Z. Sokhadze

ON THE SOLVABILITY OF THE WEIGHTED INITIAL VALUE PROBLEM FOR HIGH ORDER EVOLUTION SINGULAR FUNCTIONAL DIFFERENTIAL EQUATIONS

> (Reported on April 20, 1998)

In the present paper on the basis of the results obtained in [1, 2] optimal, in a certain sense, sufficient conditions for solvability of the weighted initial value problem

$$
\begin{gather*}
u^{(n)}(t)=f(u)(t) \tag{1}\\
\lim _{t \rightarrow a} \frac{u^{(k)}(t)}{h^{(k)}(t)}=0 \quad(k=0, \ldots, n-1) \tag{2}
\end{gather*}
$$

are established, where $\left.\left.f \in C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right) \rightarrow L_{l o c}(] a, b\right] ; \mathbb{R}^{m}\right)$ is a continuous Volterra operator and $h:[a, b] \rightarrow[0,+\infty[$ is an $(n-1)$-times continuously differentiable function such that

$$
\begin{equation*}
h^{(k)}(a)=0 \quad(k=0, \ldots, n-2), \quad h^{(n-1)}(t)>0 \text { for } a<t \leq b \tag{3}
\end{equation*}
$$

The problem (1), (2) for the case $n=1$ has been investigated in [1, 2]. Therefore below we will assume that $n \geq 2$.

Throughout the paper the use will be made of the following notation.
\mathbb{R}^{m} is the space of m-dimensional column vectors $x=\left(x_{i}\right)_{i=1}^{m}$ with real components $x_{i}(i=1, \ldots, m)$ and the norm $\|x\|=\sum_{i=1}^{m}\left|x_{i}\right|$.
$\mathbb{R}_{\rho}^{m}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq \rho\right\}$.
If $x=\left(x_{i}\right)_{i=1}^{m} \in \mathbb{R}^{m}$, then $\operatorname{sgn}(x)=\left(\operatorname{sgn} x_{i}\right)_{i=1}^{m}$.
$x \cdot y$ is the scalar product of the vectors x and $y \in \mathbb{R}^{m}$.
$C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right)$ is the space of $(n-1)$-times continuously differentiable vector functions $x:[a, b] \rightarrow \mathbb{R}^{m}$ with the norm

$$
\|x\|_{C^{n-1}}=\max \left\{\sum_{k=1}^{n-1}\left\|x^{(k-1)}(t)\right\|: \quad a \leq t \leq b\right\}
$$

$C_{h}^{n-1}\left([a, b] ; \mathbb{R}^{m}\right)$ is the set of $u \in C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right)$ such that

$$
\sup \left\{\frac{\left\|u^{(k)}(t)\right\|}{h^{(k)}(t)}: \quad a<t \leq b\right\}<+\infty \quad(k=0, \ldots, n-1)
$$

$C_{h, \rho}^{n-1}\left([a, b] ; \mathbb{R}^{m}\right)$ is the set of $u \in C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right)$ satisfying the inequalities

$$
\left|u^{(k)}(t)\right| \leq \rho h^{(k)}(t) \text { for } a<t \leq b \quad(k=0, \ldots, n-1)
$$

[^0]If $x:] a, b] \rightarrow \mathbb{R}^{m}$ is a bounded function and $a \leq s<t \leq b$, then

$$
\nu(x)(s, t)=\sup \{\|x(\xi)\|: s<\xi<t\} .
$$

$\left.\left.L_{l o c}(] a, b\right] ; \mathbb{R}^{m}\right)$ is the space of vector functions $\left.\left.x:\right] a, b\right] \rightarrow \mathbb{R}^{m}$ which are summable on each segment from $] a, b]$ with the topology of convergence in the mean on each segment from $] a, b]$.

Definition 1. $\left.\left.f: C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right) \rightarrow L_{l o c}(] a, b\right] ; \mathbb{R}^{m}\right)$ is called a Volterra operator if the equality $f(x)(t)=f(y)(t)$ holds almost everywhere on $] a, t_{0}\left[\right.$ for any $\left.\left.t_{0} \in\right] a, b\right]$ and any vector functions x and $y \in C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right)$ satisfying the condition $x(t)=y(t)$ for $a \leq t \leq t_{0}$.

Definition 2. We will say that the operator $\left.\left.f: C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right) \rightarrow L_{l o c}(] a, b\right] ; \mathbb{R}^{m}\right)$ satisfies the local Carathéodory conditions if it is continuous and there exists a nondecreasing with respect to the second argument function $\gamma:] a, b] \times[0,+\infty[\rightarrow[0,+\infty[$ such that $\left.\left.\gamma(\cdot, \rho) \in L_{l o c}(] a, b\right] ; \mathbb{R}\right)$ for any $\left.\rho \in\right] 0,+\infty[$, and the inequality

$$
\|f(x)(t)\| \leq \gamma\left(t,\|x\|_{C^{n-1}}\right)
$$

is fulfilled for any $x \in C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right)$ almost everywhere on $] a, b[$.
Definition 3. If $\left.\left.f: C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right) \rightarrow L_{l o c}(] a, b\right] ; \mathbb{R}^{m}\right)$ is a Volterra operator and $\left.\left.b_{0} \in\right] a, b\right]$, then:
(i) for any $u \in C^{n-1}\left(\left[a, b_{0}\right] ; \mathbb{R}^{m}\right)$ by $f(u)$ is understood the vector function given by the equality $f(u)(t)=f(\bar{u})(t)$ for $a \leq t \leq b_{0}$, where

$$
\bar{u}(t)= \begin{cases}u(t) & \text { for } \quad a \leq t \leq b_{0} \\ \sum_{k=1}^{n} \frac{\left(t-b_{0}\right)^{k-1}}{(k-1)!} u^{(k-1)}\left(b_{0}\right) & \text { for } \quad b_{0}<t \leq b\end{cases}
$$

(ii) a function $u \in C^{n-1}\left(\left[a, b_{0}\right] ; \mathbb{R}^{m}\right)$ is called a solution of the equation (1) on the segment $\left[a, b_{0}\right]$ if $u^{(n-1)}$ is absolutely continuous on each segment contained in $\left.] a, b_{0}\right]$ and $u^{(n)}(t)=f(u)(t)$ almost everywhere on $] a, b_{0}[$;
(iii) a solution u of the equation (1) on the segment $\left[a, b_{0}\right]$, satisfying the initial conditions (2) is called a solution of the problem (1), (2) on the segment $\left[a, b_{0}\right]$.

Definition 4. The problem (1), (2) is said to be locally solvable (globally solvable) if it has at least one solution on a segment $\left[a, b_{0}\right] \subset[a, b[$ (on the segment $[a, b])$.

In what follows, we will assume that $\left.\left.f: C^{n-1}\left([a, b] ; \mathbb{R}^{m}\right) \rightarrow L_{l o c}(] a, b\right] ; \mathbb{R}^{m}\right)$ is a continuous Volterra operator satisfying the local Carathéodory conditions.

Theorem 1. Let there exist a positive number ρ and summable functions $p_{k}:[a, b] \rightarrow$ $[0,+\infty[(k=0, \ldots, n-1)$ and $q:[a, b] \rightarrow[0,+\infty[$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \sum_{k=0}^{n-1} \int_{a}^{t} p_{k}(s) d s\right)<1, \quad \lim _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \int_{a}^{t} q(s) d s\right)=0 \tag{4}
\end{equation*}
$$

and for any $u \in C_{h, \rho}^{n-1}\left([a, b] ; \mathbb{R}^{m}\right)$ the inequality

$$
\begin{equation*}
f(u)(t) \cdot \operatorname{sgn}\left(u^{(n-1)}(t)\right) \leq \sum_{k=0}^{n-1} p_{k}(t) \nu\left(\frac{u^{(k)}}{h^{(k)}}\right)(a, t)+q(t) \tag{5}
\end{equation*}
$$

is fulfilled almost everywhere on $] a, b[$. Then the problem (1), (2) is locally solvable.
Proof. For any $x \in C\left([a, b] ; \mathbb{R}^{m}\right)$ assume

$$
\begin{equation*}
w(x)(t)=\frac{1}{(n-2)!} \int_{a}^{t}(t-s)^{n-2} x(s) d s, \quad \widetilde{f}(x)(t)=f(w(x))(t) \tag{6}
\end{equation*}
$$

Then by (3)

$$
\begin{equation*}
h(t)=w\left(h^{(n-1)}\right)(t)=\frac{1}{(n-2)!} \int_{a}^{t}(t-s)^{n-2} h^{(n-1)}(s) d s \tag{7}
\end{equation*}
$$

Obviously, $\left.\left.\widetilde{f}: C\left([a, b] ; \mathbb{R}^{m}\right) \rightarrow L_{l o c}(] a, b\right] ; \mathbb{R}^{m}\right)$ is a continuous Volterra operator satisfying the local Carathéodory conditions.

Assume now that $y \in C\left([a, b] ; \mathbb{R}^{m}\right),\|y\|_{C} \leq \rho$ and

$$
\begin{equation*}
u(t)=w\left(h^{(h-1)} y\right)(t) \tag{8}
\end{equation*}
$$

Then by virtue of (6) and (7)

$$
\begin{aligned}
\left\|u^{(k)}(t)\right\| & =\frac{1}{(n-2-k)!}\left\|\int_{a}^{t}(t-s)^{n-2-k} h^{(n-1)}(s) y(s) d s\right\| \leq \\
& \leq \frac{1}{(n-2-k)!}\left(\int_{a}^{t}(t-s)^{n-2-k} h^{(n-1)}(s) d s\right) \nu(y)(a, t)= \\
& =h^{(k)}(t) \nu(y)(a, t) \text { for } a<t \leq b \quad(k=0, \ldots, n-2)
\end{aligned}
$$

and

$$
u^{(n-1)}(t)=h^{(n-1)}(t) y(t), \quad\left\|u^{(n-1)}(t)\right\| \leq h^{(n-1)}(t) \nu(y)(a, t) \text { for } a<t \leq b
$$

Therefore

$$
\begin{gather*}
u \in C_{h, \rho}^{n-1}([a, b]), \quad \operatorname{sgn}\left(u^{(n-1)}(t)\right)=\operatorname{sgn}(y(t)), \tag{9}\\
\nu\left(\frac{u^{(k)}}{h^{(k)}}\right)(a, t) \leq \nu(y)(a, t) \text { for } a<t \leq b \quad(k=0, \ldots, n-1) . \tag{10}
\end{gather*}
$$

On the basis of the conditions (5), (6) and (8)-(10), almost everywhere on $] a, b$ [the inequality

$$
\begin{aligned}
& \widetilde{f}\left(h^{(n-1)} y\right)(t) \cdot \operatorname{sgn}(y(t))=f(u)(t) \cdot \operatorname{sgn}\left(u^{(n-1)}(t)\right) \leq \\
\leq & \sum_{k=0}^{n-1} p_{k}(t) \nu\left(\frac{u^{(k)}}{h^{(k)}}\right)(a, t)+q(t) \leq \sum_{k=0}^{n-1} p_{k}(t) \nu(y)(a, t)+q(t),
\end{aligned}
$$

is fulfilled, that is,

$$
\widetilde{f}\left(h^{(n-1)} y\right)(t) \operatorname{sgn}(y(t)) \leq p(t) \nu(y)(a, t)+q(t), \quad \text { where } \quad p(t)=\sum_{k=0}^{n-1} p_{k}(t)
$$

On the other hand, as it follows from (4),

$$
\limsup _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \int_{a}^{t} p(s) d s\right)<1
$$

Hence all the conditions of Theorem 2.1 from [1] are fulfilled for the problem

$$
\begin{equation*}
\frac{d x(t)}{d t}=\widetilde{f}(x)(t), \quad \lim _{t \rightarrow a} \frac{x(t)}{h^{(n-1)}(t)}=0 \tag{11}
\end{equation*}
$$

Therefore this problem is locally solvable.
Let x be a solution of the problem (11) on a segment [a, b_{0}], and $u(t)=w(x)(t)$. Then, owing to (6), the function u is a solution of the problem (1), (2) on $\left[a, b_{0}\right]$.

Applying Corollary 1 of [2] and repeating the arguments used in proving Theorem 1, we convince ourselves that the following theorem is valid.

Theorem 2. Let for any $u \in C_{h}^{n-1}\left([a, b] ; \mathbb{R}^{n}\right)$ the inequality

$$
f(u)(t) \cdot \operatorname{sgn}\left(u^{(n-1)}(t)\right) \leq \sum_{k=0}^{n-1} p_{k}\left(t, \rho_{0}(u)(t)\right) \nu\left(\frac{u^{(k)}}{h^{(k)}}\right)(a, t)+q\left(t, \rho_{0}(u)(t)\right)
$$

be fulfilled almost everywhere on $] a, b[$, where

$$
\rho_{0}(u)(t)=\sum_{j=0}^{n-1} \nu\left(\frac{u^{(j)}}{h^{(j)}}\right)(a, \tau(t))
$$

$\tau:[a, b] \rightarrow[a, b]$ is a continuous function, $p_{k}(k=0, \ldots, n-1)$ and $q:[a, b] \times[0+\infty[\rightarrow$ $[0,+\infty[$ are summable with respect to the first argument and continuous and nondecreasing with respect to the second argument. Let furthermore $\tau(t)<t$ for $a<t \leq b$ and

$$
\limsup _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \sum_{k=0}^{n-1} \int_{a}^{t} p_{k}(s, \rho) d s\right)<1, \quad \lim _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \int_{a}^{t} q(s, \rho) d s\right)=0
$$

for some positive constant ρ. Then the problem (1), (2) is globally solvable.
A particular case of the equation (1) is the vector differential equation with delay

$$
\begin{equation*}
u^{(n)}(t)=f_{0}\left(t, u\left(\tau_{10}(t)\right), \ldots, u^{(n-1)}\left(\tau_{1 n-1}(t)\right), \ldots, u\left(\tau_{l 0}(t)\right), \ldots, u^{(n-1)}\left(\tau_{l n-1}(t)\right)\right) \tag{12}
\end{equation*}
$$

where $\left.\left.f_{0}:\right] a, b\right] \times \mathbb{R}^{l m n} \rightarrow \mathbb{R}^{m}$ satisfies the local Carathéodory conditions, and $\tau_{i k}:[a, b] \rightarrow[a, b]$ are measurable functions such that $\tau_{i k}(t) \leq t$ for $a \leq t \leq b(i=1, \ldots, l ;$ $k=0, \ldots, n-1)$.

Theorems 1 and 2 result in the following
Corollary 1. Let $\tau_{l n-1}(t) \equiv t$ and there exist a positive number ρ, summable functions $p_{i k}:[a, b] \rightarrow[0,+\infty[(i=1, \ldots, l ; k=0, \ldots, n-1)$ and $q:[a, b] \rightarrow[0,+\infty[$ such that

$$
\limsup _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \sum_{k=0}^{n-1} \sum_{i=1}^{l} \int_{a}^{t} p_{i k}(s) d s\right)<1, \quad \lim _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \int_{a}^{t} q(s) d s\right)=0
$$

Let furthermore the inequality

$$
\begin{gathered}
f_{0}\left(t, h\left(\tau_{10}(t)\right) x_{10}, \ldots, h^{(n-1)}\left(\tau_{1 n}(t)\right) x_{1 n-1}, \ldots\right. \\
\left.h\left(\tau_{l 0}(t)\right) x_{l 0}, \ldots, h^{(n-1)}\left(\tau_{l n-1}(t)\right) x_{l n-1}\right) \cdot \operatorname{sgn}\left(x_{l n-1}\right) \leq \sum_{k=0}^{n-1} \sum_{i=1}^{l} p_{i k}(t)\left\|x_{i k}\right\|+q(t)
\end{gathered}
$$

be fulfilled on $] a, b] \times \mathbb{R}_{\rho}^{l m n}$. Then problem (12), (2) is locally solvable.
Corollary 2. Let there exist a number $l_{0} \in\{1, \ldots, l-1\}$ and a continuous function $\tau:[a, b] \rightarrow[a, b]$ such that $\tau_{l_{0} n-1}(t) \equiv t$,

$$
\tau_{i k}(t) \leq \tau(t)<t \text { for } a<t \leq b \quad\left(i=l_{0}-1, \ldots, l ; \quad k=0, \ldots, n-1\right)
$$

and let the inequality

$$
\begin{gathered}
f_{0}\left(t, h\left(\tau_{10}(t)\right) x_{10}, \ldots, h^{(n-1)}\left(\tau_{1 n}(t)\right) x_{1 n-1}, \ldots,\right. \\
\left.h\left(\tau_{l 0}(t)\right) x_{l 0}, \ldots, h^{(n-1)}\left(\tau_{l n-1}(t)\right) x_{l n-1}\right) \cdot \operatorname{sgn}\left(x_{l_{0}} n-1\right) \leq \\
\leq \sum_{k=0}^{n-1} \sum_{i=1}^{l_{0}} p_{i k}\left(t, \sum_{j=0}^{n-1} \sum_{i=l_{0}+1}^{l}\left\|x_{i j}\right\|\right)\left|x_{i k}\right|+q\left(t, \sum_{j=0}^{n-1} \sum_{i=l_{0}+1}^{l}\left\|x_{i j}\right\|\right)
\end{gathered}
$$

be fulfilled on $] a, b] \times \mathbb{R}^{l m n}$, where the functions $p_{i k}:[a, b] \times[0,+\infty[\rightarrow[0,+\infty[(i=$ $\left.1, \ldots, l_{0} ; k=0, \ldots, n-1\right), q:[a, b] \times[0,+\infty[\rightarrow[0,+\infty[$ are summable with respect to the first argument and continuous and nondecreasing with respect to the second argument. Let furthermore

$$
\limsup _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \sum_{k=0}^{n-1} \sum_{i=1}^{l_{0}} \int_{a}^{t} p_{i k}(s, \rho) d s\right)<1, \quad \lim _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \int_{a}^{t} q(s, \rho) d s\right)=0
$$

for some positive constant ρ. Then problem (12), (2) is globally solvable.
Remark 1. Under the conditions of the above-mentioned propositions the right sides of differential equations may have singularities of arbitrary orders. Indeed, as an example let us consider on the interval $[a, b]$ the scalar differential equation

$$
\begin{align*}
u^{(n)}(t) & =\sum_{k=0}^{n-1}\left[\frac{\alpha_{k}}{t^{(\lambda-k) \mu_{k}+n-\lambda}} u^{(k)}\left(t^{\mu_{k}}\right)+\frac{\beta_{k}}{t^{(\lambda-k) \mu_{k} \gamma_{k}+n-k}}\left|u^{(k)}\left(t^{\mu_{k}}\right)\right|^{\gamma_{k}}\right]- \\
& -\sum_{k=1}^{k_{0}} g_{k}\left(t, u(t), \ldots, u^{(n-1)}(t)\right) u^{(n-1)}(t)+c t^{\lambda_{0}-n} \tag{13}
\end{align*}
$$

with the initial conditions

$$
\begin{equation*}
\lim _{t \rightarrow a} \frac{u^{(k)}(t)}{t^{\lambda-k}}=0 \quad(k=0, \ldots, n-1) \tag{14}
\end{equation*}
$$

where $b \in] 0,1\left[, \alpha_{k}\right.$ and $\left.\left.\beta_{k} \in \mathbb{R}, \mu_{k}>1, \gamma_{k}>1, c \in \mathbb{R}, \lambda_{0}>\lambda, g_{k}:\right] 0, b\right] \times \mathbb{R}^{n} \rightarrow[0,+\infty[$ are continuous functions. By Corollary 2, for the global solvability of problem (13), (14) it is sufficient that

$$
\sum_{k=0}^{n-1} \frac{\left|\alpha_{k}\right|}{(\lambda-k) \cdots(\lambda-n+1)}<1
$$

Remark 2. There exists an example which shows that condition (4) in Theorem 1 is optimal and it cannot be replaced by the condition

$$
\limsup _{t \rightarrow a}\left(\frac{1}{h^{(n-1)}(t)} \sum_{k=0}^{n-1} \int_{0}^{t} p_{k}(s) d s\right) \leq 1
$$

References

1. I. Kiguradze and Z. Sokhadze, On the Cauchy problem for evolution singular functional differential equations. (Russian) Differentsial'nye Uravneniya 33(1997), No. 1, 48-59.
2. I. Kiguradze and Z. Sokhadze, On the global solvability of the Cauchy problem for singular functional differential equations. Georgian Math. J. 4(1997), No. 4, 355-372.

Author's address:
A. Tsereteli Kutaisi State University 55, Queen Tamar St., Kutaisi 384000 Georgia

[^0]: 1991 Mathematics Subject Classification. 34K10.
 Key words and phrases. Evolution singular functional differential equation, initial value problem, local solvability, global solvability.

