Mem. Differential Equations Math. Phys. 15(1998), 157-159

S. A. Mazanik

LAPPO-DANILEVSKIĬ SYSTEMS AND THEIR PLACE AMONG LINEAR SYSTEMS

(Reported on June, 29 1998)

Consider the linear system

$$Dx = A(t)x, \quad x \in \mathbb{R}^n \quad t > 0, \quad D = d/dt, \tag{1_A}$$

where A(t) is an $n \times n$ matrix of real-valued continuous and bounded functions of the real variable t on the non-negative half-line. We say that

i) A(t) is a right Lappo-Danilevskiĭ matrix $(A \in LD_r(s))$ if there exists $s, s \ge 0$, such that for all $t \ge s$

$$A(t)\int_{s}^{t}A(u)du = \int_{s}^{t}A(u)duA(t);$$
(2)

ii) A(t) is a left Lappo-Danilevskiĭ matrix $(A \in LD_l(s))$ if there exists s, s > 0, such that (2) is fulfilled for all $0 \le t \le s$;

iii) A(t) is a bilateral Lappo-Danilevskiĭ matrix $(A \in LD_b(s))$ if there exists $s, s \ge 0$, such that (2) is fulfilled for all $t \ge 0$.

The corresponding systems (1_A) are called right, left or bilateral Lappo-Danilevskiĭ systems (cf. [1, p. 117]). In this paper we present some results on the distribution of the Lappo-Danilevskiĭ systems among linear systems.

Let $\rho(A, B) = \sup_{t \ge 0} ||A(t) - B(t)||$, where ||.|| be an arbitrary matrix norm, and let $LD_r = \bigcup_{s \ge 0} LD_r(s), \ LD_l = \bigcup_{s \ge 0} LD_l(s), \ LD_b = \bigcup_{s \ge 0} LD_b(s)$. Let, for simplicity, n = 2.

Theorem 1. Among linear differential systems there is a linear system (1_A) such that for some $\varepsilon > 0$ the system (1_{A+Q}) is neither a bilateral nor a right Lappo-Danilevskii system for any matrix Q such that $\rho(A, A+Q) \leq \varepsilon$.

Theorem 2. Among linear differential systems there is a linear system (1_A) such that for any s > 0 there exists $\varepsilon > 0$ such that the matrix $A + Q \notin LD_l(s)$ for any matrix Q such that $\rho(A, A + Q) \leq \varepsilon$.

To prove these theorems it is sufficient to consider the matrix $A(t) = (a_{ij}(t)), i, j = 1, 2$, where $a_{11}(t) = \sin \ln (t+1), a_{12}(t) = 1, a_{21}(t) = \exp (-t), a_{22}(t) = \cos \ln (t+1)$. (Let the symbol [.,.] be used to indicate the Lie brackets, and let $[.,.]_{ij}$ be (i, j)-element of the matrix $[\cdot]$.) We have

$$\begin{split} [A(t) + Q(t), \int_{s}^{t} (A(u) + Q(u))du] &= [A(t), \int_{s}^{t} A(u)du] + [A(t), \int_{s}^{t} Q(u)du] + \\ &+ [Q(t), \int_{s}^{t} A(u)du] + [Q(t), \int_{s}^{t} Q(u)du]. \end{split}$$

¹⁹⁹¹ Mathematics Subject Classification. 34A30.

Key words and phrases. Linear differential systems, Lappo-Danilevskiĭ systems.

It is easy to verify that if $\rho(A, A+Q) \leq \varepsilon$, then for all $t \geq 0$, $s \geq 0$, and for all sufficiently small ε we have:

$$\begin{split} &|[A(t), \int_{s}^{t} Q(u)du]_{11}| \leq 4\varepsilon |t-s|, \quad |[A(t), \int_{s}^{t} Q(u)du]_{12}| \leq 4\varepsilon |t-s|, \\ &|[Q(t), \int_{s}^{t} A(u)du]_{11}| \leq 4\varepsilon |t-s|, \quad |[Q(t), \int_{s}^{t} A(u)du]_{12}| \leq 4\varepsilon |t-s|, \\ &|[Q(t), \int_{s}^{t} Q(u)du]_{11}| \leq 4\varepsilon |t-s|, \quad |[Q(t), \int_{s}^{t} Q(u)du]_{12}| \leq 4\varepsilon |t-s|. \end{split}$$

Therefore, $\forall t > 0, s > 0$ we have

$$F_{12}(t,s) = |[A(t) + Q(t), \int_{s}^{t} (A(u) + Q(u))du]_{12}| \ge |[A(t), \int_{s}^{t} A(u)du]_{12}| - 12\varepsilon|t-s|.$$

Set $t_k = \exp(\pi/2 + 2k\pi) - 1$, $k \in \mathbb{N}$. It follows that $F_{12}(t_k, s) \ge |t_k - s - (s + 1)\cos(s + 1)| - 12\varepsilon|t_k - s|$. It is easy to see that for sufficiently large k we have $F_{12}(t_k, s) > 0$, so $F_{12}(t, s) \neq 0$. Thus $A + Q \notin LD_r$ and $A + Q \notin LD_b$.

Similarly one can show that

$$F_{11}(t,s) = |[A(t) + Q(t), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(t), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(t), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(t), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(t), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(t), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(t), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \ge C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}| \le C_{11}(t,s) = |[A(t) + Q(u), \int_{s}^{t} (A(u) + Q(u))du]_{11}$$

$$\geq |\exp(-s) - \exp(-t) - (t-s)\exp(-t)| - 12\varepsilon|t-s|$$

Since $F_{11}(0,s) \ge |\exp(-s) - 1 + s| - 12\varepsilon s$ and $|\exp(-s) - 1 + s| > 0$ for all s > 0, we see that $F_{11}(t,s) \ne 0$, i.e., $A + Q \notin LD_l(s)$.

Theorem 3. For any Lappo-Danilevskii system (1_A) and for any ε there exists a system (1_B) such that $\rho(A, B) \leq \varepsilon$ but (1_B) is not a Lappo-Danilevskii system.

Indeed, if a_{12} and a_{21} are constant, then we can set $b_{12}(t) = a_{12}(t) + \alpha a_{12}(t) + \varphi(t)$, $b_{21}(t) = a_{21}(t) + \beta + \varphi(t)$, where φ is a continuous function, $0 \leq \alpha \leq \varepsilon$, $0 \leq \beta \leq \varepsilon$, and $b_{11}(t) = a_{11}(t)$, $b_{22}(t) = a_{22}(t)$. If we choose α and β such that $a_{12} - a_{21} + \alpha a_{12} - \beta \neq 0$ (the existence of such α and β is obvious), then one can show that $B \notin \{LD_b \bigcup LD_r \bigcup LD_l\}$. If $a_{21} \neq const$ or $a_{12} \neq const$, then we set $b_{12}(t) = \alpha + a_{12}(t)$, where $0 \leq \alpha \leq \varepsilon$, and $b_{ij}(t) = a_{ij}(t)$ for all $i, j = 1, 2, (i, j) \neq (1, 2)$, or $b_{21}(t) = \beta + a_{21}(t)$, where $0 \leq \beta \leq \varepsilon$, and $b_{ij}(t) = a_{ij}(t)$ for all $i, j = 1, 2, (i, j) \neq (2, 1)$, respectively. For both these cases one can show that $B \notin \{LD_b \bigcup LD_r \bigcup LD_l\}$.

Theorem 4. Let $A_i \in LD_{\alpha}(s_i)$, $i \in \mathbb{N}$, $\alpha \in \{b, r\}$, and $\rho(A, A_i) \to 0$ as $i \to +\infty$. If there exists M such that $s_i \leq M < +\infty$ for all $i \in \mathbb{N}$, then A is a bilateral or right Lappo-Danilevskiĭ matrix.

Indeed, since the sequence (s_i) is bounded, there exists a subsequence (s_{i_k}) such that $s_{i_k} \to s \ge 0$ as $i_k \to +\infty$. Without loss of generality, $s_i \to s$ as $i \to +\infty$. So for the corresponding values of t we have $[A_i(t), \int_s^t A_i(u)du] = [A_i(t), \int_{s_i}^t A_i(u)du] + [A_i(t), \int_s^{s_i} A_i(u)du] = [A_i(t), \int_s^{s_i} A_i(u)du]$. Since A_i is uniformly bounded on $[0, +\infty[$, we have $[A_i(t), \int_s^{s_i} A_i(u)du] \to 0$ as $i \to +\infty$. On the other hand, the sequence A_i is uniformly convergent on the non-negative half-line Therefore $[A_i(t), \int_s^t A_i(u)du] \to [A(t), \int_s^t A(u)du]$ as $i \to +\infty$. So for the corresponding values of t we have $[A(t), \int_s^t A(u)du] = 0$, i.e., A is a bilateral or right Lappo-Danilevskiĭ matrix. Similarly one can prove

Theorem 5. Let $A_i \in LD_l(s_i)$, $i \in \mathbb{N}$, and $\rho(A, A_i) \to 0$ as $i \to +\infty$. If there exist m, M such that $0 < m \leq s_i \leq M < +\infty$ for all $i \in \mathbb{N}$, then A is a left Lappo-Danilevskii matrix.

158

Theorem 6. There exists a sequence $A_i, A_i \in LD_r(s_i), i \in \mathbb{N}, \rho(A, A_{s_i}) \to 0$ and $s_i \to +\infty$ as $i \to +\infty$, such that $A \notin LD_r$.

To prove this statement, it is sufficient to consider a sequence $A_k(t) = a_{ijk}(t), i, j =$ 1,2, such that $a_{11k}(t) = a_{22k}(t) = g(t)with g$ continuous and bounded, and $a_{21k}(t) = a_{22k}(t) =$ $\exp(-t), a_{12k} = f_k(t),$ where

$$f_k = \begin{cases} (1 - \exp(-t)) \exp(-t), & 0 \le t \le k \\ (1 - \exp(-k)) \exp(-t), & t > k. \end{cases}$$

Theorem 7. There exists a sequence A_i , $A_i \in LD_l(s_i)$, $i \in \mathbb{N}$, $\rho(A, A_{s_i}) \to 0$ and $s_i \to +0$ as $i \to +\infty$, such that $A \notin LD_l$.

To prove this statement, it is sufficient to consider a sequence $A_k(t) = a_{ijk}(t), i, j =$ 1,2, such that $a_{11k}(t) = a_{22k}(t) = g(t)$ with g continuous and bounded, $a_{21k}(t) = a_{22k}(t)$ $\exp(-t), a_{12k} = f_k(t),$ where

$$f_k = \begin{cases} \exp(-k^{-1} - t)), & 0 \le t \le k^{-1}, \\ \exp(-2t), & t > k^{-1}. \end{cases}$$

Theorem 8. Let $A_i \in LD_b(s_i)$, $i \in \mathbb{N}$. If $\rho(A, A_{s_i}) \to 0$ as $i \to +\infty$, then A is a bilateral Lappo-Danilevskiĭ matrix.

Theorem 9. Let $A_i \in LD_l(s_i)$, $i \in \mathbb{N}$. If there exists m such that $0 < m < s_i$ for all $i \in \mathbb{N}$, then A is a left Lappo-Danilevskii matrix.

The proofs of Theorem 8 and Theorem 9 are based on the following lemmas.

Lemma 1. Let continuous scalar functions f and g satisfy $f(t) \int_{s}^{t} g(u)du = g(t) \times \int_{s}^{t} f(u)du$ for some $s \ge 0$ and for all $t, t \in]b, c[\subset [0, +\infty[. If \int_{s}^{t} g(u)du \ne 0 \text{ for all } t, t \in]b, c[$, then there exists a number λ such that $\int_{s}^{t} f(u)du = \lambda \int_{s}^{t} g(u)du$ and $f(t) = \lambda g(t)$ $\forall \ t \in [b, \ c].$

Let $Z(g;s) = \{t \ge 0 \mid \int_s^t g(u)du = 0\}$, $N(g;s) = \{t \in Z(g;s) \mid g(t) \ne 0\}$. Denote by R(g;s) the subset of $Z(g;s) \setminus N(g;s)$ with the following property: $\forall t_0 \in R(g;s) \forall \delta > 0$ $\exists t_{\delta}, t_0 < t_{\delta} \leq t_0 + \delta, t_{\delta} \notin Z(g;s)$. Denote by L(g;s) the subset of $Z(g;s) \setminus N(g;s)$ with the following property: $\forall t_0 \in L(g;s) \ \forall \delta, \ 0 < \delta \leq t_0, \ \exists t_\delta, \ t_0 - \delta \leq t_\delta < t_0, \ t_\delta \notin Z(g;s).$ Lemma 2. Let continuous scalar functions f and g satisfy $f(t) \int_s^t g(u) du = g(t) \times I(t) \int_s^t g(u) du = g(t) \times I(t) \int_s^t g(u) du = g(t) \times I(t) \int_s^t g(u) du = g(t) + I(t) + I(t$

 $\int_{s}^{t} f(u) du, \text{ for some } s \geq 0 \text{ and for all } t \geq 0. \text{ Then } N(g;s) \bigcup R(g;s) \bigcup L(g;s) \subset Z(f;s).$ **Lemma 3.** Let a sequence of continuous scalar functions (g_i) uniformly over $[0, +\infty)$ converge to a function g. Then for any $\sigma \in]0, +\infty[, g(\sigma) \neq 0, \text{ there exist positive } \varepsilon \text{ and } \varepsilon$ ν such that for all $i \geq \nu$ the inequalities $g_i(t) \neq 0$, $g(t) \neq 0$ hold for all $t \in [\sigma - \varepsilon, \sigma + \varepsilon]$.

Lemma 4. Let sequences of continuous scalar functions (g_i) (f_i) uniformly over $[0, +\infty[$ converge to functions g and f respectively. If for any $i \in \mathbb{N}$ there is s_i such that for all $t \geq 0$ we have $f_i(t) \int_{s_i}^t g_i(u) du = g_i(t) \int_{s_i}^t f_i(u) du$, then there exists $s \geq 0$ such that the equality $f(t) \int_s^t g(u) du = g(t) \int_s^t f(u) du$ holds for all $t \ge 0$.

References

1. B. P. DEMIDOVICH, Lectures on mathematical stability theory. (Russian) Nauka, Moscow, 1967.

Author's address: Department of Higher Mathematics Belarussian State University 4, F.Skorina Ave., Minsk 220050 Belarus