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Consider the PfaÆan linear system
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with bounded ontinuously di�erentiable matries A
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It is well known [1, p. 34℄ that the ordinary linear system dx=dt = A(t)x, x 2 R

n

,

t 2 R

1

+

, with bounded pieewise ontinuous oeÆients has no more than n di�erent

harateristi exponents. Let �[x℄ = � 2 R

2

be a harateristi vetor [2 { 4℄ of a

nontrivial solution x: R
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+
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n
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L
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For the harateristi set �

x

=

S

�[x℄ of this solution whih is the most natural analog of

Lyapunov's harateristi exponent of a one variable vetor-funtion, the essential initial

problem about possible number of di�erent

�

harateristi sets �

x

of all nontrivial solu-

tions x of (1) remained open. Note also that the set fP

x

g of di�erent lower harateristi

sets P

x

=

S

p[x℄ of all nontrivial solutions x of (1) omposed of lower harateristi

vetors [5, 6℄ p[x℄ = p 2 R

2
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i

) < 0; 8" > 0; i = 1; 2;

is nonenumerable and, moreover, the set of the lower harateristi vetors

S

x6=0

P

x

of (1)

has a positive planar Lebesgue measure [5, 6℄.

It holds the following

Theorem. For any sequene C = f

m

g of pairwise nonollinear vetors there is

a omplete integrable two-dimensional system (1) with bounded in�nitely di�erentiable

oeÆients suh that all of its solutions x(t; 

m

),m 2 N , have pairwise di�erent harater-

isti sets �(m) with a positive linear Lebesgue measure, If x(t) is a solution of (1) linearly

independent with any of x(t; 

m

), 

m

2 C, then its harateristi set �

x

= Lim

m!1

�(m)

also has a positive measure.

1. Constrution of the required system. The preliminary notes. To an

enumerable set C � R

2

nf0g of the vetors 

m

= (

1

m
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m

) 2 R

2

assign the enumerable

set � = f�

m

g � R of di�erent numbers �

m

� �

2

m

=

1

m

2 2 (�1;1), the ratios of the
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omponents of the vetor 

m

. Without loss of generality it an be assumed that �rst

omponents 

1

m

of 

m

are nonzero.

In the losed �rst quarter R

2

+

of the plane R

2

we will build the required PfaÆan

system by onstruting its fundamental (lower-triangular and in�nitely di�erentiable)

system of solutions X(t) = ((x

ij
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+

.

On the interval (�1;1) de�ne two in�nitely di�erentiable funtions [7, p. 54℄
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where �1 < �

1

< �

2

< +1 are used for onstruting of elements of the matrix X(t).
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2. The onstrution of the diagonal elements of the fundamental system.
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Put the funtion x

1

: R

2

+

! [1;+1) be equal to x

2

: 1) on a losed setor

~

S � R
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+

,

whih is bounded by the bisetrix t

2

= t

1

and the positive oordinate semiaxis t

1

= 0;

2) on all setors S

k

, k � 0. In order to de�ne this funtion on the remaining setors s

k

,

k 2 N , we onsider the numbers r

k
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Note that by de�nition of the funtion e
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3. The onstrution of the o�-diagonal elements of the fundamental sys-

tem. Due to [5, 6℄, de�ne the o�-diagonal element x

21

(t) of a onstruted two-di-

mesional linear PfaÆan system with bounded in�nitely di�erentiable oeÆients and

two-dimensional time by the equality x
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The in�nite di�erentiability of the funtions x
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4. The boundedness of oeÆient matries

A

i

(t) =

�X(t)

�t

i

X

�1

(t) =

�

x

�1

1

(t)

�x

1

(t)

�t

i

0

x

2

(t)

x

1

(t)

�F (t)

�t

i

x

�1

2

(t)

�x

2

(t)

�t

i

�

; i = 1; 2

of the onstruted two-dimensional system (1) is proved by the following statement:
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It is evident, that the in�nite di�erentiability of the matries A

i

(t) in R

2

+

follows from

the same property of the nonsingular lower-triangular matrix X(t). Similarly, the in�nite

di�erentiability of the fundamental solutions system X(t) ensures the feasibility of the

omplete integrability onditions (2) for the onstruted two-dimensional system (1).

5. The onstrution of the harateristi set of solutions. First for the
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x

2
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Hene in view of the equality lim

k!1

r

�1

k

ln(1 + j�

k

j + j�

k+1

j) = 0, true by the hoie of

the numbers r
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, and the uniform in t 2 s

k
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it follows that the harateristi set �(m) of x(t; 

m

) oinides with the harateristi

set of the funtion �

m

(t), whih is equal to x

2

(t) outside the setor S

m

, m 2 N . By

nontrivial reasonings it established then, that the vetor �

2

(�) 2 R

2
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�

2

(�) = = '

0

m

(�), �

1

(�) = '

m
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0

m

(�) for any � 2 [";1="℄ is a harateristi vetor

of the funtion �

m

(t), where the funtion '

m

(�) = 2

p

�e

11

(�; q

m�1

; p

m

) is in�nitely

di�erentiable and onvex up.

Thus we have the representation �(m) = f�(�) 2 R

2

: � 2 [";1="℄g. The urve

�(m) oinides with the hyperbola � at �
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2 [

p

";
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m

� (q

m�1

+

p

m

)=2 we obtain the point �(�

m
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m
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)

�4

and their produt

�

1

(�

m

)�

2

(�

m

) < 1. Obviously, �(l) 6= �(m) 6= � for any l;m 2 N , l 6= m, and

Lim

m!1

�(m) = �. It is not di�ult to prove also the equality �

x

= � for a solution x(t)

linearly independent with any of x(t; 

m

), m 2 N , of the system (1).

The onstrution of the harateristi sets of all solutions of (1) is ompleted.

Remark. Obviously, from the onstruted two-dimensional system (1) it may be pos-

sible to obtain an n-dimensional ompletely integrable system (1) with bounded in�nitely

di�erentiable oeÆients in R

2

+

, whih have enumerable number of do�erent harater-

isti sets of the solutions.

Problem. It ought be to lari�ed, whether the set f�

x

g of di�erent harateristi

sets �

x

of solutions x : R

2

+

! R

n

of a PfaÆan system (1) is �nite or enumerable.
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