P) — £(Q), —cun) = KLY (v) + 2(un, cup) —
=2(f(Q),cun) < Kap —2(f(Q), cun) <
< Kao + 2[|f(Q)|lllelllunl] < Kag + 2M3||c|| < 0. (3.12)

Let us now clarify what sign has v; — ¢ on the boundary of the domain
Wh, Owp, = Y U1y, where y1p = Owp, N ODy, v, = Owp\Y1p. We have

g|’¥1h = (uh(P) - f(Q),Uh(P) - f(Q))|’Y1h =

1F(P) = FQI? < & <&,
v1|’Y1h :8+KU(P)|’Y1h Z 8+KI,Iylli;1v(P)’

(3.13)

gl < 4M?>.
By (3.13), for sufficiently large K we have
(V1 = @)y = e+ Kv—9)|y,, >+ K min v —e =K min v >0,

€E71n PeEvyin
(1 = g)ly, = (e + Kv —g)ly, ZE+K1£%inv_4M2>O‘
Th

According to the extremum principle [12], (3.12) and (3.13) result in

(v1 = 9w 20,
whence g < vy over all domain wy, that is,
(un(P) = f(Q),un(P) — f(Q)) < e+ Ku(P). (3.14)
Passing in the inequality (3.14) to the limit as h — 0, we obtain
(u(P) = f(@),u(P) — f(Q)) < e+ Kuv(P), P€oy,. (3.15)

Due to the property of the barrier v, there exists § = §(¢) > 0 such that
for ||P — Q|| < and P € o, we have

Kv(P) < e. (3.16)
The inequalities (3.15) and (3.16) imply
lu(P) = F(Q)I| < V2e

for ||P — Q|| < 6.
Thus the following theorem is valid.
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Theorem 3.1. The Dirichlet problem (3.1), (3.4) has always a unique so-
lution.

Problem E. Find a regular in the domain D solution of the system (3.2)
which remains bounded as y — 0 and coincides with a prescribed continuous
function f only on the curve o.

Lemma 3.1. If there exists a positive in DUo function W (x,y) uniformly
tending to infinity as y — 0 and satisfying the inequality LY(W) < 0, then
the solution of Problem E is unique.

Proof. Let u(z,y) be a solution of the system (3.2) equal to zero on o.
Consider the expression

LY(eW — (u,u)) = eL5(W) — L5((u, w)).
Calculating L3((u,u)), because of (3.3) we arrive at

Ly ((u,w)) = 2[(ua, uz) + (4, uea)] + 2y™ [(uy, wy) + (u, uyy)] +
+2a(u, uz) + 2b(u, uy) = 2[(uz, ua) + Y™ (uy, uy)] +
+2[U, Ugg + Y Uyy + aUy +buy) =
= 2[(ug, ug) + y" (uy, uy)] + 2(u, —cu) > 0. (3.17)
It follows from the conditions of the lemma and also from (3.17) that
LY(eW — (u,u)) <O0. (3.18)

Owing to (3.18) and the extremum principle, the function eW — (u,u)
is unable to have in D a negative minimum and, since its values on the
boundary are positive, everywhere in D we have (u,u) < eW. This, due to
the fact that e > 0 is arbitrary, implies that ||u|| =0. B

Lemma 3.2. Under the conditions of Lemma 3.1, for every continuous on
o data there exists a solution of Problem E.

The proof of this lemma is carried out exactly in the same way as that
of Theorem 3.1.

Theorem 3.2. If m and b(z,0) satisfy one of the conditions
1) 0<m<1;
2) m=1, b(x,0) <1;
3) 1<m<2, bz,0) <0;
4) m>2, b(z,0) <0,
then there exists a unique solution of the Dirichlet problem (3.2), (3.4).

Theorem 3.3. If m and b(xz,0) satisfy one of the conditions
1) m=1, b(z,0) >1;
2) 1<m <2, b(z,0) > 0;
3) m > 2, b(x,0) >0,
then there exists a unique solution of Problem E.
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To prove the theorems it should be noted that one has to take (3.7) for all
cases when we state the existence of the Dirichlet problem and, by Lemma,
3.1, the function [61]

W(z,y) = —logy — (v —0)* + K, K >0, (v —4) > 1,

for all cases when we state the uniqueness of the solution of Problem E.
The works carried out in this direction by A. V. Bitsadze [13], V. P.
Didenko [20, 21], E. A. Baderko [6] and others are noteworthy.
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CHAPTER II

BOUNDARY VALUE PROBLEM OF CONJUGATION

TYPE FOR DEGENERATING SECOND ORDER HYPERBOLIC
SYSTEMS WITH DISCONTINUOUS COEFFICIENTS

4. STATEMENT OF THE PROBLEM

In the plane of the variables z,y, let us consider a system of linear dif-
ferential equations

ymAjuf, + Qy%Blu;‘y + Clu;‘y +ajuf+

biu; + cput = F x>0
Lwy={ Pt Rant =, ) (41
y" Asug, + 2y Boug, + Cauy, + azu, +
+bouy + cou” = F, z <0,

where A;, B;, Ci, a;, b;, ¢; (i = 1,2) are given real (n x n)-matrices, F;
(i = 1,2) is a given n-dimensional vector, and u® is an unknown one,
m = const > 0, n > 1.

In what follows, A;, B;, C; (i = 1,2) are assumed to be constant matrices,
det C; # 0 (i = 1,2), and the polynomials P;(\) = det(A4; + 2B\ + C1\?),
Po(p) = det(As + 2By + Copu?) are assumed to have only simple real roots

1A, .., A3, and pf, p3, ..., 13, satisfying

*

AT <A < <A <0< A < ALpp <o <AL,

* ¥ * « N N (4.2)
P <y <o <y <O < prpiy < Pppo < s < gy

In this case, the system (4.1) is strictly hyperbolic for y > 0 and parabol-
ically degenerates for y = 0. Under these conditions, the values y% )}, ...,
Y=\, and y= ui, ...,y % pb, are respectively the roots of the characteristic
polynomials

p1(y, \*) = det(y™A; + 2y Bi\* + C1\*?),
pa(y, 1) = det(y™ Ao + 2y % Bop* + Cop*™?)

of the system (4.1), while the characteristics of the systems (4.1) passing
through the point P(zo,¥0), yo > 0, satisfy the equations

2\ m 2NF mi2
z+m+’2y ;2:x0+m+12y02 , >0, i=1,2,...,2n,
205 m 2u5  mi2
$+mlj_]2y ;2:.’1,'0+mlf2y02 , ,’L'O<0’ ]:1,2’,2n

Let D be a finite domain lying in the upper half-plane y > 0 and bounded
by two characteristics of the system (4.1) going out of the origin O(0, 0)

20 m 20k m
mor+ ny;—2:0, 72:£_,_M_;2:0,
m m 4+ 2
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and by two characteristics going out of the point Oy (0, yo)

2)3, mz2 2)5, mi2

. = 3
73.x+m+2y m+2y0 ’
2/},{ m42 2/},{ m+2

. e p)
74'$+m+2y m+2y0 ’

where yo > 0 is an arbitrary fixed number. Denote by P, and P, the points
of intersection of the characteristics ; and 2 with 3 and 74, respectively.
By D* C D we denote the domain bounded by the curves 71, 73 and the
straight line x = 0, and by D~ C D the domain bounded by curves vz, 74
and the straight line z = 0.

Consider the characteristic problem formulated as follows: Find a regular
solution

wlz,y) = ut(z,y), (z,y) € DT,
( 7y) {u—(x,y), (a?,y) e D™

of the system (4.1) satisfying both the boundary conditions

out Out

<Q%M1W + Nla—y + S1u+> o = fi, (4.3)

(y%MzaaLx + Nzag—:; + Sz’u> o = fo, (4.4)
and the conditions of conjugation on OO,

u(0,y) = Aiu™(0,5) = g1(y), 0 <y <o, (4.5)

U:(O,y) _A2uz_(07y) :g2(y)7 OS Y SyO:

where M;, N;, S;, A; (i = 1,2) are given real (n x n)-matrices; moreover
for the sake of simplicity, A; (i = 1,2) are assumed to be constant matrices,
and f;, g; (i = 1,2) are given real n-dimensional vectors.

Below we assume that ay,by,cy, F1 € CI(D+), as,bs,co, Fy € CI(D_),
M;,N;, S;, fi € CY(OP;) (i = 1,2), g; € C*(O0,) (i = 1,2) and, moreover,
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in Dt and D™

sup ||y1_%a1|| <00, sup ||y1_%a1m|| < 00,
D D+\0

sup ||y1*%a2|| < 00, sup ||y1*%agz|| < 00,
D-\O D\

sup y_(‘”'%_l)FlH < 00, sup Hy (=2 p | < 00,

p+\0 pH\0
sup y_(‘”'%_l)FQH < 00, sup Hy (=2 p, ‘ < 00, (4.7)
p-\0

fi(0) = g;(0) =0 (i =1,2), a = const > 0,

sup |y*(“+%)fiH<oo, sup Hy*(”%’”ﬂ
OP\O OP\O

sup Hy_(‘”%)giH < oo, sup Hy‘(“*%‘l)gg‘ < o0, i=1,2.
00;\0O 00;\0O

Note also that the conditions

y i=1,2,

sup ‘
DE\O
imposed on the lowest coefficients of the system (4.1) are the analogues of

the well-known Gellerstedt’s condition for one equation.
The solution of the problem (4.1), (4.3)—(4.6) will be sought in the class

{ui € C*(D%) : w*(0,0)=0, sup ||y7au;;|| <00, sup ||y7au;|| < 00,
p+\o p-\0

sup Hy_(a"' 2y ‘ < 00, sup Hy °‘+%)u;H <00y (4.8)
PH\O
It should be noted that some variants of characteristic problems for sec-

ond order hyperbolic systems with parabolic degeneration have been studied
by S.S.Kharibegashvili [41, 42], while for systems of the form

K(y)uze — Buyy + aug +buy +cu = F

by M. Meredov [49]. For one second order hyperbolic equation with parabo-
lic degeneration of the form

Y Uy — Uyy + Qg + buy +cu = f

in a quadrangle bounded by the characteristics going out of the points
0(0,0) and P(0,1), the characteristic problem with boundary conditions
on pieces of characteristics going out of the origin O(0,0) has been inves-
tigated by A. Sh. Agababyan and A. B. Nersesyan [1]. In the case of a
triangular domain bounded by the segment [0, 1] of the z-axis and by pieces
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of characteristics going out of the points O(0,0) and Q(1,0), the character-
istic problem for the equation

2 _
Y Ugg — Uyy + aty =0

is considered in T. Sh. Kalmenov’s work [39]. The works of V. N. Vragov
[75] and B. A. Bubnov [14] are also worth mentioning in which, in particular,
the characteristic problem was treated in domains containing a piece of the
line of degeneration. The case where OP; is a segment of the z-axis and
OP; is a piece of a characteristic for one hyperbolic equation with parabolic
degeneration is studied in their works by V. N. Vragov [75] and A. M.
Nakhushev [55, 56].
Let us renumber A}, p¥, i =1,2,...,2n, from (4.2) as follows:

M =Nty A2 = Nogos oo A = Aoy Ang1 = Ao, Aoy = A%,
BU= gy H2 = oy oo bn = Moy Bngl =[] Hon = -

Since the roots Ay, Az,..., s, and pg, fto, ..., o, of the polynomials
p1(\) and p(A) are simple, we have

dim Ker(A1 + 2B1AZ + Cl/\f) ].,
dim Ker(Ay + 2Bop; + Cop) =1, 1<i, j<2n.

Denote by v; and v} vectors, satisfy v; € Ker(Ay +2B1Xi+C1}), [lvil| #0,
vi € Ker(Ay + 2Bapj + Copi3), |[V5|l # 0, 1 < i, j < 2n, where ||.|| denotes
the norm in R™.

5. SOME STRUCTURAL PROPERTIES OF THE HYPERBOLIC SYSTEM (4.1)

We introduce into consideration the (2n x 2n)-matrices

A = 0 —-FE i 0 —-F
Ot A 20 By 0T lymOtAL 29ECIB|C
A = 0 —-F e 0 —-F
0~ C;lAQ 20{1B2 ’ 0 ymcglAQ Qy%C';lBQ ’
vy, FEEE) Von T yi%yla ey yi%’/2n
K= , K= ,
</\1V1, cee /\2nV2n> ( Ay, e, )‘2n’/2n>
K — < vy, e Vs, ) = <y_%1/f, e y_%ygn>
mvy, .., pents,)’ pvy, e, penVi, )

where E is the unit (n X n)-matrix.
It can be easily shown that

K 'AoK =Dy, K 'AyK = Dy,

*—1 A% * * Trx—1 Ak T N * (51)
K*'A;K* =D, K*'A:K*=D:.
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Here D, = diag(—/\l, . —/\Qn), 151 = diag(—y_%/\l, . _y_%AQn), DI =
diag(—p1, .-, —p2n), D = diag(—y~= p1,- .-, =y~ 2 pian)-
Suppose

;= (M;,N;), i=1,2,

K:@Dﬂwwalﬂwmﬂy (5.2)

* K* * * *— * *
K* = <K3>):(V17 VQ )7 K 1: (Kloa K20)7
where K, K5, Kf, K} are matrices of the order (n x 2n) and Vi, V5, V}*,
Vs, K?, K9, K;°, K3° are (2n x n)-matrices.
From (5.2) it directly follows that

2 5.3
T % y_%Kik *—1 m %0 *0 ( . )
K= Ky )’ K=y K7°, K3°)
By (5.2) and (5.3), we have
-~ 1 -
Ky:—% (y " Kl), K*le:—QﬂK?xKl,
Y
(5.4)

If
0 0

Cflal Cl_lbl

0 0
02_102 02_11)2

)

5o = |

*_
) BO_‘

then obviously,
~ ~ 1~ ~ =~ ~ 1~ ~
K'BoK = -By+ B, K*"'B;K* = —B}, + Bj,
) ()
where
By =y" FKICT K1, Bi = K307 b Ko,
B =y ¥ Ki°C; ao KT, BY = K3°C5 b K.
Since by assumption
sup ||yt T a|| < oo, sup ||yt Faw| < oo,
+\0 b+\0

sup ||y1*%a2|| < 00, sup ||y1*%agz|| < 00,
p-\o p-\o

we have

sup [|Boll = sup ||y'"F K0T a1 K| < 0, (5.5)
D+\O D+\o
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sup ||§0x|| = sup ||y1_%KSC'f1a1xK1|| < 00, (5.6)
DH\O p+\0

sup ||Bgl| = sup ||y1*%K5002_1a2Kf|| < 00, (5.7)
p-\0 p-\0

sup [|Bg,ll = sup [|y'~F K300, tas, K| < 0. (5.8)
p-\o p-\o

6. REDUCTION OF THE PROBLEM (4.1), (4.3)—(4.6) TO A SYSTEM OF
INTEGRAL FUNCTIONAL EQUATIONS AND ITS INVESTIGATION

It can be easily verified that in the class (4.8) the problem (4.1), (4.3)-
(4.6) can be equivalently rewritten in the form

v;' +Zov;" + Bovt + Cout = Fy, (6.1)
m. 0O 0 m
<—y2/\ %4—6—) ut = —y® A\ +0f, (6.2)
- 2Xon,  mit2 )
(v Myvf + Nyvg + Siut) <—m_12_n2y ;2,y> = fi(y),
0 S Yy S dla
[N P S O
_ 2Xop  mie 0
m+2y Y , )
(v = A1w3)(0,9) = 91(y), 0 <y <o, (6.4)
v, + Asvs + Biv™ + Ciu~ = Fy, (6.5)
m 0 0 _ m _ _
<—y 2 Hon 5 + 6_y> uT = =y p2,v; + vy, (6.6)
mo _ _ 2 mi2 )
(ZU2M21’1 + Novy + Sou ) <_mlj_12y 2+2:ZU> = fa(y),
0 S Yy S d27
0 0 _ m _ 6.7
K Y ’“aa: 8_y>u _(_y2H1U1 +U2):|>< (6.7)
21 mae
_ p) =0
() 2o |
(v = As0;)(0,9) = g2(y), 0 <y <o (6.8)
Here d; is the ordinate of the point P; € v;, i = 1,2,
0 0
CO o HO Cl_lcl ’ CO o HO 02 C2
0+_(0 u ) O_Z(O,U_), 0:(0501 1F1)7 0 :(0702_1F2)7
’UfL = u:a Uy = Uy, U2+ :ugj_a Uy :’u‘;7 vt = (U1+7U2+)7 v = (U;,U;),
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v € CH(DT), i=1,2, v; €CY (D7), i=1,2,

sup ||y*avf'|| <00, sup Hy’(“+%)v;'“ < 00,
DO DO 69)

sup [y~ v || <oo, sup Hy_(”%)USH < 00.
D-\o D-\0

As a result of the substitution of the unknown functions vt = KW+ and
v = K*W~, by virtue of (5.1) instead of (6.1)—(6.8) we will have

W, +DW," = BoW+ + Cou® + FY, (6.10)
<_y2/\1%+8_y>u = (—y2/\1K1 +K2)W N (611)
[(y%MﬂNﬁ +N1I~(2) W++S1u+] —2/\iymTJr2 y) = fily) )
m+2 ) )
0 S Yy S dla
|:<_yT)‘2n% + a_y> U+ — (—yTA2nK1 + KQ) W+ X ( )
2/\2n m+2
_ = <y<
X( m+2y27y> 07 O_ZU_an J
(KoaWF = ME3WT)(0,9) = g1 (y), 0<y <yo, (6.13)
W, +DiW, = B;W™ + C3u’~ + Fj, (6.14)
m 0 0\ _ m o~ _
<_y 2 /l2n% + a-y) u = (—y 2 pon K7 + K2) w-, (6.15)
m Trx Trx _ _ 2/}, m+2
[(wMzKl +N2K2)W +Sou ] <—m+12y > ,y>=f2(y), W
0 S Yy S d27
m a a — m Tr% Tr% — ; (616)
|:<_y2u1%+a—y>u — (—y2u1K1 +K2)W :| X
211 mt2
_ = <y<
m+2y2 7y> Oa O_y_d27 J
(KaWH — MKW ™)(0,9) = g2(y), 0 <y <o, (6.17)

where B, = —K 'K, — K 'ByK, C, = ~K~'Cy, F} = K~'F,, B} =
~K*'K; — K*"'ByK*, 3 = K*~'Cy, Fy = K*'; Ki(KY) and K5 (K}
are the n x 2n-matrices composed respectively of the first and the last n
rows of of the matrix K(K*).
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By (5.2)—(5.4), we have

m

2y

y%Mll?l +N1j€2 = M1K1 + N1K2 = Fl X K, Fl = (Ml,Nl),
—yF Aon Ky + Koy = —Xop Ky + Ko,

~ ™ ~ 1~ _
Kl:y_TKla KQZKQa BQZ K?XKI__BO_Bl,
Y

~ m ~ 1~ ~
Ki =y *K], K; =K;, B} = QQK;O x K — ~B: — Br, (6.18)
y y
Yy MyK? + NoKi = MyK? + NoKf =Ty x K*, Ty = (My, Ny),

—y%ulf(f +I~(5 =-—mK]+Kj.

Taking into account (6.18), we rewrite the problem (6.1)—(6.17) as

W+ DW= y(33W+ + yCoult) + FY, (6.19)
=y 0 0N 4 +
_yZ)\l%-i_a_y U :(—/\1K1+K2)W, (620)
2Xop,  ma2 )
[(Ty x K)WT + Siu™] (—mj_Qy > ,y> = fiy),
OSySdla
m a 0 :
{ ~yFdangy 5 ) Ut = (“AanKy+ o) W x (6.21)
2 op  ma2
— = <y<
< m+2y ’y> 07 O_y_dla J
(KW = M KSW ) (0,9) = g1(y), 0 <y <o, (6.22)
~ 1
W, +DiW, = ” (BsW™ 4+ yCsu®) + FyF, (6.23)
m 0 a\ _ . o T
—y2,u2n%+a—y u” = (—pon K7 + K3) W™, (6.24)
* _ —_ 2 m+2 W
(2 x KW+ Sau] (=22 y) = £,
0§y§d27
m 0 0 _ . N 3 6.25
K—y2u1%+a—y>u —(—m K+ K)W } X ( )
21 mez
— 2 = <y <d
X( m+2y 7y> 07 O_y_ 25 J
(KaW — A KTWT)(0,9) = g2(y), 0 <y <y, (6.26)

where By = 22K{K, — By — yBi, B; = 2 K{°K{ — Bj — yB{; moreover,
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by (5.5)—(5.8) we obtain

sup [|Bs|| < oo, sup || Bs.l|| < oo,

p+\0 p+H\0 6.27)

sup ||B5|| < oo, sup [|Bs,[| < oo
h-\o H-\o

It follows from (6.27) that

of =y KW, of = KW, W =y % Ko + Kof,

v, = y_%KfW_, vy =K;W—, W™ = y%Kf%l— +K§0v2_.
Therefore the conditions v;" € C*(D*) and v; € CY(D7), i = 1,2, as well
as

sup [ly~v || < oo, sup [ly~ T || < oo,
DH\0 D0

sup [ly vy || < o0, sup [ly~ T, | < oo
D-\0 D-\0

are fulfilled if and only if

Wt e o' (DT), sup [ly~FHWH| < oo,
DH\O

W~ e (D7), sup |ly"@THW|| < .
D-\0

Let

2

m + 270 m+ 2
y=t, (xo,4)€ D", 1<i<2n,

2pj  mEE 2y mae

2A m+2 2A m+2
Li(xo,y0) : = = zi(%0,y0,t) = xo + - Lt

m+ 27 m+ 2
y:ta (x[)ay[)) €D77 ]-S]S2n7

L3 (zo,y0) : & = 2} (%0,Y0,t) = w0 +

be parametric representations of the characteristic curves passing through
the point (zo,yo). Denote by w;(x,y) the ordinate of the point of intersec-
tion of the characteristic L;(x,y) with the curve 1 for 1 < i < n and with
the straight line = 0 for n < 7 < 2n. Similarly, let w}(z,y) be the ordinate
of the point of intersection of the characteristic L} (z,y) with the curve 7o
for n < i < 2n and with the straight line z = 0 for 1 < i < n. From our
construction of the functions w;(z,y) and w}(z,y) and from the inequalities
(4.2), it follows that

ngl(xay)sya ("I;7y)€D+7 i:1727"'72n7

_ . (6.28)
OSW;(%?J)S% (a:,y)ED ) 221727'-'72n'



86

It is not difficult to verify that

y, 1 =1,2,...,n,
wilop, =% Ty, i=n+1,....2n—1,
0, i = 2n,

wil _J miy, 1=1,2,...,n,
HOO y, i=n+1,...,2n,

6.29
0,2=1, ( )

w;|OP2 = T4iY, i:27"'7n7

y,t=n+1,...,2n,
w*| — y’i:1727"'7n7
il001 =y, i=n+1,...,2n.
The constant numbers 7;; here satisfy

0<my<l, 1<4,57<2n. (6.30)

Assume
2A2n m+2 .
(,Di:Wi+|OP1 :Wi+ <_m—_‘_2y 2 ,y): OSySdla 221727"'7n7
1/17::Wi+|001 ZW;L(O,!J), OSZISZIO, Z:TL+1, "'72n7
¢; =Wiloo, =W; (0,y), 0<y<wo, i=12,...,n,

. _ _ 217 ma2 .
v =W lop, =W, <_m+2y 2 ,y), 0<y<ds,t=n+1,...,2n.

Since a > 0, it is evident that ¢; = W;7(0,0) = 0, i =
¥i(0) = W;7(0,0) =0,i =n+1,...,2n, ¢} = W;(0,0) =0, i
Y¥0)=W,;(0,00=0,i=n+1,...,2n.

Integrating the i-th equation of the system (6.19) along the i-th charac-
teristic L;(z,y) from the point P(z,y) € D* to the point of intersection of

L;(z,y) with the curve v, for i < n and with the straight line 2 = 0 for
1 > n, we arrive at

1,2,...,n,
=1,...,n

)

y 2n
1
W) = eitetoa) + [ 4 |30 B+
wiley) N7

+Zt02zguj (Zl(xayat)at)dt + ﬁli(xay)a i = ]-7 R LD
i=1

y 2n
1
W) = itatoa) + [ 4 30 B+
Jj=1

wi(z,y)
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+Zt02”u (zi(z,y,t ),t)dt+ﬁ'1i(a:,y), i=n+1,...,2n, (6.31)

where

Flla:y / F}i(zi(z,y,t),t)dt, i=1,...,2n.
wi(z,y)

Integration of the equation (6.20) along the characteristic Li(x, y) results
in

<

ut(2,y) = gf (w1 (z,y)) + / (=M Ky + Ko)WH (21 (2, y,t)t)dt, (6.32)
wl(l':y)
where

2\ mi2
: w12 (xay)awl(xay)> =

= / (‘y %*a—) <_m—+2t ”f) dt =
0

wi(z,y)

2\ mao
= MK+ KW [ ———¢ t) dt.
[ onm s (-2

0

Analogously, integrating the j-th equation of the system (6.23) along the
j-th characteristic L} (x,y) from the point P*(z,y) € D~ to the point of
intersection of L} (z,y) with the curve ¥, for j > n and with the straight
line x = 0 for j < n, we obtain

v 2n
— * ([ k 1 * —
W) =gl + [ 7| S BW

—
wi(z,y) J

n

Wi (2,y) = ¥} (Wl (@,y)) + / ZB&J

wi(z,y)

n
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where

Foi(z,y) = / Fy (2] (z,y,t),t)dt, i=1,...,2n.
wi(z,y)

Integration of the equation (6.24) along the characteristic L3, (z,y) yields

u”(z,y) = g5 (w3, (7,y)) +

+ / (—pon K + K3)W ™ (23, (%, y,t),t)dt, (6.34)
w3, (o)
where
03 i o) = (= 225 ) 5, 00)) =
w3, (T,y)
= / ( Yy uznaa g) u <—7i”—j”2t'"7+2,t> dt =
Owgn(wyy)
= / (—pon KT + KW~ <—n21“—j”2tm2+2,t> dt.
0

We rewrite the system of equations (6.31) and (6.33) in terms of one
equation

W (z,y) = §lz,y) +

on Yy
+ / % (BuW™* + Csu™) (zi(x,y, 1), t)dt + Fy (z,y), (6.35)
Floi(ew)
W™ (z,y) = ¢"(x,y) +
o2n v 1 _
+y / 7 (BLW™ + Cgu™) (2] (2,y,1), )dt + Fy(x,y), (6.36)
Elor(e)

where By;, Bj; and Cs;, C3; are well-defined matrices of orders (2n x 2n)
and (2n x n), respectively, and

P(z,y) = (pr(wi(@,9); - n(wn(z,y)),
¢n+1(wn+1 (xa y))a v 71/1271(‘*}2”(377 y)))a
" (z,y) = (P71 (Wi (2,9)), - -, o (Wn(z, ),
Vni1 (W1 (7,9)), - 5 05, (W3, (2, ).
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Substituting the expressions for u™,u~ and W+, W~ from (6.32), (6.34)
and (6.35), (6.36) into the boundary conditions (6.21) and (6.25), we obtain

2n—1
Goply Z G ()Y (riy)
i=n+1
+H (W uH)(y) = fsly), 0<y<d, (6.37)

G3y*(y) + ZG2 “(Ta5y) +
+HL(W,u )](y) = faly), 0 <y < dy, (6.38)

where G}, G} are well-defined constant (n x n)-matrices, f3 and f, are

functions defined by means of fi, f2,f‘1, ﬁQ, and T, T are linear integral
operators; Y = (5017 ey Son)a dj = (¢n+17 st 71/1271)7 90* = (501(7 ce 7902)7 1/}* =
(Vntts -1 ¥3).

As is easily seen,

Wloo, = Giy(y +ZGlsomy + LW u)](y),  (6.39)

2n—1

W loo, = Ga9™(y) + Y, Givp*(rsiy) + [Ta(W—,u7)](y), (6.40)

i=n-+1

(). o (5)

E is the unit (n x n)-matrix, G3, G} are well-defined matrices, and T3 and
T, are linear integral operators.

Substituting the expressions (6.39) and (6.40) for W*|o0, into the con-
ditions of conjugation (6.22) and (6.26), we get

where

G() + Gl ) + 3 BaGlolma) + 3 (—ME3GH (miy) +
i=2 i=n+1
HTs(u, W™, WI)l(y) = 91(y), 0<y <wo, (6.41)
Goo() + Gl ) + 3 FaGholmam) + 3 (~AaKDGH (miy) +
i=2 i=n+1
+HTs(u™, W, u™, W)l(y) = g2(y), 0<y <o, (6.42)

where G§, G§, G3, G§ are well-defined (n x n)-matrices, and Ty, Ty are
linear integral operators.
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Remark 1. Tt is easy to see that the matrices G§,i = 1,...,6, from (6.37),
(6.38) and (6.41), (6.42) are representable in terms of
Gl =Ty x Vi, G2 =T, x Vy, G} = K,G,, Gb = —\1 K@,
G5 = K1Gy, G = —AyKGs.
Therefore the (2n x 2n)-matrix

Gy Gq
Gy GG

and the (n x n)-matrices G§ and G§ are invertible in the domain of their
definition if and only if

K>G1 —MK3Gs

det ~ 4
€ KlGl _A2Ki‘,-G2 (.’I;, y) # 07 (.’I;, y) E 0017 (6 3)
det(Ty x Vi)(z,y) #0, (z,y) € OP;, (6.44)
det(T2 x Vi) (z,y) #0, (z,y) € OP;. (6.45)

Remark 2. Tt is clear from the above arguments that in the class (4.8) the
problem (4.1), (4.3)—(4.6) is equivalent to the system of integral differential
equations (6.31)-(6.36), (6.41), (6.42) with respect to the unknown functions
u+7 u77 W+7 W77 807 1/17 cp*7 1/}*7 Where u:t 6 02(D:|:)7 u:t(()’ 0) = 07
sup ||y~ *uf|| < oo, sup Hy_(C’JF%)u;H < oo, W* el (DF),
D*\0 D*\0

sup Hy*(a+%)WiH < 00,

pE\0

pE Cl[oadl]a 1/) € Cl[oayO]a 90* € Cl[aayO]a dj* € 01[07d2]-

sup y_(‘“'%)goH < 00, sup y_(a"'%)sz < 00,
0<y<d: 0<y<yo

sup y_(o‘+%)go* < 00, sup y_(a+%)¢* < 0.
0<y<yo 0<y<d:

Remark 3. By virtue of (6.28) and (6.30), the integral operators in the
left-hand sides of the equations (6.31)—(6.36), (6.41) and (6.42) are of Vol-
terra structure.

Bearing in mind the above remarks in solving the system of integral dif-
ferential equations (6.31)—(6.36), (6.41), (6.42) by the method of successive
approximations and using the scheme suggested in [41], we arrive at the
following

Theorem 6.1. Let the conditions (6.43)—(6.45) be fulfilled. Then there
exists a positive number ag depending only on the coefficients of the system
(4.1) and on the boundary conditions (4.3)—(4.6), such that for a > agp the
problem (4.1), (4.3)—(4.6) is uniquely solvable in the class (4.8).
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CHAPTER III
PROBLEM WITH OBLIQUE DERIVATIVE
FOR THE EQUATION OF MIXED TYPE

7. STATEMENT OF THE PROBLEM AND ITS INVESTIGATION IN THE
ELLIPTIC PART OF THE DOMAIN

In the plane of the variables x,y, let us consider a mixed type equation
SENY Uge + Uyy + AUy + buy + cu =0, (7.1)

where a, b, c are given entire analytic functions of their arguments taking,
real values for real z,y, and u is an unknown real function.

Let D be a singly connected domain in the plane of the variables z,y
which is bounded by a curve o of the class C? with the ends at the points
(C1(0,0) and C3(1,0) and lying in the upper half-plane y > 0, and by cha-
racteristics CCy : y=—z,CCy: y=z—1,C = (3,—1) of the equation
(7.1).

Consider Problem A which is formulated as follows: it is required to
determine a function u(z,y) with the following properties: 1) u(z,y) is a
solution of the equation (7.1) for y # 0 in the domain D; 2) it is continuous
in the closed domain D and has continuous first derivatives everywhere in
this domain, except maybe at the points C; and C3 near which % and
g—z tend to infinity with an order less than 1; 3) it satisfies the boundary
conditions

(pluz + qluy + Alu)|0' = ‘Pa (72)
(paue + quy + Xou)|co, =1, (7.3)

where p;, ¢;, A\; (i = 1,2), p, 1 are given real functions satisfying the Holder
condition.

Let Dt and D~ be respectively the elliptic and the hyperbolic parts
of the domain D. Below we assume that Dt € C*" ¢,p;,qi € CY
(i=1,2),9peC*" 0<h<]l.

Instead of the real variables x and y, (z,y) € D', we introduce the
complex variables z = x + iy, Z = ¢ —iy. Then the equation (7.1) takes the
form

9%u Ou —0u _
9205 + A(z,z)g + A(z, 2)5 +C(z,2)u =0, (7.4)
where
N z2+zZ z—2 . 24+Z z2—2
A(z,z)—a< 5 o >+zb< 5 5 >,
N [(rtZz z—2Z
4C(z,z)—< 5 5 >
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Introduce the functions

az2) = e |- [(0dz| B0 = [V znDE,
0 0

where V (z, Z; , %) is a function uniquely defined as follows: 1) V(z, z; £, %) is
a solution of the differential equation (7.4); 2)

V(e Bt,8) = 7(t,0) exp |~ / Aty tydty | (7.5)
L t a
V(t,58,0) = 7(t, D) exp |~ / Aty b)dhy | (7.6)
L £ _
where
B . Oa(z,%) _ Oa(z, 2)
+A(z, 2) a“é;’ 2 4 Oz, 2)alz, 7).

If we take into account the formulas

9_0. 0 0_.0 .0
dxr 0z 0z° Oy 0z 0%
then the boundary condition (7.2) takes the form
H(s)% + H(s)% + A(8)u = ¢(s), t € g, (7.7)
where H(s) = p1(s) +1iqi(s), s is an arc abscissa on o.
Let us make use of a general representation of regular in DT solutions of
the equation (7.1) expressed in terms of the analytic functions [72]

u(e,y) = Re { alz 2lz) + [ Az 20wt | (7.8)
Po

where w(z) is an arbitrary analytic in DT function satisfying the condition
Imw(Py) =0, Py € DT, and a(z,z) and §(z,%,t) are entire functions of
their arguments defined by the formulas (7.5), (7.6).

I. N. Vekua [72] has proved that if w(z) € CY*(D*) is an analytic in a
singly connected domain D function satisfying the condition Im w(Py) = 0,
then there exists a unique real function u(t) € C®" such that the following
formula holds:

w(z) = / u(t)loge (1 - %) dst, (7.9)

oD+
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where ds; is the arc element of the boundary D and under log (1 — %),
2z € Dt,t € Dt is understood the branch of the function which equals zero
for z = 0.

Supposing that the analytic function w(z) appearing in the formula (7.8)
has the continuous first derivative in D and substituting the expression

(7.8) in the boundary condition (7.7), we obtain

Re {M(t)w'(t) + N(t)w(t) + / Q(t,tl)w(tl)dtl} =p(s), teo, (7.10)

where
M(t) = a(t,t)H(t),
N0 = alt, D) + 80,500 + 25D () + 8D,
Q(t, t1) = B(t,T,t)C(t) + %H(t) + %ﬁ’tl)%.

It is easy to verify that the limiting values of the functions w(z) and
w'(2), as z tends to the point ¢, t € DT, are given by the formulas

w(t) = / ity log e (1 _ %) ds1,

oD+
W () = —mil p(t) — / pltr)dsi.
t1 —t

oD+

Substituting them in the boundary condition (7.10), after some transfor-
mations, we get the integral equation

awm+/memm=w» (7.11)
oD+

where
a(s) = Re[—mit' M ()],

K(s,51) = Re [N(t) log e (1 _ i) - f%)t 4 Q*(t,tl)] ,

t
Re {N(t)loge <1 - } =nloge
1
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t
Qt 1)Ut 1) _/Q(tmt)%i;h)dh
0

t
Ot 1) = /loge (1 - i—f) dt; = (t — t1) log <1 ~ %) :
0

We can easily give (7.11) the following form

Ki(t,t1)
t1 —t

Re[Q*(t,t1)] = Re = P(t,t1),

at)u(t) — u(t))dty = (t), t € 9DT\AB,  (7.12)
oD+
with

2K (t,t1) = M ()t + M(£)E, et —

1- %‘ — na(f) arg (1 = }) + P(t,tl)} ,

—2(t; — )t} {nl (t)loge
1

st + 510 [ BT [ R tuean = o0,
oD+ ' oD+
t € 9D\ AB. (7.13)
Here

ay(t) = Re[—mit' M(t)], Bi(t) =Im (=i(ps(t) +iqu(t))a(t, D)F),
_ Kt ) — Ka(t,t)

K(t,t) = — .

8. INVESTIGATION OF THE PROBLEM (7.1), (7.2), (7.3) IN THE
HYPERBOLIC PART OF THE DOMAIN

Denote by R(z,y;x1,y1) the Riemann function which by definition is a
solution of the so-called conjugate equation [46]

Ryy — (aR)y — (bDR)y +cR =0 (8.1)

which takes on the characteristics x = 1, y = y; the values

y
R(z1,y;21,y1) = exp /a(%,’?)dﬂ) ) (8.2)

1

R(xayl;xlayl) = €exp (’/ b(fayl)df) ) (83)

1

where (z1,y;) is an arbitrarily fixed point in the domain D~.
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By (8.1), (8.2) and (8.3), the function R(z,y;x1,y:) satisfies the integral
equation

R(z,y;01,1) / b, m)R(E, s 21,1 ) dE —

T1
Yy

—/a(w,n)R(w,n;m,yl)dn+

Y1
x y
+ / de / (€ m)R(E mi 21, y1)dn = 1. (8.4)
Y1

1

As is known, the equation (8.4) has a unique solution R(z,y;x1,y1)
which, as it is easily verified, possesses the following continuous derivatives:

0,004 R, y;21,51) € C(D™ x D7),

T,y T1,Y1
0<i+j<1,0<i1+51 <2 0 = O [0z 0yl .
The equalities (8.2) and (8.3) imply that
OR(x1,y; 1,
% - a(xlay)R(xlay;xlayl) = 07 W
OR(z,y1;x
ORI 40,2 a5 1, m1) = 0,
R(xi,y1521,91) =1,
OR(z,y;x,y1) (8.6)
% + a(x,yl)R(x,y;z,yl) = 07
Y
OR(z,y;x1,
ORC210) | (0, ) R, yir,9) = 0
T
R(z,y;z,y) = 1. )

By virtue of (8.4) and (8.5), every solution u(z,y) of the equation (7.1)
of the class C?(D™) can be represented in the domain D~ in the form [46]

1
u(z,y) = 5[7(93 +yRx+y,—z—yz—y,—z—y)+

+7(r —y)R(x -y, —z+y;z —y,—z—y)| +
+ / [— %R(t, —t;x —y,—x —y)v(t) +
r+y
+(a(t7 _t) + b(t7 _t))R(t7 _t; r—Y,—T— y)T(t) -

1
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FR(t, ~tiw — y, —o — y))7(t)| at (8.7)
as the solution of the Cauchy problem
U(QT,O) = T(a:)a “y(xa 0) = V(a:)a

where R(Z,7;¢,n) is the Riemann function for the equation

From (8.7), we have

ue(r,) = Sl @ + PR +y, 7 — g0 —y,—2 —y) +
+1(z+y){Rz — Ry + Re — Ry} (z+y,—z—y;2—y,—x—y)+
+7'(@ —y)R(x —y, v +y;z —y,—x —y) +
+7(z —y){R; — Ry + Re — Ry} (z —y, —z +y;0 —y, —w —y)| +
+[—%R(l‘—y,—x+y;af—y,—x—y)V(w—y)+
+a(z—y,—z+y) + bz —y,—x+vy))-

R —y,~rv+y;z—y,—z—y)(r —y)| -

1
5Bz —y, —r+yz—y,—z—y) +
thRo(x —y,—z+y;o —y,—z —y))r(r —y) —

1
- —5R(w+y,—x—y;a¢—y,—:v—y)V(:Hy)+(a(w+y,—x—y)+
+b(z+y,—z—y))REx+y,—r—y;z—y,—z—y)r(x +y)| +

+%(R;(z+y,—a: —yr—y,—T—y)+
thRA(x+y,—z—yio—y,—z—y)r(z +y) +
Y
+ [ = 5Re = Rt ~tio =y -z - ypw®) +
r+y
+(a(t, =t) + b(t, =1))(Re — Ry)(t, —t; 2 —y, =z — y)7(t) —



97

1
(B — Byt ~tiw —y, —z —y) +

+(Rye — Rz )(t, —ti0 —y, —2 — y))7(t) | dt. (8.8)

It follows from (8.8) that for y = —z, x € [0, 3], i.e., on the characteristic
CCy we have

1
um|CCl = Ux(w, _517) = §[TI(0)R(O, 0; 2:17,0) +
+7(0){R; — R; — Re — R, }(0,0;22,0) + 7' (22)R(2z, —22; 22,0) +
+7(22){ Ry — Ry + Re — Ry} (27, —27;22,0)] +

T

1
+ [ - §R(2a:, —2z;2z,0)v(2z) + (a(22, —22) +
+b(2z, —22))R(2x, —2x; 2z, 0)7’(21})] -
—%(R;(?a:, —2x;22,0) + R;(Qa:, —2z;22,0))7(22) —

~ [~ 5R(0,0;22,0)0(0) + (a(0,0) + b(0, 0)) B(0,0; 22, 0)7(0)] +

1
+§(Rg(0, 0;22,0) + R;(0,0; 2z,0))7(0) +

2z

+/ [— %(Rg — Ry,)(t,—t;2x,0)v(t) + (alt, —t) +
+b(t, —t))(Re — Ry)(t, —t; 22,0)7(t) —

ze  Tlam

—%((R~ R )(t,~t;22,0) + (Rs, — R= )(t,~t;22,0))7(t)| dt. (8.9)

Similarly, from (8.7) and y = —z, z € [0, 5], we get

uylee, = uy(z, —z) = %[T'(O)R(0,0; 22,0) +
+7(0){R; — R; — Re — R, }(0,0;2z,0) — 7'(22)R(2z, —22; 22,0) +
+7(22){—-Rx + R~ — Re — R,}(2z, —2x;22,0)] —
- - %R(Qa:, —2z;2z,0)v(2z) +
+(a(2z, —2z) + b(2z, —22))R(2x, —2x; 22, 0)7(22) —
—%(R;(%, ~2u;22,0) + R(2x, —2x; 2, 0))7(235)] -

— [ — %R(0,0; 2x,0)v(0) + (a(0,0) + b(0,0))R(0,0; 2z,0)7(0) —

—%(R;(O, 0;22,0) + R;(0,0;22,0))7(0)] +
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2z

+/ [— %(Rg — R,)(t, —t; 22,0)v(t) + (a(t,—t) +

Fb{t, ~)(~Re — By)(t,~£:2,0)(t) — 3 (~By, ~ By, -

zg xn

+R R~ ) (¢, —t;2x,0)7(t)

-~ R ]dt. (8.10)

Substitution of (8.9) and (8.10) in (7.3) yields
(P2z + G2y + o), = %pgR(%:, —2x3;2x,0)7'(27) —
—%pgR(%:, —2z;22,0)v(22) — %@R(Qa:, —2z;22,0)7' (22) +
+%q2R(2x, —2z;2x,0)v(2z) + [T1(r,v)](x) =
= (@), 0< 2 <y, (8.11)
where T (7,v) is a well-defined linear operator acting by the formula
[Ti(rv) (@) = — 5[ (O)R(0,0;27,0) +
+7(0){ R~ — R — R — R, }(0,0;22,0) +

+7(2z){ R — R+ R¢ — R,}(2z, —27;22,0)] +
+p2(a(2z, —2z) + b(2z, —22)) R(2z, —2x; 22,0)7(22) —

1
—§p2(R;(2x, —2x;2z,0) + Rg(?z, —2x;2x,0)7(2x) —
1
—po [_iR(O’ 0;2z,0)v(0) + (a(0,0) + b(0,0))R(0, 0; 2z, 0)7(0)+

+%(R;(O, 0;2,0) + R~(0,0;2z, 0))7(0)] +
po 7 {—%(Rg Ryt —t: 22, 0)(t)+
+(alt, —t;) +b(t, —t)) (Re — Ry)(t, —t; 22, 0)7(t) —
—%((R;§ ~ Ry, )(t,~1;22,0) + (Rs, — R )(t,~t;2z, 0))T(t)] dt +
+%q2 [T’(O)R(O, 0; 22, 0) + 7(0) {R; ~R-—Re - Rn} 0,0;2z,0)+
+7(27) {—R; + Rs — Re — Rn} (22, —2z; 2, 0)] -

—q2 [(a(2a:, —2z) + b(2z, —22))R(2z, —2x; 22,0)7(22) —
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—%(R;(Qa:, —2x;22,0) + R-(2z, —2z; 2z, 0))7'(23:)] -
g [—13(0 0: 2z, 0)2(0) + (a(0, 0) + b(0, 0))R(0, 0; 22, 0)7(0)

_§(R;(O, 0;2z,0) + Rg(0,0; 2x, 0))7’(0)] +

v [ =5 (R~ Ra)(t, 122, 00(0)+

0
+(a(t,—t) + b(t,—t))(—Re — Ry)(t, —t;22,0)7(t) —

1
—§(R~

e T R;ﬂ - Rgg - R;n)(t’ —t; 2z, O)T(t):| dt +

1
+§)\2 [T(0)R(0,0;2z,0) + 7(2z)R(2z, —2x; 2x,0)] +
2z

+A2 / [—%R(t, —t;2z,0)v(t) + (a(t, —t) + b(t, —t))R(t, —t; 22,0)7(t)—

0

_%(R;(t, —t;22,0) + R;(t, —t; 2z, 0))7(75)] dt.

As a result of not complicated transformations of the expression (8.11),
we arrive at

%(pg — @)R(z, —z;2,0)7 (z) — %(m —q)R(x, —z;x,0)v(x) +
+HN(EvI(5) =$(5), 0<e < 1. (8.12)

Since R(z,—x;z,0) # 0, under our assumption that (p2 — ¢2)|cc, # 0 and
p1(0) # 0, we divide (8.12) by £2=92) R(x —z: 2, 0) and obtain

2p1(0)
p1(0)7' () — p1 (0)v(@) + [Ta(r, V() = (=), (8.13)
where
_ 2p(0)(Ta (T, v))(5)
Talny) = (p2 — @2)R(z, —z;2,0)’
'(Z(a:) _ 2171(0) (2)

(p2 — q2)R(z, —2;2,0)

Applying the general representation of regular in D solutions, we can
get [68, 69]

p(ty)

P+ [ (00, (314

() = & (Hu(t) + Bi(t) /

oD+
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where
ay(t) = Re(—ma(t, D), Bi(t) = Im(—ia(t, D)),
&> (t) = Re(ra(t,DT), Bot) = Im(a(t, D),

Here K;(u) and Ky (p) are well-defined integral operators.
Substituting (8.14) and (8.15) in (8.13), we obtain

p(ty)dty

SUCL  [Ka(u))(0) = (0, te (0,1), (816)

s (t)ult) + Ba(t) /

6D+
where
az(t) = Re[—n(1 + i)a(t, 1) p (0)],
Bs(t) = Im[—(1 + i)a(t, 1) p1 (0)].

Here K3(u) is a linear integral operator.

9. INVESTIGATION OF THE PROBLEM (7.1), (7.2), (7.3) IN A MIXED
DoMAIN

We rewrite the equations (7.13) and (8.16) in the form of one singular
equation on the whole boundary D7,

p(t1)dty
t1 —t

ca(tyult) + Ba(t) /

oD+

+ [Ka(w)](®) = f1(2), (9-1)

[ ault), t €ADH\C1Co, [ Bi(), t €ODT\CLCn,
“4(t)—{ aslt) tECiCr f"*(t)‘{ Bolt), teCiCor

f(t) . (p(t), t e 8D+\0102,
o ’(,b(t), tEClcQ,
and K4 () is a well-defined, compact linear integral operator.
Remark. The coefficients a4(t) and B4(t) below are assumed to be con-
tinuous at the point ¢ = 0, i.e., p;(0) + ¢1(0) = 0.

A solution p(t) of the singular integral equation (9.1) is sought in the
space H*(0D™), the point Cy(1,0) being the node of the curve dD* [52].
Under the assumption that

H(t) = (p +iq)(t) #0, t € o,
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we put
mit' H (t)o(t, t) feo
oty = W Z i) ) —mit H(Halt,8)’ ’
Oé4(t) + ’L.7T,34(t) —7T(]. — Z)t a(t ﬂpl(O) ‘e 6D+\g'_

—m(L+)alt, Hpi(0)’

The index & of the singular integral equation (9.1) in the class H*(0D™)
is defined as follows [52]: denote by arg w_(t) and arg w4 (t) continuous
branches of the argument of the function w(t) respectively on 9D \o and
.

Let

1 1
d= 5 arg w—(Cy) — — argwy (C) =
m 27
1 -
= — (2 arg(l —i) + 2argt' + Qarga(t,ﬂ) (Cy) —
m
1 _ -
- (2 argi+ 2argt' + 2arg H(t) + Qarga(t,ﬂ) (Cy) =
m

1 1 1
= — (2arg(l — i) — 2argi) — —arg H(C») = _3_ —arg H(C>).
m ™ 4 7w

The index k is defined by the formula

_ ) -d-1,ifd¢ Z,
“_{ —d, ifde Z, (9-2)

where Z is the set of all integers and [d] is the integer part of a number d.
Thus the following theorem is valid.

Theorem 9.1. Let the conditions

H(t) = (m +iq)(t) #0, t €0,
D2 (t) — Q> (t) 75 0, t e CCl, (93)
p1(0) # 0, p1(0) +q1(0) =0, »(0) =1(0)

be fulfilled. Then the problem (7.1), (7.2), (7.3) is Noetherian and its index
is given by the formula (9.2).

Below we consider Problem B which is formulated as follows: it is re-
quired to determine a function u(zx,y) possessing the following properties:

1) u(z,y) is a solution of the equation (7.1) in the domain D for y # 0;

2) it is continuous in the closed domain D and has continuous first deriva-
tives everywhere in the same domain except maybe at the points C; and
C5 near which u, and u, tend to infinity with an order less than 1;

3) it satisfies the boundary conditions

(Puz + quy + Au)|, = o, (9.4)
ulce, =1, (9-5)
where @,p,q,A € CP"', ¢ € C*", 0 < h < 1.
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Theorem 9.2. Let H|, # 0 and let the direction | = (p,q) form with the

P

exterior to the curve o normal an acute angle, i.e., cos(l, N)|, > 0 and

C|D S 0, (96)
Ale >0,
[a® — b + 4c — 2(a; + by +ay +b,)]|p- >0, (a+b)|p- >0. (9.8)

Then Problem B fails to have more than one solution.

Proof. Let us show that the corresponding to (7.1), (9.4), (9.5) homogeneous
problem has only the trivial solution. Let ug(z,y) be a nonzero solution of
the corresponding homogeneous problem. As far as u|cc, = 0, uo(z,y) is
not constant. By (9.6), (9.7), cos(l,/]\\f)|g > 0 and by the Hopf and Zaremba-—
Giraud principles, the function wug(z,y) cannot reach in D¥ U ¢ a positive
maximum and a negative minimum [11]. Since the conditions (9.8) are
fulfilled, by virtue of the extremum principle for hyperbolic equations [2],
the function ug(x,y) takes its positive maximum and negative minimum on
the segment C;C5. Suppose, for example, that the function ug(z,y) at the
point P(z,0), 0 < o < 1, reaches its positive maximum. Then on the one
hand

——(20,0) = lim uo(To,y) — uo(zo,0)

>0 9.9
9 Jim , >0, (9.9)

but on the other hand, because of the Zaremba—Giraud principle, for the
domain D7 at the point P(zg,0) € DT we have

Ou

—(z0,0) <0,

S (0.0
which contradicts (9.9). The case of the negative minimum is considered
analogously. H

When considering the question on solvability of Problem B, we assume
below that ¢ =0, A = 0.

Having differentiated the condition (9.5) along the characteristic CCY,
we obtain

(ug — uy)|CO1 =9 (9.10)

The problem (7.1), (9.4), (9.10) is in fact Problem A under the conditions
c=0,p1 =p, 1 =g, A1 =0,p2=1,¢=-1, A2 :0717[]:1/},' Denoteby
k1 the index of the problem (7.1), (9.4), (9.10).

We have the following

Theorem 9.3. Under the conditions (p+iq)|, # 0, p(0) # 0, p(0)+4¢(0) =
0,¢c=0,A=0,x=1, p(0) =4'(0) =0, from the uniqueness of the solution
of Problem B follows its existence.
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Proof. According to the definition of the index k1 = di — da, where d
is the number of linearly independent solutions of the corresponding to
(7.1), (9.4), (9.10) homogeneous problem and d» is the number of solvability
conditions imposed on the right sides of the problem (7.1), (9.4), (9.10). It
is obvious that under the conditions of Theorem 9.3, the function u =
const is a solution of the corresponding to (7.1), (9.4), (9.10) homogeneous
problem. Let us show that the homogeneous problem fails to have other
solutions. Indeed, let & be a solution of the corresponding to (7.1), (9.4),
(9.10) homogeneous problem. Then because of the fact that %%1 = (U, —
Uy)|lcc, = 0 and hence @|ce, = const, the function u — u(Cy) will be a
solution of the homogeneous problem. The uniqueness of the solution of
Problem B implies that either & — u(C}) = 0 or & = const. Thus we have
shown that d; = 1. But k; = 1, therefore ds = dy —x; = 0 and consequently,
the nonhomogeneous problem (7.1), (9.4), (9.10) is undoubtedly solvable.
Let @ be its solution. Then the solution of Problem B has the form u(P) =
u(P)—u(Cy) +4(C1), P € D. Really, it is obvious that u(P) satisfies both

equations (7.1) and (9.4). It remains to verify the condition (9.5). As it is

eagily seen, 82%1 = ¢/’ implies that

P
w(P) - (Cy) = / s = p(P) — (Cy), P € CCh.
Ch

Therefore for P € C'C; we have
u(P) = a(P) —u(Cr) +¢(C1) = P(P) —¢(C1) +9(Cr) = 4(P),
which proves Theorem 9.3. H
From Theorems 9.3 and 9.4 we have

Theorem 9.4. Let (9.8) be fulfilled and (p + iq)|, # 0, cos(l,/]\\f)|g > 0,
p(0) #0, p(0) +¢q(0) =0,¢c=0, A\=0, k1 =1, p(0) =¢'(0) = 0. Then
Problem B is uniquely solvable.
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