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THE LAGRANGE PRINCIPLE

OF TAKING RESTRICTIONS

OFF AND ITS APPLICATION

TO LINEAR OPTIMAL CONTROL
PROBLEMS IN THE PRESENCE OF
MIXED RESTRICTIONS AND DELAYS



Abstract. The Lagrange principle of taking restrictions off is proved
for the problems of conditional minimization in infinite-dimensional spaces
when the function to be minimized and the mapping specifying the restric-
tions of the problem satisfy certain convexity and continuity conditions.

On the basis of the obtained result, necessary conditions of optimality
are derived in terms of an analogue of Pontryagin’s maximum principle for
some classes of linear problems of optimal control when mixed restrictions
and delays take place.
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Introduction. Lagrange’s idea of studying the problem of conditional
minimization by means of the corresponding auxiliary problem of absolute
minimization is realized for wide classes of extremal problems in terms of
the rule of Lagrange’s multipliers. According to this rule, the necessary
conditions of minimum in the initial problem coincide with those of free
minimum of the Lagrange’s function in the auxiliary problem. There how-
ever exist extremal problems in which Lagrange’s idea is realized in a more
strengthened form. Namely, it can be claimed that the solution of the ini-
tial problem of conditional minimization is a solution of the corresponding
problem of absolute minimization. The proof of this assertion (i.e., the
Lagrange’s principle of taking restrictions off) for a wide class of extremal
problems serves, in particular, as a basis for obtaining necessary conditions
of optimality in optimal control problems.

Theorem 1 (Lagrange’s principle of taking the restrictions off) proven be-
low enables us to obtain necessary conditions both for solutions of problems
of particular importance referred in [1] and [2] and for solutions of extremal
problems distinguished by their specific character, for example, for solutions
of the linear optimal problem when mixed restrictions and delays take place.
Note that in the latter case we succeeded in obtaining necessary conditions
of optimality in a form which is completely analogous to that of Pontrya-
gin’s maximum principle cited in the fundamental work [3] for the problem
free from mixed restrictions.

In what follows, the use will be made of the notation accepted in [4].

1. Statement of the Problem. Proof of the Main Theorem. Consider an
extremal problem in the form

fo(w) — inf (1)
F(w) =0, (2)
filw) <0, i1=1,s, (3)
w e W. (4)

Here f; : W — R, i = 0,5, F : W — Y are given mappings, W is a

topological space, R is the set of all real numbers, Y is a locally convex

Hausdorff (separable) linear topological space, 0 is the zero element in Y.
The Lagrange function for the problem (1)—(4) has the form

[’(wv /\7y*) = Z /\zfz(w) + <y*7 F(w»:
=0

Ao
where A= [ : |, \;€R,i=0,s, y*€Y™*, Y* is the space conjugate to Y.
As

Theorem 1. (The Lagrange principle of taking restrictions off). Let for
the problem (1)—(4) the following assumptions be fulfilled:
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a) forVw, € W, we € W and a € [0,1] Jw € W such that

F(w) = aF(w) + (1 — a)F(w2),
filw) < afi(wr) + (1 —a)fi(wz), i=0,s;

b) the functions f;, i = 0,s are continuous on W and for any neighbor-
hood U (w) of the point w € ker F' the set F(U(w)) contains a neighborhood
of zero of the space Y .

Then for any solution W of the problem (1)—(4), there exist numbers A\; >
0, i = 0,5 and an element y* of the conjugate space Y* such that the
conditions

(Mo, -+, As,¥%) # (0,...,0,0), (5)
Aifi(@) =0, i=1,s (6)
Lw,\y*) = J}Iéivr%/ﬁ(w,/\,y*) (7)

are fulfilled.
Proof. In the space R*t! x Y, let us consider the set

C:={(po, ..., ps,y) € R x Y|3w € W, such that
po > fo(w) — fo(®), pi > fi(w),i =15,y = F(w)}.

The set C possesses the following properties:

Property 1. int C # @.

Indeed, consider an element (i, . . ., is,0) € R xY, where fi;,i = 0, s,
are fixed positive numbers. Obviously (fo,...,Hs,0) € C since for the
element w = @ the conditions fig > fo(w) — fo(w), ; > fi(w), i = 1,s,
0 = F(w) are valid. Let us now show that (i, ..., s, 0) is an inner point
of the set C'. Because the functions f;, ¢ = 0, s, are continuous, there exists
a neighborhood Wy C W of the element @ such that

. -~ € e .
//’0>f0(w)_f0(w)+§7 Ni>fi(w)+§, i=1,5 Ywe W,

where ¢ is defined from the condition € = min {i;}. But then for every point
(NO,---,,Us,y) Sa‘tiSfying |/J/7, - ﬁl| < %7 i = ma and /S F(W0)7 Jw € Wy
such that

H0>f0(w)_f0(ﬂ;)a Ni>fi(w)7 i=1,s, y:F(w)' (8)

Taking now into account the assumption b) concerning the mapping
F, we can see that F(wy) contains a neighborhood of zero the space Y.
Denote it by Fo(wo) and consider the neighborhood V (fo, ..., us,0) =
{,ui||,ui — i) < 5,0 = O,S} x Fy(wo) of the point (fo,- .., Ms,0) € C. For
Y(uo, -y s, y) € V(llo, ..., 1s,0) Jw € Wy C W such that the conditions
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(8) are fulfilled. Thus the set C together with the point (fo,- . -, ii3,0) con-
tains also its neighborhood V (ju, - . ., iis, 0), i.e., (fo,- - -, s, 0) is an inner
point of the set C.

Property 2. The set C' does not contain the zero element. Really, if
(0,...,0,0) € C, then by definition of the set C, 3w € W such that

0> fo(w) — fo(w), 02> fi(w), i=1,5, 0=F(w). (9)

But the condition (9) contradicts the fact that w is a solution of the
problem (1)—(4).

Property 3. The set C is convex.

Let (u&, ..., 1k y*) € C, k =1,2, be two arbitrary points from C. Then
there exist w® € W, k =1, 2, for which

ph > fo(wk) — fo(@), pk> fiwh), i=Ty5, y*=F@").

But then for Ya € [0, 1] the following relations are valid:

apg + (1= a)ug > afo(w') + (1 - a) fo(w?) — fo(@),
ap; + (1 —a)p? > afi(w") + (1 —a)fi(w?), i=T1,s,

and
ay' + (1 —a)y? = aF(w') + (1 — a)F(w?).
Taking into account the assumption a), from the above relations we ob-
tain that for Vo € [0,1], 3w € W such that
apg + (1= a)ug > fo(w) — fo(w),
ap; + (1= a)ui > fi(w), i=T5,
ay' + (1 - a)y® = F(w).

Hence, for any (uf,...,uk y*) € C, k = 1,2, the point (aud + (1 —
a)ud, .. apl+(1—a)u?, ayt + (1 —a)y?) also belongs to C, which implies
that the set C' is convex.

Taking into consideration the above stated properties of the set C, we
conclude that the sets A := {0,...,0,0} and C from R**! x Y are convex,

——
s+1
do not intersect and, moreover, int C' # @&. Then by the theorem on sep-
arability (see [4], p. 25), there exists on R**! x Y a non-zero continuous
linear functional separating the sets A and C, i.e., there exists a non-trivial
vector (Ao, -.-,As,y*), where \; € R, 1 = 0,s, and y* € Y* such that for
Y(uo, - - -, its,y) € C the condition

> i+ (y*,y) >0 (10)
=0

is fulfilled.
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The inequality (10) implies that the conditions \; > 0, i = 0, s, are valid.
Indeed, as far as (uo, .- ., s, 0) € C for yu; = (i =0,s,i #ip) and p;, =1,
where € > 0 and iy V is a fixed index, substitution of this vector into (10)
yields X\;;, > —¢ Ziiio Ai, whence, it follows that ¢ > 0 since A;, > 0 is
arbitrary.

To prove the condition (6), we note that if for some ig # 0 fi, (W) =
—a < 0, then for Ve > 0 the vector (pg,...,us,0) € C if and only if
wi =¢ (i =0,s, 1 # ip) and p;, = —a. Substituting this vector into (10)
and letting e approach zero, we obtain that —\;,a > 0, whence \;;, < 0.
Therefore A;, = 0. Thus \; = 0if fi(w) < 0,4 =1, s, and hence \; f;(w) = 0
foralli=1,...,s.

To complete the proof of the theorem it remains, for us to show that the
conditions (7) are valid. Since the vector (uo, ..., us,y) = (fo(w) — fo(w) +
g, fi(w),..., fs(w), F(w)) belongs to the set C for all ¢ > 0, w € W, owing
to (10) we have "7 \; fi(w) + (y*, F(w)) > Xo fo(@) — Aoe whence, due to
the fact that e > 0 is arbitrary, we have

Z/\ifi(w) + (Y, F(w)) > Ao fo(w). (11)
i—0

Taking now into account the above proven condition (6), we obtain from
(11) that

Z&ﬁ(w) + (y*, F(w)) > Z Xi fi(B) + (y*, F()),

for Vw € W which signifies the fulfillment of the conditions (7). W

The above proven theorem is used as a basis for obtaining necessary
conditions for the solution of special type smooth-convex problems of mini-
mization (see [5]). Just to such type of smooth-convex problems belong the
optimal problems which will be considered in the subsequent sections.

2.Necessary Conditions of Optimality for the Linear Problem of Opti-
mal Control with Delays in Phase Coordinates in the Presence of Mixed
Restrictions. Consider now the optimal problem

/fo(a:(t),a:(t _ 1), u(t))dt — min (12)

under the restrictions

- O —
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where 7 is a fixed positive number, the scalar function f° and the vector
functions f = (f',...,f"), g = (¢*,...,g™) are linear with respect to all
their arguments, x(t) € Wi [to — 7, 1], u(t) € Li[to,t1], and z; is a fixed
point from R". Note that the conditions (13) and (14) are fulfilled almost
everywhere on [tg, t1] and the restrictions (14) satisfy the conditions of gener-
ality: for any (=, z,u) satisfying (14), the system of vectors grad,, ¢’ (z, z,u),
j € J(x, z,u), is linearly independent. Here by J(z, z,u) we denote the set
of such indices j € {1,2,...,m} for which ¢/(z,z,u) = 0.

In the problem under consideration the initial function @(t) € Wy [to —
T, to] is a priori fixed and the moments ty and ¢, are assumed to be known.

Theorem 2. Let (Z(t),u(t)) be a solution of the problem (12)—(16). Then
there exist non-trivial multipliers 1o = const > 0, ¥(t) € W [to, 1] and
wu(t) € L7[to,t1] such that the following conditions are fulfilled:
almost everywhere on [to,t1]

pi(t) 20, j=1,m, (17)
pi(t)g’ (@(t),z(t — 7),u(t)) =0, j=T,m; (18)
almost everywhere on to <t <ty — T

dyp _ Mo, ¥ (t), p(t), 2(t), Tt — 7), u(t)

dt ox
4 OH (Yo, Y (t + 7), u(t + ra)z, Zt+7),2(t),u(t+ 1)) ; (19)
almost everywhere ont; — 17 <t <t
dip_ OH (Yo, ¥(b), p(t), 2(t), 2(t — 1), u(t)) (20)

dt oz ’
for almost all t € [to,t1]

H (o, (t), 2(t), 2(t — 7),u(t)) = min H (o, (1), (t), 2(t — 7),u), (21)

u € {ulg(z(t),2(t — 7),u) < 0},

where H(o, (1), u(t), z(t), z(t — 7),u(t)) = H (o, (
u(t)) + 3255y 1 ()’ (x(t), (t — 1), u(t)), H(tho, (1), z(?),
Yo fO(z(t), (t — 7),ult)) — 31y i(t)f ((t), 2(t — 7),u(t)

almost all t € [to, t1]

t),z(t),x(t — 7),
z(t —71),u(t)) =
).

Moreover, for

OH(z(t), z(t — 7),u(t))
ou

Proof. Introduce an auxiliary vector function y(t) € LJ*[to,t1] whose coor-
dinates satisfy almost everywhere on [to,?;] the conditions

y3 () + g (a(t), 2(t — 7),u(t) =0, (23)

and represent the problem (12)—(16) in the form of

=0. (22)
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Problem 1. Find the minimum (12) under the restrictions (13)—(15) in
the case where z(t) € W [to, t1], y(t) € L5[to, 1], u(t) € Li[to, 1] and the
conditions

o(t) = B(t), to—1 <t<to, (24)
Blto) = z(t1) — / & (t)dt (25)

are fulfilled.

Note that the conditions (24)—(25) make it possible to continue the abso-
lutely continuous functions x(t) € W [t1,:] on the whole interval [to—, 1]
so that the continued function turns out to be from the class W [to — 7, 1]
As is easily seen, Problem 1 is a particular case of the problem (1)-(4). Re-
ally,

W = W{fl[to — T,tl] X W{fl[to - T,t[)] X L;[to,tl] X Lgn[to,tl],
Y = W{fl[to -7, t()] X L;H_m[t(),tl],

w = (z,¢,u,y), where x = () € Wiy [to—7,t1], ¢ = ¢(t) € Wiy [to =7, %],

u = u(t) € Lifto,ti], y = y(t) € L¥[to, 1], folw) = [ fOa(t),x(t —
7),u(t))dt,

a:(t) — (ﬁ(t), to — T S t S to,
E(t) = f((t), x(t = 7),u(t)) to <t <ty
(x(

Frss(w) = F(to) — 2 (t1) + /zi(t)dt, i=Tm.

to

The functions f; : W — R, i = 0,2n defined above and the mapping F :
W — Y satisfy all conditions of Theorem 1. Indeed, W and Y are Banach
spaces and hence they are locally convex and separable linear topological
spaces; the condition a) and the first part of the conditions b) can be verified
directly from the definitions, and the condition of generality ensures the
fulfillment of the second part of the conditions b).

The Lagrange function for Problem 1 is of the form

L(@(-), @), u(),y()s %05 M-y Aan, ¥(2), (a0, o (+)), () =
= Yo fO(w) + Z/\ifi(w) +(y*, F(w)) =
A=1
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_¢0/f0 z(t —7),u(t))dt +

to

+(ao|(z(to — 7) — (to — 7)) + / (oD (t) — p(t)))dt +

tg*’r

+ /{(¢(t)|(a'7(t) = f(a(®),2(t —7),u(t)))) +
Ol (1) + g(z(t), 2(t = 7),u(t)))) bt +

t1

Ot — o) + (Nm<@@—wan+/éamm (26)

to

where (ao,U(')) S W{ﬁ[to -7, to], ag € Rn, U(t) S Lg‘o[to -7, to], )\(1) S Rn,

yi ()
A@) € R", o € R, (t) € L [to, 1], p(t) € LL[to, 1a], y>(t) = |+ |-

2
Ym (1)
Let (Z(-),u(-),y(-) be a solution of Problem 1. Then because of Theorem
1, there exist non-trivial Lagrange multipliers 1o > 0, A1), A2), (a0,0(")),
(), u(-) such that the condition

‘C(ﬁ()a 5/5()7 a()a ?7()7 1:[]07 /\(1) ) )‘(2) ) w()a (aO, U())a H’( ))

IA

< L), 2(),u(-),y(), %0, A1), A@2), ¥ (), (a0, 0 (), u())  (27)
is fulfilled for all (z(-), p(:),u(-),y(:)) € W. The inequality (27) implies
‘C(ﬁ( )75/5( )76( )7@\( ) 1/10a/\(1), (2 )71/1( ) (aO, ( ))7”( )) <
L&), 2(),u-),4(), Y0, X1), A2), ¥ (), (a0, 0 (), (), (28)

for all u(-) € Li[to,t1]. Consequently, if we take

faw, gl s+ n)
“@‘{u )

where s is any fixed time moment from (¢g,%1), v is any fixed element from
R"™ and h > 0 satisfies the condition [s, s + h] C [to, 1], then (28) results in

/ {of°(@(1),2(t - 7),a(t) — (WOIF@(), 2t = 7),ut))) +

s+h

()@@, 7(t - 7), hﬁ</{%ﬂ ) B(t = 7),0) -
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—@WOIf @), 8(t —7),0) + (®)|g@ (1), 2(t — 7),v)) }dt  (29)

for Vv € R".

If we divide both sides of the inequality (29) by h > 0 and then pass to
limit as h — 0, we will obtain the condition of minimum at the point s for
almost all s € [to, 1]

Yo f*(@(s), B(s — 7),1(s)) — (¥(s)|f (&(s),2(s — 7),uls))) +
+(u(s)|g(@(s), 2(s — 7),1(s))) < o f°(3(s),2(s — 7),0) —
—(W(s)[f(2(s),2(s — 7),0)) + ((s)|g(Z(s), (s — 7),0)),  (30)

for Vv € R".
Since the Lagrange function (26) is Frechet differentiable on W, from
(27) we get three groups of conditions:

Lo(w(-) =0, Ly(w(-)) =0, Ly(@())=0. (31)
The first group of these conditions yields

ty

@O = [ {(w2PEOI=DED )

ox
to

LGB ;- ) Yat+ (aoleto - 7)) +

to tq

+ [ owiéena+ [ {(venféw -

to*T to

_ (Bf(f(t),i“‘(t —7),u(t))

3 €®) -
(e |ft—f)])+

+(u(t)|[(ag(§(t) z(t — 1), )+
(2021 — 1), 5l |gt_T)])}dt+

(A = A llE)) + A /£ - (32)

for V&(t) € W [to — 7,t1]. We transform the left-hand side of (32) in an
obvious manner:

Lo (D)) = / ([% afo(f(t),a?a(tw— ), u(t)

to



0z

(e 2L ION Ly ([0 + 2 €000+

to
to

+ / (o (DIEW))dt + (anle(to — 7)) +

to—T

0w = Awllee)) = [ ([p DA D)

to*T

- (v 2D IO

+(M(t N T)|8g(£(t + T),ai:\;t),ﬂ(t + 7')))] |§(t))dt N

X “/‘T([% O EE: e =) ) _ (2 EW: 5 =) Ty
+0(u o) dg(z(t) gx— 7), u(t)) )

+ o f°(z(t + r);;‘(t), at+r)
_(‘Z’(t + T)|af@(t i T)’i(t),a(t + r))) +

+(M(t + T)|6g(55(t + T),aifz(t),ﬂ(t + 7')))] |§(t))dt N

Of (x(t), x(t — 7), a(t))) n

ox

N / ([%Bf"(f(t),fa(i— 7),u(t) _ (¢(t)|

+ (i) 222D EONY )Yy

t1 to

+ / ([(8) + A lIE(0))dt + / (o (OIE(E))dt +

tg to*T

ty

+(aol¢(to — 7)) + (Wl) ~ A [f(to) + / é(t)dt]) =

to
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/ t+T / t 8’}-[t+7'] |£())dt+
/ dt+/ B(t) + A)]IE(t))dt + / (o(t)IE(t))dt +
+(aolé(to — 7)) + (A1) — A2)ll€(t0)), (33)

where H[t] = o f°[t] — ((t)|f[t]) + (u(t)|g[t]), and then we integrate by
parts the second and the third summands of (33):

/ t 67—[75-1—7'

let))ae =

- / (2 T ) +

to

; / ({ / oL 000+ ) asién) an (34)
/T( Ox
- ( / et~ 7)) + / ( / Oagéw)a  3)

t1—1 t1—1

The condition (32) with regard for (33), (34) and (35) will take the form

/0 (aH[at;T] |£(t))dt+ <f(t0)|{[)‘<1> —Ae)] +
o [ oy

" (é(t>|{¢(t>+m>+tl/ (2 s+

to t

+ _]1 <£'(t)|{z/1(t)+/\(1)+/16g—aE's]ds}>dt+

t1—1
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to

st -l [ Zlar+ wletto -+ [ (@Ol =0 (36)

tlfT to*T

for VE(t) € Wi [to — 7, 14]

Since
to
[ (5 ew)a ( ' ol et -n) +
to—T . .
Ak 5, )
to—1 t

from (36) we have

o] i)
] (e ]

+<£( o)l{km— 2+ / [agt] +8H[;Z+T]]}dt+

to

t1—71

+ / <é(t)|{¢(t)+k(1)+t/ [agf] BH[;;T]] })dt+

to

t1

+/ <é(t)|{¢(t)+A(1)+76?E]ds}>dt+

+<£(t1 — 7] ] 82{—£t]dt> =0 (37)

for VE(t) € W [to — 7, to]-
Since £(t) € Wi [to — 7, t0] is taken arbitrarily, from (37) we obtain

37-[t+7'

= (38)

o(t) + / 87-[[;; 7] dt =0, for t€ [to—T,to); (39)

t
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t1—1
OH[t] OH[t+ T
Aw) —Ae) + / [ ai]+ [az ]]dtZO, (40)
to
t1—71

OM[s]  OM[s + T]]ds —0, (41)

¢(t)+/\(1)+ / [ ox + 0z

t
for ¢ S [to,tl —T];

t1
Ol . _
-dt =0, (42)
t1—71
t1 6
b(t) +Aa) +/ gf] ds=0, for telt —rt] (43)

t

It follows from (41) that the function ¢ (t) is absolutely continuous in the
interval [to,t; — 7], and the condition

Yt —7) = =) (44)

is fulfilled. It follows from (43) that the function ¢(#) is absolutely contin-
uous in the interval [t; — 7, 1], and

t1
0
bty =7) + Aq) + / Ha[:s] ds =0,
t1—1

that is, taking into account (42), we get (44). Thus the function ¥ (¢) is
absolutely continuous in the interval [to, t1] and therefore almost everywhere
on [to, 1] there exists a derivative % which, as is seen from (41) and (43),
satisfies the conjugate system of the equations (19) and (20).

From the second group of the conditions (31) we have

t1

Ly(@(-))(n()) = 2/ ((u@®)F(@))In(1))dt = 0, (45)

to

for Vn(t) € L5[to, t1] whence, because of the arbitrariness of n(t) € LY [to, t1],
we get that almost everywhere on [tg, t1] the condition

ni)y;(t) =0, j=1Lm (46)

is fulfilled.
Since g3 (t) + ¢/ (2(t), Z(t — 7),u(t)) = 0, j = 1,m, from (46) we immedi-
ately obtain (18).

<
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Next, from (27) it follows
51

L0y (@) () =2 / (WO (1)) dt > 0

to

for Vn(t) € L5[to,t1], whence p;(t) > 0, j = 1,m, for almost all ¢ € [to, 1],
i.e., we obtain the condition (17).
With regard for (30), from (17) and (18) we conclude that (21) is valid.
The third group of the conditions (31) results in

t1

£u(@()e) = [ (

to

OH(z(t),z(t — 7),u(t))

ou

|v(t))dt —0.

for Yu(t) € Li[to,t1], whence, owing to the arbitrariness of v(t) € Li[to, 1],
we obtain the condition (22) for almost all ¢ € [to, t1].

To complete the proof of Theorem 2, it remains to prove the non-triviality
of the vector (v,%(:)). Suppose on the contrary that (i, (t)) = (0,0)
on the interval ¢ € [to,t;]. Then, taking into account the condition of
generality, we obtain from (22) that u;(t) = 0, j = 1, m, almost everywhere
on [to,?1]. But then (38) and (39) imply that ap =0, 0;(t) =0,4i=1,n, on
the interval t € [to — 7,1%0]. It turns out that since by (40) and (41) for the
trivial ¢(¢) = 0 the multipliers A1) and A(2y are trivial, the whole system
of the Lagrange multipliers (¢, A1), A2, (a0, (+)),%(-), u(+)) is also trivial,
which contradicts Theorem 1. W

3. Problems with incommensurable delays in phase coordinates and con-
trols. Consider the problem

/fo(a:(t), ot — 1), u(t), u(t — 9))dt — min (47)

under the restrictions

() = f(x(t), z(t = 7),u(t), u(t —9)), (48)
g(z(t),z(t — 1), u(t),u(t —19)) <0, to<t<t (49)
.’17(751) =T, (50)

z(t) = p(t), for to—7 <t <to, (51)

where 7 > 0, ¢ > 0 (note that the constant numbers 7 and ¥ may be in-
commensurable; for example, 7 may be rational and ¢ irrational), u(t) €
L7 [to—1,t1], and all the remaining conditions formulated in the previous sec-
tion for the optimal problem (12)—(16) with natural modifications connected
with the type of the element (z(t), z(t — 7),u(t), u(t — ) = (z, 2, u,v), are
satisfied.
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In a way similar to that of the previous section, we represent the prob-
lem (47)—(51) as a particular case of the problem (1)-(4) and construct
the appropriate Lagrange function £. It follows from Theorem 1 that the
conditions (7) are valid, whence

[twnr @, - m),a@,a( - 9) -

—((O) @), (- 7),5(t), (¢t — 9)))) +

(D) g(@ (), Z(t — 7). @(t), @t — 9)))))dt <
< / o fOE(8), B(t — 9), u(t), u(t - 0) —
() ), (- 1), ut), u(t — 9)))) +
()| g @ (), Bt — 7, u(t), u(t — 9)))]dt, (52)

for Yu(t) € Li[to — 9,t1].
With the help of the function #, the condition (52) can be written as

/ H(Wo, B(t), u(t), (1), B (¢ — ), @(t), At — 0))dt <

/7{(%, $(t), u(8), 2(8), 2(t — 7), u(t), u(t — J))dt (53)
for Yu(t) € Li[to — 9, t1].
Let
o= [f0 2bars

where s is any fixed moment from (¢ — 9, t9), v is any fixed vector from R",
and h > 0 satisfies the condition [s, s + h] C [to — ¥,%0]. Then from (53) it
follows

s+h
[ b 06+9), e 49), 500 49), 50040 =),

s+h
alt + ), a(t)dt < / H (o, w(t + 0,

w(t+9),z(t+9),2(t +9 —7),u(t+9),v))dt, (55)
for Vv € R".
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Dividing both parts of the inequality (55) by h and passing to limit as
h — 0, we obtain that for almost all s € [ty — ¥, t9] the inequalities

H o, (s +9),u(s +9),2(s +9),Z(s + 9 — 7),u(s + 9),u(s)) <
< H@Wo, (s + ), u(s +9),z2(s +9),Z(s + 9 —7),u(s + 9),v), (56)

are valid for Vv € R".
If in (54) s € (to,to + ) and h is a sufficiently small positive number,
then from (53) we have

s+h

5 [ 000,000,503 - 7,200,850 - 9 <

s+h

< [ Mo vo.m0.50.3¢ - ) mat - 61)

for Vv € R".
Passing in (57) to limit as h — 0, we obtain that for almost all s €
[to,to + VY] the inequalities

H(woa/‘/}(s)au(s)af(s)af(s - T),’L/Z(S),’L/Z(S - 19)) <
< H(o,9(s), u(s), Z(s), (s — 7), v, u(s — 7)) (58)

are valid for Vv € R".

Thus, as is seen from (56) and (58), for almost all ¢ € [to,to + 9] the
relation

H(d’ﬂa"/}(t)a:u(t)af(t)aﬁ(t - T)aa(t)aa(t - 19)) +
+H (o, »(t +9), u(t +09),2(t +9), (¢ + 0 — 1), u(t + 9), u(t)) <
< H(Wo, (1), u(t), z(8), 2(t — 1), v,ult — 9)) +
+H (o, Y (t + ), p(t + 9), 2t + ), 2+ —7),u(t +9),v), (59)

is fulfilled for Vv € R".

Owing to (54), in the interval s € (to + ¢, to + 2¢¢) (53) again results in
(56), while in the interval s € (tg + 21, to + 39) we have (58), i.e., for almost
all ¢ € [to, to + 3] we get (59). Moreover, it is clear that if s € [t; — ¥, #1],
then instead of (56) there takes place (58). So, it becomes evident that
owing to (54), from (53) it follows the validity of the conditions (59) and
(58) for almost all t € [tg,t1 — ¥] and t € [t; — ¥, t1], respectively.

It is evident that, the condition L, (w(-))(£(-)) =0, Ly(@W(-))(n(-)) =0,
Lyy(w(-))(n(-)) > 0 derived from (7) give the same conditions as in the
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previous section, while the condition £, (@(-))(v(-)) = 0, derived also from
(7) yields the condition

/ (67-[(1/10, (), (), f(t)éi(t — 7). alt), alt = ) [o(t))dt +

7( O, 40 0,05 )BT N 0

+ ov
to

for Yu(t) € Li[to — 9, t1].
From (60) we get

/ 87{ (0,9 (1), (), 2(t), & (t — 7), U(t), ut = V)
ou
0o—1¥
Mo, 0+ 0).ul + 0).3 (t;;ﬁ)ai"\(t+‘9_T)’a(t+19)’a(t)]|v(t))dt+
+/ (87{(%,¢(t),u(t),5(t)£(t—TW(tW(t—'9))|U(t))dt:o (61)

t1—10

for Yu(t) € Li[to — 9, t1].
Due to the fact that v(t) € Li[to — 3, t1] is arbitrary, it follows from (61)
that the condition

Ot (tho, (1), u(t), 2(t), T(x — 7), u(t), u(t — V)

+
Ou
H (o, Yt +9), p(t +9), Z(t +9), Z(t + 9 — 7), u(t +9),u(t)) _ 0 (62)
Ov
is fulfilled almost everywhere on t € [tg,t1 — ¥], and the condition
H(Wo, (1), p(1), 2(1), (¢ — 1), u(t), ult —9)) _ (63)

ou

is fulfilled for almost all ¢ € [t1 — ¥, #1].

With regard for the conditions (62) and (63), we obtain as in the previous
section that the vector (vg,%(:)) is non-trivial, and from the conditions
(17), (18), (59) and (58) it follows the validity of the following assertions:
for almost all ¢ € [to,t; — 7] the inequality

H (o, (1), 2(t), 2(t — 7), u(t), u(t — 9)) +
H (o, (t +9),2(t + 9),2(t + 9 — 7),u(t +9),u(t)) <
< H(tho, (), (1), 2(t — 7), v, u(t — V) +
H("/’Oa (t+19)7 ( ) (t+'l9—7‘),’ﬁ(t+19),l/), (64)
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A~

is fulfilled for Vv satisfying g(z(t),z(t — 7),v,u(t — 9)) < 0 and g(Z(t +
9),Z(t+9 —71),a(t +9),v) <0; for almost all ¢ € [t; — 1, t;] the inequality

H (o, (1), 2(t), z(t — 7),u(t),u(t — 9)) <
SH(’(/}O,’(/)(t),al‘(t),fll‘\(t—T),I/,a(t—’19)), (65)

is valid for Vv satisfying ¢(Z(¢),Z(t — 7),v,u(t — 9)) < 0.
From the above obtained assertions we arrive to the following

Theorem 3. Let (2(t),u(t)) be a solution of the problem (47)—(51). Then
there exist non-trivial Lagrange multipliers 1o > 0 and (t) € W [to, 1]
satisfying (17)—(20), (62), (63) as well as the "minimum” conditions (64)
and (65).

It is clear that in the conditions (18)—(20) the functions g7, j = 1,m, and
‘H along with the other arguments depend also on the argument u(t — ¢).

Suppose that we are given real positive numbers 7 < 7 < --- < 7, and
P <Py < --- <Yy, and it is required to find the minimum of the functional

t1

I=/f°<a:(t>,a:(t—n>,...,x(t—m,
uo(t),u(t —91),...,u(t —9,))dt (66)

under the restrictions

(t) = f(x(t),z(t —11),...,z(t — 1p),

u(t),u(t —v1),...,u(t —v,)), (67)

glz(t),z(t —1),...,2(t — 1), u(t),...,u(t —9y)) <0, (68)
z(t1) = 1, (69)

z(t) = p(t), for t € [to— 1p,tol, (70)

where u(t) € L[to — ¥4, 11], and all the remaining conditions formulated for
the optimal problem (12)—(16) with natural modifications connected with
the type of of the element
z(t),z(t —1),...,x(t — 1), u(t),ut —th),...,u(t =) =
=(z,21,-..,2p,u,01,...,9)
are fulfilled.

After the representing of the problem (66)—(70) as a particular case of
the problem (1)—(4), the Lagrange function takes the form

E(Z‘(), 9/5()7 u(')a y(')a 17[]07 /\(1) ) )‘(2) ) w()a (a07 U('))a M()) =

to

= (aolz(to —7p) = Pt — )] + / (eO|[2(t) = o(®)])dt +

to—T7p
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ty

+/ {00, .- x(t =) u(t), .. ut —0,)) +

to

+O[2(E) = f(2@), ..., 2(t = 7p),u(l), ..., ult = 9g))])) +
+Hu®lly* () + g(@(@), ..., 2t = 1), ult), ..., ult - 19(1))])}6175 +

+Allz(t) — 1] + (A [[0(to) — x(t1) + /fi?(t)dt])- (71)

to

Using Theorem 1, we can see that the condition (7) is valid for the func-
tion £ from (71) which provides us with the condition (28) for any u(-) €
L7[to — 94,t1]. From this condition, applying now the expression (54) sub-
sequently to s € (t() —'19j,19]'_1) (] =q,q9—1,..., 2), s € (t() —191,t0), ..., S €
(t; — 1, 1) and passing every time to limit as h — 0, we obtain the condi-
tions analogous to (59) and (58) which are valid for almost all ¢ € [to, t1 — ]
and t € [t; — Y1,t1], respectively. The conditions £, (@w(-))(n(-)) = 0 and
Lyy (w(-))(n(-)) = 0 remain unchanged and result respectively in the condi-
tions (17) and (18) (note that in the condition (18) the function g will take
the form g = g(x(t),z(t — 71),...,x(t — 1), u(t), ult — t),-..,u(t — 9y))).
Taking into consideration (17) and (18), from the analogues of (59) and (58)
we respectively get

H (o, (t),z(t), 2(t —11), ..., 2t — ), u(t),...,a(t —9y)) +
+H (o, p(t+ 1), 2t +91), 2+ 91 —11),..., 2t + V1 —7p),
a(t + %), u(t),a(t + 91 —Va),..., 0t + 0 — V) + -+
H (o, p(t +09), Z(t + V), Z(t + Vg —T1),...,Z(t + g — 7p), ult + 0y),
vt + 9y — 91, u(t)) < H( o, v(t),2(t), 2(t —11),. .., Z(t — 1), u,
u(t —91),...,u(t —39) + H@o, vt + V1), Z(t + 91),Z(t + 91 — 11),
LB+ — 1), ult+ ), u,ut+ = Da), ..U+ — ) +
+- 4+ H(o, 0t + ), 2t + ), .-,
T+, —1p),u(t +3y),...,u(t+ 9y —Fg—1),u)) (72)
for almost all ¢ € [tg,t1 — th] and Yu € wp;

H (o, (t),2(t),2(t —71)y..., Tt — 7p), u(t),...,u(t —1y)) <
<H o, (t),z(t),2(t —11),...,Z(t — 1), u,u(t —91),...,0(t —9,)) (73)
for almost all t € [ty — ¢, t1] and Yu € w.
Here wy denotes the set of the elements u for which the inequalities
g(@(t),...,2(t — 1), u,u(t —V1),...,u(t —19,)) <0,
9@t +t),.... 2+ — 1), u(t+h),u,...,ut+h — ) <0,
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GEE+Dg)s .. B+ g — Tp), At + D), .. Tt + g — Dg1),u) <0

are fulfilled, and w; denotes the set of elements u for which

~

g(@(t),...,2(t — 1), u,u(t — 91),...,u(t —9y)) <O0.

The condition L, (w(+))(&(+)) = 0 for the function £ defined by the for-
mula (71) will take the form

to
(@lélto - 7))+ [ (o(olé®)+
to—Tp
t1
n B’H(wo,w(t)7u(tg,§(t),...7u(t—194))|€(t) n
I )

+(fm(wo,w(t),ua),at),Eafn>,...,E(tfrp)ﬂ(t),...ﬁ(twq)) |

821
et —m)) +
+ -4 (3H(¢0ﬂl’(t)w(t),z(t),z(t*ﬁ),...,z(tfrp),u(t),...,u(tfﬁq)) |

0zp

|€(t—7p>)}dt+
(- Aw i) ( | / 0 dt) / BOIED)dE =0 (74)

for VE(t) € W [to — 7, ta]-
The condition (74) can be represented in the form

to

(aolé(to — 7)) + /(a(t)|g'(t))dt+

to—Tp

7( BOIED) dt+( I/f dt) “AellE)) +

to
to—Tp—1

N (87—[(¢m¢(t+rp) it 7p) BTy )il Ty —09) (4 ))dt +

0zp

to—T7p
to
+oe gt ({m{wo,w(tm), SulttTy—9q))

Ozp

to—T1
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OH (Yo, Y (t+Tp—1)s. . ult+7p-14+94))

Bz,,_l +
oo D) ultd T —0g)) }If(t)) dt +
tlf‘l'p
+ / (|:BH(IPO7¢(t)7“(tg;(t)7"'7u(t779q)) + 8H(w07¢(t+71$72'1"7u(t+71779(1)) +
to
ot 8H(¢°7¢(t+T”$Z,;”u(t+Tp_ﬁq))] If(t))dt +
t1—Tp—1
/ ([awwo,w(tg;.,u<twq>> Dbt ) i —0))
t1—7p
oot BH(%’w(tm‘éﬁ;'ﬁ{u(tm_l_ﬂ"))] |£(t))dt +
t1—71 R R
4ot / ([Bﬂ(ibo,ib(;lu(t—ﬁq)) + 37‘1(1#0,¢(t+ng;1--7u(t+n—i94))] |£(t))dt +
t1—T2
t1
+ / (BH(¢0,¢(7539;-7U(75—"9¢1)) |£(t))dt =0 (75)
t1—71

for VE(t) € W [to — 7p, t1].

From (75), integrating by parts the summands involving &(¢) under the
integral symbol, after elementary transformations we obtain complete ana-
logues of the conditions (38)—(43) from which it follows that the function
¥(t) is absolutely continuous on [tg,t1] and almost everywhere on that in-
terval satisfies the conjugate system of equations

dyp _ OH(Yo,P(b),.ult—9q)) n OH (o, (t+T1),...,u(t+T1—94))
dt — oz

(92:1

+
OH (Y0 Y (t+Tp),osti(t+7p—Dg))
)

0zp

db _ OHWoY(),ult=0q)) | OH(o (b4 7)) ultTi—0q)) |
dt ox 021

t S [to,tl — Tp],

I B’H(wo,w(t+‘rp_1),...7;1,\(t+7'p_1—194))’

9zp1 t e [tl — Tp,tl — Tp_l],

.................................................... (76)
Ay _ OH(Wo.Y(8),ult=0q)) |
dt ox
+BH(wo’w(t+T1;’z'l'"u(t+Tl719‘1)), t €[ty — 72,1 — 1],
d OH (Vo ,(t),...,u(t—D
d_if — (¥0,9( éx u( q)), te [tl _ letl]-
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The condition £, (@(:))(v(+)) = 0 for the function £ from (71) makes it
possible to get a complete analogue of the condition (61), whence it follows
that the relations

OH (W0, (1),1(0) 2 (8),-ooylt) o (8= D)) | O (Y0, b(t01),ultt D1 =0g))
Ou vy
4o+ 8H(¢071/1(t+"94)7ﬂ(t+"9q3971-);7---7u(t+"9q_"94—1)7u(t)) — 0’ te [to,t1 _ ,19(1]’
OH (o, (£), (L), u(t), .., u(t—q)) n OH (Yo, (t+01),...,u(t+01 —04)) n
Ou Ovy

T M (Yo, (t+dg—1),-vu(t) ult+dq—1-94)) _ 0, teft — Dy ts — 19q71],

(9’[)(171

.................................................... (77)

O (Y0, (1) a(t),roos() ooy tlt=0g))

ou
+8H(¢07¢(t+'§1)7”(%?}?1)7-“7“&4‘191—194)) — 0’ t E [tl _ 192,t1 — 191]’
B’H(wo,w(t)7u(t),él;,u(t),...7u(t—ﬂq)) =0, tc [tl _ 191,t1]

hold for almost all ¢ € [tg, t1]

Owing to (77), it follows as in the previous section that (g, (+)) is
non-trivial.

Thus, the above relations provide us with the following

Theorem 4. Let (Z(t),u(t)) be a solution of the problem (66)—(70). Then
there exist non-trivial multipliers o > 0, (t) € W [to,t1] and u(t) x
x L2 [to, t1], satisfying (17), (18), (76) and (77) as well as the "minimum”
conditions (72) and (73).

Note that the type of the conjugate equation and of the ”minimum”
condition for the function H is connected with the choice of the sign of the
multiplier 1g. If the sign of ¢ is taken to be negative and if we denote H =
o f+(p|f)—(u|g), then the conjugate equation will be written in a standard
form, while the ”minimum” condition for the function H = o f + (| f) will
take the form of the ”maximum” condition.

4. The case of optimal problems with the free right end. If in the optimal
problems considered in sections 2 and 3 the right end is free, then the corre-
sponding Lagrange functions £ for these problems will involve no summand
(A@)l[z(t1) — 21]) and hence, the condition (43) whose form is common for
all the above-considered optimal problems will also involve no summand
A(1)- Because of this fact, we obtain from (43) the condition ¢(t;) = 0.
This circumstance, in combination with the linearity of the problems under
consideration, enables us to construct a scheme of solving these problems
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which is based on the application of the above-obtained necessary condi-
tions of optimality. For the sake of definiteness let us consider the scheme
of solving the problem (12)—(16). (Clearly, the same scheme can be used
for investigation of the remaining above-indicated linear optimal problems
with the free right end, in the presence of mixed restrictions and delays).

I. From the condition (21), define uniquely almost everywhere on [to, ¢1]
the function u(t) as a function of ().

II. From the conditions (22), (18) and (17), define almost everywhere on
[to, t1] the functions p;(t), j = 1,m as functions of (t).

ITI. Define an absolutely continuous function t(t) for all ¢ € [to, 1] from
the equations (20) and (19) as well as from the finite condition % (¢;) = 0.

IV. Knowing (t), from the conditions (21), define finally u(¢) almost
everywhere on [to, t1].

V. Knowing u(t) almost everywhere on [to, 1], define x(¢), t € [to, 1],
from (13) and (16).

Clearly, the determination of the unknown functions at Steps I and IT is
not possible for all types of the above-mentioned linear optimal problems.
But if one succeeds in carrying out Steps I and II, then the problem of
finding the optimal process can be solved to the very end.
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