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CONTINUOUS DEPENDENCE OF THE SOLUTION OF A CLASS OF
NEUTRAL DIFFERENTIAL EQUATIONS ON THE INITIAL DATA
AND ON THE RIGHT-HAND SIDE

(Reported on March 17-24, 1997)

Let J = [a, b] be a finite interval, R® be an n-dimensional Euclidean space, O C R™ an
open set, 7 : J — R! and 7 : J — R! be continuously differentiable functions satisfying
respectively the conditions: n(t) < t, n(t) > 0; 7(t) < ¢, 7(t) > 0; moreover, let Li(J, R}i-)
be the space of summable functions m : J — RL, R}i- = [0, +00), A(J,R™*™) be the space
of piecewise continuous m X m matrix functions C : J — R®X™ with a finite number of
points of discontinuity of the first kind, ||C|| = sup,c; |C(t)|, C'(J1,0) be the space
of continuously differentiable functions ¢ : J1 — O, Ji = [7,b], 7 = min{n(a), 7(a)},
for which [|¢]| = |¢(a)| + maxies, [4(t)|, and let Ef be the space of the functions f :
J x 0% — R™ satisfying the following conditions:

(1) the function f(-,z,y):J — R” is measurable for every (z,y) € O?:

(2) for any compactum K C O and any function f € Ey there exist m¢ i (-), Ly g (-) €
Ly(J, R}i-) such that

|f(t,z,9)| < mp i (t), Y(twy) €T x K,
|F(ta’s ) — £ 2" )| < Lrc@ (1o — 2|+ |y —y"1), Yo', 2",y y") € T x K.
Introduce the sets:
t”

/f(t,r,y)dt‘ <},

¢

V2 (K, ) = {f €Ey: / [myk(t) + Ly ()] dt < 04}7
J
W(K,5,a) = Vi (K,5) N Va(K, o),

Vl(K,(F):{fGEf: max
(t’,t”,:t,y)EJQXKQ

where K C O is a compact set, § > 0 and a > 0 are arbitrary numbers.
To every element o = (to,z0,9,C, f) € £ =J x O x CL(J1,0) x A(J,R"*") x Ey
we assign the neutral differential equation

i(t) = CO@ D) + f(t2(8), a(r(1))) (1)
with the initial condition
z(t) = p(t), t € [r0,t0), z(to) = o, (2)

where 79 = min{n(to), 7(to)}.
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Definition. Every function z(¢;0) € O defined on the interval [79,¢1] C (7, b] will be
called a solution corresponding to the element o € X if it satisfies on [79, to] the condition
(2), is absolutely continuous on [tp,¢1] and almost everywhere satisfies the equation (1).

Theorem. Let 2(t) = z(t;5), t € [to, 1], be a solution corresponding to the element
o= (%,50,5, 5, .’]F) € X and let the compactum Ki C O contain a neighborhood of the
set Ko = {z(t) : t € [70,11]}, where 7o = min{n(ty),7(t0)}. Then for any € > 0 there
ezists a number § = §(¢) > 0 such that to every element

oE V(afa K1757 aO) = V(%:‘S) X V(’CE(),(S) X V(‘Zaé) X V(aaé) X W(K1,5,a0)

there corresponds the solution x(t;o) defined on the interval [7'0,% + 8]. Moreover, if
0 = (t%),IB, (plycufl) € V(E:’ Kl:‘sa CMO), = 1,2, then

|2t 1) = 2(t;09)| < e, t € [fo, 1 + 0],
where to = max(t},12), ao > 0 is a fived number.

Here V(t~0,5), V(zo,9), V(go,0), V(&, d) are d-neighborhoods of the points ?0, To, P,
C in the spaces R, R™, C1(J1,0), A(J,R**"), respectively.

The above formulated theorem is an analogue of a theorem stated in [1], [2] (see also
[3] and [4]). This theorem can be proved by the method described in [2].

In conclusion it should be noted that if the right-hand side of the equation (1) depends
nonlinearly on #(n(t)), then the theorem is, generally speaking, invalid. The appropriate
example is given in [3].
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