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Abstract. The main purpose of the paper is to obtain complete asymp-

totic expansion of solutions to boundary value problems of elasticity of

Dirichlet, Neumann and mixed type for an n-dimensional (n � 2) com-

posed body in R

n

. The body is composed of two anisotropic bodies with

smooth boundaries stick together along parts of their boundaries. Therefore

the body has a closed smooth cuspidal edge, along which the Dirichlet and

Neumann conditions in the mixed problem collide. Asymptotics of solutions

are obtained near the cuspidal edge (L

p

{theory), with precise description

of exponents and of logarithmic terms of the expansion.
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reziume. naSromSi SesCavlilia n-ganzomilebiani (n � 2) drekado-

bis erTgvarovani anizotropuli Teoriis dirixles, neimanisa da Sereuli

sasazGvro amocanebis amonaxsnebis sruli asimptotika haketili ukuqce-

vis Cibos midamoSi. ukuqcevis Cibos Sesabamisi orCaxnaga kuTxe 2�-s

tolia. gamoTvlilia amocanis amonaxsnis asimptotikis mTavari Cevris

koeficienti Sesabamisi fsevdodiferencialuri gantolebis amonaxsnis

asimptotikis pirveli koeficientis saSualebiT.
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Introduction

In the present paper, we study asymptotics of solutions of the classical

(Dirichlet, Neumann and mixed) boundary value problems of anisotropic

elasticity in an n-dimensional domain 
 � R

n

composed of two subdomains


 = 


1

[ 


2

with smooth boundaries @


1

and @


2

. S

0

= @


1

\ @


2

is

assumed to be a smooth surface. Thus, the domain 
 has a smooth, closed

cuspidal edge with the angle 2� viewed from 
. For a mixed problem,

the cuspidal edge is the place where the Dirichlet and Neumann conditions

collide. In the case of the plane n = 2 the cuspidal edge degenerates into

cuspidal points, the so-called interior peaks (any �nite number of interior

peaks can be treated).

Interior and exterior Dirichlet and Neumann boundary value problems for

the Laplace equation as well as for the Lam�e equation of isotropic elasticity

in plane domains (n = 2) were studied by V. Maz'ya and A. Solov'yev [22{

25]. They obtained conditions for unique solvability (which is non-trivial

for exterior peaks with the angle  = 0) and established asymptotics of

solutions near these peaks.

In [6] the existence and uniqueness of solutions of the above-mentioned

problems were investigated in the Bessel potential and Besov spaces on the

basis of the potential method and the Wiener-Hopf method for pseudo-

di�erential equations on open manifolds. The obtained results enable one

to establish a priori smoothness of solutions which is restricted due to the

presence of a cuspidal edge even for the Dirichlet and Neumann problem,

although the solutions are C

�

-smooth, where � <

1

2

for the Dirichlet and

Neumann problems, and � <

1

4

for the mixed problem.

G. Eskin and J. Bennish applied the Wiener-Hopf method and obtained

complete asymptotic expansion of solutions for elliptic pseudodi�erential

equation on a manifold with a smooth boundary (the L

2

-theory) (see [1],

[15]). In [7] we have developed this techniques and obtained more precise

asymptotics (the L

p

-theory). Particular results in this direction can be

found in [13] and [14].

Having in hand asymptotics of solutions for the boundary pseudodiffe-

rential equation on the boundary surface (such as a crack surface or the

interface between two anisotropic materials), we still need spatial asymp-

totics of solutions for the original boundary value problem which is rep-

resentable, as usual, by layer potentials with densities being solutions of

boundary pseudodi�erential equations and thus having de�nite asymptotic

expansion near crack fronts or other geometric peculiarities of boundary

manifolds. These investigations were carried out in [8] in the most gen-

eral form: spatial asymptotics was established for functions representable

by layer potentials with prescribed asymptotics of density; exact formulae

were found relating the coe�cients of spatial asymptotics and asymptotics

on the corresponding boundary surface. These formulae simplify substan-

tially the calculation of coe�cients of spatial asymptotics and allow one to
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express them by coe�cients of asymptotics on the surface. The latter can

be found from the boundary pseudodi�erential equation with less dimension

than that of the corresponding boundary value problem.

The obtained results can be successfully applied in calculating stress

intensity factors (SIF) which play an important role in crack propagation

criteria.

In the present paper we demonstrate the results obtained in [7] and [8]

for the above-mentioned boundary value problems of elasticity and write

a complete asymptotic expansion of solutions near the cuspidal edge. For-

mulae relating to the SIF-coe�cients (coe�cients of the leading term of

asymptotics) of spatial and surface asymptotics are written out.

For di�erent applications of the results dealing with asymptotics from [7]

and [8], the reader can be referred to [13], [11] and [4], [5].

A quite di�erent approach to the problem of asymptotics, based on the

Mellin transform as well as on the calculus of boundary value problems (a

direct approach to spatial asymptotics) has been initiated by a pilot paper

of V. Kondrat'yev [18]. This method was developed in many outstanding

papers and monographs (see, e.g., [9], [10], [17], [19], [21], [27], [28]) and

encompass boundary value problems in domains with sophisticated singu-

larities occuring on the boundary (edges, wedges, conical singularities and

their arbitrary combinations). Although the Wiener-Hopf method cannot

(so far) be applied to the above-mentioned cases with singularities, in crack

and mixed type problems it demonstrates more precise asymptotics and

provides us with formulae for the exponents and coe�cients.

1. Formulation of the Problems

Let a domain 
 � R

n

, n � 2, be either �nite or in�nite but have a

compact boundary S = @
, and let there exist a surface S

0

of the class C

1

of dimension n�1 which divides the domain 
 into two subdomains 


1

and




2

with C

1

-boundaries @


1

and @


2

(


1

\


2

= ?, 


1

\


2

= S

0

). Then

@S

0

, the boundary of the surface S

0

(@S

0

� @
), represents an (n � 2)-

dimensional closed cuspidal edge and @


1

= S

1

[ S

0

, @


2

= S

2

[ S

0

.

Assume 
 is �lled with anisotropic homogeneous elastic material.

The basic static equations of elasticity for anisotropic homogeneous elas-

tic media written in terms of displacement components are of the form

A(D

x

)u+ F = 0 in 
 (1.1)

([20], [16], [3]), where u = (u

1

; : : : ; u

n

) is the displacement vector, F =

(F

1

; : : : ; F

n

) is the volume force acting on 
 and A(D

x

) is an n� n-matrix

di�erential operator

A(D

x

) = k

n

X

i;l=1

a

ijlk

@

i

@

l

k

n�n

; @

l

:=

@

@x

l

; D

l

:= �i@

l

; (1.2)

a

ijlk

being elastic constants satisfying a

ijlk

= a

lkij

= a

ijkl

:
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The quadratic form

n

X

i;j;l;k=1

a

ijlk

�

ij

�

lk

; �

ij

= �

ji

; (1.3)

is assumed to be positive{de�nite with respect to the variables �

ij

.

We introduce the di�erential stress operator

T (D

z

; n(z)) = kT

jk

(D

z

; n(z))k

n�n

; T

jk

(D

z

; n(z)) =

n

X

i;l=1

a

ijlk

n

i

(z)@

l

;

where n(z) = (n

1

(z); : : : ; n

n

(z)) is the unit normal vector to the manifold

S

1

[S

2

at the point z 2 S

1

[S

2

, exterior to the domain 
. For convenience

in the sequel we will use the short notation T = T (D

z

; n(z)):

From the symmetry of the coe�cients a

ijlk

and the positive de�niteness

of the quadratic form (1.1) it follows (the operator A(D

x

) is a strongly

elliptic formally self-adjoint di�erential operator [16]) that the symbol

A(�) =







n

X

i;l=1

a

ijlk

�

i

�

l







n�n

; � = (�

1

; : : : ; �

n

) 2 R

n

is positive de�nite, i.e. the inequality

�

A(�)�; �

�

=

�

A(�)�; �

�

� P

0

j�j

2

j�j

2

for all � 2 R

n

and � 2 C

n

holds with P

0

= const > 0 depending only on the elastic constants.

For the spaces we follow the notation suggested in [29] and in the case

of an in�nite domain 
 we will invoke the spaces H

s

p;loc

(
), B

s

p;t;loc

(
),

H

s

p;comp

(
), B

s

p;t;comp

(
).

Let u 2 W

1

p

(
) = H

1

p

(
) (W

1

p;loc

(
) = H

1

p;loc

(
)). Then r

i

u 2 W

1

p

(


i

)

(r

i

u 2 W

1

p;loc

(


i

)), where r

i

is the operator of restriction to 


i

; i =

1; 2. From the theorem on traces (see [29]) there follows that the trace

of the function 

i

u on @


i

exists and 

i

u 2 B

1=p

0

p;p

(@


i

), i = 1; 2, p

0

=

p=(p � 1). Let u 2 W

1

p;loc

(
) be such that A(D

x

)u 2 L

p;comp

(
) (if 
 is

compact, we simply ignore the subscripts \loc" and \comp"). Then the

trace 

i

fT (r

i

u)g

+

is correctly de�ned by the following Green formula (see

[12], [26])

Z




i

�

v

(i)

A(D

x

)(r

i

u) +E(r

i

u; v

(i)

)

�

dx =

D



i

T (r

i

u); 

i

v

(i)

E

@


i

for all v

(i)

2W

1

p

0

(


i

)

�

v

(i)

2W

1

p

0

;comp

(


i

)

�

; i = 1; 2 ;

here

E(r

i

u; v

(i)

) =

n

X

m;j;l;k=1

a

mjkl

@

m

(r

i

u)

j

@

l

v

(i)

k

;
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the symbol h�; �i denotes the duality between the spaces B

�1=p

p;p

(@


i

),

B

1=p

p

0

;p

0

(@


i

) and

h ; 'i

@


i

=

Z

@


i

 ' dS for  ; ' 2 C

1

(@


i

); i = 1; 2:

If u 2 W

1

p;loc

(
) is a solution (in the sense of distributions) of (1.1)

with F 2 L

q;comp

(
), then A(D

x

)u 2 L

q;comp

(
), q �

np

n+p

. It is easy to

ascertain that the functions



S

i

u = �

i

f

i

(r

i

u)g on S

i

;



S

i

T u = �

i

f

i

T (r

i

u)g on S

i

; i = 1; 2 ;

where �

i

denotes the restriction from @


i

to S

i

; i = 1; 2, are all correctly

de�ned.

In the case of an in�nite domain 
, we require that a solution of (1.1)

satis�es the following condition

u(x) = o(1) for jxj ! 1 if n > 2;

u(x) = O(1) for jxj ! 1 if n = 2:

(1.4)

It is known (see [2]), that for any solution of (1.1) under condition (1.4) has

the following asymptotics at in�nity

@

�

u(x) =

�

O(jxj

2�n�j�j

) for jxj ! 1 if n > 2;

O(jxj

�j�j�1

) for jxj ! 1 if n = 2

with an arbitrary multi{index � 2 N

n

0

.

We will study the asymptotics of a function u 2W

1

p;loc

(
), which vanishes

at in�nity (see condition (1.4)) and solves one of the following boundary

value problems:

Dirichlet Problem:

�

A(D

x

)u = 0 in 
;



S

i

u = '

i

on S

i

;

where ' 2 B

1=p

0

p;p

(S

i

); i = 1; 2; 1 < p <1; p

0

:=

p

p� 1

.

Neumann Problem:

�

A(D

x

)u = 0 in 
;



S

i

T u =  

i

on S

i

;

where  

i

2 B

�1=p

p;p

(S

i

); i = 1; 2; 1 < p <1:

Mixed Problem:

8

<

:

A(D

x

)u = 0 in 
;



S

1

u = '

1

on S

1

,



S

2

T u = '

2

on S

2

,

where '

1

2 B

1=p

0

p;p

(S

1

); '

2

2 B

�1=p

p;p

(S

2

); 1 < p <1.
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2. Asymptotics of Solutions to the Dirichlet Boundary Value

Problem

The simple layer potential

V

(i)

(g)(x) =

Z

@


i

H(x� y)g(y)d

y

S; x 2 


i

; i = 1; 2;

where H(x) is the fundamental solution of (1.1), and the composition

(TV

(i)

)(g)(x) have the following traces on the surface



i

V

(i)

(g)(z) =

Z

@


i

H(z � y)g(y)d

y

S;



i

(TV

(i)

)(g)(z) = �

1

2

g(z) +

Z

@


i

T (@

z

; n(z))H(z � y)

�

g(y)d

y

S;

z 2 @


i

; i = 1; 2 :

Let us use the notation

V

(i)

�1

(g)(z) =

Z

@


i

H(z � y)g(y)d

y

S;

�

V

(i)

0

(g)(z) =

Z

@


i

T (@

z

; n(z))H(z � y)g(y)d

y

S; z 2 @


i

; i = 1; 2 ;

for the direct values of the corresponding potential operators.

In [6] a solution to the Dirichlet boundary value problem is represented

by the simple layer potential

r

i

u = V

(i)

g

i

in 


i

; i = 1; 2 :

Let �

(i)

0

2 B

1=p

0

p;p

(@


i

) be some �xed continuation of the function '

i

2

B

1=p

0

p;p

(S

i

) to @


i

= S

i

[ S

0

, i = 1; 2. Then any continuation �

(i)

of the

function '

i

to @


i

has the form �

(i)

= �

(i)

0

+ '

(i)

0

; where '

(i)

0

2

e

B

1=p

0

p;p

(S

0

),

i = 1; 2.

The Dirichlet boundary value problem can be reduced to the following

system of pseudodi�erential equations on the manifold with boundary S

0

:

(

'

(1)

0

� '

(2)

0

= g;

�

0

(�

1

2

I+

�

V

(1)

0

)(V

(1)

�1

)

�1

'

(1)

0

+�

0

(�

1

2

I+

�

V

(2)

0

)(V

(1)

�1

)

�1

'

(2)

0

=f;

(2.1)

where

g = �

0

�

(2)

0

� �

0

�

(1)

0

;

f = ��

0

�

�

1

2

I+

�

V

(2)

0

��

V

(2)

�1

�

�1

�

(2)

0

� �

0

�

�

1

2

I+

�

V

(1)

0

��

V

(1)

�1

�

�1

�

(1)

0

;
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here �

0

is the operator of restriction to S

0

and I is the identity.

For the system (2.1) with '

i

2 B

s

p;r

(S

i

), g 2 B

s

p;r

(S

0

), i = 1; 2, 1=p�1=2 <

s < 1=p+ 1=2 (in particular, for s = 1=p

0

, r = p) to be solvable we require

the compatibility condition

9�

(i)

0

2 B

s

p;r

(@


i

) i = 1; 2; : g 2

e

B

s

p;r

(S

0

) : (2.2)

Note that when 1=p�1 < s < 1=p, this condition is ful�lled automatically

(see [29, Theorem 2.10.3(c)]).

In the case 1=p < s < 1=p + 1 the compatibility condition acquires the

form



S

0

'

2

= 

S

0

'

1

:

In the case where s = 1=p the compatibility condition looks rather cum-

bersome (see [6, Remark 5.7]).

The system (2.1) is reduced to a pseudodi�erential equation on an open

manifold S

0

�

0

A'

(1)

0

= 	;

where

	 2 H

s�1

p

(S

0

) (B

s�1

p;r

(S

0

));

A =

�

�

1

2

I+

�

V

(1)

0

�

(V

(1)

�1

)

�1

+

�

�

1

2

I+

�

V

(2)

0

�

(V

(2)

�1

)

�1

:

The pseudodi�erential operator �

0

A is positive de�nite and the following

proposition holds for it.

Theorem 2.1 (see [6, Theorem 4.2]). Let 1 < p < 1, 1 � r � 1. Then

the operator

�

0

A :

e

H

s

p

(S

0

)! H

s�1

p

(S

0

)

is Fredholm if and only if the inequality

1

p

�

1

2

< s <

1

p

+

1

2

(2.3)

holds.

If (2:3) is the case, then the operator

�

0

A :

e

H

s

p

(S

0

)! H

s�1

p

(S

0

)

:

e

B

s

p;r

(S

0

)! B

s�1

p;r

(S

0

)

is invertible in both cases.

It is worth noting that PsDO �

0

A is invertible in the anisotropic Bessel

potential spaces with weight

e

H

(�;s);k

p

(S

0

)! H

(�;s�1);k

p

(S

0

) for all � 2 R; k 2

N

0

(see [7]) provided the conditions (2.3) hold.

Now let us formulate the main theorems about uniqueness, existence and

smoothness for solutions to the Dirichlet problem (see [6, Theorems 4.3, 4.4,

4.5 and Remark 5.7]).
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Theorem 2.2. Let 4=3 < p < 4 and the compatibility conditions (2:2) hold

for s = 1 � 1=p. Then the Dirichlet boundary value problem has a unique

solution of the class W

1

p;loc

(
), (with the condition (1:4) at in�nity); this

solution is given by the formula

r

i

u = V

(i)

(V

(i)

�1

)

�1

(�

(i)

0

+ '

(i)

0

)); q = 1; 2;

where �

(i)

0

2 B

1=p

0

p;p

(@


i

) is a �xed continuation of the function '

i

to @


i

,

satisfying condition (2:2) and '

(i)

0

2

e

B

1=p

0

p;p

(S

0

), i = 1; 2, is a solution to the

system (2:1).

Theorem 2.3. Let 4=3 < p < 4 , 1 < t <1, 1 � r � 1, 1=t� 1=2 < s <

1=t + 1=2, the compatibility condition (2:2) with t instead of p be ful�lled.

Let u 2 W

1

p

(
) (u 2 W

1

p;loc

(
) with the condition (1:4) at in�nity) be a

solution of the Dirichlet problem. In that case:

� If '

i

2 B

s

t;t

(S

i

), i = 1; 2, then u 2 H

s+1=t

t

(
) (H

s+1=t

t;loc

(
));

� If '

i

2 B

s

t;r

(S

i

), i = 1; 2, then u 2 B

s+1=t

t;r

(
), (B

s+1=t

t;r;loc

(
));

� If '

i

2 C

�

(S

i

), i = 1; 2, � 2]0; 1=2], then u 2

T

�

0

<�

C

�

0

(
).

Now we will write the asymptotics of the Dirichlet boundary value prob-

lem. It will be assumed below that the boundary data of the Dirichlet prob-

lem are su�ciently smooth, namely, '

i

2 H

(1;s+2M+1);1

p

(S

i

); i = 1; 2, (see

[7]).

The following equalities hold for the symbols of the operators V

(i)

�1

and

�

V

(i)

0

(see [6]):

�

V

(1)

�1

(z; �

0

) = �

V

(2)

�1

(z; �

0

) for z 2 S

0

;

� �

V

(1)

0

(z; �

0

) = �� �

V

(2)

0

(z; �

0

) for z 2 S

0

:

(2.4)

The symbol �

A

(x

0

; �

0

) of the pseudodi�erential operator A has the form

�

A

(x

0

; �

0

) = �

�1

�V

(1)

�1

(x

0

; �

0

) = �

�1

�V

(2)

�1

(x

0

; �

0

):

The symbol �

�V

(i)

�1

(x

0

; �

0

) (i = 1; 2) is an even matrix{function with re-

spect to �

0

and therefore all eigenvalues of the matrix (�

A

(x

0

; 0;+1))

�1

�

A

(x

0

; 0;�1) = I are trivial �

j

(x

0

) = 1, j = 1; : : : ; n.

Let us consider a local system of coordinates (x

00

; x

n�1

) 2 S

0

, where

x

00

2 @S

0

is a parameter which ranges along the cuspidal edge, while x

n;+

=

dist(x; @S

0

) denotes the distance to the edge along the surface S

0

.

Applying a result on strongly elliptic pseudodi�erential equation (see [7,

Theorem 2.1]) and taking into account the �rst equation in (2.1), we obtain

the following asymptotic expansion for the function '

(i)

0

, i = 1; 2:

'

(i)

0

(x

00

; x

n�1;+

) = c

0

(x

00

)x

1

2

n�1;+
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+

M

X

k=1

x

1

2

+k

n�1;+

B

k

(x

00

; logx

n�1;+

) + '

(i)

M+1

(x

00

; x

n�1;+

); (2.5)

where c

0

2 C

1

(@S

0

) and the remainder '

(i)

M+1

2 H

(1;s+M+1);1

p

(S

+

"

); i =

1; 2,M 2 N, S

+

"

= @S

0

� [0; "].

B

k

(x

00

; t) in (2.5) is a polynomial of degree k with respect to the variable t

and has C

1

(@S

0

){smooth vector coe�cients on the cuspidal edge x

00

2 @S

0

.

Thus, recalling that solutions of the Dirichlet boundary value problem

are represented by a potential{type function (see Theorem 2.2) and using

asymptotic expansion of such functions from [8, Theorem 2.2 and 2.3]), as-

suming �

(i)

0

2 H

(1;s+2M+1);1

p

(S

i

), i = 1; 2, we obtain the following asymp-

totic expansion of the solution to the Dirichlet boundary value problem:

(r

i

u)(x

00

; x

n�1

; x

n

) =

l(n)

X

s=1

Re

�

n

s

�1

X

j=0

[d

(i)

sj

(x

00

;+1)x

j

n

z

1=2�j

s;+1

�

�d

(i)

sj

(x

00

;�1)x

j

n

z

1=2�j

s;�1

]+

X

#=�1

M+2

X

l;k=0

M+2�l

X

j+p=1

l+k+j+p6=0

x

l

n�1

x

j

n

z

1

2

+p+k

s;#

B

(i)

slkjp

(x

00

; log z

s;#

)

�

+

+u

(i)

M+1

(x

00

; x

n�1

; x

n

) for M >

n� 1

p

�minf[s� 1]; 0g; i = 1; 2;

with the coe�cients d

(i)

sj

(�;�1) 2 C

1

(@S

0

) and u

(i)

M+1

2 C

M+1

(


i

), i = 1; 2.

Here

z

s;+1

= �x

n�1

� x

n

�

s;+1

; z

s;�1

= x

n�1

� x

n

�

s;�1

;

�� < Arg z

s;�1

< �; �

s;�1

2 C

1

(@S

0

);

f�

s;�1

g

l(n)

s=1

are all di�erent roots of the polynomial detA(J

>

{

(x

00

; 0)(0;�1; � ))

of multiplicity n

s

, s = 1; : : : l(n), in the complex lower half-plane; J

{

is

the Jacoby matrix of the mapping { (see [8]). Again, x

00

2 @S

0

, x

n�1

=

dist(x

S

0

; @S

0

), x

n

= dist(x; S

0

), where x

S

0

is the projection of x 2 
 onto

the hyperplane containing S

0

.

B

(i)

slkjp

(x

00

; t) is a polynomial of order �

kjp

= k + p + j with respect to

t, with vector coe�cients depending on the variable x

00

. The coe�cients

d

(i)

sj

(x

00

;�1) have the following form:

d

(1)

sj

(x

00

;+1) = G

{

(x

00

; 0)V

(s)

�1;j

(x

00

; 0; 0;+1)�

�1

V

(1)

�1

(x

00

; 0; 0;+1)c

(j)

(x

00

);

d

(1)

sj

(x

00

;�1) = �iG

{

(x

00

; 0)V

(s)

�1;j

(x

00

; 0; 0;�1)�

�1

V

(1)

�1

(x

00

; 0; 0;+1)c

(j)

(x

00

);

d

(2)

sj

(x

00

;+1) = G

{

(x

00

; 0)V

(s)

�1;j

(x

00

; 0; 0;+1)�

�1

V

(2)

�1

(x

00

; 0; 0;+1)c

(j)

(x

00

);

d

(2)

sj

(x

00

;�1) = iG

{

(x

00

; 0)V

(s)

�1;j

(x

00

; 0; 0;�1)�

�1

V

(2)

�1

(x

00

; 0; 0;+1)c

(j)

(x

00

);
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s = 1; : : : ; l(n); j = 0; : : :n

s

� 1;

where G

{

is the square root from the Gramm determinant of the di�eomor-

phisms { (see [8]);

V

(s)

�1;j

(x

00

; 0; 0;�1) =

=�

i

j+1

j!(n

s

� 1� j)!

d

n

s

�1�j

d�

n

s

�1�j

(���

s;�1

)

n

s

A

�1

(J

>

{

(x

00

; 0)(0;�1; � ))

�

�

�

�=�

s;�1

;

c

(j)

(x) =

i

j+1

4

p

�

�

�

j �

1

2

�

c

0

(x

00

)

and c

0

(x

00

) is the �rst coe�cient of the asymptotic expansion in (2.5).

3. Asymptotics of Solutions to the Neumann Boundary Value

Problem

Let 	

(i)

0

2 B

�1=p

p;p

(@


i

) be some �xed continuation of a function  

i

2

B

�1=p

p;p

(S

i

) on @


i

= S

i

[ S

0

. Then any continuation �

(i)

2 B

�1=p

p;p

(@


i

) of

 

i

on @


i

has the form

	

(i)

= 	

(i)

0

+  

(i)

0

;

where  

(i)

0

2

e

B

�1=p

p;p

(S

0

), i = 1; 2.

In [6], a solution to the Neumann boundary value problem is sought in

the form of a simple-layer potential

r

i

v = V

(i)

(V

(i)

�1

)

�1

g

i

in 


i

; i = 1; 2:

For unknown densities g

1

; g

2

and functions  

(1)

0

;  

(2)

0

the following system

of boundary pseudodi�erential equations was obtained (see [6]):

N

0

B

B

@

g

1

g

2

 

(1)

0

 

(2)

0

1

C

C

A

=

0

B

B

B

@

	

(1)

0

	

(2)

0

0

��

0

	

(2)

0

� �

0

	

(1)

0

1

C

C

C

A

; (3.1)

where

N =

0

B

B

B

@

(�

1

2

I+

�

V

(1)

0

)(V

(1)

�1

)

�1

0 �I 0

0 (�

1

2

I+

�

V

(2)

0

)(V

(2)

�1

)

�1

0 �I

�

0

I ��

0

I 0 0

0 0 I I

1

C

C

C

A

:

It is almost obvious that the system (3.1) has a solution if and only if

the following compatibility conditions

9	

(i)

0

2 B

s�1

p;r

(@


i

) i = 1; 2 : �

0

	

(2)

0

+ �

0

	

(1)

0

2

e

B

s�1

p;r

(S

0

) (3.2)
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hold for  

i

2 B

s�1

p;r

(S

i

), �

0

	

(2)

0

+ �

0

	

(1)

0

2 B

s�1

p;r

(S

0

), i = 1; 2, 1 � r � 1,

1=p� 1=2 < s < 1=p+ 1=2 (cf. [6]).

Note that the compatibility conditions hold automatically provided 1=p�

1=2 < s < 1=p or 1=p < s < 1=p + 1=2 (cf. [29]). Unfortunately, when

s = 1=p we can not provide the compatibility condition in explicit form.

Consider the operator

N

M

=

0

B

B

@

B

(1)

M

0 �I 0

0 B

(2)

M

0 �I

�

0

I ��

0

I 0 0

0 0 I I

1

C

C

A

;

B

(i)

M

: = (�V

(i)

�1

)

M

+ (�

1

2

I+

�

V

(i)

0

)(V

(i)

�1

)

�1

;

i = 1; 2; M = 0; 1; 2; : : : ;

which di�ers from N

M

by a compact operator.

The system of equations corresponding to the operator N

M

has the form

8

>

>

>

<

>

>

>

:

�

(�V

(1)

�1

)

M

+ (�

1

2

I+

�

V

(1)

0

�

(V

(1)

�1

)

�1

�

eg

1

�

e

 

(1)

0

=

e

	

(1)

0

;

�

(�V

(2)

�1

)

M

+

�

�

1

2

I+

�

V

(2)

0

�

(V

(2)

�1

)

�1

�

eg

2

�

e

 

(2)

0

=

e

	

(2)

0

;

�

0

eg

1

� �

0

eg

2

= G

1

;

e

 

(1)

0

+

e

 

(2)

0

= G

2

;

(3.3)

where

e

	

(i)

0

2 H

s�1

p

(@


i

)

�

B

s�1

p;r

(@


i

)

�

; i = 1; 2;

G

1

2 H

s

p

(S

0

)

�

B

s

p;r

(S

0

)

�

; G

2

2

e

H

s�1

p

(S

0

)

�

e

B

s�1

p;r

(S

0

)

�

:

Note that while studying the Neumann problem in [6], the system (3.1)

was reduced to the system of equations corresponding to the operator N

0

,

i.e., only the case M = 0 was considered. Here we have introduced the

operator N

M

to obtain a complete asymptotics both for solutions to the

system (3.1) and for solutions to the Neumann problem.

We need the following auxiliary proposition which is proved similarly to

[6, Lemmata 5.2, 6.2].

Lemma 3.1. Let 1 < p < 1, 1 � r � 1; s 2 R. Then the pseudodi�er-

ential operators

(�V

(i)

�1

)

M

+

�

�

1

2

I+

�

V

(i)

0

�

�

V

(i)

�1

�

�1

: H

s

p

(@


i

)! H

s�1

p

(@


i

)

: B

s

p;r

(@


i

)! B

s�1

p;r

(@


i

)

are invertible for i = 1; 2 and for M = 0; 1; 2; : : :.
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Therefore, after de�ning eg

1

, eg

2

from the �rst and the second equation of

the system (3.3) and inserting them into the third and the fourth equation

in (3.3), we obtain the system of pseudodi�erential equations on the open

manifold S

0

with unknown functions

e

 

(1)

0

and

e

 

(2)

:

8

>

>

>

>

>

<

>

>

>

>

>

:

�

0

�

(�V

(1)

�1

)

M

+

�

�

1

2

I+

�

V

(1)

0

�

(V

(1)

�1

)

�1

�

�1

e

 

(1)

0

�

��

0

�

(�V

(2)

�1

)

M

+

�

�

1

2

I+

�

V

(2)

0

�

(V

(2)

�1

)

�1

�

�1

e

 

(2)

0

=

e

G

1

;

e

 

(1)

0

+

e

 

(2)

0

= G

2

;

(3.4)

where

e

G

1

= G

1

� �

0

�

(�V

(1)

�1

)

M

+

�

�

1

2

I+

�

V

(1)

0

�

(V

(1)

�1

)

�1

�

�1

e

	

(1)

0

+

+�

0

�

(�V

(2)

�1

)

M

+

�

�

1

2

I+

�

V

(2)

0

�

(V

(2)

�1

)

�1

�

�1

e

	

(2)

0

:

Th system (3.4) yields a pseudodi�erential equation with respect to

e

 

(1)

0

:

�

0

B

e

 

(1)

0

= G

�

;

where

B =

�

(�V

(1)

�1

)

M

+

�

�

1

2

I+

�

V

(1)

0

�

(V

(1)

�1

)

�1

�

�1

+

+

�

(�V

(2)

�1

)

M

+

�

�

1

2

I+

�

V

(2)

0

�

(V

(2)

�1

)

�1

�

�1

:

The pseudodi�erential operator �

0

B is positive de�nite and the following

proposition is proved in [6, Theorem 5.3].

Theorem 3.2. Let 1 < p < 1, 1 � r � 1, 1=p� 1=2 < s < 1=p+ 1=2.

Then the pseudodi�erential operator

�

0

B :

e

H

s�1

p

(S

0

)! H

s

p

(S

0

) ;

:

e

B

s�1

p;r

(S

0

)! B

s

p;r

(S

0

)

is invertible in both cases.

It is worth noting that PsDO �

0

B is invertible in the anisotropic Bessel

potential spaces with weight

e

H

(�;s�1);k

p

(S

0

)! H

(�;s);k

p

(S

0

) (see [7]).

Theorem 3.2 implies the following (see [6, Theorem 5.4])
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Theorem 3.3. Let 1 < p < 1, 1 � r � 1, 1=p� 1=2 < s < 1=p+ 1=2.

Then the operator

N :

H

s

p

(@


1

)

�

H

s

p

(@


2

)

�

e

H

s�1

p

(S

0

)

�

e

H

s�1

p

(S

0

)

�!

H

s�1

p

(@


1

)

�

H

s�1

p

(@


2

)

�

H

s

p

(S

0

)

�

e

H

s�1

p

(S

0

)

0

B

B

B

B

B

B

B

B

@

B

s

p;r

(@


1

)

�

B

s

p;r

(@


2

)

�

e

B

s�1

p;r

(S

0

)

�

e

B

s�1

p;r

(S

0

)

�!

B

s�1

p;r

(@


1

)

�

B

s�1

p;r

(@


2

)

�

B

s

p;r

(S

0

)

�

e

B

s�1

p;r

(S

0

)

1

C

C

C

C

C

C

C

C

A

is Fredholm and has index zero: IndN = 0.

Now we will formulate theorems about uniqueness, existence and smooth-

ness of solutions to the Neumann problem (see [6, Theorems 5.5, 5.6 and

Remark 5.7]).

Theorem 3.4. Let 4=3 < p < 4 and the compatibility condition (3:2) be

ful�lled. Then the Neumann boundary value problem has solutions of the

class W

1

p

(
) in the bounded domain 
 if and only if the condition

Z

@


 � (az + b)ds = 0

holds for any constant antisymmetric n � n matrix a and any constant n-

dimensional vector b.

If 
 is an in�nite domain and n > 2, then the Neumann boundary value

problem has a unique solution of the class W

1

p;loc

(
), provided the solution

vanishes at in�nity (see the �rst condition in (1:4)).

If 
 is an in�nite domain and n = 2, then the Neumann boundary value

problem has a unique solution of the class W

1

p;loc

(
), provided the solution

has a �nite limit at in�nity (see the second condition in (1:4)) and the

condition

Z

@


 ds = 0

holds.

Solutions, if they exist, are given by the formulae

r

i

u = V

(i)

(V

(i)

�1

)

�1

g

i

in 


i

; i = 1; 2;

where g

i

2 H

1=p

0

p

(@


i

), i = 1; 2, are found from the system (3:1).

Theorem 3.5. Let 4=3 < p < 4, 1 < t <1, 1 � r � 1, 1=t� 1=2 < s <

1=t + 1=2, the compatibility condition (3:2) with t instead of p be ful�lled,

u 2W

1

p

(
) (W

1

p;loc

(
) and conditions (1:4) hold at in�nity). If we solve the

Neumann problem, then:

�  

i

2 B

s�1

t;t

(S

i

), i = 1; 2, ensures u 2 H

s+1=t

t

(
) (H

s+1=t

t;loc

(
));
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�  

i

2 B

s�1

t;r

(S

i

), i = 1; 2, ensures u 2 B

s+1=t

t;r

(
), (B

s+1=t

t;r;loc

(
));

�  

i

2 B

��1

1;1

(S

i

), i = 1; 2, � 2]0; 1=2] ensures u 2

T

�

0

<�

C

�

0

(
).

Now let us investigate asymptotics of the Neumann boundary value prob-

lem. The boundary data of the Neumann problem are su�ciently smooth,

i.e.,  

i

2 H

(1;s+2M);1

p

(S

i

); i = 1; 2.

In view of the equality (2:5), we can write the symbol �

B

(x

0

; �

0

) of the

pseudodi�erential operator B as follows

�

B

(x

0

; �

0

) =

�

(�

1

2

I + � �

V

(1)

0

(x

0

; �

0

))(�

V

(1)

�1

(x

0

; �

0

))

�1

�

�1

+

+

�

(�

1

2

I � � �

V

(1)

0

(x

0

; �

0

))(�

V

(1)

�1

(x

0

; �

0

))

�1

�

�1

:

Since the symbol � �

V

(1)

0

(x

0

; �

0

) is an odd matrix{function with respect to

�

0

, while the symbol �

V

(1)

(x

0

; �

0

) is an even matrix{function. Therefore one

can easily ascertain that the symbol �

B

(x

0

; �

0

) is even with respect to the

variable �

0

, i.e.

�

B

(x

0

;��

0

) = �

B

(x

0

; �

0

)

and all eigenvalues of the matrix (�

B

(x

0

; 0;�1))

�1

�

B

(x

0

; 0;�1) = I are

trivial �

(i)

B

= 1, j = 1; : : : ; n.

Let us consider a local system of coordinates (x

00

; x

n�1;+

) 2 S

0

(see

(2.5)). Applying a result on strongly elliptic pseudodi�erential equations

(see [7, Theorem 2.1]) and taking into account the second equation in (3.4),

we obtain the following result on asymptotic expansion of the function

e

 

(i)

0

,

i = 1; 2:

e

 

(i)

0

(x

00

; x

n�1

)=(�1)

i+1

c

0

(x

00

)x

�1=2

n�1;+

+

+

M

X

k=1

x

�1=2+k

n�1;+

B

(i)

k

(x

00

; logx

n�1;+

) +

e

 

(i)

M+1

; (3.5)

where c

0

2 C

1

(@S

0

), and the remainder

e

 

(i)

M+1

2 H

(1;s+M+1);1

p

(S

+

"

); i =

1; 2,M 2 N.

B

(i)

k

(x

00

; t) in (3.5) is a polynomial of degree k with respect to the variable

t and has C

1

(@S

0

){smooth vector coe�cients on the cuspidal edge x

00

2

@S

0

.

Let (g

1

; g

2

;  

(1)

0

;  

(2)

0

) be a solution of system (3.1), i.e.,

N(g

1

; g

2

;  

(1)

0

;  

(2)

0

) = 	; (3.6)

where 	 = (	

(1)

0

;	

(2)

0

; 0;�(�

0

�

(1)

0

+ �

0

�

(2)

0

)).
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By adding to both parts of the system (3.6) the expression

T

2M

0

B

B

@

g

1

g

2

 

(1)

0

 

(2)

0

1

C

C

A

=

0

B

B

@

(V

(1)

�1

)

2M

0 0 0

0 (V

(2)

�1

)

2M

0 0

0 0 0 0

0 0 0 0

1

C

C

A

0

B

B

@

g

1

g

2

 

(1)

0

 

(2)

0

1

C

C

A

;

we obtain the equality

N

2M

(g

1

; g

2

;  

(1)

0

;  

(2)

0

) = 	

�

: (3.7)

Here

�

	

= (	

(1)

0

+(V

(1)

�1

)

2M

g

1

;	

(2)

0

+(V

(2)

�1

)

2M

g

2

; 0;�(�

0

�

(1)

0

+�

0

�

(2)

0

)). The

system (3.7) takes the form

8

>

<

>

:

B

(i)

2M

g

i

�  

(i)

0

= 	

(i)

0

+ (V

i)

�1

)

2M

g

i

on @


i

; i = 1; 2;

�

0

g

1

� �

0

g

2

= 0 on S

0

;

 

(1)

0

+  

(2)

0

= 0 onS

0

;

(3.8)

where

B

(i)

2M

= (V

(i)

�1

)

2M

+

�

�

1

2

I +

�

V

(i)

0

�

(V

(i)

�1

)

�1

; i = 1; 2:

As it is clear from the foregoing arguments, the system can be reduced

to a pseudodi�erential equation with the positive de�nite operator.

From the �rst two equations of the system (3.8) we �nd that

g

i

= (B

(i)

2M

)

�1

 

(i)

0

+ F

i

; i = 1; 2;

where

F

i

= (B

(i)

2M

)

�1

	

(i)

0

+ (B

(i)

2M

)

�1

(V

(i)

�1

)

2M

g

i

;

F

i

2 H

(1;s+2M+1);1

p

(@


i

); i = 1; 2:

Therefore we can write

r

i

u = V

(i)

(V

(i)

�1

)

�1

(B

(i)

2M

)

�1

 

(i)

0

+G

i

; i = 1; 2;

here G

i

= V

(i)

(V

(i)

�1

)

�1

F

i

, G

i

2 C

M+1

(


i

).

Thus by the asymptotic expansion of the functions  

(i)

0

, i = 1; 2, (see

(3.5)) and the asymptotic expansion of functions represented by potentials

(see [8, Theorems 2.2 and 2.3]) and 	

(i)

0

2 H

(1;s+2M);1

p

(@


i

), i = 1; 2, we

obtain the following asymptotics of the solutions of the Neumann boundary

value problems in the local coordinates

(r

i

u)(x

00

; x

n�1

; x

n

) =

l(n)

X

s=1

Re

�

n

s

�1

X

j=0

[d

(i)

sj

(x

00

;+1)x

j

n

z

1=2�j

s;+1

� d

(i)

sj

(x

00

;�1)�
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�x

j

n

z

1=2�j

s;�1

]+

X

#=�1

M+1

X

l;k=0

M+2�l

X

j+p=1

l+k+j+p6=1

x

l

n�1

x

j

n

z

�

1

2

+p+k

s;#

B

(i)

slkjp

(x

00

; log z

s;#

)

�

+

+u

(i)

M+1

(x

00

; x

n�1

; x

n

) for M >

n � 1

p

�minf[s]; 0g; i = 1; 2;

with the coe�cients d

(i)

sj

(�;�1) 2 C

1

(@S

0

) and the remainder u

(i)

M+1

2

C

M+1

(


i

), i = 1; 2. Here

z

s;+1

= �x

n�1

� x

n

�

s;+1

; z

s;�1

= x

n�1

� x

n

�

s;�1

;

�� < Arg z

s;�1

< �; �

s;�1

2 C(@S

0

);

f�

s;�1

g

l(n)

s=1

are all di�erent roots of the polynomial detA(J

>

{

(x

00

; 0)(0;�1; � ))

of multiplicity n

s

, s = 1; : : : l(n), in the complex lower half-plane;

B

(i)

slkjp

(x

00

; t) is a polynomial of order �

kjp

= k + p + j � 1 with respect

to t, with vector coe�cients depending on the variable x

00

2 @S

0

. The

coe�cients d

(i)

sj

(x

00

;�1) have the form (see [8, Theorem 2.3])

d

(1)

sj

(x

00

;+1) = G

{

(x

00

; 0)V

(s)

�1;j

(x

00

; 0; 0;+1)�

�1

�

1

2

I+

�

V

(1)

0

(x

00

; 0; 0;+1)c

(j)

(x

00

);

d

(1)

sj

(x

00

;�1) = iG

{

(x

00

; 0)V

(s)

�1;j

(x

00

; 0; 0;�1)�

�1

�

1

2

I+

�

V

(1)

0

(x

00

; 0; 0;�1)c

(j)

(x

00

);

d

(2)

sj

(x

00

;+1) =�G

{

(x

00

; 0)V

(s)

�1;j

(x

00

; 0; 0;+1)�

�1

�

1

2

I+

�

V

(2)

0

(x

00

; 0; 0;�1)c

(j)

(x

00

);

d

(2)

sj

(x

00

;�1) = iG

{

(x

00

; 0)V

(s)

�1;j

(x

00

; 0; 0;�1)�

�1

�

1

2

I+

�

V

(2)

0

(x

00

; 0; 0;+1)c

(j)

(x

00

);

s = 1; : : : ; l(n); j = 0; : : : ; n

s

� 1;

where G

{

is the square root from the Gramm determinant of the di�eomor-

phisms {,

V

(s)

�1;j

(x

00

; 0; 0;�1) =

=�

i

j+1

j!(n

s

� 1� j)!

d

n

s

�1�j

d�

n

s

�1�j

(���

s;�1

)

n

s

(A

�1

(J

>

{

(x

00

; 0)(0;�1; � ))

�

�

�=�

s;�1

;

c

(j)

(x) =

i

j

2

p

�

�

�

j �

1

2

�

c

0

(x

00

);

and c

0

(x

00

) is the �rst coe�cient of the asymptotic expansion in (3.5).

4. Asymptotics of Solutions for the Mixed Boundary Value

Problems

In [6], a solution of the mixed boundary value problem is sought in the

form of a simple layer potential

r

i

u = V

(i)

g

i

in 


i

; i = 1; 2:
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Any continuation �

(1)

2 B

1=p

0

p;p

(@


1

) of the function '

1

onto the entire

boundary @


1

= S

1

[ S

0

has the form

�

(1)

= �

(1)

0

+ '

(1)

0

;

where �

(1)

0

is a �xed continuation of the function '

1

, and '

(1)

0

2

e

B

1=p

0

p;p

(S

0

).

Similarly, any extension �

(2)

0

2 B

�1=p

p;p

(@


2

) of the function '

2

onto the

entire boundary @


2

= S

2

[ S

0

has the form

�

(2)

= �

(2)

0

+ '

(2)

0

;

where �

(2)

is a �xed continuation of the function '

2

, and '

(2)

0

2

e

B

�1=p

;p

(S

0

).

The mixed boundary value problem can be reduced to the following sys-

tem of equations (see [6]):

N

0

B

B

@

g

1

g

2

'

(1)

0

'

(2)

0

1

C

C

A

=

0

B

B

B

@

�

(1)

0

�

(2)

0

��

0

�

(1)

0

��

0

�

(2)

0

1

C

C

C

A

; (4.1)

where

N =

0

B

B

B

B

@

V

(1)

�1

0 �I 0

0 �

1

2

I+

�

V

(2)

0

0 �I

0 ��

0

V

(2)

�1

I 0

�

0

(�

1

2

I+

�

V

(1)

0

) 0 0 I

1

C

C

C

C

A

:

Consider the combination

D �N;

where D is an invertible operator of the form

D =

0

B

B

@

I 0 0 0

0 V

(2)

�1

0 0

0 0 I 0

0 0 0 �I

1

C

C

A

:

Now consider the operator

N

M

=

0

B

B

B

B

@

V

(1)

�1

0 �I 0

0 (�V

(2)

�1

)

M

+V

(2)

�1

(�

1

2

I+

�

V

(2)

0

) 0 �V

(2)

�1

0 ��

0

V

(2)

�1

I 0

�

0

(�

1

2

I+

�

V

(1)

0

) 0 0 I

1

C

C

C

C

A

;

M = 2; 3; : : : ;

which di�ers from the composition D �N by a compact operator.
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A system of equations corresponding to N

M

has the form

8

>

>

>

>

<

>

>

>

>

:

V

(1)

�1

h

1

�  

(1)

0

= 	

(1)

0

;

[(�V

(2)

�1

)

M

+V

(2)

�1

(�

1

2

I+

�

V

(2)

0

)]h

2

�V

(2)

�1

 

(2)

0

= 	

(2)

0

;

��

0

V

(2)

�1

h

2

+  

(1)

0

= F

1

;

�

0

(�

1

2

I+

�

V

(1)

0

)h

1

�  

(2)

0

= F

2

;

(4.2)

where

	

(i)

0

2 H

s

p

(@


i

)

�

	

(i)

0

2 B

s

p;r

(@


i

)

�

; i = 1; 2;

F

1

2 H

s

p

(S

0

)

�

F

1

2 B

s

p;r

(S

0

)

�

; F

2

2 H

s�1

p

(S

0

)

�

F

2

2 B

s�1

p;r

(S

0

)

�

:

Note that the system (4.1) emerged in [6] while studying the mixed prob-

lem in the case M = 2.

We have the following auxiliary proposition which is proved similarly to

that Lemma 6.2 from [6].

Lemma 4.1. Let s 2 R, 1 < p < 1, 1 � r � 1. Then the pseudo-

di�erential operator

(�V

(2)

�1

)

M

+V

(2)

�1

�

�

1

2

I+

�

V

(2)

0

�

: H

s�1

p

(@


2

)! H

s

p

(@


2

)

: B

s�1

p;r

(@


2

)! B

s

p;r

(@


2

)

is invertible for any M = 0; 1; 2; : : :.

De�ning h

1

and h

2

by the �rst and the second equations of the system

(4.2), substituting them into the third and the fourth equations of system

(4.2), we obtain a system of pseudodi�erential equations on the open man-

ifold S

0

Q

 

 

(1)

0

 

(2)

0

!

=

�

G

�

F

�

�

with unknown  

(1)

0

and  

(2)

0

, where

Q =

�

I ��

0

A

2

�

0

A

1

I

�

;

A

1

= (�

1

2

I+

�

V

(1)

0

)(V

(1)

�1

)

�1

;

A

2

= V

(2)

�1

[(�V

(2)

�1

)

M

+V

(2)

�1

(�

1

2

I+

�

V

(2)

0

)]

�1

V

(2)

�1

;

G

�

= F

1

+ �

0

V

(2)

�1

[(�V

(2)

�1

)

M

+V

(2)

�1

(�

1

2

I+

�

V

(2)

0

)]

�1

	

(2)

0

;

F

�

= F

2

� �

0

(�

1

2

I+

�

V

(1)

0

)(V

(1)

�1

)

�1

	

(1)

0

;
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The operator A

2

can be written in a more simple form

A

2

= [(�V

(2)

�1

)

M�2

+ (�

1

2

I+

�

V

(2)

0

)(V

(2)

�1

)

�1

]

�1

; M = 2; 3; : : : :

Consider the operator

P = Q �

�

0 I

�I 0

�

=

�

�

0

A

2

I

�I �

0

A

1

�

:

Since the operators �

0

A

i

, i = 1; 2 (see [6]) are positive de�nite, we obtain

a strong G�arding inequality for the operator P, i.e., we have

Lemma 4.2 (see [6, Lemma 6.3]). For the pseudodi�erential operator P

there exists a constant c > 0 such that

RehP�; �i

S

0

� ck�k

2

e

H

�1=2

2

(S

0

)�

e

H

1=2

2

(S

0

)

; 8� 2

e

H

�1=2

2

(S

0

)�

e

H

1=2

2

(S

0

);

where the symbol h�; �i denotes the duality between the spaces H

1=2

2

(S

0

) �

H

�1=2

2

(S

0

) and

e

H

�1=2

2

(S

0

)�

e

H

1=2

2

(S

0

).

From now on the investigation of the operator P is continued by using a

local recti�cation of the manifold and by \freezing" the coe�cients. There

arises a matrix operator with components of di�erent orders. Therefore it

is convenient �rst to reduce the orders.

Let P(x

0

; D

0

) be a pseudodi�erential operator with the symbol �

P

(x

0

; �

0

)

(�

0

= (�

1

; : : : ; �

n�1

)), \frozen" at the point and written in some local coor-

dinate system of the manifold S

0

.

Let �

�

be pseudodi�erential operators (Bessel potentials) whose symbols

in the local coordinate system have the form

�

�

(�

0

) = �

n�1

� i � ij�

00

j; �

0

= (�

00

; �

n�1

):

Now we reduce the orders, i.e.,

R(x

0

; D

0

) =

�

L

�

0

0 I

�

�P(x

0

; D) �

�

L

+

0

0 I

�

;

where L

+

= diag�

+

, L

�

= diag�

+

�

�

are n � n matrix operators, �

+

is

the operator of restriction onto R

+

n�1

, and ` is the continuation operator.

The operators

�

L

�

0

0 I

�

are invertible in the respective spaces [15], [29].

Now we will formulate the statements whose proofs are given in [6,

Lemma 6.7, Theorems 6.8{6.12].
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Lemma 4.3. Let 1 < p < 1, 1 � r � 1, 1=p � 1=4 < s < 1=p + 1=4.

Then the operator

R(x

0

; D

0

) :

e

H

s

p

(R

+

n�1

)�

e

H

s

p

(R

+

n�1

)! H

s�1

p

(R

+

n�1

)� H

s�1

p

(R

+

n�1

)

�

e

B

s

p;r

(R

+

n�1

) �

e

B

s

p;r

(R

+

n�1

)! B

s�1

p;r

(R

+

n�1

) � B

s�1

p;r

(R

+

n�1

)

�

is Fredholm with the zero index.

It is worth noticing that PsDO R(x

0

; D

0

) is Fredholm in the anisotropic

Bessel potential spaces with the weight

e

H

(�;s);k

p

(R

+

n�1

)�

e

H

(�;s);k

p

(R

+

n�1

)! H

(�;s�1);k

p

(R

+

n�1

)� H

(�;s�1);k

p

(R

+

n�1

)

for all � 2 R and k = 0; 1; : : : (see [7]).

Lemma 4.4. Let 1 < p < 1, 1 � r � 1, 1=p � 1=4 < s < 1=p + 1=4.

Then the operator

Q :

e

H

s

p

(S

0

)�

e

H

s�1

p

(S

0

)! H

s

p

(S

0

) �H

s�1

p

(S

0

)

�

e

B

s

p;r

(S

0

)�

e

B

s�1

p;r

(S

0

)! B

s

p;r

(S

0

)� B

s�1

p;r

(S

0

)

�

is invertible.

Theorem 4.5. Let 1 < p < 1, 1 � r � 1, 1=p� 1=4 < s < 1=p+ 1=4,

M = 2; 3; : : : . Then the operator

N

M

:

H

s�1

p

(@


1

)

�

H

s�1

p

(@


2

)

�

e

H

s

p

(S

0

)

�

e

H

s�1

p

(S

0

)

�!

H

s

p

(@


1

)

�

H

s

p

(@


2

)

�

H

s

p

(S

0

)

�

H

s�1

p

(S

0

)

0

B

B

B

B

B

B

B

B

@

B

s�1

p;r

(@


1

)

�

B

s�1

p;r

(@


2

)

�

e

B

s

p;r

(S

0

)

�

e

B

s�1

p;r

(S

0

)

�!

B

s

p;r

(@


1

)

�

B

s

p;r

(@


2

)

�

B

s

p;r

(S

0

)

�

B

s�1

p;r

(S

0

)

1

C

C

C

C

C

C

C

C

A

is invertible.

Theorem 4.6. Let 1 < p < 1, 1 � r � 1, 1=p� 1=4 < s < 1=p+ 1=4.

Then the operator

N :

H

s�1

p

(@


1

)

�

H

s�1

p

(@


2

)

�

e

H

s

p

(S

0

)

�

e

H

s�1

p

(S

0

)

�!

H

s

p

(@


1

)

�

H

s�1

p

(@


2

)

�

H

s

p

(S

0

)

�

H

s�1

p

(S

0

)

0

B

B

B

B

B

B

B

B

@

B

s�1

p;r

(@


1

)

�

B

s�1

p;r

(@


2

)

�

e

B

s

p;r

(S

0

)

�

e

B

s�1

p;r

(S

0

)

�!

B

s

p;r

(@


1

)

�

B

s�1

p;r

(@


2

)

�

B

s

p;r

(S

0

)

�

B

s�1

p;r

(S

0

)

1

C

C

C

C

C

C

C

C

A

is invertible.
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Theorem 4.7. Let 8=5 < p < 8=3. Then the mixed problem has a unique

solution in the class W

1

p

(
) (in W

1

p;loc

(
), provided the condition (1:4) is

satis�ed at in�nity); the solution is given by the formula

r

i

u = V

(i)

g

i

in 


i

i = 1; 2;

where g

i

, i = 1; 2; are de�ned from the system (4:1).

Theorem 4.8. Let 8=5 < p < 8=3, 1 < t < 1, 1 � r � 1, 1=t � 1=4 <

s < 1=t + 1=4, u 2 W

1

p

(
) (in W

1

p;loc

(
), provided the condition (1:4) is

satis�ed at in�nity) be a solution of the mixed problem. Then:

� If '

1

2B

s

t;t

(S

1

), '

2

2B

s�1

t;t

(S

2

), we have u2H

s+1=t

t

(
) (H

s+1=t

t;loc

(
));

� If '

1

2B

s

t;r

(S

1

), '

2

2B

s�1

t;r

(S

2

), we have u2B

s+1=t

t;r

(
), (B

s+1=t

t;r;loc

(
));

� if '

1

2C

�

(S

1

), '

2

2B

��1

1;1

(S

2

), �2]0; 1=2], we have u2

T

�

0

<�

C

�

0

(
).

Theorem 4.7 implies that a solution of the mixed problem belongs to the

class C

�

for arbitrary � <

1

4

, provided the problem data are su�ciently

smooth.

The principal homogeneous symbol of the pseudodi�erential operator

R(x

0

; D

0

) is written as

�

R

(x

0

; �

0

) =

�

(�

n�1

� ij�

00

j)�

A

2

(x

0

; �

0

)(�

n�1

+ ij�

00

j) (�

n�1

� ij�

00

j)I

�(�

n�1

+ ij�

00

j)I �

A

1

(x

0

; �

0

)

�

;

where �

A

1

(x

0

; �

0

) and �

A

2

(x

0

; �

0

) are the principal homogeneous symbols

of the pseudodi�erential operators A

1

and A

2

, respectively written in the

given local coordinate system, and I is the identity matrix.

Let �

k

(x

0

), k = 1; : : : ; 2n; be the eigenvalues of the matrix

�

�

R

(x

0

; 0;+1)

�

�1

�

R

(x

0

; 0;�1); (4.3)

where

�

R

(x

0

; 0;�1) =

�

�

A

2

(x

0

; 0;�1) �I

I �

A

1

(x

0

; 0;�1)

�

;

�

R

(x

0

; 0;+1) =

�

�

A

2

(x

0

; 0;+1) I

�I �

A

1

(x

0

; 0;+1)

�

:

The following propositions are valid.

Lemma 4.9 (see [6, Lemma 6.5]). Let �

k

, k = 1; : : : ; n; be the eigenvalues

of the matrix � �

V

0

= � �

V

0

(x

0

; 0;+1). Then �

k

2 ] � 1=2; 1=2[, k = 1; : : : ; n,

and for n = 2l we have �

k

= b

k

, �

k+1

= �b

k

, k = 1; : : : ; l, while for

n = 2l + 1 we have �

1

= 0, �

k

= b

k

, b

k+1

= �b

k

, k = 1; : : : ; l, where

b

1

> 0; : : : ; b

l

> 0.
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Theorem 4.10 (see [6, Theorem 6.6]). Let �

k

(x

0

), k = 1; : : : ; 2n; be the

eigenvalues of the matrix (4.3). Then

�

k

(x

0

) =

8

>

>

>

>

<

>

>

>

>

:

i

s

1� 2�

k

(x

0

)

1 + 2�

k

(x

0

)

; if k = 1; : : : ; n;

�i

s

1� 2�

k�n

(x

0

)

1 + 2�

k�n

(x

0

)

; if k = n+ 1; : : : ; 2n; x

0

2 S

0

;

where �

k

2 ]�

1

2

;

1

2

[ are the eigenvalues of the matrix � �

V

0

.

Note that Theorem 4.10 plays an important role in proving Lemmata

4.3, 4.4 and Theorems 4.5{4.8. Let m

1

; : : : ;m

2`

be algebraic multiplicities

of the eigenvalues �

1

; : : : ; �

2`

,

2`

P

j=1

�

j

= 2n.

We introduce the notation

b

R

(x

00

) =

�

�

R

(x

00

; 0;+1)

�

�1

�

R

(x

00

; 0;�1; ):

Let

b

0R

(x

00

) = K

�1

(x

00

)b

R

(x

00

) � K(x

00

); x

00

2 @S

0

;

be a canonical Jordan form, where K is some non-degenerate matrix func-

tion, detK(x

00

) 6= 0, x

00

2 @S

0

and K 2 C

1

(@S

0

).

Asymptotics of the solutions for a strongly elliptic pseudodi�erential

equation (see [7]) implies that the solution � = (�

1

; �

2

)

>

of the pseudodif-

ferential equation

R(x

0

; D

0

)� = 	; 	 2 H

(1;s+M);1

p

(S

+

"

)

has the following asymptotic expansion:

�(x

00

; x

n�1;+

) = K(x

00

)x

1

4

+�(x

00

)

n�1;+

B

0

a

pr

(�

1

2�i

logx

n�1;+

)K

�1

(x

00

)c

0

(x

00

) +

+

M

X

k=1

K(x

00

)x

1

4

+�(x

00

)+k

n�1;+

B

k

(x

00

; logx

n�1;+

) + �

M+1

(x

00

; x

n�1;+

) (4.4)

for all su�ciently small x

n�1;+

> 0; here c

0

2 C

1

(@S

0

) and �

M+1

2

e

H

(1;s+M+1);1

p

(S

+

"

); exact expansion for B

0

a

pr

(t) = diagfB

0

a

pr

(t); B

0

a

pr

(t)g,

where B

0

a

pr

(t) is a triangular block-diagonal matrix function de�ned in [7];

the vector function B

k

(x

00

; t) is a polynomial of order �

k

= k(2m

0

� 1) +

m

0

� 1, m

0

= maxfm

1

; : : : ;m

2`

g with respect to the variable t with 2n-

dimensional vector coe�cients which depend on the variable x

00

, and

�(x

00

) = (�

1

(x

00

);�

2

(x

00

));

here

�

j

(x

00

) = (�

(j)

1

(x

00

); : : : ; �

(j)

1

(x

00

)

| {z }

m

1

-times

; : : : ; �

(j)

`

(x

00

); : : : ; �

(j)

`

(x

00

)

| {z }

m

`

-times

); j = 1; 2;
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�

(1)

k

(x

00

) = i�

k

(x

00

); �

(2)

k

(x

00

) =

1

2

+ i�

k

(x

00

);

�

k

(x

00

) = �

1

2�

log j�

k

(x

00

)j; k = 1; : : : ; `:

Hence one can write asymptotic expansion for the functions �

1

and �

2

separately. In fact, let

K(x

00

) =

�

K

11

(x

00

) K

12

(x

00

)

K

21

(x

00

) K

22

(x

00

)

�

2n�2n

and

K

�1

(x

00

)c

0

(x

00

) = (c

(1)

0

(x

00

); c

(2)

0

(x

00

))

>

; (4.5)

where K

ij

(x

00

), i; j = 1; 2; are n�n-matrices; c

(i)

0

, i = 1; 2; are n-dimensional

vector functions. Then

�

i

(x

00

; x

n�1;+

) =

2

X

j=1

K

ij

(x

00

)x

1

4

+�

j

(x

00

)

n�1;+

B

0

a

pr

(�

1

2�i

logx

n�1;+

)c

(i)

0

(x

00

) +

+

2

X

j=1

M

X

k=1

K

ij

(x

00

)x

1

4

+�

j

(x

00

)+k

n�1;+

B

(i)

kj

(x

00

; logx

n�1;+

) +

+ �

(i)

M+1

(x

00

; x

n�1;+

); i = 1; 2; (4.6)

where B

(i)

kj

(x

00

; t) is a polynomial of order �

k

= k(2m

0

� 1) +m

0

� 1 with

respect to the variable t with n-dimensional vector coe�cients which depend

on the variable x

00

.

Note that the boundary data of the mixed problem are assumed to be

su�ciently smooth, i.e., '

1

2 H

(1;s+2M+1);1

p

(S

1

), '

2

2 H

(1;s+2M);1

p

(S

2

).

Let (g

1

; g

2

; '

(1)

0

; '

(2)

0

) be a solution of the system (4.1), i.e.,

N(g

1

; g

2

; '

(1)

0

; '

(2)

0

) = �;

where � = (�

(1)

0

;�

(2)

0

;��

0

�

(1)

0

;��

0

�

(2)

0

). Then

D �N(g

1

; g

2

; '

(1)

0

; '

(2)

0

) = 	; (4.7)

here 	 = (�

(1)

0

;V

(2)

�1

�

(2)

0

;��

0

�

(1)

0

;��

0

�

(2)

0

).

Adding the expression

T

2M+1

0

B

B

@

g

1

g

2

'

(1)

0

'

(2)

0

1

C

C

A

=

0

B

B

@

0 0 0 0

0 �(V

(2)

�1

)

2M+1

0 0

0 0 0 0

0 0 0 0

1

C

C

A

0

B

B

@

g

1

g

2

'

(1)

0

'

(2)

0

1

C

C

A

to the both parts of the system (4.7), we obtain the equality

N

2M+1

(g

1

; g

2

; '

(1)

0

; '

(2)

0

) =

e

	; (4.8)
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where

e

	 = (�

(1)

0

;V

(2)

�1

�

(2)

0

� (V

(2)

�1

)

2M+1

g

2

;��

0

�

(1)

0

;��

0

�

(2)

0

):

Thus we can obtain ((�L

+

)

�1

'

(2)

0

; '

(1)

0

)

>

which in some local coordinate

system would satisfy the pseudodi�erential equation

R(x

0

; D

0

)

�

�

1

�

2

�

= F;

where F = (L

�

F

1

; F

2

)

>

and

F

1

= ��

0

�

(1)

0

+ �

0

V

(2)

�1

(B

(2)

2M+1

)

�1

V

(2)

�1

�

(2)

0

�

� �

0

V

(2)

�1

(B

(2)

2M+1

)

�1

(V

(2)

�1

)

2M+1

g

2

;

F

2

= �

0

�

(2)

0

� �

0

�

�

1

2

I+

�

V

(1)

0

�

(V

(1)

�1

)

�1

�

(1)

0

;

F

i

2 H

(1;s+2M);1

p

(S

+

"

); i = 1; 2; and

B

(2)

2M+1

= �(V

(2)

�1

)

2M+1

+V

(2)

�1

�

�

1

2

I+

�

V

(2)

0

�

:

Consequently, we can obtain the asymptotic expansions (4.6) for the

functions (L

+

)

�1

'

(2)

0

and '

(1)

0

.

Using the �rst two equations of the system (4.8), we can de�ne g

1

and

g

2

:

g

1

= (V

(1)

�1

)

�1

'

(1)

0

+ (V

(1)

�1

)

�1

�

(1)

0

; (4.9)

g

2

= (B

(2)

2M+1

)

�1

V

(2)

�1

'

(2)

0

+ (B

(2)

2M+1

)

�1

V

(2)

�1

�

(2)

0

+ G; (4.10)

where G = �(B

(2)

2M+1

)

�1

(V

(2)

�1

)

2M+1

g

2

; G 2 H

(1;s+2M);1

p

(@


2

):

Expressions (4.9) and (4.10) result in the following representations: the

solutions of the mixed boundary value problems can be expressed by the

potential type functions

r

1

u = V

(1)

(V

(1)

�1

)

�1

'

(1)

0

+R

1

; (4.11)

r

2

u = V

(2)

(B

(2)

2M+1

)

�1

V

(2)

�1

(�L

+

)[(�L

+

)

�1

'

(2)

0

] +R

2

; (4.12)

where R

i

2 C

M+1

(


i

), i = 1; 2.

Thus, taking into account (4.11), (4.12), invoking the asymptotic expan-

sions of the functions (�L

+

)

�1

'

(2)

0

and '

(1)

0

(see (4.6)) and also that of the

functions represented by the potentials (see [8, Theorems 2.2 and 2.3]), keep-

ing in mind that �

(1)

0

2 H

(1;s+2M+1);1

p

(@


1

), �

(2)

0

2 H

(1;s+2M);1

p

(@


2

),

we derive the following asymptotics of solutions of the mixed boundary value

problem under consideration:

(r

i

u)(x

00

; x

n�1

; x

n

) =

2

X

j=1

l(n)

X

s=1

Re

�

n

s

�1

X

m=0

x

m

n

h

d

(i)

sjm

(x

00

;+1)z

1=4+�

j

(x

00

)�m

s;+1

�

�B

0

a

pr

(�

1

2�i

log[(�1)

i+1

z

s;+1

])� d

(i)

sjm

(x

00

;�1)z

1=4+�

j

(x

00

)�m

s;�1

�
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�B

0

a

pr

(�

1

2�i

log[(�1)

i+1

z

s;�1

])

i

c

ijm

(x

00

) +

+

X

#=�1

M+2

X

l;k=0

M+2�l

X

p+m=0

l+p+m+k 6=0

x

l

n�1

x

m

n

d

(i)

slmpj

(x

00

; #)z

1

4

+�

j

(x

00

)+p+k

s;#

�

�B

(i)

skmpj

(x

00

; log z

s;#

)

�

+ u

(i)

M+1

(x

00

; x

n�1

; x

n

)

for M >

n� 1

p

�minf[s� 1]; 0g; i = 1; 2; (4.13)

with the coe�cients d

(i)

sjm

(�;�1), c

ijm

, d

(i)

slmpj

(�;�1) 2 C

1

(@S

0

) and the

remainder u

(i)

M+1

2 C

M+1

(


i

); here

z

s;+1

= �x

n�1

� x

n

�

s;+1

; z

s;�1

= x

n�1

� x

n

�

s;�1

;

�� < Arg z

s;�1

< �; �

s;�1

2 C

1

(@S

0

);

f�

s;�1

g

l(n)

s=1

are all di�erent roots of the polynomial detA(J

>

{

(x

00

; 0)(0;�1; � ))

of multiplicity n

s

, s=1; : : : ; l(n); in the complex lower half-plane.

In choosing the corresponding branches, we assume here that the equal-

ities (�z

s;�1

)

1=4+�

j

(x

00

)�m

= e

i�(1=4+�

j

(x

00

)�m)

z

1=4+�

j

(x

00

)�m

s;�1

are ful�lled.

B

(i)

skmpj

(x

00

; t) is a polynomial of order �

kmp

= �

k

+ p+m, �

k

= k(2m

0

�

1) +m

0

, m

0

= maxfm

1

; : : : ;m

`

g,

`

P

j=1

m

j

= n, with respect to the variable

t with vector coe�cients depending on the variable x

00

.

The following relation between the leading (�rst) coe�cients of the asym-

ptotic expansions (4.13) and (4.6) holds (see [8, Theorem 2.3]):

d

(1)

sjm

(x

00

;+1) =

1

2�

G

{

(x

00

; 0)V

(s)

�1;m

(x

00

; 0; 0;+1)�

�1

V

(1)

�1

(x

00

; 0; 0;+1)K

2j

(x

00

);

d

(1)

sjm

(x

00

;�1) =

1

2�

G

{

(x

00

; 0)V

(s)

�1;m

(x

00

; 0; 0;�1)�

�1

V

(1)

�1

(x

00

; 0; 0;+1)�

�K

2j

(x

00

)e

i�(�

1

4

��

j

(x

00

))

;

d

(2)

sjm

(x

00

;+1) = �

1

2�

G

{

(x

00

; 0)V

(s)

�1;m

(x

00

; 0; 0;+1)�

� �

�1

�

1

2

I+

�

V

(2)

0

(x

00

; 0; 0;�1)K

1j

(x

00

);

d

(2)

sjm

(x

00

;�1) =

1

2�

G

{

(x

00

; 0)V

(s)

�1;m

(x

00

; 0; 0;�1)�

� �

�1

�

1

2

I+

�

V

(2)

0

(x

00

; 0; 0;+1)K

1j

(x

00

)e

i�(

1

4

+�

j

(x

00

))

;

j = 1; 2; s = 1; : : : ; l(n); m = 0; : : : ; n

s

� 1;

(4.14)
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here G

{

is the square root from the Gramm determinant, and

V

(s)

�1;m

(x

00

; 0; 0;�1) =

=�

i

m+1

m!(n

s

�1�m)!

d

n

s

�1�m

d�

n

s

�1�m

(���

s;�1

)

n

s

�

A(J

>

{

(x

00

; 0)(0;�1; � )

�
�

�

�1

�=�

s;�1

:

The coe�cients c

ijm

(x

00

) in (4.13) are de�ned as follows:

c

1jm

(x

00

) = a

jm

(x

00

)b

j

(x

00

)c

(2)

0

(x

00

);

c

2jm

(x

00

) = a

jm

(x

00

)b

j

(x

00

)c

(1)

0

(x

00

); j = 1; 2;

where

b

1

(x

00

) = diag

n

b

m

1

�

1

4

+ i�

1

(x

00

)

�

; : : : ; b

m

`

�

1

4

+ i�

l

(x

00

)

�o

;

b

2

(x

00

) = diag

n

b

m

1

�

3

4

+ i�

1

(x

00

)

�

; : : : ; b

m

`

�

3

4

+ i�

l

(x

00

)

�o

;

b

m

r

(t) = kb

m

r

kp

(t)k

m

r

�m

r

;

b

m

r

kp

(t) =

8

<

:

�

1

2�i

�

p�k

(�1)

p+k

(p� k)!

d

p�k

dt

p�k

(�(t + 1)e

i�(t+1)

2

); k � p;

0; k > p;

p = 0; : : : ;m

r

� 1; r = 1; : : : ; `:

Further,

a

jm

(x

00

) = diag

�

a

m

1

(�

(j)

1

); : : : ; a

m

`

(�

(j)

`

)

	

; j = 1; 2;

�

(1)

r

(x

00

) = �

5

4

� i�

r

(x

00

) +m; �

(2)

r

(x

00

) = �

7

4

� i�

r

(x

00

) +m;

m = 0; 1; : : : ; n

s

� 1;

�

r

(x

00

) = �

1

2�

log j�

k

(x

00

)j; r = 1; : : : ; `;

a

m

r

(�

(j)

r

) = ka

m

r

kp

(�

(j)

r

k

m

r

�m

r

;

where

a

m

r

kp

(�

(j)

r

) =

8

>

>

>

>

<

>

>

>

>

:

�i

p

X

l=k

(�1)

p+k

(2�i)

l�p

b

m

r

kl

(�

(j)

r

)

(�

(j)

r

+ 1)

p�l+1

; m = 0; k � p;

(�1)

p+k

b

m

r

kp

(�

(j)

r

); m=1; : : : ; n

s

�1; k�p;

0; k > p;

j=1,2; here �

(j)

r

= �1 + m + �

(j)

r

, �

(1)

r

= �

1

4

� i�

r

(x

00

), �

(2)

r

= �

3

4

�

i�

r

(x

00

), r = 1; : : : ; `, and c

(1)

0

(x

00

), c

(2)

0

(x

00

) are de�ned by using the �rst

coe�cients of the asymptotic expansion of the functions (�L

+

)

�1

'

(2)

0

and

'

(1)

0

, respectively (see (4.5)).
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Remark 4.11. Lemma 4.9 and Theorem 4.10 readily imply that if n =

2 or n = 3, then the eigenvalues �

k

, k = 1; : : : ; 2n; of the matrix (4.3)

are di�erent; therefore there exists a nondegenerate in�nitely di�erentiable

matrix K such that the matrix b

0R

is diagonal. Then B

0

a

pr

= I, �

k

= k,

and expansion (4.13) of the solutions of the mixed boundary value problem

can be written in a simple form:

(r

i

u)(x

00

; x

n�1

; x

n

) =

2

X

j=1

l(n)

X

s=1

Re

�

n

s

�1

X

m=0

x

m

n

h

d

(i)

sjm

(x

00

;+1)z

1=4+�

j

(x

00

)�m

s;+1

�

�d

(i)

sjm

(x

00

;�1)z

1=4+�

j

(x

00

)�m

s;�1

i

c

ijm

(x

00

) +

+

X

#=�1

M+2

X

l;k=0

M+2�l

X

p+m=0

l+p+m+k 6=0

x

l

n�1

x

m

n

d

(i)

slmpj

(x

00

; #)z

1

4

+�

j

(x

00

)+p+k

s;#

�

�B

(i)

skmpj

(x

00

; log z

s;#

)

�

+ u

(i)

M+1

(x

00

; x

n�1

; x

n

);

u

(i)

M+1

2 C

M+1

(


i

); i = 1; 2; for M >

n� 1

p

�minf[s� 1]; 0g;

where B

(i)

skmpj

(x

00

; t) is a polynomial of order �

kmp

= k+ p+m. The coe�-

cients d

(i)

sjm

(x

00

;�1) have the same form as in (4.14), and

c

1jm

(x

00

) = diag

�

�(�

(j)

r

+ 1)�(��

(j)

r

+ 1)

�

(j)

r

+ 1

�

n

r=1

i

m+1

c

(2)

0

(x

00

);

c

2jm

(x

00

) = diag

�

�(�

(j)

r

+ 1)�(��

(j)

r

+ 1)

�

(j)

r

+ 1

�

n

r=1

i

m+1

c

(1)

0

(x

00

);

j = 1; 2; m = 0; 1; : : :; n

s

� 1:

Acknowledgement

This work was supported by:

� Georgian Academy of Sciences within the GRANT No 1.3 (1997).

References

1. J. Bennish, Asymptotics for elliptic boundary value problems for

systems of pseudodi�erential equations. J. Math. Anal. Appl. 179(1993),

417{445.

2. T. Buchukuri and T. Gegelia, On the uniqueness of solutions of

the basic problems of the elasticity for in�nite domain. (Russian) Differen-

tsial'nye Uravneniya 25(1989), No. 9, 1556{1565.

3. T. Burchuladze and T. Gegelia, Development of the method of

a potential in the theory of elasticity. (Russian) Tbilisi, Metsniereba, 1985.



57

4. O. Chkadua, The Nonclassical boundary-contact problems of elas-

ticity for homogeneous anisotropic media. Math. Nach. 172(1995), 49{64.

5. O. Chkadua, Some boundary-contact problems of the elasticity

theory with mixed boundary conditions outside the contact surface. Math.

Nach. 188(1997), 23{48.

6.O. Chkadua, The Dirichlet, Neumann and mixed boundary value

problems of the theory of elasticity in n{dimensional domains with bound-

aries containing closed cuspidal edges. Math. Nach. 189(1998).

7. O. Chkadua and R. Duduchava, Pseudodi�erential equations on

manifolds with boundary: Fredholm property and asymptotics. Preprint,

Univarsit�at Stuttgart, Sonderforschungsbereich 404, Bericht 98/11.

8. O. Chkadua and R. Duduchava, Asymptotics of functions rep-

resented by potentials. Preprint, Univarsit�at Stuttgart, Sonderforschungs-

bereich 404, Bericht 98/12.

9. M. Costabel and M. Dauge, General edge asymptotics of solutions

of second order elliptic boundary value problems, I{II. Proc. Royal Soc.

Edinburgh 123 A, 1993, 109{155, 157{184.

10. M. Dauge, Elliptic boundary value problems in corner domains.

Smoothness and asymptotics of solutions. Lecture Notes in Math. 1341,

Springer-Verlag, Berlin, 1988.

11. R. Duduchava and D. Natroshvili, Mixed crack type problems

in anisotropic elasticity. Math. Nach. 191(1998), 83{107.

12. R. Duduchava, D. Natroshvili, and E. Shargorodsky, Boun-

dary value problems of the mathematical theory of cracks. (Russian) Trudy

Inst. Prikl. Mat. I. N. Vekua, 39(1990), 63{84.

13. R. Duduchava, A. S

�

andig, and W. Wendland, Interface cracks

in anisotropic composites. Universit�at Stuttgart, Sonderforschungsbereich

404, Bericht 97/20, 1{49, 1997.

14. R. Duduchava and W. Wendland, The Wiener{Hopf method

for systems of pseudodi�erential equations with an application to crack

problem. Integral Equation Operator Theory 23(1995), 294{335.

15. G. Eskin, Boundary value problems for elliptic pseudo{di�erential

equations. Translations of Mathematical Monographs, vol. 52, AMS, Prov-

idence, Rhode Island 1981.

16. G. Fichera, Existence theorems in elasticity. Boundary value prob-

lems of elasticity with unilateral constraints. Handbuch der Physik, Band 6

a/2, Springer{Verlag, Berlin, 1972.

17. P. Grisvard, Elliptic problems in non-smooth domains. Pitman,

London, Boston, 1985.

18. V. Kondrat'ev, Boundary problems for elliptic equations in do-

mains with conical or angular points. (Russian) Transactions Moscow Ma-

thematical Society 16(1967), 227{313.

19. V. Kozlov and V. Maz'ya, On stress singularities near the bound-

ary of a polygonal crack. THD{Preprint 1289, TH Darmstadt, 1990.



58

20. S. G. Lekhnitski

�

�, Theory of elasticity of an anisotropic body.

(Russian) Nauka, Moscow, 1977.

21. V. Maz'ya and B. Plamenevski

�

�, On elliptic boundary value

problems in a domain with piecewise smooth boundary. (Russian) Trudy

Simposiuma po Mekhanike Sploshno�� Sredy i Rodstvennim Problemam Anal-

iza I, 171{181, Metsniereba, Tbilisi, 1971.

22. V. Maz'ya and A. Soloviev, On the integral equation of the

Dirichlet problem in a plane domain with cusps on the boundary. (Russian)

Mat. Sb. 180(1989), No. 6, 1211{1233.

23. V. Maz'ya and A. Soloviev, On the boundary integral equation

of the Neumann problem in a plane domain with a peak. LiTH{MAT{R{

91{16. Link�oping University, 1991.

24. V. Maz'ya and A. Soloviev, On solvability of boundary integral

equations of the elasticity theory in domains with outward peaks. LiTH{

MAT{R{91{21. Link�oping University, 1991.

25. V. Maz'ya and A. Soloviev, Asymptotics of the solution of the

integral equation of the Newmann problem in a plane domain with cusps on

the boundary. (Russian) Soobshch. Akad. Nauk Gruz. SSSR 130(1)(1998),

17{20.

26. D. Natroshvili, O. Chkadua, and E. Shargorodsky, Mixed

problems for homogeneous anisotropic elastic media. (Russian) Trudy Inst.

Prikl. Mat. I.N. Vekua, 39(1990), 133{181.

27. S. Nazarov and B. Plamenevsky, Elliptic problems in domains

with piecewise-smooth boundaries. (Russian) Nauka, Moscow, 1991.

28. B. W. Schulze, Crack problems in the edge pseudo-di�erential

calculus. Appl. Anal. 45(1992), 333{360.

29. M. Triebel, Interpolation theory, function spaces, di�erential op-

erators. North-Holland, Amsterdam, 1978.

(Received 6.05.1998)

Authors' address:

A. Razmadze Mathematical Institute

Georgian Academy of Sciences

1, M. Aleksidze St., Tbilisi 3880093

Georgia


