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reziume. B-sivrceebSi eqstremaluri amocanebisaTvis ganxilulia

erToblivi daParvis meTodis modiPicirebuli varianti da damtkice-

bulia kritikulobis aucilebeli piroba. B-sivrcul mniSvnelobebian

regularul PunqciaTa sivrceSi SesCavlilia zomiani integralis Tvise-

bebi; damtkicebulia Teorema araerTgvarovani zomiani integraluri gan-

tolebis amonaxsnis pirobebis Sesaxeb; zomiani integraluri gantole-

bebiTa da calxmrivi Sereuli SezGudvebiT aGCerili marTvadi obieqte-

bisaTvis kritikulobis aucilebeli pirobebidan gamoKvanilia opti-

malurobis aucilebeli pirobebi.
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1. Introduction

The present paper is devoted to deepening and generalization of the appa-

ratus of investigation of optimal problems with mixed restrictions considered

in the paper [4]. The proposed apparatus is also convenient for controlled

objects which are described by equations with measure. Controls are chosen

from the space of regular functions, i.e., from the Banach space obtained by

completion of the set of step-functions with respect to the uniform norm.

This space has been investigated in detail in [4] and [6].

The paper consists of �ve sections. In the second section, we consider

(with certain modi�cations) a way of investigation of extremal problems

named in literature as "the method of joint covering" [12]. Presentation of

the method is principally the same as in [3]. One of the �rst variants of the

above-mentioned method has been elaborated in [1].

The principal di�erence of the method suggested in the present paper

from the well-known schemes [1{2] consists in that the restrictions pre-

scribed in terms of di�erential equations are understood just as any other

restrictions. This permits us, without principal di�culties, to consider the

restrictions given by more complicated equations. A survey of the methods

of joint covering is given in [12].

In the third section, in a standard manner we determine a bilinear integral

of regular functions by means of �nitely additive functions of sets generated

by functions of bounded variation. This integral is a generalized Stieltjes

integral. A number of basic properties of the integral calculus is also given.

In the fourth section, we study nonhomogeneous Volterra{Stieltjes equa-

tions with measure

x(t) = w(t) +

t

Z

t

0

g(s; x(s))d�(s); (1.1)

where � is a function of bounded variation and w is a regular function.

It turnes out that the equation (1.1) describes a great many physical pro-

cesses [18]. Equations of this type with various integrals, in particular, with

Stieltjes, Lebesgue-Stieltjes, Young and Dushnik integrals [6{10], have been

considered in various works. Moreover, these works di�er in that the in-

tegration in these equations takes place over closed, half-closed and open

intervals on which w is taken from the class of functions of bounded varia-

tion or is a constant, and the solution is sought in the same class of functions

of bounded variation. In the linear case, the equation (1.1) for the integral

suggested in x3 has been studied in [5]. In the present work, we consider

the equation (1.1) in the case where w is a regular function and a solution

is sought in a class of regular functions. Existence and uniqueness theorems

are proved.

In the �fth section, we study general problem of optimal control with

mixed one-sided restrictions. Necessary conditions of optimality are derived
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in the class of regular controls, without additional assumptions of such type

as the piecewise constancy of the set of active indices and the conditions of

generality of position [16].

x

2. Extremal Problems Connected with the Use of Vector

Semi-Ordered Spaces

A Banach space X is said to be a partially ordered B-space if a convex

cone K with a vertex at zero is selected in it possessing the property: if

x 2 K, y 2 K and x + y = 0, then x = y = 0. Elements of K are called

positive elements of the space X ; K is called the cone of positive elements

of the space X ; the relation x 2 K is written either as x � 0 or by 0 � x; by

de�nition, the inequality x � y implies x�y � 0. As for the spaceX , we say

that it is ordered by means of the cone K. We denote the cone of positive

elements of the partially ordered B-space X by X

+

. A set X

+

is said to be

reproducing if every element x 2 X is representable as a di�erence of two

positive elements.

A partially ordered B-space X is said to be Krein's or a BK-space if the

set X

+

contains at least one inner point. The fact that x is an inner point of

the set X

+

we write either as x� 0 or 0� x; by de�nition, the inequality

x� 0 means that �x� 0. Note that if X is a Krein's space, then X

+

is a

reproducing set [17].

If X is a B-space, partially ordered by the cone K, then we can introduce

in the conjugate space X

�

the notion of positiveness by assuming that the

functional x

�

is positive if x

�

x � 0 for all x 2 K. The set of all positive

functionals forms a convex cone which we denote by K

�

. If K is a reproduc-

ing cone, then X

�

can be partially ordered by the cone K

�

. In what follows,

X

�

is assumed to be closed.

Consider the following general extremal problem. Let A be a set in a

metric space X , and let F , G, H be B-spaces. Note that F and H are

partially ordered by the cones F

+

and H

+

, respectively. Let f , g, h be the

mappings of A into F , G, H, respectively. A point x

0

2 A is said to be the

minimum point f on A under the restrictions

(

g(x) = 0;

h(x) � 0;

(2.1)

if g(x

0

) = 0, h(x

0

) � 0, and for any, satisfying the same conditions, point

x 2 A for which f(x) is comparable with f(x

0

) the inequality f(x

0

) � f(x)

is ful�lled.

The maximum point is de�ned analogously.

Now the general extremal problem can be formulated as that of �nding

minimum (or maximum) points of the function f on the set A under the

restrictions (2.1).
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When studying the problem under consideration, it has been found more

convenient to consider only one function instead of several functions in-

volved non-symmetrically in the conditions. Thus, just as in [3] and [4],

we introduce the notion of a critical point of mapping and show that the

above formulated extremal problem can be reduced to the problem of �nding

critical points of some, specially constructed, mapping.

De�nition 2.1. Let M be a set from a metric space Y , W be a B-space

and let P : M ! W be some mapping. The point z

0

2 M is said to be

the critical point of the mapping P if the point w

0

= p(z

0

) is the boundary

point of the set P(M).

It can be easily seen that the point z

0

2 M is critical for the mapping

p : M ! W if and only if for any positive number " there exists a point

w 2 W , jwj < ", such that the image of the set M under the mapping

z ! p(z) + w, z 2M , does not contain the point w

0

= p(z

0

).

Let

8

>

<

>

:

Y = X � F �H;

M = A�F

+

�H

+

;

W = F � G �H;

and let p :M !W be the mapping de�ned by

8

>

<

>

:

p

1

(x; k; y) = f(x) + k;

p

2

(x; k; y) = g(x)

p

3

(x; k; y) = h(x) + y;

z = (x; k; y); w = p(z) = (p

1

(z); p

2

(z); p

3

(z)):

Lemma 2.1. If x

0

2 A is a minimum point of the general extremal prob-

lem, then z

0

(x

0

; 0;�h(x

0

)) 2Ms a critical point of the mapping p [3], [4].

In [4] we describe the method of joint covering for the case where M is a

convex closed cone with the vertex at zero, containing inner points. These

results, with slight modi�cations, remain also valid for the case where M is

a convex closed subset of the Banach space. For the sake of convenience,

zero will be assumed to belong to M .

Let D � Y be a convex set. Denote by coneD the least convex cone with

the vertex at zero, containing D and zero. It can be easily veri�ed that

coneD = f�zj� � 0; z 2 Dg:

Denote a minimal linear manifold or a subspace containing D by spD. As

is seen,

spD = coneD � coneD:
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Lemma 2.2. Let D � Y be a convex set containing zero. Then the equality

spD = cone(D �D):

holds.

It is not di�cult to prove this lemma.

Lemma 2.3. Let D � Y be a convex set and let z

0

2 D be some point.

Then for any " > 0 the equality

spD = sp(B(z

0

; ") \ D)

is valid.

Proof. Obviously, spD � (B(z

0

; ")\D). Prove the inverse inclusion. Let on

the contrary spDn(B(z

0

; ") \ D) 6= D for some number " > 0. This implies

that coneD sp(B(z

0

; ") \ D) 6= ?. Hence there exists a point z such that

z 2 D and z 62 sp B(z

0

; ") \ D. As far as D is convex, for any � 2 [0; 1]

the point (1� �)z

0

+ �z belongs to the set D. Let a = minf"=jz � z

0

j; 1g,

�

1

2 (0; a) and assume z

1

= (1� �)z

0

+ �

1

z. We have z

1

� z

0

= �(z � z

0

)

and jz

1

�z

0

j = �

1

jz�z

0

j � "=jz�z

0

j � jz�z

0

j = ", whence z

1

2 B(z

0

; ")\D.

But then

z =

1

�

1

z

1

�

1� �

1

�

1

z

0

2 sp(B(z

0

; ") \D):

The obtained contradiction proves the lemma. �

The following lemma substitutes the principle of the openness of the

mapping.

Lemma 2.4. Let J;W be a B-space, M � J , and M be a convex closed

set containing the origin, and let M




= B(0; 
) \M , 
 > 0, K = coneM




,

T : J ! W be a bounded linear operator such that T (K) = W . Then there

exists k > 0 such that for any w 2 W there is z 2

jwj

k

�M
 satisfying the

condition Tz = w.

Proof. Obviously, [

1

N=1

nM




= K. Hence [

1

N=1

T (nM




) = T (K) = W and

consequently W is representable in the form of a countable union of closed

sets T (nM




), n = 1; 2; : : : . By the Baire theorem on the categories, one of

these sets contains an inner point. Then, as is easily seen, T (M




) contains

an inner point as well.

If zero is not an inner point of T (M




), then by the Hahn-Banach theorem,

there exists a nonzero continuous linear functional w which is supporting

the convex closed set T (M




) at zero, i.e., such that w

�

Tz � 0 for all z 2M




.

But then w

�

Tz � 0 for all z 2 K which contradicts the condition T (K) = w.

Thus the set T (M
) contains a sphere with the center at zero. If k is the

radius of the sphere, then the above said means that for any w 2 W and

any " > 0 there exists a point z 2

1

k

� jwj �M
 such that jTz � wj < ".

Let now w be an arbitrary vector from w. Suppose w

1

= w and denote

by z

1

the vector belonging to

1

k

� jw

1

j �M

gm

for which jTz

1

� w

1

j <

1

2

jw

1

j.
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By induction we de�ne w

n=1

= w

n

� Tz

n

, and �nd that z

n+1

2

1

k

�

jw

n+1

j � M




satis�es the condition jTz

n+1

� w

n+1

j <

1

2

jw

n+1

j. We have

w

n+1

= jw

n

� Tz

n

j <

1

2

� jw

n

j, whence jz

n+1

j <

1

2

n

� jw

1

j.

Next,

z

n+1

2

1

k

� jw

n+1

j �M




�

1

2

�

1

2

n

� jw

1

j �M
;

whence jz

n+1

j �

jw

1

j

k

�

1

2

n

and the series z

1

+z

2

+� � � is absolutely convergent.

If we denote by z the sum of this series, then jzj �

1

k

� jw

1

j, z 2

1

k

jw

1

j �M




.

Summing up the equalities w

1

= w; w

2

= w

1

�Tz

1

; : : : ; w

n+1

= w

n

�Tz

n

,

we obtain w

n+1

= w � Tz

1

� � � � � Tz

n

.

Passing in the above equality to limit as n!1 and taking into account

that w

n

! 0, we arrive at w = Tz. �

In what follows, we denote by {(T;M




) the least upper bound of the set

of all numbers k satisfying the conditions of Lemma 2.4.

Let M be a convex set in the B-space J , and let 0 2 M , L = spM ,

p :M !W be a mapping taking the values from the B-space W .

De�nition 2.2. We say that the mapping p is di�erentiable at the point

z

0

2M if there exists a linear operator T : L!W satisfying:

lim

z!z

0

z2M

jp(z)� p(z

0

)� T (z � z

0

)j

jz � z

0

j

= 0: (2.2)

We call the operator T the di�erential of p at the point z

0

and denote it by

the symbol T = Dp(z

0

).

If p is di�erentiable in the above indicated sense, then the di�erential

Dp(z

0

) is de�ned on L uniquely.

Indeed, let T

1

and T

2

be two operators satisfying (2.2). For simplicity we

assume that z

0

= 0. Then for any z 2M we have

jT

1

z�T

2

zj�jp(z)�p(z

0

)�T

2

(z�z

0

)�p(z)+p(z

0

)+T

1

(z�z

0

)j�
(z) � jzj;

where 
(z) ! 0 together with jzj. Substituting instead of z the value �z,

� > 0, we get

�jT

1

z � T

2

zj � � � 
(� � z) � jzj; i.e.;

jT

1

z � T

2

zj � 
(� � z) � jzj:

Since the left-hand side of the above equality does not depend on � and the

right-hand side tends to zero as �! 0, we obtain T

1

z = T

2

z for all z 2M .

This implies that T

1

z = T

2

z for all z 2 L.

Everywhere below, unless otherwise stated, L is assumed to be dense

in J .

LetM be a convex set in J and let p be di�erentiable at every point ofM .

Then for any z

1

, z

2

2M the linear operator T = Dp(z

1

)�Dp(z

2

) is de�ned

on L. Since we have nowhere stated the continuity of the corresponding

mappings, the operator T may happen to be unbounded. If, however, it is
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bounded, then by continuity it can be extended to the whole space J . In

this case T 2 B(J;W ).

De�nition 2.3. The mapping p is said to be continuously di�erentiable

on M if p is di�erentiable at all points of M , for every pair of points z

1

,

z

2

2M the operatorDp(z

1

)�Dp(z

2

) is bounded and the mapping (z

1

; z

2

)!

Dp(z

1

)�Dp(z

2

) is continuous as an operator M �M ! B(J;W ).

Lemma 2.5. If a mapping p is continuously di�erentiable in the vicinity

of the point z

0

2 M , T = Dp(z

0

), then for any � > 0 there exists a neigh-

borhood V of the point z

0

such that for all z

1

, z

2

2 V \M the inequality

jp(z

1

)� p(z

2

)� T (z

1

� z

2

)j < � � jz

1

� z

2

j:

is ful�lled.

The proof of this lemma can be found in [3] and [4]. Now we are able to

formulate a generalization of the Graves lemma [11].

Lemma 2.6. Let J and W be B-spaces, M be a convex closed set in J , and

let p : M ! W be a continuous mapping. Let, moreover, K = cone(M �

z

0

) and T be a bounded linear operator de�ned on spK and satisfying the

following conditions:

(a) T(K)=W;

(b) there exists 
 > 0, such that for any z

1

; z

2

2 B(z

0

; 
) \ M , the

inequality

jp(z

1

)� p(z

2

)� T (z

1

� z

2

)j < �jz

1

� z

2

j

is ful�lled; moreover, � < � = {(T;M




).

Then the equation w = p(z) has a solution z 2 B(z

0

; 
) \ M for all

w 2 B(p(z

0

); �), where � = 
 � (�� �).

The proof of this lemma, which is similar to that of the Graves lemma,

is given in [2] for the case where M is a cone with the vertex at zero but

this proof is also �t for proving Lemma 2.6.

Comparing this result with Lemma 2.5, we convince ourselves that the

following lemma is valid.

Lemma 2.7. Let J and W be B-spaces, M � J be a convex closed set,

let p : M ! W be a continuously di�erentiable mapping in the vicinity of

a point z

0

2 M , and let the linear operator T = Dp(z

0

) map cone(m � z

0

)

onto the whole space W . Then there exists a neighborhood V of the point

Z

0

such that the set P (M \ V ) contains a neighborhood of the point p(z

0

)

in W .

From this lemma we immediately get the following
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Corollary 2.8. If z

0

2 M is a critical point of the mapping p and T =

Dp(z

0

) is a linear bounded operator, T : sp(M � z

0

) ! W , satisfying for

some 
 the condition (b) of Lemma 2:6, then T cannot satisfy the condition

(a) of the same lemma.

Before we proceed to formulating the �nal result, note that K

1

= T (K),

where K = cone(M � z

0

) is a convex cone in the space W . Suppose that it

either is closed or contains inner points. Then the condition K 6=W means

that we can separate this cone from zero, i.e., there exists a di�erent from

zero functional w

�

2W

�

such that for all z 2 K we have w

�

Tz � 0.

Theorem 2.9 (A necessary condition of criticality). Let J and W be B-

spaces, M � J , z

0

2 M , be a convex closed set, and let p : M ! W be a

continuous mapping continuously di�erentiable in the vicinity of the point

T = Dp(z

0

), K = cone(M � z

0

). Then if z

0

2 M is a critical point of the

mapping p and T (K) either is closed or contains inner points, then there

exists a non-zero continuous linear functional w

�

2W

�

separating this cone

from zero, i.e., such that

w

�

T�z � 0 for all �z 2 K:

In other words,

w

�

T�z � 0 for all �z : z

0

+ �z 2M:

Since in the applications the space W is often a product of B-spaces, we

will give in conclusion a simple criterion for coneT (K)t

0

t

0

contain inner

points of the product.

Lemma 2.10. Let J , W

1

, W

2

be B-spaces, W = W

1

�W

2

, K � J be a

convex closed cone with the vertex at zero, and let T

1

: spK ! W

1

and

T

2

: spK ! W

2

be linear bounded operators, T

1

K = W . Denote by N(T

1

)

the set of those z 2 K for which T

1

z = 0. If T

2

(N(T

1

)) is open, then

T

1

(K) � T

2

(K) is also open in W .

x

3. Integral Calculus in the Space of Regular Functions

Let J = [0; 1] and let X be a Banach space. For every E � J we denote

by �

E

the characteristic function of the set E. If E = ftg, t 2 J , then its

characteristic function will be denoted by �

t

.

De�nition 3.1. The function x : J ! X is said to be a step-function if

there exists a partition of the segment J : 0 = t

0

< t

1

< � � � < t

n

= 1

such that the function x is constant on every open interval (t

i�1

; t

i

), i =

0; 1; : : : ; n.
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By � we denote the algebra generated in J = [0; 1] by the sets [0; t] and

[t; 1], 0 � t � 1. Obviously, the sets fag, [a; b], (a; b), [a; b), (a; b], where

0 � a � b � 1, belong to the algebra �. It is easily seen that for any

step-function x : J ! X there exist the sets E

1

; : : : ; E

n

from � and the

vectors �

1

; : : : ; �

n

from X such that

x(t) =

n

X

i=1

�

E

i

(t)�

i

for all t = J ;

and vice versa.

De�nition 3.2. A function x : J ! X is said to be regular if for every

t 2 [0; 1) it has a limit from the right, x(t+), and for every t 2 (0; 1] it x

has a limit from the left, x(t�). By de�nition we assume that x(0�) = x(0)

and x(1+) = x(1).

Clearly, the step-function is regular.

Theorem 3.1. For a function x : J ! X to be regular, it is necessary

and su�cient that x be the limit of a uniformly convergent sequence of step-

functions [4], [6], [13].

We denote the space of regular functions which map a segment J into

a B-space X by NCN(J ; X). It is easily veri�ed that NCN(J ; X) is a

B-space with respect to the uniform norm

jxj

NCN

= sup

t2J

jx(t)j:

Denote by CN(1;JX) the closed subspace of the B-space NCN(J ; X)

generated by continuous from the left regular functions; by de�nition, the

functions from CN(J ; X) are assumed to be continuous at zero.

De�nition 3.3. Let � : J ! X be a function. The complete variation of

the function � on J is de�ned as

v(�;J ) = sup

n

X

i=1

j�(t

i

)� �(t

i�1

)j;

where the upper bound is taken over all �nite partitions of the segment

J : 0 � t

0

< t

1

< t

n

� 1. If v(�;J ) < 1, then � is called a function of

bounded variation on J .

It is not di�cult to verify that any function of bounded variation is

regular.

Denote by BV (J ; X) the space of all functions of bounded variation

which map J into X . This is a B-space with respect to the norm

j�j

BV

= j�(�

0

)j+ V (�;J );
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where �

0

is some �xed point from J . Denote by BV

0

(J ; X) the closed sub-

space of the B-space BV (J ; X) generated by the functions � 2 BV (J ; X)

satisfying the condition �(�

0

) = 0.

Let � 2 BV (J ; X). Denote by �

�

the �nitely additive set function which

is de�ned on the algebra � by the relation �

�

([a; b]) = �(b)��(a) and takes

the values from the B-space X [4].

Regular functions were studied in detail in [4] and [6].

De�nition 3.4. A bilinear triple (BT ) is a set of three B-spaces X , Y ,

Z with a bilinear continuous mapping T : X � Y ! Z. We will write

x � y = T (x; y) and denote BT by (X;Y; Z)

T

, or simply by (X;Y; Z) always

assuming that jT j � 1.

Examples: Let E;F;G be B-spaces.

(a) X = B(E;F ), Y = E, Z = F and T (u; y) = u(y);

(b) X = B(E;F ), Y = B(G;E), Z = B(G;F ) and T (u; v) = u � v;

(c) X = E, Y = E

�

, Z = R

1

and T (e; e

�

) = e

�

e;

(d) X = Z = F , Y = R

1

and T (f; �) = � � f .

Obviously, Examples (a), (c) and (d) are particular cases of Example (b).

De�ne now a bilinear integral. Let (X;Y; Z) be a bilinear triple, E 2 �,

� 2 BV (J ; Y ) and x 2 NCN(J ; X) is a step-function de�ned by the

equality

x(t) = ��

E

i

(t) for all t 2 J ;

where E

1

; : : : ; E

n

is a family of mutually disjoint sets from the algebra �,

and �

1

; : : : ; �

n

are the vectors from X . By de�nition we assume that

Z

E

x(t) � �

�

(dt) =

n

X

i=1

�

i

�

�

(EE

i

):

Clearly, integration of step-functions with respect to a set is a linear

operation, and

�

�

�

�

Z

E

x(t) � �

�

(dt)

�

�

�

�

� sup

t2E

jx(t)j � v(�

�

; E):

Let x 2 NCN(J ; X) be an arbitrary function and let fx

n

g be a sequence

of step-functions uniformly convergent to x. Then, as is easily seen, the

sequence

R

E

x

n

(t) � �

�

(dt), n = 1; 2; : : : , converges for every E 2 � in the

norm Z. The limit of this sequence of integrals is called, by de�nition, a

bilinear integral of x with respect to the �nitely additive set function of the

set �

�

, taken over the set E 2 Z. We denote it by

R

E

x(t) � �

�

(dt), i.e.,

Z

E

x(t) � �

�

(dt) = lim

n!1

Z

E

x

n

(t) � �

�

(dt):
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We can easily see that the above de�ned integral preserves almost all basic

properties of the common integral [4], [14]. In the sequel, we will denote it

in some other way,

Z

E

�x(t) � d�(dt):

If x 2 NCN(J ; X), then for every t 2 J denote by x

�

(t) (respectively,

by x

�

�

(t)) the right (the left) jump of the function x at the point t, i.e.,

x

�

(t) = x(t+)� x(t) (respectively, x

�

�

(t) = x(t)� x(t�)). By de�nition we

assume that x

�

�

(0) = x

�

(1) = 0.

Lemma 3.2. Let x 2 NCN(J ; X) and let M � X be a subset. Next, let

F

1

, F

2

and G

1

, G

2

be the sets de�ned by the relations

F

1

ft 2 J jx(t�) 2M _ x(t) 2M _ x(t+) 2Mg;

F

2

ft 2 J jx(t�) 2M _ x(t+) 2Mg;

G

1

ft 2 J jx(t�) 2 XnM ^ x(t) 2 XnM ^ x(t+) 2 XnMg;

G

2

ft 2 J jx(t�) 2 XnM ^ x(t+) 2 XnMg:

Then the sets F

1

, F

2

are closed, while G

1

, G

2

are open in J .

Proof. Obviously, G

1

= J nF

1

and G

2

= J nF

2

. If we prove that the sets

F

1

and F

2

are closed, then the openness of the sets G

1

, G

2

will be proved

as of the complements of closed ones. Prove the closeness of the set F

1

.

Let ft

n

g be a sequence convergent to some point t 2 J . There exists a

�nite subsequence ft

n

k

g such that either x(t

n

k

�) 2 M for all k = 1; 2; : : : ,

or x(t

n

k

) 2 M for all k = 1; 2; : : : , or x(t

n

k

+) 2 M for all k = 1; 2; : : : .

Without restriction of generality, we may assume that t

n

k

� t, k = 1; 2; : : : ,

or t

n

k

� t k = 1; 2; : : : . Consider the case where t

n

k

� t, k = 1; 2; : : : . Then

lim

k!1

x(t

n

k

�) = x(t�); lim

k!1

x(t

n

k

) = x(t�) lim

k!1

x(t

n

k

+) = x(t�):

Hence x(t�) 2 M and thus t 2 F

1

. The case where t

n

k

� t, k = 1; 2; : : : ,

is considered in a similar manner. It is not di�cult to verify that F

2

is a

closed subset of the set F

1

. �

Corollary 3.3. Let x 2 NCN(J ; X) and let K � X be a subset. Then

the following statements are valid:

(a) the set ft2J jx(t�)2@K _ x(t)2 @K _ x(t+)2 @Kg is closed in J ;

(b) the set ft2J jx(t�)2 intK ^ x(t)2 intK ^ x(t+)2 intKg is open

in J ;

(c) the set ft2J jx(t�) 6= K ^ x(t) 6= K _ x(t+) 6= Kg is open in J .

Proof. It follows from Lemma 3.2 that: (a) holds if we put M = @K; (b)

holds if we put M = Xn intK; (c) holds if we put M = K. �
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Lemma 3.4. Let X

1

; X

2

; X be B-spaces and let (X

1

; X

2

; X) be a bilinear

triple. Next, let t

0

2 J , � 2 BV (JX

1

), x 2 NCN(J ; X

2

), and let a

function �

1

be de�ned by the equality

�

1

(t) = �

1

(t

0

) +

t

Z

t

0

� d�(s)s(s); for all t 2 J :

Then �

1

2 BV (J ; X), v(�

1

;J ) � v(�;J ) � jxj

NCN

and for every t 2 J the

equalities

�

1�

(t) = �

�

(t)x(t+); �

�

1�

(t) = �

�

�

(t)x(t�):

are valid.

Proof. Let 0 � s

0

< s

1

< � � � < s

n

� 1 be an arbitrary partition of the

segment J . Then we have

n

X

i=1

j�

1

(s

i

)� �

1

(s

i�1

)j =

n

X

i=1

�

�

�

�

s

i

Z

s

i�1

�d�(t)x(t)

�

�

�

�

�

�

n

X

i=1

v(�; [s

i�1

; s

i

]) � sup

t2[s

i�1

;s

i

]

jx(t)j �

�

n

X

i=1

v(�; [s

i�1

; s

i

]) � jxj

NCN

= v(�;J ) � jxj

NCN

:

Hence v(�

1

;J ) � v(�;J ) � jxj

NCN

and � 2 BV (J ; X).

Let now fx

n

� NCN(J ; X

2

)g be a sequence of step-functions which

converges uniformly to the function x and let f"

m

g be a sequence of positive

numbers, "

m

! 0 as m ! 1. Next, let t 2 [0; 1) be some point. Then we

can easily see that the equality

lim

m!1

t+"

m

Z

t

� d�(s) � x

n

(s) = �

�

(t) � x

n

(t+)

is valid for every n, n = 1; 2; : : : . By de�nition of the integral,

lim

n!1

t+"

m

Z

t

� d�(s) � x

n

(s) =

t+"

m

Z

t

� d�(s) � x(s): (3.1)

We have

�

�

�

�

t+"

m

Z

t

� d�(s) � x

n

(s)�

t+"

m

Z

t

� d�(s) � x(s)

�

�

�

�

=

�

�

�

�

t+"

m

Z

t

� d�(s) � [x

n

(s)�

�x(s)]

�

�

�

�

� v(�; [t; t+ "

m

]) � jx

n

� xj

NCN

� v(�;J ) � jx

n

� xj

N

CN

:
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Consequently, the limit (3.1) does exist uniformly with respect to m. Then,

using the theorem on transposition of passages to limit, we obtain that

�

�

(t+) � x(t+) = lim

n!1

�

�

(t) � x

n

(t+) =

= lim

n!1

lim

m!1

t+"

m

Z

t

� d�(s) � x

n

(s) =

= lim

m!1

lim

n!1

t+"

m

Z

t

� d�(s) � x

n

(s) =

= lim

m!1

t+"

m

Z

t

� d�(s) � x(s) = lim

m!1

[�

1

(t+ "

m

)� �

1

(t)] = �

1�

(t):

The fact that �

�

1�

(t) = �

�

�

(t)x(t�) for every t 2 (0; 1] is proved analo-

gously. �

Theorem 3.5. Let X

1

; X

2

; X; Y be B-spaces, X

1

; X

2

; Y being a bilinear

triple. Next, let � 2 BV (J ; X

1

), A 2 NCN(J ; B(X;X

2

)) and let �

1

be a

function de�ned by

�

1

(t)� = �

1

(t

0

)� +

t

Z

t

0

� d�(s)A(s)�;

for all t 2 J ; � 2 X; (3.2)

where t

0

is a point from J . Then �

1

2 BV (J ; B(X;Y)), and for the

equality

1

Z

0

� d�(t)A(t)x(t) =

1

Z

0

� d�

1

(t)x(t)

for all x 2 NCN(J ; X) (3.3)

to be ful�lled, it is necessary and su�cient that the function �

1

be of the

form (3:2).

Proof. From Lemma 3.4 it immediately follows that �

1

2 BV (J ; B(X;Y )).

Let (3.3) be ful�lled. Then, substituting in it the functions of the type

s ! �

[t;t

0

]

(s)�, s 2 [0; t

0

), � 2 X and s ! �

[t;t

0

]

(s)�, s 2 (t

0

; t], � 2 X ,

we can easily see that the function �

1

is expressed in terms of the equality

(3:2). Prove the su�ciency. Let T : NCN(J ; X) ! Y be an operator

de�ned by

Tx =

1

Z

0

� d�(t)A(t)x(t) �

1

Z

0

� d�

1

(t)x(t); for all x 2 NCN(Y;X):
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Obviously, T is a linear operator, and

jTxj � [v(�;J ) � jAj

NCN

+ v(�;J )] � jxj; x 2 NCN(J ; X):

It can be easily veri�ed that the value of the operator T on step-functions

equals zero. Since step-functions are dense everywhere in NCN(J ; X), a

linear bounded operator vanishing on step-functions will identically be equal

to zero on the whole space NCN(J ; X). �

Theorem 3.6. Let X

1

; X

2

; X; Y be B-spaces, (X

1

; X

2

; Y ) being a bilinear

triple. Next, let ' 2 BV (J ; X

1

), � 2 BV (J ; B(X;X

2

)) and let the function

'

1

be de�ned by

'

1

(t)� =

8

>

>

>

<

>

>

>

:

'

1

(0)� +

R

t

0

� d'(s)[�(s) � �(t)]�;

0 � t � t

0

; � 2 X;

'

1

(1)� +

R

t

1

� d'(s)[�(s) � �(t)]�;

t

0

< t � 1; � 2 X;

(3.4)

where t

0

is a point from J . Then the following assertions are valid:

(a) '

1

2 BV (J ; B(X;Y )), v('

1

;J ) � 2 � v(';J ) � v(�;J );

(b) for the equality

1

Z

0

� d'(t)

t

Z

t

0

� d�(s)x(s) =

1

Z

0

� d'

1

(t)x(t)

for x 2 NCN(J ; X) (3.5)

to be ful�lled, it is necessary and su�cient that the function '

1

be of the

form (3:4) and satisfy the relation

['

1

(0)� '

1

(1)]� = �

1

Z

0

� d'(s)[�(s) � �(t

0

)]�;

for all � 2 X: (3.6)

Proof. Prove the assertion (a). Let 0 � �

0

< �

1

< � � � < �

k

< �

k=1

< �

k+1

<

� � � < �

n

� 1 be a partition of the segment J , and let �; : : : ; �

n

be vectors

from X , j�

i

j � 1, i = 1; : : : ; n. Then for every i 2 f1; : : : ; kg we have

['

1

(�

i

)� '

1

(�

i�1

)]� =

=

�

i

Z

0

� d'(s)[�(s) � �(�

i

)]�

i

�

�

i�1

Z

0

� d'(s)[�(s) � �(�

i�1

)�

i

=

= �

�

i�1

Z

0

� d'(s)[�(�

i

)� �(�

i�1

)]�

i

+

�

i

Z

�

i�1

� d'(s)[�(s) � �(�

i

)]�
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which implies that

j['

1

(�

0

)� '

1

(�

i�1

)]�

i

j � j'(�

i�1

)� '(0)j � j[�(�

i

)� �(�

i�1

)]�

i

j+

+v('; [�

i�1

; �

i

]) sup

s2[�

i�1

;�

i

]

j[�(s) � �(�

i

)]�

i

j �

� v('; [0; t

0

]) � j�(�

i

)� �(�

i�1

)j+ v('; [0; t

0

])�

�v(�; [�

i�1

; �

i

]) � 2 � ('; [0; t

0

]) � v(�; [�

i�1

; �

i

]:

In a similar way, we can prove that for every i 2 fk + 1; : : : ; ng the

following inequality is valid:

j['

1

(�

i

)� '

1

(�

i�1

)]�

i

j � 2v('; [t

0

; 1]) � (�; [�

i�1

; �

i

]):

We have

n

X

i=1

j['

1

(�

i

)� '

1

(�

i�1

)]�

i

j � 2 �

k

X

i=1

v('; [0; t

0

])v(�; [�

i�1

; �

i

]) +

+2 �

n

X

i=k+1

v('; [t

0

; 1])v(�; [�

i�1

; �

i

]) �

� 2v(';J ) �

n

X

i=1

v(�; [�

i�1

; �

i

]) = 2v(';J ) � v(�;J ):

As is easily seen, for every " > 0 there exist vectors �

1

; : : : ; �

n

from X ,

j�

i

j � 1, i = 1; : : : ; n, such that

n

X

i=1

j'

1

(�

i

)� '

1

(�

i�1

)j �

n

X

i=1

j['

1

(�

i

)� '

1

(�

i�1

)]�

i

j+ ":

Hence we obtain that

n

X

i=1

j'

1

(�

i

)� '

1

(�

i�1

)j � 2v(';J ) � v(�;J ) + "

for any partition of the segment J and for any " > 0. Thus v(';J ) �

2v(';J ) � v(�;J ).

Prove now the assertion (b).

The necessity. Let (3.5) be ful�lled. Consider the function x(t) =

�

[�;1]

(t)�, t 2 J , � 2 X where � is some point from J . Suppose that

� � t

0

. We have

t

Z

t

0

�d�(s)x(s) =

(

[�(�) � �(t

0

)]�; 0 � t � �;

[�(t)� �(t

0

)]�; � < t < 1:

(3.7)
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The case where � > t

0

yields

t

Z

t

0

�d�(s)x(s) =

(

0; 0 � t � �;

[�(t)� �(�)]�; � < t � 1:

(3.8)

Taking into account the above obtained expressions and substituting the

function x

1

in (3.5), we easily get that

['

1

(1)� '

1

(�)]� =

=

(

R

�

0

�d'(t)[�(t)� �(t

0

)]� +

R

1

�

�d'(t)[�(�) � �(t

0

)]�; 0 � � � t

0

;

R

1

�

�d'(t)[�(t) � �(�)]�; t

0

< � � 1; � 2 X

(3.9)

which for � = 0 implies

['

1

(1)� '

1

(0)]� =

1

Z

0

�d'(t)[�(t) � �(t

0

)]�; � 2 X: (3.10)

Multiplying this equality by �1, we obtain (3.6). The equality (3.9) results

in

'

1

(t)� =

8

>

>

>

<

>

>

>

:

'

1

(1)� �

R

t

0

�d'(s)[�(t) � �(t

0

)]� �

R

1

t

�d'(s)[�(s) � �(t

0

)]�;

0 � t � t

0

;

'

1

(1)� +

R

t

1

�d'(s)[�(s) � �(t)]�;

t

0

< t � 1; � 2 X:

Calculating '

1

(1)� from (3:10) and substituting in the upper right-hand

side, we easily get (3:4).

The su�ciency. Let (3.4) and (3.6) be ful�lled. It is not di�cult t

0

verify that the operator de�ned by the equality

Tx =

1

Z

0

�d'(t)

t

Z

t

0

�d�(s)x(s) �

1

Z

0

�d'

1

(t)x(t); for all x 2 NCN(J ; X)

is a linear bounded operator, T : NCN(J ; X) 7�! Y . Let us calculate

the value of the operator T on the functions of the kind x(t) = �

[0;� ]

(t)�,

t 2 J , � 2 X and x(t) = �

[�;1]

(t)�, t 2 J , � 2 X where � is a point from

J . First calculate Tx. To this end, we will need the value of the integral

R

t

t

0

�d�(s)x(s). For 0 � � � t

0

, we have

t

Z

t

0

�d�(s)x(s) =

(

[�(�) � �(t)]�; 0 � t � �;

0; � < t � 1; � 2 X:
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The case where � > t

0

yields

t

Z

t

0

�d�(s)x(s) =

(

[�(t) � �(t

0

)]�; 0 � t � �;

[�(�) � �(t

0

)]�; � < t � 1; � 2 X:

Taking into consideration the above obtained expression, for 0 � � � t

0

we

get

Tx =

1

Z

0

�d'(t)�

[0;� ]

(t)[�(t) � �(�)]� � ['

1

(�) � '

1

(0)]� = 0:

For t

0

< � � 1 we have

Tx =

1

Z

0

�d'(t)[�

[0;� ]

(t)[�(t) � �(t

0

)]� + �

[�;1]

(t)[�(�) � �(t

0

)]�]�

�['

1

(�) � '

1

(0)]� =

�

Z

0

�d'(t)[�(t) � �(t

0

)]� +

1

Z

�

�d'(t)[�(�) � �(t

0

)]� +

+'

1

(0)� � '

1

(1)� +

1

Z

�

�d'(t)[�(t) � �(�)]� =

=

1

Z

0

�d'(t)[�(t) � �(t

0

)]� + '

1

(0)� � '

1

(1)� = 0:

Using (3.7) and (3.8) and acting analogously as when calculating Tx, we

easily get that Tx = 0.

Consequently, since any step-function is represented as a linear combi-

nation of the above considered functions x, x and also since step-functions

are dense everywhere in NCN(J ; X), from the linearity and boundedness

of the operator T it follows that it is identically equal to zero. �

From Theorems 3.5 and 3.6 we have the following

Corollary 3.7. Let X, X

1

, X

2

, Y, Y

1

, Y

2

be B-spaces, where (X

1

; X

2

;Y

2

)

and (Y

1

;Y

2

;Y) are bilinear triples. Further, let ' 2 BV (J ;Y

1

), � 2

BV (J ; X

1

), A 2 NCN(J ; B(X;X

2

)) and let the function '

1

be de�ned

by the equality

'

1

(t)� =

8

>

>

>

<

>

>

>

:

'

1

(0)� +

R

t

0

�d'(s)

R

s

t

�d�(�)A(�)�;

0 � t � t

0

;

'

1

(1)� +

R

t

1

�d'(s)

R

s

t

�d�(�)A(�)�;

t

0

< t � 1; � 2 X;

(3.11)

where t

0

is a point from J . Then the following statements are valid:
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(a) '

1

2 BV (J ; B(X;Y )), v('

1

;J ) � 2 � v(';J ) � v(�;J ) � jAj

NCN

;

(b) for the equality

1

Z

0

�d'(t)

t

Z

t

0

�d�(s)A(s)x(s) =

1

Z

0

�d'

1

(t)x(t); for all x 2 NCN(J ; X);

to be ful�lled, it is necessary and su�cient that the function '

1

be of the

form (3:11) and satisfy the relation

['

1

(0)� '

1

(1)]� = �

1

Z

0

�d'(t)

t

Z

t

0

�d�(s)(s)�; for all � 2 X:

The theorem below deals with the formula of integration by parts.

Theorem 3.8. Let X;Y; Z be a bilinear triple, � 2 BV (J ; X) and � 2

BV (J ; Y ). Then the following formula of integration by parts is valid:

1

Z

0

��(t) � d�(t) +

1

Z

0

�d�(t) � �(t) = �(1) � �(1)� �(0) � �(0) +

+

X

0���1

[�

�

(�) � �

�

(�) � �

�

�

(�)�

�

�

(�)]: (3.12)

Proof. Consider the operator

T : BV (J ; X)! Z

de�ned by

T� =

1

Z

0

��(t) � d�(t) +

1

Z

0

�d�(t) � �(t)� �(0) � �(0) + �(1) � �(1)�

�

X

0���1

[�

�

(�) � �

�

(�) � �

�

�

(�) � �

�

�

(�)]; for all � 2 BV (J ; X):

Obviously, T is a linear operator. Let us show that this operator is bounded.

We have

jT�j � j�j

NCN

� v(�;J ) + v(�;J ) � j�j

NCN

+ j�(0)j � j�(0)j+

+j�(1)j � j�(1)j+

X

0���1

[j�

�

(�)j � j�j

�

(�)j + j�

�

�

j � j�

�

�

(�)j �

� (j�(0)j+ v(�;J )) � v(�;J ) + (j�(0)j+ v(�;J )) � j�j

NCN

+

+(�(0) + v(�;J ))j�(0)j+ (j�(0)j + v(�;J ) � j�(1)j+ v(�;J )�

�

X

0���1

[j�

�

(�)j + j�

�

�

(�)] � j�j

BV

� (j�(0)j+ j�(1)j+ 2j�j

BV

+ j�j

NCN

):
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Consequently, T is a bounded operator.

Let

�

1

(t) = �

[0;� ]

(t)�; for t 2 J ; � 2 X;

�

2

(t) = �

[�;1]

(t)�; for t 2 J ; � 2 X;

where � is a point from J . We can easily see that T�

1

= 0 and T�

2

= 0.

Since any step-function is a linear combination of functions of the above in-

dicated types, the operator T vanishes on these functions. Let us choose the

sequence f�

n

g of step-functions from BV (J ; X) such that j�

n

��j

NCN

! 0

as n ! 1 and v(�

n

;J ) � v(�;J ), for all n = 1; 2; : : : . Then, apply-

ing Helly's theorem on the passage to limit under the integral sign [4] and

taking into consideration the de�nition of the integral, we readily get that

T�

n

! T� as n!1. Hence T� = 0 for all � 2 BV (J ; X). �

Corollary 3.9. Let (X;Y; Z) be a bilinear triple, � 2 BV (J ; X) and � 2

BV (J ; Y ). Then for any a and b, 0 � a < b � 1, the formula

1

Z

0

��(t) � d�(t) +

b

Z

a

�d�(t) � �(t) = �(b) � �(b)� �(a) � �(a) + �

�

(a)�

�

(a)�

��

�

(b)�

�

(b) +

X

0���b

[�

�

(�) � �

�

(�) � �

�

�

(�) � �

�

�

(�)] for all � 2 BV (J ; X)

is valid.

Consider some results from [4] we will need in the sequel.

Theorem 3.10. Every bounded linear functional x

�

2 CN

�

(J ; X) is rep-

resentable uniquely as

x

�

x =

1

Z

0

� d�(t) � x(t) for all x 2 CN(J ; X); (3.13)

where � 2 BV

0

(J ;X

�

). Formula (3:13) speci�es an isometric isomorphism

between the spaces CN

�

(J ; X) and BV

0

(J ;X

�

), jx

�

j = j�j

BV

.

Let X be a BK-space with the cone of positive elements X

+

. Then

we can see that CN(J ; X) is also a BK-space with the cone of positive

elements CN

+

(J ; X) = CN(J ; X

+

).

De�nition 3.5. The function � : J ! X is said to be nonincreasing (non-

decreasing) if for all t and s, 0 � t < s � 1, �(t) and �(s) are congruent

and the inequality �(t) � �(s) (respectively, �(t) � �(s)) holds.

Let x 2 CN(J ; X), x � 0. Then by Corollary 3.3, the set ft 2 J jx(t)�

0 ^ x(t+)� 0g is open in J .
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Lemma 3.11. Let x 2 CN(J ; X), x � 0, and let � 2 BV (J ;X

�

) be a

nonincreasing function. Then in order that

1

Z

0

�d�(t)x(t) = 0;

it is necessary that the following conditions be ful�lled:

(a) for any t 2 J the equalities

�

�

(t)x(t+) = 0; �

�

�

(t)x(t) = 0

hold;

(b) if (a; b) � J is a segment such that for all t 2 (a; b) x(t) and x(t+)

belong to the interior of the cone X

+

, then � is a constant on (a; b).

If X = R

1

, then conditions (a) and (b) are su�cient as well.

x

4. Integral Equations with Measure.

Let J = [0; 1] and let X , X

1

be B-spaces, where X

1

is a Banach algebra

with unity id; let (X

1

; X;X) be a bilinear triple, � 2 CN(J ; X

1

) be a

function of bounded variation and let w 2 CN(J ; X) be some function.

Next, let [a; b] � J and t

0

2 [a; b]. Consider the equation

x(t) �

t

Z

t

0

d�(s)x(s) = w(t); t 2 [a; b]; (4.1)

where x is an unknown function. If there exists a function x : [a; b] ! X

satisfying the equation (4.1), then we call it a solution of this equation. The

equation with measure (4.1) will be called the Volterra-Stieltjes equation.

Suppose that the solution of (4.1) does exist. Then by Lemma 3.4, the

equality

x

�

(t)� �

�

(t)x(t+) = w

�

(t) for t 2 [a; b) (4.2)

is valid. It follows from (4.1) that x(t

0

) = w(t

0

), and from (4.2) we have

(

[id��

�

(t)]x(t+) = x(t) + w

�

(t);

x(t) = [id��

�

(t)]x(t+) � w

�

(t) for t 2 [a; b):

(4.3)

Assume id��

�

(t

0

) to be an invertible element of the algebra X

1

. Then

the �rst equality of the system (4.3) implies that

x(t

0

+) = [id��

�

(t

0

)]

�1

w(t

0

+): (4.4)
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Introduce the following functions:

x

2

(t) =

(

x(t

0

+) for t = t

0

;

x(t) for t 2 (t

0

; b];

(4.5)

�

2

(t) =

(

�(t

0

+) for t = t

0

;

�(t) for t 2 (t

0

; b];

(4.6)

e

�(t) = �(t) � �

2

(t), ex(t) = x(t) � x

2

(t) for t 2 [t

0

; b], and consider the

equation (4.1) on the interval [t

0

; b]. We have x

2

(t) +

e

t �

R

t

t

0

�d[�

2

(s) +

e

�(s)](x

2

(t) + ex(t)) = w(t), for t 2 [t

0

; b], which immediately yields

x

2

(t)�

t

Z

t

0

�d�

2

(s)x

2

(s) = w

2

(t) for t 2 [t

0

; b]; (4.7)

where

w

2

(t) =

(

w(t

0

) + x

�

(t

0

) for t = t

0

;

w(t) + �

�

(t

0

)x(t

0

+) for t 2 (t

0

; b]:

Transforming the right-hand side of this equality and denoting the function

w

1

by w, we obtain

w

2

(t

0

) = w(t

0

) + x

�

(t

0

) = w(t

0

) + x(t

0

)�

�x(t

0

) = [id��

�

(t

0

)]

�1

w(t

0

+):

w

2

(t) = w(t) + �

�

(t

0

)x(t

0

+) = w(t) + x

�

(t

0

)� w

�

(t

0

) =

= w(t) + x(t

0

+)� x(t

0

)� w(t

0

+) + w(t

0

) =

= w(t) � w(t

0

+) + [id��

�

(t

0

)]

�1

w(t

0

+) =

= w(t) � [id�[id��

�

(t

0

)]

�1

]w(t

0

+) for t 2 (t

0

; b]

which implies that

w

2

(t

0

+) = w(t

0

+)� [id�[id��

�

(t

0

)]

�1

]w(t

0

+) = w

2

(t

0

):

Consequently, the function w

2

is continuous from the right at the point

t

0

and expressed by the equality

w

2

(t) = w(t)� [id�[id��

�

(t

0

)]

�1

]w(t

0

+) for t 2 [t

0

; b]: (4.8)

Let T

2

and L

2

be operators de�ned on the space CN([t

0

; b]; X) by the



31

equalities

(T

2

x

2

)(t) = x

2

(t)�

t

Z

t

0

�d�

2

(s)x

2

(s) for all

t 2 [t

0

; b]; x

2

2 CN([t

0

; b]; X);

(L

2

x

2

)(t) =

t

Z

t

0

�d�

2

(s)x

2

(s) for all t 2 [t

0

; b]; x

2

2 CN([t

0

; b]; X):

Since �

2

2 CN(J ; X

1

), by Lemma 3.4 the operators T

2

and L

2

take the

values from the space CN([t

0

; b]; X). Obviously, T

2

and L

2

are linear oper-

ators, and

jL

2

x

2

j

CN

� v(�

2

; [t

0

; b])jx

2

j

CN

;

jT

2

j � j id�L

2

j:

Suppose v(�

2

; [t

0

; b]) < 1. Then the operator T

2

= id�L

2

is invertible [15]

and hence for any w

2

2 CN([t

0

; b]; X), the equation (4.7) has the unique

solution x

2

= T

�1

2

w

2

.

Reasoning analogously, we get that if v(�

1

; [a; t

0

]) < 1, where

�

1

(t) =

(

�(a+) for t = a;

�(t) for t 2 (a; t

0

];

(4.9)

then the operator T

1

de�ned by the equality

(T

1

x

1

)(t) = x

1

(t)�

t

Z

t

0

�d�

1

(s)x

1

(s) for all t 2 [a; t

0

]

maps the space CN([a; t

0

]; X) into itself and is invertible. Thus, if w

1

is the

function de�ned by the equality

w

1

(t) =

(

w(a+) for t = a;

w(t) for t 2 (a; t

0

];

(4.10)

then the equation

x

1

(t)�

t

Z

t

0

�d�

1

(s)x

1

(s) = w

1

(t) for t 2 [a; t

0

]; (4.11)

has the unique solution x

1

= T

�1

1

w

1

.
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As is seen, if x

1

and x

2

are solutions of the equations (4.11) and (4.7),

respectively, then the function x de�ned by

x(t) =

8

>

<

>

:

[id��

�

(a)]x

1

(a)� w

�

(a) for t = a;

x

1

(t) for t 2 (a; t

0

];

x

2

(t) for t 2 (t

0

; b];

is a the solution of the equation (4.1).

Formulate the obtained result in the form of

Lemma 4.1. Let J = [0; 1], X be a B-space, X

1

be a Banach algebra,

let (X

1

; X;X) be a bilinear triple and � be a function of bounded variation

from the space CN(J ; X

1

).

Next, let [a; b] � J and t

0

2 [a; b]. Then the following statements are

valid:

(a) if v(�; [a; t

0

]) < 1 + j�

�

(a)j, then the equation (4:11), where �

1

is

de�ned by the equality (4:9), has a unique solution x

1

2 CN([a; t

0

]; X) for

any w

1

2 CN([a; t

0

]; X);

(b) if v(�; [t

0

; b]) < 1+�

�

(t

0

), then the equation (4:7), where �

2

is de�ned

by the equality (4:6), has the unique solution x

2

2 CN([t

0

; b]; X) for any

w

2

2 CN([t

0

; b]; X);

(c) if the conditions of statements (a) and (b) are ful�lled and if id��

�

(t

0

)

is an invertible element of the algebra X, then the equation (4:1) has the

unique, continuous from the left, solution x : [a; b] 7�! X for any w 2

CN(J ; X) and it is expressed by the solutions of the equations (4:7) and

(4:11), respectively, as follows

x(t) =

8

>

<

>

:

[id��

�

(a)]x

1

(a)� w

�

(a) for t = a;

x

1

(t) for t 2 (a; t

0

];

x

2

(t) for t 2 (t

0

; b];

where w

1

, w

2

are de�ned by the equalities (4:10), (4:8).

Let us cite the following auxiliary lemma which can be proved without

any di�culties.

Lemma 4.2. Let � 2 BV (J ; X). Then for any " > 0 there exists a parti-

tion of the segment J : 0 = t

0

< t

1

< � � � < t

n

= 1 such that the inequalities

v(�; [t

i�1

; t

i

]) < "+ j�

�

(t

i�1

)j+ j�

�

�

(t

i

)j; i = 1; 2; : : : ; n;

hold.

Theorem 4.3. Let J = [0; 1], X be a B-space, X

1

be a Banach algebra

and let (X

1

; X;X) be a bilinear triple. Next, let t

0

2 J be some point

and � be a function of bounded variation from the space CN(J ; X

1

) such

that for any t 2 [t

0

; 1] id��

�

(t) is an invertible element of the algebra X

1

.
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Then for any w 2 CN(J ; X), there exists a unique function x 2 CN(J ; X)

satisfying the Volterra-Stieltjes equation

x(t)�

t

Z

t

0

�d�(s)x(s) = w(t) for all t 2 J : (4.12)

Proof. By Lemma 4.2, there exists a partition of the segment J : 0 = �

0

m

<

� � � < �

0

1

< t

0

< �

1

< � � � < t

n

= 1 such that the following inequalities hold:

v(�; [�

i�1

; �

i

]) < 1 + j�

�

(�

i�1

)j for i = 1; 2; : : : ; n;

v(�; [�

0

j

; �

0

j�1

]) < 1 + j�

�

(�

0

j

)j for j = 1; 2; : : : ;m;

where �

0

= �

0

0

= t

0

. By Lemma 4.1, there exists a solution of the equation

(4.12) on the interval [�

0

1

; �

1

]. Denote this solution on the interval [�

0

; �

1

]

by x

1

, while on the interval [�

0

1

; �

0

] by x

0

1

. Construct subsequently the

solution of (4.12). First we construct the solution on the interval [t

0

; 1]. Let

t 2 [�

1

; �

2

]. We have

x(t)�

�

1

Z

t

0

�d�(s)x(s) �

t

Z

�

1

�d�(s)x(s) = w(t); for t 2 [�

1

; �

2

];

�

1

Z

t

0

�d�(s)x(s) =

�

1

Z

t

0

�d�(s)x

1

(s) = x

1

(�

1

)� w(�

1

):

Consequently, the equation (4.12) on the interval [�

1

; �

2

] takes the form

x(t) �

t

Z

�

1

�d�(s)x(s) = w(t)� w(�

1

) + x

1

(�

1

) for t 2 [�

1

; �

2

]:

By Lemma 4.1, there exists a solution of this equation. Denote it by x

2

.

Continuing in such a manner, we obtain that on the interval [�

n�1

; �

n

] there

exists a solution x

n

of the equation

x(t) �

t

Z

�

n�1

�d�(s)x(s) = w(t)� w(�

n�1

) + x

n�1

(�

n�1

) for t 2 [�

n�1

; �

n

]:

Thus the function x(t) =

P

n

i=1

�

(�

i�1

;�

i

]

(t)x

i

(t), t 2 [t

0

; 1] is a solution of

the equation (4.12) on the interval [t

0

; 1].

Analogously we can construct a solution of the equation (4.12) on the

interval [0; t

0

]. If x

0

i

, i = 2; 3; : : : ;m, are solutions of the equation

x(t)�

t

Z

�

0

i�1

�d�(s)x(s) = w(t)� w(�

0

i

)� x

i�1

(�

0

i�1

) for t 2 [�

0

i

; �

0

i�1

];
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then the function x(t) =

P

m

i=1

�

(�

i

;�

i�1

]

(t)x

0

i

(t) for t 2 (0; t

0

], x(0) = x

m

(0)

is a solution of the equation (4.12) on the interval [0; t

0

]. Consequently, the

function x(t) = �

[0;t

0

]

(t)x(t) + �

(t

0

;1]

(t)x(t) for t 2 J is a solution of the

equation (4.12) on the whole interval J . �

Corollary 4.4. Let J = [0; 1], let t

0

2 J be a point and (X

1

; X

2

; X) be a

bilinear triple. Next, let A 2 CN (J ;B(X ;X

2

)) and let � be a function of

bounded variation from the space CN(J ; X

1

) such that for any t 2 [t

0

; 1)

the operator id��

�

(t)A(t+) is invertible. Then for any w 2 CN(J ; X)

there exists a unique function x 2 CN(J ; X) satisfying the Volterra-Stieltjes

equation

x(t)�

t

Z

t

0

�d�(s)A(s)x(s) = w(t) for all t 2 J :

Now we pass to the consideration of the nonlinear equation. Let J = [a; b]

be a segment, t

0

2 [a; b], and let � be a function of bounded variation from

the space CN(J;X

1

). Denote by V (�; t

0

; �) the function

v(�; t

0

; t) =

(

v(�; [t

0

; t

0

]) for a � t � t

0

;

v(�; [t

0

; t]) for t

0

< t � b:

Next, let D � X be a closed set and g : J � D 7�! X

2

be a mapping

satisfying the following conditions:

(a) for every � 2 D, the function t! g(t; �), t 2 J , belongs to the space

CN(J;X

2

);

(b) there exist nonnegative functions k and p from the space CN(J;R

1

)

such that the following inequalities are ful�lled:

jg(t; �)j � k(t) for all t 2 J; � 2 D;

jg(t; �

1

)� g(t; �

2

)j � p(t)j�

1

� �

2

j for all t 2 J; �

1

; �

2

2 D:

Then, as is seen, for every x 2 CN(J;D) the function t ! g(t; x(t)),

t 2 J , belongs to the set CN(J;X

2

).

Consider the equation

x(t)�

t

Z

t

0

�d�(s)g(s; x(s)) = w(t) for t 2 J; (4.13)

where w is a function from the set CN(J;D). By Lemma 3.4, we have

x(t

0

+)� x(t

0

)� �

�

(t

0

)g(t

0

+; x(t

0

+)) = w(t

0

+)� w(t

0

);

whence

x(t

0

+)� �

�

(t

0

)g(t

0

+; x(t

0

+)) = w(t

0

+): (4.14)
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This implies that for a solution of the equation (4.13) to exist on the interval

[t

0

; b], it is necessary that the equation

� � �

�

(t

0

)g(t

0

+; �) = w(t

0

+)

have a solution �

0

2 D.

Theorem 4.5. Let J = [a; b], let t

0

2 J be a point, (X

1

; X

2

; X) be a

bilinear triple and let w and � be functions of bounded variation from the

spaces CN(J;X) and CN(J;X

1

), respectively. Next, let D = B(w(t

0

); d

1

)[

B(w(t

0

+); d

2

), let k, p be nonnegative functions from the space CN(J;R

1

)

and let g : J�D 7�! X

2

be a mapping satisfying the conditions (a) and (b).

Then for a unique solution x 2 CN(J;D) of equation (4:13) to exist, it is

su�cient that the following conditions be ful�lled:

(c) sup

t2[a;t

0

]

jw(t) � w(t

0

)j+

a

Z

t

0

�dv(�; t

0

; t)k(t) � d

1

;

sup

t2[t

0

;b]

jw(t) � w(t

0

+)j+

b

Z

t

0

�dv(�; t

0

; t)k(t) � d

2

;

(d)

a

Z

t

0

�dV (�; t

0

; t)p(t) < 1;

b

Z

t

0

�dv(�; t

0

; t)p(t) < 1:

Proof. Consider the operator L : B(w(t

0

+); d

2

) 7�! X de�ned by the equal-

ity

L(�) = w(t

0

+)� �

�

(t

0

)g(t

0

+; �); � 2 B(w(t

0

+); d

2

):

From the second inequality of condition (c) and also from the condition (a)

it follows that jL(�) � w(t

0

+)j � d

2

. Hence the operator L maps a closed

sphere B(w(t

0

+); d

2

) into itself. As is seen from the condition (b),

jL(�

1

)� L(�

2

)j � j�

�

(t

0

)jp(t

0

+)j�

1

� �

2

j for all �

1

; �

2

2 B(w(t

0

+); d

2

);

while from the second inequality of the condition (d) it follows j�

�

(t

0

)jp(t

0

+)

< 1. Consequently, B is a contraction operator [15]. Then it has a unique

�xed point �

0

2 B(w(t

0

+); d

2

), i.e.,

�

0

= w(t

0

+) + �

�

(t

0

)g(t

0

+; �

0

): (4.15)

Since the solution of the equation (4.13) satis�es the equality (4.14), we

have x(t

0

+) = �

0

:.

From the �rst inequality of the condition (c) and from the condition (a),

it follows that the operator T

1

de�ned by

(T

1

x

1

)(t) = w(t) +

t

Z

t

0

�d�(s)g(s; x(s)); t 2 [a; t

0

];
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maps the closed set CN([a; t

0

]; B(w(t

0

); d

1

)) into itself.

The �rst inequality of the condition (d) and the condition (b) imply

that T

1

is a contraction operator. Then it has a unique �xed point x

1

2

CN([a; t

0

], B(w(t

0

); d

1

)).

Let w and � be functions de�ned by the relations

�(t) =

(

�(t

0

+) for t = t

0

;

�(t) for t

0

< t � b;

w(t) =

(

�

0

for t = t

0

;

w(t) + �

�

(t

0

)g(t

0

+; �

0

) for t

0

< t � b:

It follows from (4.15) that w is right-continuous at the point t

0

. Consider

the operator T

2

de�ned by

(T

2

x

2

)(t) = w(t) +

t

Z

t

0

�d�(s)g(s; x

2

(s)); t 2 [t

0

; b]:

We have

j(T

2

x

2

)(t

0

)� w(t

0

+)j � j�

�

(t

0

)jk(t

0

+) � d

2

j(T

2

x

2

)(t)� w(t

0

+)j � jw(t)� w(t

0

+) +

+�

�

(t

0

)g(t

0

+; �

0

) +

t

Z

t

0

�d�(s)g(s; x

2

(s))j �

� sup

t2(t

0

;b]

jw(t) � w(t

0

+)j+

t

Z

t

0

�dv(�; t

0

; s)k(s) � d

2

:

Thus the operator T

2

maps the closed set CN([t

0

; b]; B(w(t

0

+); d

2

)) into it-

self. From the second inequality of the condition (d) and from the condition

(b) it follows that T

2

is a contraction operator. Then it has a unique �xed

point x

2

in the set CN([t

0

; b]; B(w(t

0

+); d

2

)).

It can be easily veri�ed that the function x de�ned by the equality

x(t) =

(

x

1

(t) for t 2 [a; t

0

];

x

2

(t) for t 2 (t

0

; b];

is a solution of the equation (4.13) on the whole interval J . �

x

5. Optimal Problem with One-Sided Mixed Restrictions.

Suppose we are given the following objects: J = [0; 1], t

0

2 J is a point;

X , X

1

, X

2

, U , Q, K

1

, K

2

are Banach spaces; K and Y are BK-spaces,

(X

1

; X

2

; X) and (K

1

;K

2

;K) are bilinear triples; 
 and U are convex open

sets in the spaces X and U , respectively; f , g, h, q are functions from
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the spaces C

1

(
 � U;K

2

), C

1

(
 � U;X

2

), C

1

(
 � U; Y ), C

1

(
 � 
; Q)

respectively; � 2 BV (J ;K

1

); �; r are functions of bounded variation from

the spaces CN(J ; X

1

), CN(J ; X) respectively, and r(t

0

) = 0. In what

follows, the space X is said to be the phase space and v is said to be the

space of controlling parameters. Functions from the set CN(J ; U) are called

admissible controls.

The problem is formulated as follows: among all functions x 2 CN(J ;
),

initial values x

0

2 
 and admissible controls u 2 CN(J ; U) satisfying the

restrictions

x(t) = x

0

+ r(t) +

t

Z

t

0

�d�(s)g(x(s); u(s)); (5.1)

h(x(t); u(t)) � 0; t 2 J ; (5.2)

q(x

0

; x(0); x(1)) = 0; (5.3)

�nd a triple (u; x; x

0

) which minimizes the integral

1

Z

0

�d�(s)f(x(s); u(s)) 7�! inf : (5.4)

If such a triple does exist, we will call it an optimal process.

To obtain necessary conditions of optimality for the problem (5.1){(5.4),

we will use the method of joint covering one of modi�cations of which has

been mentioned in x2. Following this scheme, we assume that

J = CN(J ; U)� CN(J ; X)�X �K � CN(J ; Y );

M = CN(J ; U)� CN(J ;
)�
�K

+

� CN(J ; Y

+

); (5.5)

W = K � CN(J ; X)� CN(J ; Y )�Q;

and de�ne the mapping p : M ! W in a way indicated below: if z =

(u; x; x

0

; k; y), w = (w

1

; w

2

; w

3

; w

4

), p = (p

1

; p

2

; p

3

; p

4

), then let w

1

= p

1

(z),

w

2

= p

2

(z), w

3

= p

3

(z), w

4

= p

4

(z), where

p

1

(z) =

1

Z

0

�d�(t) � f(x(t); u(t)) + k;

p

2

(z; t) = x(t) � x

0

� r(t) �

t

Z

t

0

d�(s)g(x(s); u(s)); t 2 J ;

p

3

(z; t) = h(x(t); u(t)) + y(t); t 2 J ;

p

4

(z) = q(x

0

; x(0); x(1)):
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According to Lemma 2.1, if (u; x; x

0

) is a minimum point of the problem

(5.1){(5.4), then z

0

= (u; x; x

0

; 0; y) 2 M , where y(t) = �h(x(t); u(t)),

t 2 J , is a critical point of the mapping p.

For the di�erential T = Dp(z

0

) = (T

1

; T

2

; T

3

; T

4

) on the set M , it is not

di�cult to obtain the following expressions

T

1

�z =

1

Z

0

�d�(t)

�

f

x

(x(t); u(t))�x(t) + f

u

(x(t); u(t))�u(t)

�

+ �

k

;

T

2

(�z; t) = �x(t)� �x

0

�

t

Z

t

0

�d�(s)

�

g

x

(x(s); u(s))�x(s) +

+g

u

(x(s); u(s))�u(s)

�

; t 2 J ;

T

3

(�z; t) = h

x

(x(t); u(t))�x(t) + h

u

(x(t); u(t))�u(t) + �y(t); t 2 J ;

T

4

�z = D

1

q(x

0

; x(0); x(1))�x

0

+D

2

q(x

0

; x(0); x(1))�x(0) +

D

3

q(x

0

; x(0); x(1))�x(1):

(5.6)

Determine now the conditions of nondegeneracy for the problem (5.1){

(5.4), i.e., we have to clarify under which conditions the cone T (K), where

K = cone(M � z

0

), contains inner points. Since the set M contains inner

points, the linear manifold sp(M � z

0

) spanned onto M � z

0

coincides with

the whole space J . Further, if the cone T (K) contains inner points, then

evidently, TJ = W , and vice versa. Hence we have to determine under

which conditions the image under the mapping T of the space J coincides

with the whole space W .

Let �w = (�w

1

; �w

2

; �w

3

; �w

4

) 2 W be an arbitrary point. Then it

is evident that for any functions �u 2 CN(J ; U), �x 2 CN(J ; X) and

�x

0

2 X there exist �k 2 K and �y 2 CN(J ; Y ) such that

T

1

(�u; �x; �x

0

; �k; �y) = �w

1

;

T

3

((�u; �x; �x

0

; �k; �y); t) = �w

3

(t); t 2 J :

It follows from the above-said that in order that TJ =W , it is necessary

and su�cient that the following conditions be ful�lled:

(a) for any function �w

2

2 CN(J ; X) and for any vector w

4

2 Q there

exists �z 2 J such that

(

T

2

(�z; t) = w

2

(t); t 2 J ;

T

4

�z = w

4

:

(5.7)

Consider the equation

�x(t) = �w

2

(t) +

t

Z

t

0

d�(s)g

x

(x(s); u(s))�x(s); t 2 J :
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Owing to Corollary 4.4, for the solution of this equation to exist for any

�w

2

, it is su�cient that the following condition be ful�lled:

(b) for any t, t

0

� t < 1 the operator id � �

�

(t)g

x

(x(t+); u(t+)) is

invertible.

Note that if � is continuous on the interval [t

0

; 1], then the condition (b)

is ful�lled automatically. If g

x

is bounded, i.e., there exists M > 0 such

that jg

x

(x; u)j < M , then in order that condition (b) to be ful�lled, it is

su�cient that j�

�

(t)j < 1=M , t

0

� t < 1.

From the above arguments it follows that the question on the existence

of a solution of the �rst equation of the system (5.7) does not depend on the

choice of the vector �x

0

2 X and of the function �u 2 CN(J ; U). Denote

by N(T

2

) the set of all �z 2 J for which T

2

(�z; t) = 0, t 2 J . Then it is

easy to see that for the condition (a) to be ful�lled, it is su�cient that the

condition

(c) T

4

(N(T

2

)) = Q

be also ful�lled.

Consequently, for the cone T (K) to contain inner points, it is su�cient

that the conditions (b) and (c) be ful�lled. The conditions (b) and (c) are

those of nondegeneracy of the mapping T .

Assume z

0

2 M to be a critical point of the mapping p and the condi-

tion of nondegeneracy to be ful�lled. Then by Theorem 2.9, there exists a

nonzero, linear, continuous functional w

�

2W

�

such that for all �z 2 J for

which z

0

+ �z 2M , the inequality

w

�

T�z � 0: (5.8)

is ful�lled.

The equalities (5.5) imply W

�

= K

�

� CN

�

(J ; X) � CN

�

(J ; Y ) �

Q

�

. Hence we have to deal with the spaces CN

�

(J ; X) and CN

�

(J ; Y ).

By Theorem 3.12, these spaces are isometrically isomorphic to the spaces

BV

0

(J ; X

�

) and BV

0

(J ; y

�

), respectively.

Let us now pass to the deduction of corollaries from the relations (5.8).

Let

w

�

= (�; '; �;  ) 2 W

�

= K� BV

0

(J ; X

�

)�BV

0

(J ; Y

�

)�Q

�

:

Using (5.6), we obtain that for all �z 2 J for which z

0

+ �z 2 M , the

following inequality is valid:

�

1

Z

0

�d�(t)f

x

�x(t) + �

1

Z

0

�d�(t)f

u

�u(t) + ��k +

+

1

Z

0

�d'(t)�x(t) + '(0)�x

0

� '(1)�x

0

�
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�

1

Z

0

�d'(t)

t

Z

t

0

�d�(s)g

x

�x(s)�

1

Z

0

�d'(t)

t

Z

t

0

�d�(s)g

u

�u(s) +

+

1

Z

0

�d�(t)h

x

�x(t) +

1

Z

0

�d�(t)h

u

�u(t) +

1

Z

0

�d�(t)�y(t) +

+ D

1

q�x

0

+  D

2

q�x(0) +  D

3

q�x(1) � 0: (5.9)

Taking into account the fact that increments �u, �x, �x

0

, �k, �y are

independent and assuming that one of them is di�erent from zero, while

the remaining ones are equal to zero, we obtain from (5.9) �ve independent

inequalities:

��k � 0 for all �k 2 K; �k � 0; (5.10)

8

>

>

>

<

>

>

>

:

�

R

1

0

�d�(t)f

x

�x(t) +

R

1

0

�d'(t)�x(t)�

�

R

1

0

�d'(t)

R

t

t

0

�d�(s)g

x

�x(s) +

R

1

0

�d�(t)h

x

�x(t)+

+ D

2

q�x(0) +  D

3

q�x(1) � 0

for all �x 2 CN(J ; X) for which x+ �x 2 CN(J ;
);

(5.11)

(

'(0)�x

0

� '(1)�x

0

+  D

1

q�x

0

� 0

for all �x

0

2 X for which x

0

+ �x

0

2 
;

(5.12)

8

>

<

>

:

�

R

1

0

�d�(t)f

u

�u(t)�

R

1

0

�d'(t)

R

t

t

0

�d�(s)g

u

�u(s)+

+

R

1

0

�d�(t)h

u

�u(t) � 0 for any �u 2 CN(J ; U)

for which u+ �u 2 CN(J ; U);

(5.13)

1

Z

0

�d�(t)�y(t) � 0 for all �y 2 CN(J ; Y ) for which

� h(x(t); u(t)) + �y(t) � 0 for all t 2 J : (5.14)

The omitted arguments of the functions in the above obtained inequalities

are the same as in (5.6). From the inequality (5.10) it immediately follows

that

� � 0: (5.15)

Transform the inequality (5.11). Consider the functions �

1

, '

1

, �

1

and


 which are de�ned by the following relations:

�

1

(t)� = �

1

(�

0

)� + �

t

Z

�

0

�d�(s)f

x

�; t 2 J ; � 2 X ;
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�

1

(t)� = �

1

(�

0

)� +

t

Z

�

0

�d�(s)h

x

�; t 2 J ; � 2 X ;


(t) =

8

>

<

>

:

�D

3

q

�

 for t = 0;

D

2

q

�

 �D

3

q

�

 for t 2 (0; 1);

D

2

q

�

 for t = 1;

'

1

(t)� =

(

'

1

(0)� +

R

t

0

�d'(s)

R

s

t

�d�(�)g

x

� for t 2 [0; t

0

]; � 2 X;

'

1

(1)� +

R

t

1

�d'(s)

R

s

t

�d�(�)g

x

� for t 2 [t

0

; 1]; � 2 X;

['

1

(0)� '

1

(1)]� = �

1

Z

0

�d'(s)

s

Z

t

0

�d�(�)g

x

�; � 2 X:

Then, applying Theorems 3.5 and 3.6, we get from inequality (5.11) that

R

1

0

�d�(t)�x(t) � 0 for all �x from arbitrarily small neighborhood of zero of

the space CN(J ; X), where �(t) = �

1

(t)+'(t)�'

1

(t)+�

1

(t)+
(t) for all

t 2 J . But then

R

1

0

�d�(t)�x(t) = 0 for all �x 2 CN(J ; X). This implies

that �(t) = const. Consequently, �(t) � �(s) = 0 for all t and s from the

segment J . We have

�

t

Z

0

�d�(s)f

x

�+'(t)� � '(0)� �

t

Z

0

�d'(s)

s

Z

t

�d�(�)g

x

� +

t

Z

0

�d�(s)h

x

� +

+D

2

q

�

 � = 0 for all t 2 (0; t

0

]; � 2 X ;

�

1

Z

t

�d�(s)f

x

�+'(1)� � '(t)� �

1

Z

t

�d'(s)

s

Z

t

�d�(�)g

x

� +

1

Z

t

�d�(s)h

x

� +

+D

3

q

�

 � = 0 for all t 2 (t

0

; 1); � 2 X ;

�

1

Z

0

�d�(s)f

x

�+'(1)� � '(0)� �

1

Z

0

�d'(s)

s

Z

t

0

�d�(�)g

x

� +

D

2

q

�

 � +D

3

q

�

 � = 0; � 2 X:

(5.16)

To give the system the desired form, we have to transform some terms

from this system. Namely, applying Corollary 3.11, we obtain

t

Z

0

�d'(s)

s

Z

t

�d�(�)g

x

� = �

t

Z

0

�['(s)� '(0)]d�(s)g

x

� + '

l

(t)�



42

for t 2 J , � 2 X , where

8

>

<

>

:

'

l

(t)� =

P

0��<t

�

�

(�)�

�

(�)g

x

(x(�+); u(�+))�

for t 2 (0; 1]; � 2 X;

'

l

(0) = 0:

(5.17)

1

Z

t

�d'(s)

s

Z

t

�d�(�)g

x

� = �

1

Z

t

�['(s)� '(1)]d�(s)g

x

� + '

r

(t)�

for t 2 J , � 2 X , where

8

>

<

>

:

'

r

(t)� =

P

t��<1

'

�

(�)�

�

(�)g

x

(x(�+); u(�+))�

for t 2 [0; 1); � 2 X;

'

r

(1) = 0:

(5.18)

Using the obtained formulas, the system (5.16) takes the form

'(t)� = �D

2

q

�

 � + '(0)� � �

t

Z

0

�d�(s)f

x

� �

�

t

Z

0

�['(s)� '(0)]d�(s)g

x

� �

t

Z

0

�d�(s)h

x

� + '

l

(t)�

for 0 < t � t

0

; � 2 X;

'(t)� = D

3

q

�

 � + '(1)� + �

1

Z

t

�d�(s)f

x

� +

+

1

Z

t

�['(s)� '(1)]d�(s)g

x

� +

1

Z

t

�d�(s)h

x

� � '

r

(t)

for t

0

< t < 1; � 2 X;

['(0)� '(1)]� = D

2

q

�

 � +D

3

q

�

 � + �

1

Z

0

�d�(s)f

x

� +

1

Z

0

�['(s)� '(0)�

�'(1)]d�(s)g

x

� +

1

Z

0

�d�(s)h

x

� � ['

l

(t

0

) + '

r

(t

0

)]�; � 2 X:

(5.19)

We call the above-obtained system the conjugate equation of the problem

(5.1){(5.4).

The inequality (5.12) easily results in ('(0)� '(1) +D

1

q

�

 )�x

0

� 0 for

all �x

0

from arbitrarily small neighborhood of zero of the space X . This
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implies that '(0)� '(1) +D

1

q

�

 = 0. Hence we have

'(0)� '(1) = �D

1

q

�

 : (5.20)

The obtained equality is the condition of transversality for the conjugate

equation (5.19).

Transform now the inequality (5.13). Acting in the same way as in trans-

forming the inequality (5.11), we obtain the following system:

�

t

Z

0

�d�(s)f

u

�+

t

Z

0

�['(s)� '(0)]d�(s)g

u

� +

t

Z

0

�d�(s)h

u

� �

� '

l

(t)� = 0 for all t 2 [0; t

0

]; � 2 U ;

�

1

Z

t

�d�(s)f

u

�+

1

Z

t

�['(s)� '(1)]d�(s)g

u

� +

1

Z

t

�d�(s)h

u

� �

� '

r

(t)� = 0 for all t 2 [t

0

; 1]; � 2 U ;

�

1

Z

0

�d�(s)f

u

�+

1

Z

0

�['(s)� '(0)� '(1)]d�(s)g

u

� +

1

Z

0

�d�(s)h

u

� �

� ['

l

(t

0

) + '

r

(t

0

)]� = 0; � 2 U;

(5.21)

where the functions '

l

and '

r

are de�ned by the equality

8

>

<

>

:

'

l

(t)� =

P

0��<t

'

�

(�)�

�

(�)g

u

(x(�+); u(�+))�;

for t 2 (0; 1]; � 2 U;

'

l

(0) = 0;

(5.22)

8

>

<

>

:

'

r

(t)� =

P

0��<t

'

�

(�)�

�

(�)g

u

(x(�+); u(�+))�

for t 2 [0; 1); � 2 U;

'

r

(1) = 0:

(5.23)

We call the system (5.21) the condition of maximum for the problem (5.1){

(5.4).

Transform now the inequality (5.14). Let �y

1

(t) = �

1

2

h(x(t)); u(t) for all

t 2 J and �y

2

(t) =

1

2

h(x(t); u(t)) for all t 2 J . Obviously, �h(x(t); u(t)) +

�y

i

(t) � 0 for all t 2 J , i = 1; 2. Then from (5.14) we have

1

Z

0

�d�(t)h(x(t); u(t)) = 0: (5.24)

Let 0 � t

1

< t

2

� 1 and �y(t) = �

[t

1

;t

2

]

(t)�, where � 2 Y

+

. Obviously,

�h(x(t); u(t)) + �y(t) � 0. Then from (5.14) we have

[�(t

2

)� �(t

1

)]� � 0 for all � 2 Y

+

:
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Thus

�(t

1

) � �(t

2

) for all t

1

; t

2

; 0 � t

1

< t

2

� 1: (5.25)

If �(�

0

) = 0, where �

0

is a point from J , then (5.25) takes the form

8

>

<

>

:

�

�

is nonincreasing;

�(t) � 0 for all t 2 [0; �

0

];

�(t) � 0 for all t 2 (�

0

; 1]:

(5.26)

Now we formulate the obtained result in the form of

Theorem 5.1. Let for problem (5:1){(5:4) the conditions of nondegeneracy

(b) and (c) be ful�lled, let (u; x; x

0

) be an optimal process and let �

0

2 J be

some point. Then there exist a nonincreasing function of bounded variation

� : J 7�! Y

�

, �(�

0

) = 0, constants � 2 K

�

, � � 0,  2 Q

�

and a function

of bounded variation ' : J 7�! X

�

, '(�

0

) = 0, such that the following con-

ditions are ful�lled: the conjugate equation (5:19); the transversality condi-

tion (5:20); the maximum condition (5:21); the condition of complementing

nonrigidity.

To elucidate the condition of complementing nonrigidity, we can apply

Lemma 3.13.

If in the initial problem the function � is continuous, then in the conjugate

equation the functions '

l

and '

r

are identically equal to zero, and in the

condition of maximum the functions '

l

and '

r

are also identically equal to

zero.

Let in the initial problem K

1

= X

1

= R

1

, K

2

= K, X

2

= X and let

bilinear mappings corresponding to bilinear triples be ordinary multiplica-

tion by a number. Under these assumptions, the conjugate equation and

the conditions of maximum take a more convenient form. Namely,

'(t) =�D

2

q

�

 + '(0)�

t

Z

0

�d�(s)f

�

x

��

t

Z

0

�d�(s)g

�

x

['(s)�

� '(0)]�

t

Z

0

�h

�

x

d�(s) + '

l

(t)� for 0 < t � t

0

;

'(t) =D

3

q

�

 + '(1) +

1

Z

t

�d�(s)f

�

x

�+

1

Z

t

�d�(s)g

�

x

['(s)� '(1)] +

+

1

Z

t

�h

�

x

d�(s) � '

r

(t) for t

0

< t � 1;
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'(0)�'(1) = D

2

q

�

 +D

3

q

�

 +

1

Z

0

�d�(s)f

�

x

�+

+

1

Z

0

�d�(s)g

�

x

['(s)� '(0)� '(1)] +

+

1

Z

0

�h

�

x

d�(s) � '

l

(t

0

)� '

r

(t

0

):

t

Z

0

�d�(s)f

�

u

�+

t

Z

0

�d�(s)g

�

u

['(s)� '(0)] +

t

Z

0

�h

�

u

d�(s)� '

l

(t) = 0

for all t 2 [0; t

0

];

1

Z

t

�d�(s)f

�

u

�+

1

Z

t

�d�(s)g

�

u

['(s)� '(1)] +

1

Z

t

�h

�

u

d�(s)� '

r

(t) = 0

for all t 2 (t

0

; 1];

1

Z

0

�d�(s)f

�

u

�+

1

Z

0

�d�(s)g

�

u

['(s)� '(0)� '(1)] +

1

Z

0

�h

�

u

d�(s) � '

l

(t

0

)� '

r

(t

0

) = 0:

If to the above-said assumptions we add �(t) = �(t) = t for t 2 J ,

t

0

= 0, �

0

= 1 and q independent of �x(0), then from Theorem 5.1 we

directly obtain the necessary optimal conditions given in [4].

Finally it should be noted that if the space Q is �nite-dimensional, then

Theorem 5.1 remains valid without additional condition of nondegeneracy.
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