S. A. Mazanik

LAPPO-DANILEVSKIĬ SYSTEMS AND THEIR PLACE AMONG LINEAR SYSTEMS

(Reported on June, 29 1998)

Consider the linear system

$$
\begin{equation*}
D x=A(t) x, \quad x \in \mathbb{R}^{n} \quad t \geq 0, \quad D=d / d t \tag{A}
\end{equation*}
$$

where $A(t)$ is an $n \times n$ matrix of real-valued continuous and bounded functions of the real variable t on the non-negative half-line. We say that
i) $A(t)$ is a right Lappo-Danilevskiĭ matrix $\left(A \in L D_{r}(s)\right)$ if there exists $s, s \geq 0$, such that for all $t \geq s$

$$
\begin{equation*}
A(t) \int_{s}^{t} A(u) d u=\int_{s}^{t} A(u) d u A(t) \tag{2}
\end{equation*}
$$

ii) $A(t)$ is a left Lappo-Danilevskiĭ matrix $\left(A \in L D_{l}(s)\right)$ if there exists $s, s>0$, such that (2) is fulfilled for all $0 \leq t \leq s$;
iii) $A(t)$ is a bilateral Lappo-Danilevskiı̆ matrix $\left(A \in L D_{b}(s)\right)$ if there exists $s, s \geq 0$, such that (2) is fulfilled for all $t \geq 0$.

The corresponding systems $\left(1_{A}\right)$ are called right, left or bilateral Lappo-Danilevskiĭ systems (cf. [1, p. 117]). In this paper we present some results on the distribution of the Lappo-Danilevskiĭ systems among linear systems.

Let $\rho(A, B)=\sup _{t \geq 0}\|A(t)-B(t)\|$, where $\|\cdot\|$ be an arbitrary matrix norm, and let $L D_{r}=\bigcup_{s \geq 0} L D_{r}(s), L D_{l}=\bigcup_{s>0} L D_{l}(s), L D_{b}=\bigcup_{s \geq 0} L D_{b}(s)$. Let, for simplicity, $n=2$.

Theorem 1. Among linear differential systems there is a linear system $\left(1_{A}\right)$ such that for some $\varepsilon>0$ the system $\left(1_{A+Q}\right)$ is neither a bilateral nor a right Lappo-Danilevskiŭ system for any matrix Q such that $\rho(A, A+Q) \leq \varepsilon$.

Theorem 2. Among linear differential systems there is a linear system (1_{A}) such that for any $s>0$ there exists $\varepsilon>0$ such that the matrix $A+Q \notin L D_{l}(s)$ for any matrix Q such that $\rho(A, A+Q) \leq \varepsilon$.

To prove these theorems it is sufficient to consider the matrix $A(t)=\left(a_{i j}(t)\right), i, j=$ 1,2 , where $a_{11}(t)=\sin \ln (t+1), a_{12}(t)=1, a_{21}(t)=\exp (-t), a_{22}(t)=\cos \ln (t+1)$. (Let the symbol [.,.] be used to indicate the Lie brackets, and let $[., .]_{i j}$ be (i, j)-element of the matrix [•].) We have

$$
\begin{gathered}
{\left[A(t)+Q(t), \int_{s}^{t}(A(u)+Q(u)) d u\right]=\left[A(t), \int_{s}^{t} A(u) d u\right]+\left[A(t), \int_{s}^{t} Q(u) d u\right]+} \\
+\left[Q(t), \int_{s}^{t} A(u) d u\right]+\left[Q(t), \int_{s}^{t} Q(u) d u\right]
\end{gathered}
$$

Key words and phrases. Linear differential systems, Lappo-Danilevskiĭ systems.

It is easy to verify that if $\rho(A, A+Q) \leq \varepsilon$, then for all $t \geq 0, s \geq 0$, and for all sufficiently small ε we have:

$$
\begin{array}{ll}
\left|\left[A(t), \int_{s}^{t} Q(u) d u\right]_{11}\right| \leq 4 \varepsilon|t-s|, & \left|\left[A(t), \int_{s}^{t} Q(u) d u\right]_{12}\right| \leq 4 \varepsilon|t-s|, \\
\left|\left[Q(t), \int_{s}^{t} A(u) d u\right]_{11}\right| \leq 4 \varepsilon|t-s|, & \left|\left[Q(t), \int_{s}^{t} A(u) d u\right]_{12}\right| \leq 4 \varepsilon|t-s|, \\
\left|\left[Q(t), \int_{s}^{t} Q(u) d u\right]_{11}\right| \leq 4 \varepsilon|t-s|, & \left|\left[Q(t), \int_{s}^{t} Q(u) d u\right]_{12}\right| \leq 4 \varepsilon|t-s| .
\end{array}
$$

Therefore, $\forall t \geq 0, s \geq 0$ we have

$$
F_{12}(t, s)=\left|\left[A(t)+Q(t), \int_{s}^{t}(A(u)+Q(u)) d u\right]_{12}\right| \geq\left|\left[A(t), \int_{s}^{t} A(u) d u\right]_{12}\right|-12 \varepsilon|t-s|
$$

Set $t_{k}=\exp (\pi / 2+2 k \pi)-1, k \in \mathbb{N}$. It follows that $F_{12}\left(t_{k}, s\right) \geq \mid t_{k}-s-(s+$ 1) $\cos \ln (s+1)|-12 \varepsilon| t_{k}-s \mid$. It is easy to see that for sufficiently large k we have $F_{12}\left(t_{k}, s\right)>0$, so $F_{12}(t, s) \not \equiv 0$. Thus $A+Q \notin L D_{r}$ and $A+Q \notin L D_{b}$.

Similarly one can show that

$$
\begin{aligned}
& F_{11}(t, s)=\left|\left[A(t)+Q(t), \int_{s}^{t}(A(u)+Q(u)) d u\right]_{11}\right| \geq \\
\geq & |\exp (-s)-\exp (-t)-(t-s) \exp (-t)|-12 \varepsilon|t-s|
\end{aligned}
$$

Since $F_{11}(0, s) \geq|\exp (-s)-1+s|-12 \varepsilon s$ and $|\exp (-s)-1+s|>0$ for all $s>0$, we see that $F_{11}(t, s) \not \equiv 0$, i.e., $A+Q \notin L D_{l}(s)$.

Theorem 3. For any Lappo-Danilevskiı̆ system (1 A_{A})and for any ε there exists a system $\left(1_{B}\right)$ such that $\rho(A, B) \leq \varepsilon$ but $\left(1_{B}\right)$ is not a Lappo-Danilevskiı̆ system.

Indeed, if a_{12} and a_{21} are constant, then we can set $b_{12}(t)=a_{12}(t)+\alpha a_{12}(t)+\varphi(t)$, $b_{21}(t)=a_{21}(t)+\beta+\varphi(t)$, where φ is a continuous function, $0 \leq \alpha \leq \varepsilon, 0 \leq \beta \leq$ ε, and $b_{11}(t)=a_{11}(t), b_{22}(t)=a_{22}(t)$. If we choose α and β such that $a_{12}-a_{21}+$ $\alpha a_{12}-\beta \neq 0$ (the existence of such α and β is obvious), then one can show that $B \notin$ $\left\{L D_{b} \bigcup L D_{r} \bigcup L D_{l}\right\}$. If $a_{21} \not \equiv$ const or $a_{12} \not \equiv$ const, then we set $b_{12}(t)=\alpha+a_{12}(t)$, where $0 \leq \alpha \leq \varepsilon$, and $b_{i j}(t)=a_{i j}(t)$ for all $i, j=1,2,(i, j) \neq(1,2)$, or $b_{21}(t)=\beta+a_{21}(t)$, where $0 \leq \beta \leq \varepsilon$, and $b_{i j}(t)=a_{i j}(t)$ for all $i, j=1,2,(i, j) \neq(2,1)$, respectively. For both these cases one can show that $B \notin\left\{L D_{b} \bigcup L D_{r} \bigcup L D_{l}\right\}$.

Theorem 4. Let $A_{i} \in L D_{\alpha}\left(s_{i}\right), i \in \mathbb{N}, \alpha \in\{b, r\}$, and $\rho\left(A, A_{i}\right) \rightarrow 0$ as $i \rightarrow+\infty$. If there exists M such that $s_{i} \leq M<+\infty$ for all $i \in \mathbb{N}$, then A is a bilateral or right Lappo-Danilevski乞̆ matrix.

Indeed, since the sequence $\left(s_{i}\right)$ is bounded, there exists a subsequence ($s_{i_{k}}$) such that $s_{i_{k}} \rightarrow s \geq 0$ as $i_{k} \rightarrow+\infty$. Without loss of generality, $s_{i} \rightarrow s$ as $i \rightarrow+\infty$. So for the corresponding values of t we have $\left[A_{i}(t), \int_{s}^{t} A_{i}(u) d u\right]=\left[A_{i}(t), \int_{s_{i}}^{t} A_{i}(u) d u\right]+$ $\left[A_{i}(t), \int_{s}^{s_{i}} A_{i}(u) d u\right]=\left[A_{i}(t), \int_{s}^{s_{i}} A_{i}(u) d u\right]$. Since A_{i} is uniformly bounded on $[0,+\infty[$, we have $\left[A_{i}(t), \int_{s}^{s_{i}} A_{i}(u) d u\right] \rightarrow 0$ as $i \rightarrow+\infty$. On the other hand, the sequence A_{i} is uniformly convergent on the non-negative half-line Therefore $\left[A_{i}(t), \int_{s}^{t} A_{i}(u) d u\right] \rightarrow$ $\left[A(t), \int_{s}^{t} A(u) d u\right]$ as $i \rightarrow+\infty$. So for the corresponding values of t we have $[A(t)$, $\left.\int_{s}^{t} A(u) d u\right] \equiv 0$, i.e., A is a bilateral or right Lappo-Danilevskiĭ matrix.

Similarly one can prove
Theorem 5. Let $A_{i} \in L D_{l}\left(s_{i}\right), i \in \mathbb{N}$, and $\rho\left(A, A_{i}\right) \rightarrow 0$ as $i \rightarrow+\infty$. If there exist m, M such that $0<m \leq s_{i} \leq M<+\infty$ for all $i \in \mathbb{N}$, then A is a left Lappo-Danilevski冗 matrix.

Theorem 6. There exists a sequence $A_{i}, A_{i} \in L D_{r}\left(s_{i}\right), i \in \mathbb{N}, \rho\left(A, A_{s_{i}}\right) \rightarrow 0$ and $s_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$, such that $A \notin L D_{r}$.

To prove this statement, it is sufficient to consider a sequence $A_{k}(t)=a_{i j k}(t), i, j=$ 1,2 , such that $a_{11 k}(t)=a_{22 k}(t)=g(t)$ with g continuous and bounded, and $a_{21 k}(t)=$ $\exp (-t), a_{12 k}=f_{k}(t)$, where

$$
f_{k}= \begin{cases}(1-\exp (-t)) \exp (-t), & 0 \leq t \leq k \\ (1-\exp (-k)) \exp (-t), & t>k\end{cases}
$$

Theorem 7. There exists a sequence $A_{i}, A_{i} \in L D_{l}\left(s_{i}\right), i \in \mathbb{N}, \rho\left(A, A_{s_{i}}\right) \rightarrow 0$ and $s_{i} \rightarrow+0$ as $i \rightarrow+\infty$, such that $A \notin L D_{l}$.

To prove this statement, it is sufficient to consider a sequence $A_{k}(t)=a_{i j k}(t), i, j=$ 1,2 , such that $a_{11 k}(t)=a_{22 k}(t)=g(t)$ with g continuous and bounded, $a_{21 k}(t)=$ $\exp (-t), a_{12 k}=f_{k}(t)$, where

$$
f_{k}= \begin{cases}\left.\exp \left(-k^{-1}-t\right)\right), & 0 \leq t \leq k^{-1} \\ \exp (-2 t), & t>k^{-1}\end{cases}
$$

Theorem 8. Let $A_{i} \in L D_{b}\left(s_{i}\right), i \in \mathbb{N}$. If $\rho\left(A, A_{s_{i}}\right) \rightarrow 0$ as $i \rightarrow+\infty$, then A is a bilateral Lappo-Danilevskǐ̆ matrix.

Theorem 9. Let $A_{i} \in L D_{l}\left(s_{i}\right), i \in \mathbb{N}$. If there exists m such that $0<m \leq s_{i}$ for all $i \in \mathbb{N}$, then A is a left Lappo-Danilevski九̆ matrix.

The proofs of Theorem 8 and Theorem 9 are based on the following lemmas.
Lemma 1. Let continuous scalar functions f and g satisfy $f(t) \int_{s}^{t} g(u) d u=g(t) \times$ $\int_{s}^{t} f(u) d u$ for some $s \geq 0$ and for all $\left.t, t \in\right] b, c\left[\subset\left[0,+\infty\left[\right.\right.\right.$. If $\int_{s}^{t} g(u) d u \neq 0$ for all $t, t \in$ $] b, c\left[\right.$, then there exists a number λ such that $\int_{s}^{t} f(u) d u=\lambda \int_{s}^{t} g(u) d u$ and $f(t)=\lambda g(t)$ $\forall t \in[b, c]$.

Let $Z(g ; s)=\left\{t \geq 0 \mid \int_{s}^{t} g(u) d u=0\right\}, N(g ; s)=\{t \in Z(g ; s) \mid g(t) \neq 0\}$. Denote by $R(g ; s)$ the subset of $Z(g ; s) \backslash N(g ; s)$ with the following property: $\forall t_{0} \in R(g ; s) \forall \delta>0$ $\exists t_{\delta}, t_{0}<t_{\delta} \leq t_{0}+\delta, t_{\delta} \notin Z(g ; s)$. Denote by $L(g ; s)$ the subset of $Z(g ; s) \backslash N(g ; s)$ with the following property: $\forall t_{0} \in L(g ; s) \forall \delta, 0<\delta \leq t_{0}, \exists t_{\delta}, t_{0}-\delta \leq t_{\delta}<t_{0}, t_{\delta} \notin Z(g ; s)$.

Lemma 2. Let continuous scalar functions f and g satisfy $f(t) \int_{s}^{t} g(u) d u=g(t) \times$ $\int_{s}^{t} f(u) d u$, for some $s \geq 0$ and for all $t \geq 0$. Then $N(g ; s) \bigcup R(g ; s) \bigcup L(g ; s) \subset Z(f ; s)$.

Lemma 3. Let a sequence of continuous scalar functions $\left(g_{i}\right)$ uniformly over $[0,+\infty[$ converge to a function g. Then for any $\sigma \in] 0,+\infty[, g(\sigma) \neq 0$, there exist positive ε and ν such that for all $i \geq \nu$ the inequalities $g_{i}(t) \neq 0, g(t) \neq 0$ hold for all $t \in[\sigma-\varepsilon, \sigma+\varepsilon]$.

Lemma 4. Let sequences of continuous scalar functions $\left(g_{i}\right)\left(f_{i}\right)$ uniformly over $\left[0,+\infty\left[\right.\right.$ converge to functions g and f respectively. If for any $i \in \mathbb{N}$ there is s_{i} such that for all $t \geq 0$ we have $f_{i}(t) \int_{s_{i}}^{t} g_{i}(u) d u=g_{i}(t) \int_{s_{i}}^{t} f_{i}(u) d u$, then there exists $s \geq 0$ such that the equality $f(t) \int_{s}^{t} g(u) d u=g(t) \int_{s}^{t} f(u) d u$ holds for all $t \geq 0$.

References

1. B. P. Demidovich, Lectures on mathematical stability theory. (Russian) Nauka, Moscow, 1967.

Author's address:
Department of Higher Mathematics
Belarussian State University
4, F.Skorina Ave., Minsk 220050
Belarus

