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Abstract. Non-linear di�erential equations with variable delay and quasi-

linear neutral di�erential equations are considered in the case where at the

initial moment of time the value of the initial function, generally speak-

ing, does not coincide with the initial value of the trajectory (discontinuity

at the initial moment). Theorems on continuity of solution of the Cauchy

problem with respect to initial data and right-hand side are proved. The

perturbations of the initial data, i.e., of the initial function and the initial

values (the initial moment, the initial value of the trajectory) are small in

the uniform and Euclidean norms, respectively. The pertrurbation of the

right-hand side of the equation is small in the integral sense. Representation

formulas of the di�erential of solution are obtained, when pertrurbations are

small in the Euclidean topology. If the e�ect of discontinuouty at the initial

moment in
uences upon the right-hand side of the equation, then, in con-

trast to earlier obtained formulas, representation formulas of the di�erential

contain a new term.
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reziume. ganxilulia cvladi dagvianebis Semcveli araCrfivi da

neitraluri tipis kvazi { Crfivi diferencialuri gantolebebi, roca

saCKisi funqciis mniSvneloba saCKis momentSi, sazogadod, ar emwxveva

traeqtoriis mniSvnelobas (CKvetiloba saCKis momentSi). damtkice-

bulia weoremebi koSis amocanis amonaxsnis uCKvetad damokidebulebis

Sesaxeb saCKis monacemebsa da marJvena mxareze. saCKisi monacemebis {

saCKisi funqciisa da saCKisi mniSvnelobebis (saCKisi momenti, traeq-

toriis saCKisi mniSvneloba) { SeSfowebebi, Sesabamisad, mcirea wanabar

da evklidur normaSi. marJvena mxaris SeSfoweba mcirea integraluri

azriw. miGebulia amonaxsnis diferencialis Carmodgenis formulebi,

roca SeSfowebebi mcirea evklidur topologiaSi. wu saCKis momentSi

CKvetilobis efeqti gavlenas axdens gantolebis marJvena mxareze, maSin

diferencialis Carmodgenis formulebi, gansxvavebiw adre miGebuli

formulebisagan, Seicaven axal Cevrs.
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Introduction

In the present work two classes of ordinary di�erential equations with

deviating argument are considered, namely, non-linear equations with vari-

able delay and quasi-linear neutral equations. The question on continuity

and di�erentiability of solution of the Cauchy problem with respect to ini-

tial data and right-hand side is investigated in the case where at the initial

moment of time the value of the initial function, generaly speaking, does

not coincide with the initial value of the trajectory (discontinuity at the

initial moment).

The �rst chapter deals with delay di�erential equations. In x1 a theorem

on continuous dependence of solution on perturbations is proved, which is

an analogue of a theorem given in [11], [12]. The perturbations of the initial

data, i.e., of the initial function and the initial values (the initial moment,

the initial value of the trajectory) are small in the uniform and Euclidean

norms, respectively. The petrurbation of the right-hand side of the equation

is small in the integral sense.

Theorems on continuous dependence of solutions of the Cauchy prob-

lem and boundary value problems for various classes of ordinary di�erential

equations and di�erential equations with deviating argument, when petrur-

bation of the right-hand side is small in the integral sense, were proved in

[3], [4], [7], [8], [16], [17], [19-21], [23], [24], [26-29].

Di�erential equations with deviating argument, when pertrubations of

the initial data and the right-hand side are small in the Euclidean norm

were considered in [9], [13-15], [18], [22].

In x2 estimates of the increment of solutions are established with respect

to small perturbations in the sense of the Euclidean topology. In x3 on

the basis of these estimates representation formulas for the di�erential of

solutions are obtained. If the e�ect of discontinuouty at the initial moment

in
uences upon the right-hand side of the equation, then, in contrast to

formulas given in [16], representation formulas for the di�erential contain a

new term (see the formula (3.20)).

In the second chapter the above results are extended to neutral di�eren-

tial equations whose right-hand sides are linear with respect to the phase

velocity.

Finally we note that the results obtained in this work play an important

role in investigating optimal control problems with deviating argument.
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CHAPTER I

CONTINUOUS DEPENDENCE AND DIFFERENTIABILITY OF

SOLUTION OF DELAY DIFFERENTIAL EQUATIONS

1. Continuous Dependence of Solution

1.1. PreliminaryNotes. LetX be a metric space, � be the distance function

on X and let

F (�; �) : X �! X (1.1)

be a family of mappings depending on a parameter � 2 G, where G is a

topological space. The family (1.1) is said to be a uniform contraction if

there exists a number � 2 (0; 1) not depending on � and such that for any

� 2 G the inequality

�(F (y

1

; �); F (y

2

; �)) � ��(y

1

; y

2

) 8(y

1

; y

2

) 2 X

2

is ful�lled.

De�ne the k-iteration of the mapping (1.1) by

F

k

(y; �) = F (F

k�1

(y; �); �); k = 1; 2; : : : ; F

0

(y; �) = y:

It is obvious that

F

k

(�; �) : X �! X; 8� 2 G: (1.2)

Theorem 1.1 ([25]). Let X be a complete metric space. If some k-iteration

(1:2) is a uniform contraction family, then for any � 2 G the mapping (1:1)

has a unique �xed point y

�

, i.e. F (y

�

; �) = y

�

. Moreover, if the mapping

F

k

(y

~�

; �) : G �! X; ~� 2 G;

is continuous at the point ~�, then the mapping y

�

: G �! X is also conti-

nuous at the point ~�.

Let R

n

be the n-dimensional Euclidean space of the points

x =

0

B

@

x

1

.

.

.

x

n

1

C

A

; jxj

2

=

n

X

i=1

(x

i

)

2

;

J = [a; b] be a �nite interval; O � R

n

be an open set; L

1

(J;R

+

0

) be the

space of integrable functions m : J ! R

+

0

= [0;1).

We denote by E(J � O

2

; R

n

) the space of n-dimensional functions f :

J � O

2

! R

n

satisfying the conditions

1) for every (x

1

; x

2

) 2 O

2

the function f(�; x

1

; x

2

) : J ! R

n

is measur-

able;
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2) for any compact K � O

1

and any function f 2 E(J � O

2

; R

n

), there

exist functions m

f;K

(t); L

f;K

(t) from the space L

1

(J;R

+

0

) such that

jf(t; x

1

; x

2

)j � m

f;K

(t); 8(t; x

1

; x

2

) 2 J �K

2

;

jf(t; x

0

1

; x

0

2

)�f(t; x

00

1

; x

00

2

)j�L

f;K

(t)

2

X

i=1

jx

0

i

�x

00

i

j; 8(t; x

0

1

; x

0

2

; x

00

1

; x

00

2

)2J�K

4

:

From the conditions 1), 2) it easily follows the following

Lemma 1.1. For every f 2 E(J � O

2

; R

n

) the function

H

f

(t

0

; t

00

; x

1

; x

2

) =

�

�

�

�

t

00

Z

t

0

f(t; x

1

; x

2

)dt

�

�

�

�

is continuous in (t

0

; t

00

; x

1

; x

2

) 2 J

2

� O

2

.

Let � : R

1

! R

1

be an absolutely continuous function satisfying � (t) � t,

_� (t) > 0; �(J

1

; O) be the space of piecewise continuous functions

2

' : J

1

=

[� (a); b]! O satisfying the condition cl'(J

1

) � O, '(J

1

) = f'(t) : t 2 J

1

g,

k'k = supfj'(t)j : t 2 J

1

g.

Lemma 1.2. Let  (t) 2 K; t 2 J , be a continuous function and ' 2

�(J

1

; O), '(t) 2 K, t 2 J

1

. Let t

i

2 (a; b), i = 1; : : : ; l, be points of

discontinuity of the function �(t) = ( (t); '(� (t))), t 2 J . Then for any

function f 2 E(J � O

2

; R

n

) and for any natural number s the inequality

� = max

t

0

;t

00

2J

�

�

�

�

t

00

Z

t

0

f(t; �(t))dt

�

�

�

�

� �(s; �)

Z

J

L

f;K

(t)dt+ s(l + 1)H

f

(J;K)

is valid, where

�(s; �) = maxf�(s; �

i

) : 1 � i � l + 1g;

�(s; �

i

) = sup

n

j (t

0

) �  (t

00

)j+

+j'

i

(t

0

)� '

i

(t

00

)j : t

0

; t

00

2 [t

i�1

; t

i

]; jt

0

� t

00

j �

t

i

� t

i�1

s

o

;

�

i

= ( ; '

i

); (1.3)

'

i

(t) =

8

<

:

'(� (t

+

i�1

)); t = t

i�1

;

'(� (t)); t 2 (t

i�1

; t

i

);

'(� (t

�

i

)); t = t

i

;

(1.4)

i = 1; : : : ; l + 1, t

0

= a, t

l+1

= b; H

f

(J;K) = supfH

f

(t

0

; t

00

; x

0

; x

00

) :

(t

0

; t

00

; x

0

; x

00

) 2 J

2

�K

2

g (see Lemma 1:1).

1

Here and in the sequel by K, K

0

, K

1

we denote compact subsets of the set O.

2

Everywhere we assume that piecewise continuous functions have �nite number of

discontinuity points of the �rst kind.
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Proof. There exist numbers a

1

; b

1

2 J such that

� =

�

�

�

�

b

1

Z

a

1

f(t; �(t))dt

�

�

�

�

:

Let a

1

2 [t

p�1

; t

p

), b

1

2 (t

q�1

; t

q

], 1 � p � q � l + 1. We divide the

intervals [a

1

; t

p

], [t

i�1

; t

i

], i = p + 1; q � 1, [t

q�1

; t

q

] into s equal parts �

p

j

,

�

i

j

, i = p+ 1; : : : ; q � 1, �

q

j

, j = 1; : : : ; s, respectively.

It is obvious that

[a

1

; b

1

] = [a

1

; t

p

][

� q�1

[

i=p+1

[t

i�1

; t

i

]

�

[ [t

q�1

; b

1

] =

q

[

i=p

s

[

j=1

�

i

j

:

Taking into account this equality and the notation (1.4), we obtain

� =

�

�

�

�

t

p

Z

a

1

f(t; �

1

(t))dt +

q�1

X

p+1

t

i

Z

t

i�1

f(t; �

i

(t))dt+

b

1

Z

t

q�1

f(t; �

q

(t))dt

�

�

�

�

�

�

q

X

i=p

s

X

j=1

�

�

�

�

Z

�

i

j

f(t; �

i

(t))dt

�

�

�

�

:

Let t

i

j

2 �

i

j

, i = p; : : : ; q, j = 1; : : : ; s, be arbitrary but �xed points.

Then

� �

q

X

i=p

s

X

j=1

Z

�

i

j

jf(t;  (t); '

i

(t)) � f(t;  (t

i

j

); '

i

(t

i

j

))jdt+

+

q

X

i=p

s

X

j=1

�

�

�

�

Z

�

i

j

f(t;  (t

i

j

); '

i

(t

i

j

))dt

�

�

�

�

�

�

q

X

i=p

s

X

j=1

Z

�

i

j

L

f;K

(t)�

i

(m;�

i

)dt+ s(q � p+ 1)H

f

(J;K) �

� �(s; �)

Z

J

L

f;K

(t)dt+ s(l + 1)H

f

(J;K): �

Lemma 1.3. Let  (t) 2 K, t 2 J , be a continuous function and ' 2

�(J

1

; O), '(t) 2 K, t 2 J

1

. Let the sequence �f

i

2 E(J � O

2

; R

n

), i =

1; 2; : : : , satisfy

Z

J

L

�f

i

;K

(t)dt � �

0

= const; lim

i!1

H

�f

i

(J;K) = 0:
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Then

lim

i!1

�

i

= 0;

where

�

i

= max

t

0

;t

00

2J

�

�

�

�

t

00

Z

t

0

�f

i

(t; �(t))dt

�

�

�

�

; �(t) = ( (t); '(� (t))):

Proof. Let " > 0 be an arbitrary number. By virtue of Lemma 1.2

�

i

� �(s; �)

Z

J

L

�f

i

;K

(t)dt+ s(l + 1)H

�f

i

(J;K): (1.5)

The functions �

i

(t), t 2 [t

i�1

; t

i

], i = 1; : : : ; l + 1, are continuous (see

(1.3), (1.4)). Therefore

lim

s!1

�(s; �) = 0:

Consequently there exist natural numbers s

0

and i

0

such that

�(s

0

; �)�

0

� "=2; s

0

(l + 1)H

�f

i

(J;K) � "=2; i � i

0

: (1.6)

From (1.5) taking into consideration (1.6) we obtain

�

i

� "; i � i

0

: �

By induction and integration by parts we can easily prove the following

Lemma 1.4. Let m(�) 2 L

1

(J;R

+

0

). Then

t

Z

a

m(�

1

)d�

1

�

1

Z

a

m(�

2

)d�

2

: : :

�

k�1

Z

a

m(�

k

)d�

k

=

1

k!

�

t

Z

a

m(�)d�

�

k

: (1.7)

Lemma 1.5 ([25]). Let K � intK

1

and there exist a compact set Q � O

2

with K

2

� Q � K

2

1

and an in�nitely di�erentiable function � : R

n

�R

n

!

[0; 1] such that

�(x

1

; x

2

) =

�

1; (x

1

; x

2

) 2 Q;

0; (x

1

; x

2

) =2 K

2

1

:

(1.8)

Lemma 1.6. Let f 2 E(J �O

2

; R

n

). Then the function

g(t; x

1

; x

2

) =

(

�(x

1

; x

2

)f(t; x

1

; x

2

); (x

1

; x

2

) 2 K

2

1

; t 2 J;

0; (x

1

; x

2

) =2 K

2

1

; t 2 J;

(1.9)



10

satis�es the following conditions:

jg(t; x

1

; x

2

)j � m

f;K

1

(t); 8(t; x

1

; x

2

) 2 J � R

2n

; (1.10)

jg(t; x

0

1

; x

0

2

)� g(t; x

00

1

; x

00

2

)j � L

f

(t)

2

X

i=1

jx

0

i

� x

00

i

j;

8(t; x

0

1

; x

0

2

; x

00

1

; x

00

2

) 2 J � R

4n

;

(1.11)

where

L

f

(t) = L

f;K

1

(t) + �

1

m

f;K

1

(t); (1.12)

�

1

= supfj�

x

1

(x

1

; x

2

)j+ j�

x

2

(x

1

; x

2

)j : (x

1

; x

2

) 2 K

2

1

g;

�

x

i

=

@�

@x

i

; i = 1; 2:

Proof. By (1.9) the validity of the inequality (1.10) is obvious. Let (x

0

1

; x

0

2

) 2

K

2

1

; (x

00

1

; x

00

2

) 2 K

2

1

. Then (see (1.8))

jg(t; x

0

1

; x

0

2

)� g(t; x

00

1

; x

00

2

)j = �(x

0

1

; x

0

2

)jf(t; x

0

1

; x

0

2

) � f(t; x

00

1

; x

00

2

)j+

+j�(x

0

1

; x

0

2

) � �(x

00

1

; x

00

2

)jjf(t; x

00

1

; x

00

2

)j �

� L

f;K

1

(t)

2

X

i=1

jx

0

i

� x

00

i

j+ �

1

m

f;K

1

(t)

2

X

i=1

jx

0

i

� x

00

i

j = L

f

(t)

2

X

i=1

jx

0

i

� x

00

i

j:

Let (x

0

1

; x

0

2

) 2 K

2

1

; (x

00

1

; x

00

2

) =2 K

2

1

. Then recalling that �(x

00

1

; x

00

2

) = 0, we

get

jg(t; x

0

1

; x

0

2

)� g(t; x

00

1

; x

00

2

)j � j�(x

0

1

; x

0

2

)� �(x

00

1

; x

00

2

)jjf(t; x

00

1

; x

00

2

)j �

� �

1

m

f;K

1

(t)

2

X

i=1

jx

0

i

� x

00

i

j � L

f

(t)

2

X

i=1

jx

0

i

� x

00

i

j:

It is not di�cult to see that the last inequality is valid in the case (x

0

1

; x

0

2

) =2

K

2

1

and (x

00

1

; x

00

2

) 2 K

2

1

as well the inequality (1.11) is likewise obvious, if

the points (x

0

1

; x

0

2

) and (x

00

1

; x

00

2

) do not belong to K

2

1

.

1.2. Theorems on Continuouty of Solution. To every element

� = (t

0

; x

0

; '; f) 2 A = J � O ��(J

1

; O)� E(J � O

2

; R

n

)

there corresponds the di�erential equation

_y(t) = f(t; y(t); h(t

0

; '; y)(� (t))) (1.13)

with the initial condition

y(t

0

) = x

0

; (1.14)

where the operator

h : J ��(J

1

; O)�C(J;R

n

)! �(J

1

; R

n

)
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is de�ned by

h(t

0

; '; y)(t) =

�

'(t); t 2 [� (a); t

0

);

y(t); t 2 [t

0

; b];

(1.15)

C(J;R

n

) is the space of continuous functions y : J ! R

n

with the distance

�(y

1

; y

2

) = max

t2J

jy

1

(t) � y

2

(t)j:

De�nition 1.1. An absolutely continuous function y(t) = y(t; �) 2 O; t 2

[r

1

; r

2

] � J , is said to be a solution corresponding to the element � 2 A and

de�ned on [r

1

; r

2

], if t

0

2 [r

1

; r

2

], y(t

0

) = x

0

and the function y(t) satis�es

the equation (1.13) almost everywhere (a.e.) on [r

1

; r

2

].

In the space E(J � O

2

; R

n

) let us introduce a topology by means of the

following basis of neighborhoods of zero [11]

B =

�

V (K; �) � E(J � O

2

; R

n

) : K � O; � > 0

	

;

V (K; �) =

�

�f 2 E(J �O

2

; R

n

) : H

�f

(J;K) � �

	

:

Theorem 1.2. Let ~y(t) be the solution corresponding to the element ~� =

(

~

t

0

; ~x

0

; ~';

~

f) 2 A de�ned on [r

1

; r

2

] � (a; b); let K

1

contain some neighbor-

hood of the set K

0

= cl ~'(J

1

) [ ~y([r

1

; r

2

]): Then there exist numbers �

i

> 0,

i = 0; 1, such that to an arbitrary element

� 2 V (~�;K

1

; �

0

; �

0

) =

= V (

~

t

0

; �

0

)� V (~x

0

; �

0

)� V ( ~'; �

0

) � V (

~

f ;K

1

; �

0

) \W (

~

f ;K

1

; �

0

)

there corresponds a solution y(t; �) de�ned on [r

1

� �

1

; r

2

+ �

1

] � J . More-

over, for each " > 0 there exists a number � = �(") 2 [0; �

0

] such that for

an arbitrary � 2 V (~�;K

1

; �

0

; �

0

) the inequality

jy(t; �)� y(t; ~�)j � "; t 2 [r

1

� �

1

; r

2

+ �

1

]; (1.16)

is ful�lled.

Here V (

~

t

0

; �

0

), V (~x

0

; �

0

), V ( ~'; �

0

) are closed �-neighborhoods of the

points

~

t

0

, ~x

0

, ~' in the spaces R

1

; R

n

;�(J

1

; R

n

) respectively;

V (

~

f ;K

1

; �

0

) =

�

~

f + �f : �f 2 V (K

1

; �)

	

;

W (

~

f ;K

1

; �

0

) =

=

�

~

f+�f : �f 2E(J � O

2

; R

n

);

Z

J

[m

�f;K

1

(t)+L

�f;K

1

(t)]dt��

0

�

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(1.17)
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Proof. Let "

0

> 0 be so small that the closed "

0

-neighborhood of the set

K

0

: K("

0

) = fx 2 R

n

: 9x̂ 2 K

0

; jx� x̂j � "

0

g lies in intK

1

.

On the basis of Lemma 1.5 there exists a compact Q; K

2

("

0

) � Q � K

2

1

and an in�nitely di�erentiable function � : R

n

� R

n

! [0; 1] such that

�(x

1

; x

2

) =

�

1; (x

1

; x

2

) 2 Q;

0; (x

1

; x

2

) =2 K

2

1

:

(1.18)

Now to every element � 2 A we correspond the di�erential equation

_z(t) = g(t; z(t); h(t

0

; '; z)(� (t))) (1.19)

with the initial condition

z(t

0

) = x

0

; (1.20)

where g = �f and satis�es (1.10), (1.11).

It is obvious that the solution of the equation (1.19) with the initial

condition (1.20) depends on the parameter

� 2 G = J � O ��(J

1

; O)�W (

~

f ;K

1

; �

0

) � E

�

=

= R

1

�R

n

��(J

1

; R

n

)� E(J � O

2

; R

n

):

The topology in G is induced from E

�

.

On the complete space C(J;R

n

) we de�ne a family of mappings depend-

ing on the parameter �

F (�; �) : C(J;R

n

)! C(J;R

n

) (1.21)

by the formula

�(t) = �(t; z; �) = x

0

+

t

Z

t

0

g(s; z(s); h(t

0

; '; z)(� (s)))ds;

t 2 J; z 2 C(J;R

n

):

It is clear that every �xed point z(t; �); t 2 J , of the mapping (1.21) is

a solution of the equation (1.19) with the initial condition (1.20).

Let us de�ne the k-iteration F

k

(z; �) by

�

k

(t) = �

k

(t; z; �) = x

0

+

t

Z

t

0

g(s; �

k�1

(s); h(t

0

; '; �

k�1

)(� (s)))ds;

k = 1; 2; : : : ; �

0

(t) = z(t):

We will now prove that, for a su�ciently large k; F

k

(z; �) is a uniform

contraction family. To this end, we estimate the di�erence (see (1.11))

j�

0

k

(t)� �

00

k

(t)j = j�

k

(t; z

0

; �)� �

k

(t; z

00

; �)j �
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�

t

Z

a

jg(s; �

0

k�1

(s); h(t

0

; '; �

0

k�1

)(� (s))) �

�g(s; �

00

k�1

(s); h(t

0

; '; �

00

k�1

)(� (s)))jds �

�

t

Z

a

L

f

(s)

�

j�

0

k�1

(s)��

00

k�1

(s)j+jh(t

0

; '; �

0

k�1

)(� (s))�h(t

0

; '; �

00

k�1

)(� (s))j

�

ds;

k = 1; 2; : : : ; (1.22)

where L

f

(s) has the form (1.12). We assume that �

0

0

(t) = z

0

(t); �

00

0

(t) =

z

00

(t).

From the de�nition of the operator h(�) (see (1.15)) it follows

h(t

0

; '; �

0

k�1

)(� (t)) � h(t

0

; '; �

00

k�1

)(� (t)) = h(t

0

; 0; �

0

k�1

� �

00

k�1

)(� (t)):

Thus with s 2 [a; 
(t

0

)) we get (see (1.15))

h(t

0

; 0; �

0

k�1

� �

00

k�1

)(� (s)) = 0: (1.23)

Let 
(t

0

) < b. Then with s 2 [
(t

0

); b] we have

jh(t

0

; 0; �

0

k�1

� �

00

k�1

)(� (s))j = j�

0

k�1

(� (s)) � �

00

k�1

(� (s))j �

� sup

�

j�

0

k�1

(� (�)) � �

00

k�1

(� (�))j : � 2 [
(t

0

); s]

	

�

� sup

�

j�

0

k�1

(�)� �

00

k�1

(�)j : � 2 [a; s]

	

: (1.24)

If 
(t

0

) > b, then the equality (1.23) holds on the whole interval J .

From (1.22) taking into account (1.23), (1.24) it follows

sup

�

j�

0

k�1

(�) � �

00

k�1

(�)j : � 2 [a; t]

	

�

� 2

t

Z

a

L

f

(�

1

) sup

�

j�

0

k�1

(�)� �

00

k�1

(�)j : � 2 [a; �

1

]

	

d�

1

; k = 1; 2; : : : :

Consequently

j�

0

k

(t)� �

00

k

(t)j �

� 2

2

t

Z

a

L

f

(�

1

)d�

1

�

1

Z

a

L

f

(�

2

) sup

�

j�

0

k�2

(�)� �

00

k�2

(�)j : � 2 [a; �

2

]

	

d�

2

:

Continuing this process, we obtain

j�

0

k

(t)� �

00

k

(t)j � 2

k

�

k

(t)kz

0

� z

00

k;

where

�

k

(t) =

t

Z

a

L

f

(�

1

)d�

1

�

1

Z

a

L

f

(�

2

)d�

2

� � �

�

k�1

Z

a

L

f

(�

k

)d�

k

=

1

k!

�

t

Z

a

L

f

(�)d�

�

k
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(see (1.7)). Thus

�(F

k

(z

0

; �); F

k

(z

00

; �)) = k�

0

k

(t)� �

00

k

(t)k �

�

1

k!

�

2

Z

J

L

f

(t)dt

�

k

kz

0

� z

00

k = ~�

k

�(z

0

; z

00

):

Now we will show the existence of a number �

2

> 0 such that

Z

J

L

f

(t)dt � �

2

; 8f =

~

f + �f 2 W (

~

f ;K

1

; �

0

): (1.25)

Indeed, let (x

1

; x

2

) 2 K

2

1

and f 2W (

~

f ;K

1

; �

0

). Then

jf(t; x

1

; x

2

)j � m

~

f;K

1

(t) +m

�f;K

1

(t) = m

f;K

1

(t); t 2 J: (1.26)

Further, let (x

0

1

; x

0

2

) 2 K

2

1

and (x

00

1

; x

00

2

) 2 K

2

1

. Then

jf(t; x

0

1

; x

0

2

)� f(t; x

00

1

; x

00

2

)j � j

~

f (t; x

0

1

; x

0

2

) �

~

f (t; x

00

1

; x

00

2

)j+

+j�f(t; x

0

1

; x

0

2

)� �f(t; x

00

1

; x

00

2

)j �

�

L

~

f;K

1

(t) + L

�f;K

1

(t)

�

2

X

i=1

jx

0

i

� x

00

i

j =

= L

f;K

1

(t)jx

0

i

� x

00

i

j: (1.27)

On the basis of (1.12), taking into consideration (1.26), (1.27), (1.17) we

obtain (1.25), where

�

2

= �

0

(1 + �

1

) +

Z

J

[L

~

f ;K

1

(t) + �

1

m

~

f ;K

1

]dt:

Thus

~�

k

�

(2�

2

)

k

k!

:

Consequently, there exists a natural number k

1

for which ~�

k

1

< 1. There-

fore k

1

-iteration of the familly (1.21) is a contraction. According to Theorem

1.1 the mapping (1.21) for every � has a unique �xed point. Hence it fol-

lows that the equation (1.19) with the initial condition (1.20) has a unique

solution z(t; �); t 2 J .

Now we prove that for an arbitrary k = 1; 2; : : : the mapping

F

k

(z(�; ~�); �) : G! C(J;R

n

)

is continuous at the point � = ~�.

To prove this, it su�ces to show that if the sequence �

i

= (t

i

0

; x

i

0

; '

i

; f

i

) 2

G; i = 1; 2; : : : is convergent to ~� = (

~

t

0

; ~x

0

; ~';

~

f ), i.e.,

lim

i!1

�

jt

i

0

�

~

t

0

j+ jx

i

0

� ~x

0

j+ k'

i

� ~'k+H

�f

i

(J;K

1

)

�

= 0; �f

i

= f

i

�

~

f ;
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then

lim

i!1

F

k

(z(�; ~�); �

i

) = F

k

(z(�; ~�); ~�) = z(�; ~�): (1.28)

The proof of the equality (1.28) will be carried out by induction.

Let k = 1. We have

j�

i

1

(t)� ~z(t)j � jx

i

0

� ~x

0

j+

+

�

�

�

�

t

Z

t

i

0

g

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s)))ds �

t

Z

~

t

0

~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))ds

�

�

�

�

=

= a

i

1

+ a

i

2

(t); (1.29)

where

�

i

1

(t) = �

1

(t; ~z; �

i

); ~z(t) = z(t; ~�); g

i

= �f

i

; ~g = �

~

f;

a

i

1

= jx

i

0

� ~x

0

j+

�

�

�

�

~

t

0

Z

t

i

0

j~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))jds

�

�

�

�

;

a

i

2

(t) =

�

�

�

�

t

Z

t

i

0

[g

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s))) � ~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))]ds

�

�

�

�

:

According to (1.10) we have

a

i

1

� jx

i

0

� ~x

0

j+

�

�

�

�

~

t

0

Z

t

i

0

m

~

f;K

1

(t)dt

�

�

�

�

:

Consequently,

lim

i!1

a

i

1

= 0: (1.30)

It is easy to see that after elementary transformations for a

i

2

(t) we obtain

a

i

2

(t) =

�

�

�

�

t

Z

t

i

0

[~g(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s))) � ~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))]ds

�

�

�

�

+

+

�

�

�

�

t

Z

t

i

0

[�g

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s))) � �g

i

(s; ~z(s); h(t

i

0

; ~'; ~z)(� (s)))]ds

�

�

�

�

+

+

�

�

�

�

t

Z

t

i

0

�g

i

(s; ~z(s); h(t

i

0

; ~'; ~z)(� (s)))ds

�

�

�

�

� a

i

21

+ a

i

22

+ a

i

23

(t); (1.31)



16

where

a

i

21

=

Z

J

L

~

f

(t)jh(t

i

0

; '

i

; ~z)(� (t))) � h(

~

t

0

; ~'; ~z)(� (t)))jdt;

a

i

22

=

Z

J

L

�f

i

(t)jh(t

i

0

; '

i

; ~z)(� (t))) � h(t

i

0

; ~'; ~z)(� (t))jdt;

a

i

23

(t) =

�

�

�

�

t

Z

t

i

0

�g

i

(s; ~z(s); h(t

i

0

; ~'; ~z)(� (s)))ds

�

�

�

�

; �g

i

= g

i

� ~g:

Now we will estimate a

i

21

; a

i

22

; a

i

23

(t). We have

a

i

21

�

Z

J

L

~

f

(t)jh(t

i

0

; '

i

� ~'; 0)(� (t)))jdt+

+

Z

J

L

~

f

(t)jh(t

i

0

; ~'; ~z)(� (t))) � h(

~

t

0

; ~'; ~z)(� (t)))jdt �

� k'

i

� ~'k

Z

J

L

~

f

(t)dt+


(s

i

2

)

Z


(s

i

1

)

L

~

f

(t)j ~'(� (t))� ~z(� (t))jdt;

s

i

1

= minft

i

0

;

~

t

0

g; s

i

2

= maxft

i

0

;

~

t

0

g

The function 
(t) is continuous, therefore

lim

i!1

[
(s

i

2

)� 
(s

i

1

)] = 0:

Thus

lim

i!1

a

i

21

= 0: (1.32)

Further,

a

i

22

=

Z

J

L

�f

i

(t)j'

i

(� (t)) � ~'(� (t))jdt � k'

i

� ~'k

Z

J

L

�f

i

(t)dt:

On the basis of (1.12) and (1.17), we have

Z

J

L

�f

i

(t)dt =

Z

J

[L

�f

i

;K

1

(t) + �

1

m

�f

i

;K

1

(t)]dt � �

0

(1 + �

1

);

whence we can conclude that

lim

i!1

a

i

22

= 0: (1.33)

Now we will estimate a

i

23

(t). Here we consider two cases.
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Let t 2 [a; b

i

]; b

i

= minfb; 
(t

i

0

)g. Then

a

i

23

(t) =

�

�

�

�

t

Z

t

i

0

�g

i

(s; ~z(s); ~'(� (s)))ds

�

�

�

�

� max

t

0

;t

00

2J

�

�

�

�

t

00

Z

t

0

�g

i

(s; ~z(s); ~'(� (s)))ds

�

�

�

�

:

It is not di�cult to see that b

i

� b

0

= minf
(a); bg since 
(t

i

0

) > 
(a).

Therefore with t 2 [b

i

; b] we have

a

i

23

(t) =

�

�

�

�

b

Z

t

i

0

�g

i

(s; ~z(s); ~'(� (s)))ds +

�

�

�

�

t

Z

b

i

�g

i

(s; ~z(s); ~z(� (s)))ds

�

�

�

�

�

� max

t

0

;t

00

2J

�

�

�

�

t

00

Z

t

0

�g

i

(s; ~z(s); ~'(� (s)))ds

�

�

�

�

+

+ max

t

0

;t

00

2[b

0

;b]

�

�

�

�

t

00

Z

t

0

�g

i

(s; ~z(s); ~z(� (s)))ds

�

�

�

�

= a

i

24

:

Thus

a

i

23

(t) � a

i

24

; t 2 J:

It is easy to note that

H

�g

i

([b

0

; b];K

1

) � H

�g

i

(J;K

1

) � H

�f

i

(J;K

1

):

By the hypothesis

lim

i!1

H

�f

i

(J;K

1

) = 0:

Consequently, all the conditions of Lemma 1.3 are ful�lled (see (1.17)).

Therefore

lim

i!1

a

i

24

= 0:

Thus

lim

i!1

a

i

23

(t) = 0 uniformly for t 2 J: (1.34)

The conditions (1.32)-(1.34) yield (see (1.31))

lim

i!1

a

i

2

(t) = 0 for t 2 J: (1.35)

Taking into consideration (1.30), (1.35), from (1.29) we obtain the equal-

ity

lim

i!1

k�

i

1

� ~zk = 0:

The equality (1.28) for k = 1 is proved.

Let now the condition (1.28) hold for some k � 1. We will prove the

validity of (1.28) for k + 1.
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By elementary transformations we obtain

j�

i

k+1

(t)� ~z(t)j � jx

i

0

� ~x

0

j+

+

�

�

�

�

t

Z

t

i

0

g

i

(s; �

i

k

(s); h(t

i

0

; '

i

; �

i

k

)(� (s)))ds �

t

Z

~

t

0

~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))ds

�

�

�

�

�

� jx

i

0

� ~x

0

j+

�

�

�

�

~

t

Z

t

i

0

j~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))dsj

�

�

�

�

+

+

�

�

�

�

t

Z

t

i

0

[g

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s))) � ~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))]ds

�

�

�

�

+

+

�

�

�

�

Z

J

jg

i

(s; �

i

k

(s); h(t

i

0

; '

i

; �

i

k

)(� (s)))ds � g

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s)))jds

�

�

�

�

=

= a

i

1

+ a

i

2

(t) + a

i

3k

:

Now we estimate a

i

3k

(see (1.25))

a

i

3k

�

Z

J

L

f

i

(t)

�

j�

i

k

(s) � ~z(s)j+ jh(t

i

0

; 0; �

i

k

� ~z)(� (s))jds �

� k�

i

k

� ~zk

Z

J

L

f

i

(s)ds +

b

Z

b

i

L

f

i

(s)j�

i

k

(� (s)) � ~z(� (s))jds �

� 2k�

i

k

� ~zk

Z

J

L

f

i

(s)ds � 2�

2

k�

i

k

(s) � ~zk:

Since

lim

i!1

k�

i

k

� ~zk = 0;

hence we have

lim

i!1

a

i

3k

= 0: (1.36)

Owing to (1.30), (1.35) and (1.36), we get

lim

i!1

k�

i

k+1

� ~zk = 0:

The equality (1.28) for every k = 1; 2; : : : is proved.

Let a number �

1

> 0 be so small that [r

1

� �

1

; r

2

+ �

1

] � J and

jz(t; ~�)� z(r

1

; ~�)j � "

0

=2 with t 2 [r

1

� �

1

; r

1

];

jz(t; ~�) � z(r

2

; ~�)j � "

0

=2 with t 2 [r

2

; r

2

+ �

1

]:
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It is clear that

z(t; ~�) = ~y(t); t 2 [r

1

; r

2

]

and

(z(t; ~�); h(

~

t

0

; ~'; z(�; ~�))(� (t))) 2 K

2

�

"

0

2

�

� Q; t 2 [r

1

� �

1

; r

2

+ �

1

]: (1.37)

Consequently,

�(z(t; ~�); h(

~

t

0

; ~'; z(�; ~�))(� (t))) = 1; t 2 [r

1

� �

1

; r

2

+ �

1

]:

The function z(t; ~�) satis�es the equation

_y(t) =

~

f (t; y(t); h(

~

t

0

; ~'; y)(� (t))); t 2 [r

1

� �

1

; r

2

+ �

1

];

with the initial condition

y(

~

t

0

) = ~x

0

:

Thus

y(t; ~�) = z(t; ~�); t 2 [r

1

� �

1

; r

2

+ �

1

]:

By Theorem 1.1 for "

0

=2 there exists a number �

0

2 (0; "

0

) such that

to every element � 2 V (~�;K

1

; �

0

; �

0

) there corresponds a solution z(t; �)

satisfying the condition

jz(t; �)� z(t; ~�)j � "

0

=2; t 2 J:

Thus with t 2 [r

1

� �

1

; r

2

+ �

1

]

jz(t; �)� z(t; ~�)j � "

0

=2:

Hence by (1.37) we conclude that for an arbitrary � 2 V (~�;K

1

; �

0

; �

0

) it

holds

(z(t; �); h(t

0

; '; z(�; �))(� (t))) 2 Q; t 2 [r

1

� �

1

; r

2

+ �

1

]:

Thus the function z(t; �) satis�es the equation (1.13) with the initial

condition (1.14), i.e.,

y(t; �) = z(t; �); t 2 [r

1

� �

1

; r

2

+ �

1

]: (1.38)

The �rst part of the theorem is proved.

By Theorem 1.1 for an arbitrary " > 0 there exists a number � = �(") 2

(0; �

0

) such that for an arbitrary � 2 V (~�;K

1

; �

0

; �

0

)

jz(t; �)� z(t; ~�)j � "; t 2 J;

whence using (1.38) we obtain (1.16).
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To every element � = (t

0

; x

0

; '; f) 2 A there corresponds the delay

di�erential equation

_x(t) = f(t; x(t); x(� (t))) (1.39)

with the initial condition

x(t) = '(t); t 2 [� (t

0

); t

0

); x(t

0

) = x

0

: (1.40)

De�nition 1.2. The function x(t) = x(t; �) 2 O; t 2 [� (t

0

); t

1

] � [� (a); b],

is said to be a solution of the equation (1.39) with the initial condition

(1.40) or a solution corresponding to the element � 2 A and de�ned on the

interval [� (t

0

); t

1

]; t

0

2 [a; t

1

), if on [� (t

0

); t

0

] it satis�es the condition (1.40),

is absolutely continuous on the interval [t

0

; t

1

] and satis�es the equation

(1.39) a.e.

Theorem 1.3. Let ~x(t) be the solution corresponding to the element ~� 2 A

de�ned on [� (

~

t

0

);

~

t

1

] � (� (a); b); let K

1

contain some neighborhood of the

set cl ~'(J

1

)[ ~y([r

1

; r

2

]): Then there exist numbers �

i

> 0; i = 0; 1, such that

to every element � 2 V (~�;K

1

; �

0

; �

0

) there corresponds a solution x(t; �)

de�ned on [� (t

0

);

~

t

1

+ �

1

] � [� (a); b]. Moreover, for each " > 0 there exists

� = �(") 2 (0; �

0

] such that for an arbitrary � 2 V (~�;K

1

; �

0

; �

0

)

jx(t; �)� x(t; ~�)j � "; t 2 [s

2

;

~

t

1

+ �

1

]; s

2

= maxft

0

;

~

t

0

g:

Proof. Let in Theorem 1.2 r

1

=

~

t

0

; r

2

=

~

t

1

. Then ~x(t) on the interval

[

~

t

0

;

~

t

1

] satis�es the equation

_y(t) =

~

f (t; y(t); h(

~

t

0

; ~'; y)(� (t)))

with the initial condition

y(

~

t

0

) = ~x

0

:

Thus in Theorem 1.2 instead of ~y(t) we can take ~x(t). By this theorem

there exist numbers �

i

> 0; i = 0; 1, such that to every element � 2

V (~�;K

1

; �

0

; �

0

) there corresponds a solution y(t; �) de�ned on the interval

[

~

t

0

� �

1

;

~

t

1

+ �

1

] � J . Moreover, for each " > 0 there exists � = �(") 2 (0; �

0

)

such that for an arbitrary � 2 V (~�;K

1

; �

0

; �

0

)

jy(t; �)� y(t; ~�)j � "; t 2 [

~

t

0

� �

1

;

~

t

1

+ �

1

]: (1.41)

It is easy to see that for an arbitrary � 2 V (~�;K

1

; �

0

; �

0

) the function

x(t; �) =

�

'(t); t 2 [� (t

0

); t

0

);

y(t; �); t 2 [t

0

;

~

t

0

+ �

1

]

is the solution corresponding to the element � 2 V (~�;K

1

; �

0

; �

0

), de�ned

on the interval [� (t

0

);

~

t

1

+ �

1

] � [� (a); b] (see De�nition 1.2). Hence the �rst

part of the theorem is proved.

It is obvious that

x(t; �) = y(t; �) t 2 [s

2

;

~

t

1

+ �

1

]:
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Therefore from (1.41) it follows the desired inequality.

Finally we note that Theorems 1.2, 1.3 are also valid, respectively, for

the equations with delays

_y(t) = f(t; h(t

0

; '; y)(�

1

(t)); : : : ; h(t

0

; '; y)(�

s

(t)));

_x(t) = f(t; x(�

1

(t)); : : : ; x(�

s

(t)));

where �

i

: R

1

! R

1

; i = 1; : : : ; s are absolutly continuous functions satisfy-

ing �

i

(t) � t; _�

i

(t) > 0; i = 1; : : : ; s, while the right-hand side f belongs to

E(J � O

s

; R

n

).

2. Lemmas on the Estimation of the Increment

Introduce the set

V =

�

�� = (�t

0

; �x

0

; �'; �f) 2 A� ~� : j�t

0

j � �

3

= const; j�x

0

j � �

3

;

k�'k � �

3

; �f =

k

X

i=1

�

i

�f

i

; j�

i

j � �

3

; i = 1; : : : ; k

	

;

(2.1)

where �f

i

2 E(J � O

2

; R

n

)�

~

f ; i = 1; : : : ; k are �xed points.

Lemma 2.1. Let ~y(t) be the solution corresponding to the element ~� =

= (

~

t

0

; ~x

0

; ~';

~

f) 2 A de�ned on [r

1

; r

2

] � (a; b); let K

1

contain some neigh-

borhood of the set K

0

= cl ~'(J

1

) [ ~y([r

1

; r

2

]): Then there exist numbers

�

2

> 0; "

2

> 0 such that for an arbitrary ("; ��) 2 [0; "

2

]�V to the element

~�+ "�� 2 A there corresponds the solution y(t; ~� + "��) de�ned on

[r

1

� �

2

; r

2

+ �

2

] � J . Moreover,

'(t) = ~'(t) + "�'(t) 2 K

1

; t 2 J

1

;

y(t; ~� + "��) 2 K

1

; t 2 [r

1

� �

2

; r

2

+ �

2

];

(2.2)

lim

"!0

y(t; ~�+"��)=y(t; ~�) uniformly for (t; �)2 [r

1

��

2

; r

2

+�

2

]� V: (2.3)

Proof. Let a number "

0

> 0 be so small that the "

0

-closed neighborhood

K("

0

) of the set K

0

lies in intK

1

. By Theorem 1.2 there exist numbers

�

i

; i = 0; 1, such that to every element ~� + "�� 2 V (~�;K

1

; �

0

; �

0

) there

corresponds the solution y(t; ~� + "��) de�ned on [r

1

� �

1

; r

2

+ �

1

] � J . It

is obvious that there exist numbers "

1

> 0; �

2

2 (0; �

1

] such that for an

arbitrary ("; ��) 2 [0; "

1

]� V we have

~�+ "�� 2 V (~�;K

1

; �

0

; �

0

); '(t) 2 K

1

;

t 2 J

1

; y(t; ~�) 2 K

�

"

0

2

�

; t 2 [r

1

� �

2

; r

2

+ �

2

]:

From the second part of Theorem 1.2 it follows the existence of a number

"

2

2 [0; "

1

] such that for an arbitrary ("; ��) 2 [0; "

2

]� V

y(~� + "��) 2 K

1

; t 2 [r

1

� �

2

; r

2

+ �

2

]:
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Moreover, the equality (2.3) is ful�lled.

Remark 2.1. Due to the uniqueness, the solution y(t; �) de�ned on the

interval [r

1

��

2

; r

2

+�

2

] is a continuation of the solution ~y(t). Therefore the

trajectory ~y(t) in the sequel is assumed to be de�ned on the whole interval

[r

1

� �

2

; r

2

+ �

2

].

We set

�y(t) = �y(t; "��) = y(t; ~� + "��)� ~y(t);

(t; "; ��) 2 [r

1

� �

2

; r

2

+ �

2

]� [0; "

2

]� V: (2.4)

Lemma 2.2. Let � (

~

t

0

) <

~

t

0

, � (r

2

) �

~

t

0

and the following hypotheses hold

lim

"!0

1

"

sup

��2V

�

�

�

�

�

~

t

0

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt

�

�

�

�

<1; (2.5)

lim

"!0

1

"

sup

��2V

�

sup

t2[
(t

0

);


0

]

�

�

�

�

t

Z


(t

0

)

[

~

f (s; ~y(s) + �y(s); ~y(� (s)) + �y(� (s))) �

�

~

f (s; ~y(s); ~'(� (s)))]ds

�

�

�

�

<1; (2.6)

where

V

�

= f�� 2 V : �t

0

� 0g; t

0

=

~

t

0

+ "�t

0

; 


0

= 
(

~

t

0

):

Then there exists a number "

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2

[0; "

3

]� V

�

max

t2[

~

t

0

;r

2

+�

2

]

j�y(t)j � O("):

3

(2.7)

Proof. By assumption of the lemma there exists a number "

3

2 (0; "

2

] such

that for an arbitrary ("; ��) 2 [0; "

3

]� V

�

the conditions


(t

0

) >

~

t

0

; (2.8)

�

�

�

�

~

t

0

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt

�

�

�

�

� O("); (2.9)

�

�

�

�

t

Z


(t

0

)

[

~

f(s; ~y(s) + �y(s); ~y(� (s)) + �y(� (s))) �

~

f (s; ~y(s); ~'(� (s)))]ds

�

�

�

�

�

� O("); 8t 2 [
(t

0

); 


0

] (2.10)

3

Here and in the sequel the symbols O("); o(t; "��) (scalar or vector) mean that

lim

"!0

[O(")="] <1; lim

"!0

[o(t; "��)="] <1 uniformly for (t; ��).
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are ful�lled. It is easy to see that the function �y(t) on the interval [

~

t

0

; r

2

+

�

2

] satis�es the equation

_

�y(t) =

d

dt

�y(t) = a(t; "��) + b(t; "��); (2.11)

where

a(t; "��) =

=

~

f (t; ~y(t)+�y(t); h(t

0

; '; ~y+�y)(� (t)))�

~

f (t; ~y(t); h(

~

t

0

; ~'; ~y)(� (t)));

b(t; "��) = "�f(t; ~y(t) + �y(t); h(t

0

; '; ~y +�y)(� (t))):

Now rewrite the equation (2.11) in the integral form

�y(t) = �y(

~

t

0

) +

t

Z

~

t

0

[a(s; "��) + b(s; "��)]ds; t 2 [

~

t

0

; r

2

+ �

2

]:

Hence it follows

j�y(t)j = j�y(

~

t

0

)j+

�

�

�

�

t

Z

~

t

0

a(s; "��)ds

�

�

�

�

+

r

2

+�

2

Z

~

t

0

jb(s; "��)jds =

= j�y(

~

t

0

)j+ a

1

(t; "��) + b

1

(t; "��): (2.12)

We will estimate �y(

~

t

0

). Taking into consideration (2.8), we get

j�y(

~

t

0

)j = jy(

~

t

0

; ~�+ "��) � y(

~

t

0

)j =

=

�

�

~x

0

+ "�x

0

+

~

t

0

Z

t

0

[

~

f(t; ~y(t) + �y(t); h(t

0

; '; ~y +�y)(� (t))) + b(t; "��)]dt�

�~x

0

�

�

� "j�x

0

j+

�

�

�

�

~

t

0

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt

�

�

�

�

+

~

t

0

Z

t

0

jb(t; "��)jdt: (2.13)

It is obvious that (see (2.1), (2.2))

jb(t; "��)j � "�

3

m

�f

(t); t 2 [

~

t

0

; r

2

+ �

2

]; m

�f

(t) =

k

X

i=1

m

�f

i

;K

1

(t): (2.14)

Therefore

~

t

0

Z

t

0

jb(t; "��)jdt � o("��): (2.15)

From (2.13), taking into account (2.1), (2.9) and (2.15), we obtain

j�y(

~

t

0

)j � O("): (2.16)
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To estimate a

1

(t; "��); t 2 [

~

t

0

; r

2

+ �

2

], we consider three cases.

Let t 2 [

~

t

0

; 
(t

0

)]. Then

a

1

(t; "��) =

�

�

�

�

t

Z

~

t

0

[

~

f(s; ~y(s) + �y(s); '(� (s))) �

~

f (s; ~y(s); ~'(� (s)))]ds

�

�

�

�

�

�

t

Z

~

t

0

L

~

f ;K

1

(s)(j�y(s)j + "�

3

)ds =

t

Z

~

t

0

L

~

f ;K

1

(s)j�y(s)jds + o("): (2.17)

If t 2 [
(t

0

); 


0

], then on the basis of (2.17) and (2.10) we get

a

1

(t; "��) = a

1

(
(t

0

); "��) +

�

�

�

�

t

Z


(t

0

)

[

~

f(s; ~y(s) + �y(s); ~y(� (s)) + �y(� (s))) �

�

~

f (s; ~y(s); ~'(� (s)))]ds

�

�

�

�

�

t

Z

~

t

0

L

~

f ;K

1

(s)j�y(s)jds + O("):

Let t 2 [


0

; r

2

+ �

2

]. After elementary transformations we obtain

a

1

(t; "��) = a

1

(


0

; "��) +

+

t

Z




0

j

~

f(s; ~y(s) + �y(s); ~y(� (s)) + �y(� (s))) �

~

f (s; ~y(s); ~y(� (s)))jds �

�




0

Z

~

t

0

L

~

f;K

1

(s)j�y(s)jds +O(") +

t

Z




0

L

~

f ;K

1

(s)(j�y(s)j + j�y(� (s))j)ds =

=

t

Z

~

t

0

L

~

f ;K

1

(s)j�y(s)jds +

�(t)

Z

~

t

0

L

~

f ;K

1

(
(s))j�y(s)j _
 (s)ds +O("): (2.18)

It is clear that [

~

t

0

; � (t)] � [

~

t

0

; t] with t 2 [


0

; r

2

+ �

2

]. Therefore

a

1

(t; "��) �

t

Z

~

t

0

L(s)j�y(s)jds+O("); 8(t; "; ��) 2 [


0

; r

2

+�

2

]�[0; "

3

]�V

�

;

where

L(s) = L

~

f ;K

1

(s) + �(s) _
(s)L

~

f ;K

1

(
(s)) (2.19)

and �(s) is the characteristic function of the interval [� (a); � (b)].
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Now, on the basis the obtained estimates, for a

1

(t; "��) write out the

�nal estimate

a

1

(t; "��) �

t

Z

~

t

0

L(s)j�y(s)jds + O("); (2.20)

8(t; "; ��) 2 [

~

t

0

; r

2

+ �

2

]� [0; "

3

]� V

�

:

By virtue of (2.14) we have

b

1

("��) � O("): (2.21)

According to (2.16), (2.20) and (2.21), from the inequality (2.12) it fol-

lows

j�y(t)j � O(") +

t

Z

~

t

0

L(s)j�y(s)jds; t 2 [

~

t

0

; r

2

+ �

2

]:

By virtue of Gronwall's inequality we have

j�y(t)j � O(") exp

�

r

2

+�

2

Z

~

t

0

L(s)ds

�

; t 2 [

~

t

0

; r

2

+ �

2

]:

Hence it follows the desired inequality (2.7).

Lemma 2.3. Let � (

~

t

0

) <

~

t

0

, � (r

2

) �

~

t

0

and

lim

!!!

�

0

~

f (!) = f

�

0

; ! = (t; x

1

; x

2

) 2 R

�

~

t

0

�O

2

;

R

�

~

t

0

= (�1;

~

t

0

]; !

�

0

= (

~

t

0

; ~x

0

; ~'(� (

~

t

�

0

))):

(2.22)

Next, let there exist neighborhoods V

�

(

~

t

0

), V

�

(!

0

1

), V

�

(!

�

2

),

4

!

0

1

= (


0

;

~y(


0

); ~x

0

), !

�

2

= (


0

; ~y(


0

); ~'(

~

t

0

)) such that the functions _
(t), t 2 V

�

(

~

t

0

)

~

f (!

1

)�

~

f (!

2

), (!

1

; !

2

) 2 V

�

(!

0

1

);�V

�

(!

�

2

) are bounded. Then there exists

a number "

3

2 (0; "

2

] such that the for an arbitrary ("; ��) 2 [0; "

3

] � V

�

the inequality (2:7) is ful�lled. Moreover,

�y(

~

t

0

) = "[�x

0

� f

�

0

�t

0

] + o("��): (2.23)

Proof. From (2.22) it follows the existence of a nighborhood V

�

(!

�

0

) =

V

�

(

~

t

0

) � V (~x

0

) � V ( ~'(� (

~

t

�

0

))) such that the function

~

f(!); ! 2 V

�

(!

�

0

),

is bounded.

4

V

�

(

~

t

0

) = ft 2 V (

~

t

0

) : t �

~

t

0

g; V (

~

t

0

) is some neighborhood of the point

~

t

0

,

V

�

(!

0

1

) = V

�

(


0

)� V (~y(


0

))� V (~x

0

); V

�

(!

�

2

) = V

�

(


0

)� V (~y(


0

))� V ( ~'(

~

t

0

)):
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Let �" 2 (0; "

2

] be so small that for an arbitrary ("; ��) 2 [0; �"]� V

�

the

conditions

[t

0

;

~

t

0

] 2 V

�

(

~

t

0

); (t; ~y(t) + �y(t); '(� (t))) 2 V

�

(!

�

0

); t 2 [t

0

;

~

t

0

];

(t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t))) 2 V

�

(!

0

1

);

(t; ~y(t); ~'(� (t))) 2 V

�

(!

�

2

); t 2 [
(t

0

); 


0

];

are ful�lled.

Consequently, the functions _
(t),

~

f (t; ~y(t) + �y(t), '(� (t))), t 2 [t

0

;

~

t

0

];

~

f (t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t)));

~

f(t; ~y(t); ~'(� (t))); t 2 [
(t

0

); 


0

] are

bounded.

It is obvious that




0

� 
(t

0

) =

~

t

0

Z

t

0

_
(t)dt � O("):

Thus the conditions of Lemma 2.2 are ful�lled. Therefore there exists

a number "

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2 [0; "

3

] � V

�

the

inequality (2.7) is valid.

Now we prove the second part of the lemma. We have (see (2.13))

�y(

~

t

0

) = "[�x

0

� f

�

0

�t

0

] +

+

~

t

0

Z

t

0

[

~

f(t; ~y(t) + �y(t); '(� (t))) � f

�

0

]dt+

~

t

0

Z

t

0

b(t; "��)dt: (2.24)

It is obvious that

lim

"!0

sup

t2[t

0

;

~

t

0

]

j

~

f(t; ~y(t) + �y(t); '(� (t))) � f

�

0

j = 0 uniformly for �� 2 V

�

:

Consequently the second addend of the right-hand side of (2.24) has the

order o("��). Taking into account this and the relation (2.15), from (2.24)

we obtain the formula (2.23).

Lemma 2.4. Let � (

~

t

0

) <

~

t

0

, � (r

2

) �

~

t

0

and the following hypotheses hold

lim

"!0

1

"

sup

��2V

+

�

�

�

�

t

0

Z

~

t

0

~

f (t; ~y(t); ~'(� (t)))dt

�

�

�

�

<1; (2.25)

lim

"!0

1

"

sup

��2V

+

sup

t2[


0

;
(t

0

)]

�

�

�

�

t

Z




0

[

~

f(s; ~y(s) + �y(s); '(� (s))) �

�

~

f (s; ~y(s); ~y(� (s)))]ds

�

�

�

�

<1; (2.26)
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where V

+

= f�� 2 V : �t

0

� 0g: Then there exists a number "

3

2 (0; "

2

]

such that for an arbitrary ("; ��) 2 [0; "

3

]� V

+

max

t2[t

0

;r

2

+�

2

]

j�y(t)j � O("): (2.27)

Proof. By assumption of the lemma there exists a number "

3

2 (0; "

2

] such

that for an arbitrary ("; ��) 2 [0; "

3

]� V

+

the conditions

t

0

< 


0

; 
(t

0

) < r

2

+ �

2

; (2.28)

�

�

�

�

t

0

Z

~

t

0

~

f (t; ~y(t); ~'(� (t)))dt

�

�

�

�

� O("); (2.29)

�

�

�

�

t

Z




0

[

~

f(s; ~y(s) + �y(s); '(� (s))) �

~

f (s; ~y(s); ~y(� (s)))]ds

�

�

�

�

�

� O(") 8t 2 [


0

; 
(t

0

)] (2.30)

are ful�lled.

The function �y(t) on the interval [t

0

; r

2

+�

2

] satis�es the equation (2.11),

which we rewrite in the integral form

�y(t) = �y(t

0

) +

t

Z

t

0

[a(s; "��) + b(s; "��)]ds; t 2 [t

0

; r

2

+ �

2

]:

Hence it follows

j�y(t)j � j�y(t

0

)j+

t

Z

t

0

ja(s; "��)jds+

r

2

+�

2

Z

t

0

jb(s; "��)jds =

= j�y(t

0

)j+ a

2

(t; "��) + b

2

("��): (2.31)

We will estimate �y(t

0

). Taking into consideration of (2.28) and (2.29), we

get

j�y(t

0

)j = jy(t

0

; ~�+ "��) � ~y(t

0

)j =

=

�

�

~x

0

+ "�x

0

�

�

~x

0

+

t

0

Z

~

t

0

~

f (t; ~y(t); ~'(� (t)))dt

�

�

�

�

� "j�x

0

j+

�

�

�

�

t

0

Z

~

t

0

~

f(t; ~y(t); ~'(� (t)))dt

�

�

�

�

� O("): (2.32)

To estimate a

2

(t; "��); t 2 [t

0

; r

2

+ �

2

], we consider three cases.
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Let t 2 [t

0

; 


0

]. Then analogously to (2.17) we obtain

a

2

(t; "��) �

t

Z

t

0

L

~

f ;K

1

(s)j�y(s)jds + O("): (2.33)

Let t 2 [


0

; 
(t

0

)]. Then on the basis (2.33) and (2.30) we get

a

2

(t; "��) � a

2

(


0

; "��) +

�

�

�

�


(t

0

)

Z




0

[

~

f (s; ~y(s) + �y(s); '(� (s))�

�

~

f (s; ~y(s); ~y(� (s)))]ds

�

�

�

�

�

t

Z

t

0

L

~

f ;K

1

(s)j�y(s)jds + O("):

Let t 2 [
(t

0

); r

2

+ �

2

]. Then analogously to (2.18) and (2.19) it can be

proved that

a

2

(t; "��) �

t

Z

t

0

L(s)j�y(s)jds +O("):

Now for a

2

(t; "��) write out the �nal estimate

a

2

(t; "��) �

t

Z

t

0

L(s)j�y(s)jds + O("); (2.34)

8(t; "; ��) 2 [t

0

; r

2

+ �

2

]� [0; "

3

]� V

+

:

By virtue of (2.14), for b

2

("��), we obtain

b

2

("��) � O("): (2.35)

From (2.31), taking into account (2.32), (2.34) and (2.35), we get

j�y(t)j � O(") +

t

Z

t

0

L(s)j�y(s)jds; t 2 [t

0

; r

2

+ �

2

]:

By virtue of Gronwall's inequality, we have

j�y(t)j � O(") exp

�

r

2

+�

2

Z

t

0

L(s)ds

�

; t 2 [t

0

; r

2

+ �

2

]:

Thus the inequality (2.27) is proved.
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Lemma 2.5. Let � (

~

t

0

) <

~

t

0

� (r

2

) �

~

t

0

and the following conditions are

ful�lled

lim

!!!

+

0

~

f (!) = f

+

0

; ! 2 R

+

~

t

0

�O

2

;

R

+

~

t

0

= [

~

t

0

;1); !

+

0

= (

~

t

0

; ~x

0

; ~'(� (

~

t

+

0

))): (2.36)

Let, moreover, there exist neighborhoods V

+

(

~

t

0

); V

+

(!

0

1

); V

+

(!

�

2

), !

+

2

=

(


0

; ~y(


0

); ~'(

~

t

+

0

)) such that the functions _
(t); t 2 V

+

(

~

t

0

)

~

f (!

1

) �

~

f (!

2

),

(!

1

; !

2

) 2 V

+

(!

0

1

);� V

+

(!

+

2

) are bounded. Then there exists a number

"

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2 [0; "

3

] � V

+

the inequality

(2:27) is ful�lled. Moreover,

�y(t

0

) = "[�x

0

� f

+

0

�t

0

] + o("��): (2.37)

This lemma can be proved as Lemma 2.4 with insigni�cant changes (see

the proof of Lemma 2.3).

Lemma 2.6. Let � (r

2

) <

~

t

0

and the condition (2:5) be ful�lled. Then

there exist numbers "

3

2 (0; "

2

]; �

3

2 (0; �

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

�

it holds

max

t2[

~

t

0

;r

2

+�

3

]

j�y(t)j � O("): (2.38)

Proof. By assumption of the lemma there exist numbers "

3

2 (0; "

2

]; �

3

2

(0; �

2

] such that for an arbitrary ("; ��) 2 [0; "

3

]� V

�

the relation (2.9) is

ful�lled and


(t

0

) > r

2

+ �

3

: (2.39)

Analogously to the proof of Lemma 2.2 we obtain (see (2.12))

j�y(t)j � j�y(

~

t

0

)j+

t

Z

~

t

0

ja(s; "��)jds+

r

2

+�

3

Z

~

t

0

jb(s; "��)jds =

= j�y(

~

t

0

)j+ a

1

(t; "��) + b

3

(t; "��); t 2 [

~

t

0

; r

2

+ �

3

]:

Since (2.39) holds, for an arbitrary (t; "; ��) 2 [

~

t

0

; r

2

+ �

3

]� [0; "

3

]� V

�

we have

a

1

(t; "��) �

t

Z

~

t

0

L

~

f ;K

1

(s)j�y(s)jds + O("):

Besides (see (2.14))

b

3

("��) � O("):
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Hence, taking into account (2.16), we get

j�y(t)j � O(") +

t

Z

~

t

0

L

~

f ;K

1

(s)j�y(s)jds; t 2 [

~

t

0

; r

2

+ �

3

]:

Therefore by Gronwall's inequality we obtain (2.38).

Lemma 2.7. Let � (r

2

) <

~

t

0

and the condition (2:22) be ful�lled. Then

there exist numbers "

3

2 (0; "

2

]; �

3

2 (0; �

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

�

the conditions (2:23) and (2:38) are ful�lled.

This lemma, using Lemma 2.6, is proved analogously to Lemma 2.3.

Lemma 2.8. Let � (r

2

) <

~

t

0

and the condition (2:25) be ful�lled. Then

there exist numbers "

3

2 (0; "

2

]; �

3

2 (0; �

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

+

max

t2[t

0

;r

2

+�

3

]

j�y(t)j � O("): (2.40)

Proof. By assumption of the lemma there exist numbers "

3

2 (0; "

2

]; �

3

2

(0; �

2

] such that for an arbitrary ("; ��) 2 [0; "

3

]� V

+

the condition (2:29)

is ful�lled and




0

> r

2

+ �

3

: (2.41)

Analogously to the proof of Lemma 2.4 we obtain (see (2.31))

j�y(t)j � j�y(t

0

)j+

t

Z

t

0

ja(s; "��)jds+

r

2

+�

3

Z

t

0

jb(s; "��)jds =

= j�y(t

0

)j+ a

2

(t; "��) + b

4

(t; "��); t 2 [t

0

; r

2

+ �

3

]:

Since (2.41) is ful�lled, for an arbitrary (t; "; ��) 2 [t

0

; r

2

+�

3

]�[0; "

3

]�V

+

we have

a

2

(t; "��) �

t

Z

t

0

L

~

f ;K

1

(s)j�y(s)jds + O("):

Besides (see (2.14))

b

4

("��) � O("):

After this, taking into account (2.32), we get

j�y(t)j � O(") +

t

Z

t

0

L

~

f ;K

1

(s)j�y(s)jds; t 2 [t

0

; r

2

+ �

3

]:

Hence, by Gronwall's inequality we obtain (2.40).
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Lemma 2.9. Let � (r

2

) <

~

t

0

and the condition (2:36) be ful�lled. Then

there exist numbers "

3

2 (0; "

2

]; �

3

2 (0; �

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

+

(2:23) and (2:38) are ful�lled.

This lemma, using Lemma 2.8, is proved analogously to Lemma 2.3.

Lemma 2.10. Let � (t

0

) =

~

t

0

and the condition

lim

"!0

1

"

sup

��2V

�

�

�

�

�

�


(t

0

)

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt +

+

~

t

0

Z


(t

0

)

~

f (t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t)))dt

�

�

�

�

�

<1; (2.42)

be ful�lled. Then there exists a number "

3

2 (0; "

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

�

the inequality (2:7) is valid.

Proof. Let "

3

2 (0; "

2

] be so small that for an arbitrary ("; ��) 2 [0; "

3

]�V

�

�

�

�

�


(t

0

)

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt +

+

~

t

0

Z


(t

0

)

~

f (t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t)))dt

�

�

�

�

� O("):

Since 
(t

0

) 2 [t

0

;

~

t

0

], the expression for �y(

~

t

0

) has the form

�y(

~

t

0

) = "�x

0

+


(t

0

)

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt +

+

~

t

0

Z


(t

0

)

~

f (t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t)))dt +

~

t

0

Z

t

0

b(t; "��)dt: (2.43)

Hence, on the basis of the previous inequality (see (2.15)), we obtain

j�y(

~

t

0

)j � O("):

It is easy to see that for an arbitrary (t; "; ��) 2 [

~

t

0

; r

2

+ �

2

]� [0; "

3

]�V

�

the inequality (see (2.19))

a

1

(t; "��) �

t

Z

~

t

0

j

~

f (s; ~y(s) + �y(s); ~y(� (s)) + �y(� (s))) �
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�

~

f (s; ~y(s); ~y(� (s)))jds �

t

Z

~

t

0

L(s)j�y(s)jds + O(")

is valid.

After this the inequality (2.7) is proved in the standard way (see the

proof of Lemma 2.2).

Lemma 2.11. Let � (

~

t

0

) =

~

t

0

and there exist the �nite limits

lim

!!!

3

~

f(!) = f

�

2

; lim

!!!

�

4

~

f (!) = f

�

3

; ! 2 R

�

~

t

0

�O

2

;

!

3

= (

~

t

0

; ~x

0

; ~x

0

); !

�

4

= (

~

t

0

; ~x

0

; ~'(

~

t

�

0

)); lim

t!

~

t

0

_
(t) = _


�

; t 2 R

�

~

t

0

:

Then there exists a number "

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2

[0; "

3

]� V

�

the inequality (2:7) is valid. Moreover,

�y(

~

t

0

) = "f�x

0

� [f

�

3

+ (f

�

2

� f

�

3

) _


�

]�t

0

g+ o("��): (2.44)

Proof. First of all we prove the equality (2.44). It is easy to see that

~

t

0

� 
(t

0

) = 
(

~

t

0c

)� 
(t

0

) =

~

t

0

Z

t

0

_
(t)dt = �" _


�

�t

0

+ o("��):

Consequently


(t

0

) =

~

t

0

+ " _


�

�t

0

+ o("��): (2.45)

Further, with " 2 [0; "

2

]


(t

0

)

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt = "( _


�

� 1)f

�

3

�t

0

+

+


(t

0

)

Z

t

0

[

~

f (t; ~y(t)+�y(t); '(� (t)))�f

�

3

]dt="( _


�

� 1)f

�

3

�t

0

+�("��); (2.46)

~

t

0

Z


(t

0

)

~

f (t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t)))dt = �" _


�

f

�

2

�t

0

+

+

~

t

0

Z


(t

0

)

[

~

f(t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t))) � f

�

2

]dt =

= �" _


�

f

�

2

�t

0

+ �("��): (2.47)
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It is obvious that

lim

"!0

sup

t2[t

0

;
(t

0

)]

j

~

f(t; ~y(t) + �y(t); '(� (t))) � f

�

3

j = 0;

lim

"!0

sup

t2[
(t

0

);

~

t

0

]

j

~

f(t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t))) � f

�

2

j = 0

uniformly for �� 2 V

�

. Therefore

�("��) = o("��); �("��) = o("��): (2.48)

If in (2.43) we use the relations obtained above (see also (2.15) ), then

we obtain (2.44).

It is clear that the conditions (2.46){(2.48) guarantee that (2.42) is valid.

Consequently, by Lemma 2.10 the �rst part of the lemma is also valid.

Lemma 2.12. Let � (

~

t

0

) =

~

t

0

and the conditions

lim

!!!

3

~

f (!) = f

�

2

; ! 2 R

�

~

t

0

� O

2

; lim

t!

~

t

0

_
(t) = 1; t 2 R

�

~

t

0

;

be ful�lled. Let, moreover, there exist a neighborhood V

�

(!

�

4

) such that

the function

~

f (!); ! 2 V

�

(!

�

4

) is bounded. Then there exists a number

"

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2 [0; "

3

]�V

�

the relation (2:7)

is valid. Moreover,

�y(

~

t

0

) = "[�x

0

� f

�

2

�t

0

] + o("��): (2.49)

Proof. It is clear (see (2.45)) that


(t

0

) =

~

t

0

+ o("��):

Next, there exists a number �" 2 (0; "

2

] such that for an arbitrary ("; ��) 2

[0; �"]� V

�

the condition

(t; ~y(t) + �y(t); '(� (t))) 2 V

�

(!

�

4

); t 2 [t

0

; 
(t

0

)]:

is ful�lled. Consequently the function

~

f (t; ~y(t) + �y(t); '(� (t))) with (t; ";

��) 2 [t

0

, 
(t

0

)]� [0; �"]� V

�

is bounded. Thus

�

�

�

�


(t

0

)

Z

t

0

[

~

f(t; ~y(t) + �y(t); '(� (t)))dt

�

�

�

�

= o("��):

It is obvious that

~

t

0

Z


(t

0

)

~

f (t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t)))dt = �"f

�

2

�t

0

+ o("��):

Thus the condition (2.42) is ful�lled. Consequently the �rst part of the

lemma is proved (see Lemma 2.10.). Finally, from (2.43) on the basis of the

last relations (see also (2.15)) we obtain (2.49).



34

Lemma 2.13. Let � (t

0

) =

~

t

0

and the conditions

lim

"!0

1

"

sup

��2V

+

�

�

�

�

t

0

Z

~

t

0

~

f(t; ~y(t); ~y(� (t)))dt

�

�

�

�

<1;

lim

"!0

1

"

sup

��2V

+

sup

t2[t

0

;
(t

0

)]

�

�

�

�

t

Z

t

0

[

~

f(s; ~y(s) + �y(s); '(� (s))) �

�

~

f (s; ~y(s); ~y(� (s)))]ds

�

�

�

�

<1

be ful�lled. Then there exists a number "

3

2 (0; "

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

+

the inequality (2:7) is valid.

Proof. By assumption of the lemma there exists a number "

3

2 (0; "

2

] such

that for an arbitrary ("; ��) 2 [0; "

3

]� V

+

the conditions


(t

0

) < r

2

+ �

2

;

�

�

�

�

t

0

Z

~

t

0

~

f (t; ~y(t); ~y(� (t)))dt

�

�

�

�

� O(");

�

�

�

�

t

Z

t

0

[

~

f(s; ~y(s) + �y(s); '(� (s))) �

~

f (s; ~y(s); ~y(� (s)))]ds

�

�

�

�

� O(")

8t 2 [t

0

; 
(t

0

)]

are ful�lled.

It is obvious that the inequality (2.32) is valid. In order to estimate

a

2

(t; "��), t 2 [t

0

; r

2

+ �

2

] (see (2.31)), we consider two cases.

Let t 2 [t

0

; 
(t

0

)]. Then we have (see (2.31))

a

2

(t; "��) =

�

�

�

�

t

Z

t

0

[

~

f(s; ~y(s) + �y(s); '(� (s))) �

~

f (s; ~y(s); ~y(� (s)))]ds

�

�

�

�

� O("):

Let t 2 [
(t

0

); r

2

+ �

2

]. Then (see (2.18), (2.19))

a

2

(t; "��) � a

2

(
(t

0

); "��) +

t

Z


(t

0

)

ja(s; "��)jds �

� O(") +

t

Z


(t

0

)

L

~

f ;K

1

(s)(j�y(s)j + j�y(� (s))j)ds �
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� O(") +

t

Z

t

0

L(s)j�y(s)jds:

After this in the standard way we can estimate j�y(t)j (see (2.31)) and

prove the inequality (2.27).

Lemma 2.14. Let � (

~

t

0

) =

~

t

0

and the folowing conditions

lim

!!!

3

~

f (!) = f

+

2

; ! 2 R

+

~

t

0

�O

2

be ful�lled. Let, moreover, there exist neighborhoods V

+

(

~

t

0

); V

+

(!

+

4

) such

that the functions _
(t), t 2 V

+

(

~

t

0

),

~

f (!), ! 2 V

�

(!

+

4

) are bounded. Then

there exists a number "

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2 [0; "

3

]�

V

+

the inequality (2:7) is ful�lled. Moreover,

�y(t

0

) = "[�x

0

� f

+

2

�t

0

] + o("��): (2.50)

This lemma, by Lemma 2.13, is proved analogously to Lemma 2.3.

3. Differentiability of Solution

3.1. Preliminary Notes. We denote by E

1

(J � O

2

; R

n

) the space of n-

dimensional functions f : J �O

2

! R

n

satisfying the conditions:

1) for any �xed t 2 J the function f is continuously di�erentiable with

respect to (x

1

; x

2

) 2 O

2

;

2) for any �xed (x

1

; x

2

) 2 O

2

the function f and the matrix functions

f

x

i

=

�

f

p

x

i

j

�

n;n

p;j=1

; i = 1; 2;

are measurable with respect to t;

For an arbitrary K � O and f 2 E

1

(J �O

2

; R

n

) there exists a function

m

f;K

(�) 22 L

1

(J;R

+

0

) such that

jf(t; x

1

; x

2

)j+

2

X

i=1

jf

x

i

(�)j � m

f;K

(t); 8(t; x

1

; x

2

) 2 J �K

2

:

By the modulus jf

x

i

j of the matrix f

x

i

we mean the Euclidean modulus,

i.e.,

jf

x

i

j

2

=

n

X

p;j=1

jf

p

x

i

j

j

2

: (3.1)

Lemma 3.1. The inclusion

E

1

(J � O

2

; R

n

) � E(J � O

2

; R

n

) (3.2)

is valid.
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Proof. Let f 2 E

1

(J�O

2

; R

n

), K � O be an arbitrary compact. In order to

prove the inclusion (3.2), it su�ces to show the existence of such a function

L

f;K

(�) 2 L

1

(J;R

+

0

) for which

jf(t; x

0

1

; x

0

2

) � f(t; x

00

1

; x

00

2

)j �

� L

f;K

(t)

2

X

i=1

jx

0

i

� x

00

i

j; 8(t; x

0

1

; x

0

2

; x

00

1

; x

00

2

) 2 J �K

4

:

Introduce the function g(t; x

1

; x

2

) (see (1.9)). It is obvious with (x

1

; x

2

) =2

K

2

1

g

x

i

(t; x

1

; x

2

) = 0; i = 1; 2:

Thus there exists a function m

g;K

1

(�) 2 L

1

(J;R

+

0

) such that

n

X

i=1

jg

x

i

(t; x

1

; x

2

)j � m

g;K

1

(t); 8(t; x

1

; x

2

) 2 J �R

2n

:

Let (x

0

1

; x

0

2

) and (x

00

1

; x

00

2

) be arbitrary points from K

2

. Then (see (1.8))

we get

jf(t; x

0

1

; x

0

2

)� f(t; x

00

1

; x

00

2

)j = jg(t; x

0

1

; x

0

2

)� g(t; x

00

1

; x

00

2

)j =

=

�

�

�

�

1

Z

0

d

ds

g(t; x

00

1

+ s(x

0

1

� x

00

1

); x

00

2

+ s(x

0

2

� x

00

2

))ds

�

�

�

�

�

�

1

Z

0

�

2

X

i=1

jg

x

i

(t; x

00

1

+ s(x

0

1

� x

00

1

); x

00

2

+ s(x

0

2

� x

00

2

))jjx

0

i

� x

00

i

j

�

ds �

� m

g;K

1

(t)

2

X

i=1

jx

0

i

� x

00

i

j:

Thus as L

f;K

(t) we can take m

g;K

1

(t).

Now we consider the linear di�erential equation with delayed argument

_x(t) = A(t)x(t) +B(t)x(� (t)) + f(t); t 2 [t

0

; b]; (3.3)

x(t) = '(t); t 2 [� (t

0

); t

0

); x(t

0

) = x

0

; (3.4)

where A(t); B(t) are summable n � n matrix functions, f : J ! R

n

is a

summable function, ' 2 �(J

1

; R

n

); t

0

2 [a; b); x

0

2 R

n

.

Lemma 3.2 (Cauchy's formula). The solution x(t); t 2 [t

0

; b] of the equa-

tion (3:3) with the initial condition (3:4) can be represented in the form

x(t)=X(t

0

; t)x

0

+

t

0

Z

�(t

0

)

Y (
(s); t)B(
(s))'(s) _
 (s)ds+

t

Z

t

0

Y (s; t)f(s)ds; (3.5)
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where Y (s; t) is the matrix function satisfying the equation

@Y (s; t)

@s

= �Y (s; t)A(s) � B(
(s))Y (
(s); t) _
(s); s 2 [a; t]; (3.6)

and the condition

Y (s; t) =

�

E; s = t;

�; s > t:

(3.7)

Here E is the identity matrix, � is the zero matrix.

This lemma is proved in a standard way.

5

Lemma 3.3. Let

~

t

1

2 (a; b], and Y (s; t) be the solution of the equation

(3:6) with the condition (3:7). Then for each " > 0 there exists a number

� = �(") > 0 such that for an arbitrary t

1

2 J : jt

1

�

~

t

1

j � � the inequality

jY (s; t

1

)� Y (s;

~

t

1

)j � "; 8s 2 [a; s

1

]; s

1

= minft

1

;

~

t

1

g

is ful�lled.

This lemma is a simple corollary of a theorem analogous to Theorem 1.3,

which is valid for equations with advanced argument.

Lemma 3.4. The solution Y (s; t) is continuous on the set

� = f(s; t) : a � s � t; t 2 Jg:

Proof. Let (s; t) 2 � and s < t. Then there exists a number �

1

> 0 such that

s+�s < minft+�t; tg with j�sj � �

1

; j�tj � �

1

, i.e. (s+�s; t+�t) 2 �.

On the basis of Lemma 3.3 for each " > 0 there exists �

2

2 (0; �

1

) such that

for an arbitrary �s; �t satisfying the conditions j�sj � �

2

; j�tj � �

2

,the

inequality

jY (s +�s; t+�t)� Y (s +�s; t)j � "=2

is ful�lled.

On the other hand the function Y (s; t) is continuous on [a; t], i.e., there

exists a number �

3

2 (0; �

1

) such that

jY (s +�s; t)� Y (s; t)j � "=2; j�sj � �

3

:

Consequently with j�sj � �; j�tj � �; � = minf�

2

; �

3

g we have

a(s; t;�s;�t) = jY (s+�s; t+�t)� Y (s; t)j �

� jY (s +�s; t+�t)� Y (s +�s; t)j+ jY (s +�s; t)� Y (s; t)j � ": (3.8)

Let s = t and the increments �s; �t are such that (t+�s; t+�t) 2 �,

i.e., �s � �t.

If �s � 0, then t + �s � minft; t + �tg. Therefore the smallness of

a(t; t;�s;�t) for small �s; �t is proved analogouosly (see (3.8)).

5

For various classes of linear di�erential equations with deviating argument represen-

tation formulas of solutions are given in [1], [4-6], [9], [10], [13], [14], [18], [21], [22].
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If �s � 0, then we will use the inequalites

a(t; t;�s;�t)�jY (t+�s; t+�t)�Y (t; t+�t)j+jY (t; t+�t)� Y (t; t)j=

= a(t;�t;�s) + a(t;�t);

jY (s; t)j �M = const; (s; t) 2 �: (3.9)

The inequality (3.9) will be proved later.

Now we estimate a(t;�t;�s). We have (see (3.6)):

a(t;�t;�s) �

t+�s

Z

t

�

�

�

�

@Y (s; t+�t)

@s

�

�

�

�

ds �

�M

t+�s

Z

t

�

jA(s)j+ �(
(s))

�

jB(
(s))j _
(s)ds;

where �(s) is the characteristic function of the interval [� (a); � (b)].

Hence it follows

lim

�t!0

�s!0

a(t;�t;�s) = 0:

The smallness of a(t;�t) for small �t follows from Lemma 3.3. Thus the

continuity of the function Y (s; t) on � is proved.

Prove now the inequality (3.9). From the equation (3.6) taking into

account (3.7) we get:

jY (s; t)j � jEj+

+

t

Z

s

�

jA(�)jjY (�; t)j+ jB(
(�))jjY (
(�; t))j _
(�)

�

d�; s 2 [a; t]: (3.10)

We set

g(s; t) = max

�2[s;t]

jY (�; t)j; g(s; t) = 0; s > t:

The following inequalites are obvious:

jY (s; t)j � g(s; t); jY (
(s); t)j � g(
(s); t) � g(s; t); s 2 [a; t]:

From the inequality (3.10) we obtain (see (3.1))

g(s; t) �

p

n+

t

Z

a

�

jA(�)j+ �(
(�))jB(
(�))j _
 (�)

�

g(�; t)d�:
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For any �xed t the function g(s; t) is continuous with respect to s 2 [a; t].

Therefore by Gronwall's lemma we obtain

g(s; t) �

p

n exp

�

Z

J

�

jA(�)j+ �(
(�))jB(
(�))j _
 (�)

�

d�

�

=M: �

3.2. Theorems on di�erentiability of the solution.

Lemma 3.5. Let ~x(t) be the solution corresponding to the element ~� 2 A,

de�ned on [� (

~

t

0

);

~

t

1

] � (� (a); b). Let K

1

contain some neighborhood of the

set cl ~'(J

1

) [ ~x([

~

t

0

;

~

t

1

]). Then there exist numbers �

2

> 0; "

2

> 0 such

that for an arbitrary ("; ��) 2 [0; "

2

]� V to the element ~� + "�� 2 A there

corresponds the solution x(t; ~�+ "��), de�ned on [� (t

0

);

~

t

1

+ �

2

] � (� (a); b).

Moreover

x(t; ~�+ "��) 2 K

1

; t 2 [� (t

0

);

~

t

1

+ �

2

]: (3.11)

Proof. In Lemma 2.1 we assume that

r

1

=

~

t

0

; r

2

=

~

t

1

; ~y(t) = ~x(t): (3.12)

Then there exist numbers �

2

> 0; "

2

> 0 such that for an arbitrary ("; ��) 2

[0; "

2

]�V to the element ~�+"�� 2 A there corresponds the solution y(t; ~�+

"��), de�ned on [

~

t

1

� �

2

;

~

t

1

+ �

2

] � (� (a); b). Moreover,

'(t) 2 K

1

; t 2 J

1

; y(t; ~� + "��) 2 K

1

; t 2 [

~

t

1

� �

2

;

~

t

1

+ �

2

]:

It is easy to see that

x(t; ~�+ "��)=h(t

0

; '; y(�; ~�+"��))(t)2K

1

; t2 [� (t

0

);

~

t

1

+ �

2

]: � (3.13)

Remark 3.1. Due to uniqueness, the solution x(t; ~�) on the interval [� (

~

t

0

);

~

t

1

+ �

2

] is a continuation of the solution ~x(t). Therefore the trajectory ~x(t)

in the sequel is assumed to be de�ned on the whole interval [� (

~

t

0

);

~

t

1

+ �

2

].

By virtue of Lemma 3.5 and Remark 3.1, it can be de�ned

�x(t) = �x(t; "��) =

8

>

<

>

:

"�'(t); t 2 [� (a); s

1

);

x(t; ~�+ "��) � ~x(t); t 2 [s

1

;

~

t

1

+ �

2

];

s

1

= minft

0

;

~

t

0

g:

(3.14)

It is obvious (see (2.4), (3.12), (3.13), (2.3)) that

�x(t) = �y(t); t 2 [s

2

;

~

t

1

+ �

2

]; s

2

= maxft

0

;

~

t

0

g; (3.15)

lim

"!0

�y(t) = 0; uniformly for (t; ��) 2 [

~

t

0

� �

2

;

~

t

1

+ �

2

]� V: (3.16)
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Theorem 3.1. Let

~

f 2 E

1

(J � O

2

; R

n

)

6

, � (

~

t

0

) <

~

t

0

; � (

~

t

1

) >

~

t

0

and there

exist the �nite limits

lim

!!!

�

0

~

f(!) = f

�

0

; ! 2 R

�

~

t

0

� O

2

; !

�

0

= (

~

t

0

; ~x

0

; ~'(� (

~

t

�

0

))); (3.17)

lim

(!

1

;!

2

)!(!

0

1

;!

�

2

)

[

~

f(!

1

)�

~

f(!

2

)] = f

�

1

; !

i

2 R

�




0

� O

2

; i = 1; 2;

!

0

1

=(


0

; ~x(


0

); ~x

0

); !

�

2

=(


0

; ~x(


0

); ~'(

~

t

�

0

));

7

lim

t!t

�

0

_
(t)= _


�

; t2R

�

~

t

0

:

(3.18)

Then there exist numbers �

3

> 0; "

3

> 0 such that for an arbitrary

(t; "; ��) 2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

�

�x(t; "��) = "�x(t; ��) + o(t; "��); (3.19)

where

�x(t; ��)=Y (

~

t

0

; t)�x

0

�

�

Y (

~

t

0

; t)f

�

0

+ Y (


0

; t)f

�

1

_


�

	

�t

0

+ �(t; ��); (3.20)

�(t; ��) =

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
 (s)ds +

t

Z

~

t

0

Y (s; t)�f [s]ds; (3.21)

~

f

x

2

[t] =

~

f

x

2

(t; ~x(t); ~x(� (t))); �f [t] = �f(t; ~x(t); ~x(� (t))); Y (s; t) is a matrix

function satisfying the equation

@Y (s; t)

@s

= �Y (s; t)

~

f

x

1

[s]� Y (
(s); t)

~

f

x

2

[
(s)] _
(s); s 2 [

~

t

0

; t];

and the condition (3:7).

Proof. It is easy to see that ~x(


0

) = ~y(


0

) (see (3.12)) and the assumptions

of Lemma 2.3 are ful�lled. Therefore there exists a number �" 2 (0; "

2

] such

that for an arbitrary ("; ��) 2 [0; �"]� V

�

we have (see (2.7), (2.23), (3.15))

max

t2[

~

t

0

;

~

t

1

+�

2

]

j�x(t)j � O("); (3.22)

�x(

~

t

0

) = "[�x

0

� f

�

0

�t

0

] + o("��): (3.23)

Let numbers �

3

2 (0; �

2

] and "

3

2 (0; �"] be so small that for each ("; ��) 2

[0; "

3

]� V

�

is the relation

~

t

0

< 
(t

0

) < 


0

<

~

t

1

� �

3

(3.24)

is valid.

6

In all theorems of this section, in the sequelit is assumed that

~

f 2 E

1

(J �O

2

; R

n

).

7

Since ~x(


0

) = ~y(


0

) (see (3.12)), here and in the sequel we preserve notation used

in x2.
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The function �x(t), t 2 [� (

~

t

0

);

~

t

1

+�

3

] on the interval [

~

t

0

;

~

t

1

+�

2

] satis�es

the equation

_

�x(t) =

~

f

x

1

[t]�x(t) +

~

f

x

2

[t]�x(� (t)) + "�f [t] +

2

X

i=1

R

i

(t; "��); (3.25)

where

R

1

(t; "��) =

~

f(t; ~x(t) + �x(t); ~x(� (t)) + �x(� (t)))�

~

f [t]�

�

~

f

x

1

[t]�x(t)�

~

f

x

2

[t]�x(� (t)); (3.26)

R

2

(t; "��) = "(�f(t; ~x(t) + �x(t); ~x(� (t)) + �x(� (t)))� �f [t]): (3.27)

By means of the Cauchy formula (see Lemma 3.2) the solution of the

equation (3.25) can be represented in the form

�x(t) = Y (

~

t

0

; t)�x(

~

t

0

) + "

t

Z

~

t

0

Y (s; t)�f [s]ds +

2

X

i=0

h

i

(t;

~

t

0

; "��); (3.28)

t 2 [

~

t

0

;

~

t

1

+ �

2

];

where

h

0

(t;

~

t

0

; "��) =

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�x(s) _
(s)ds; (3.29)

h

i

(t;

~

t

0

; "��) =

t

Z

~

t

0

Y (s; t)R

i

(s; "��)ds; i = 1; 2: (3.30)

It is obvious (see (3.23) and Lemma 3.4),

Y (

~

t

0

; t)�x(

~

t

0

) = "Y (

~

t

0

; t)[�x

0

� f

�

0

�t

0

] + o(t; "��): (3.31)

Now we transform h

0

(t;

~

t

0

; "��). We have:

h

0

(t;

~

t

0

; "��) = "

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
(s)ds +

+

~

t

0

Z

t

0

Y (
(s); t)

~

f

x

2

[
(s)]�x(s) _
(s)ds="

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
(s)ds+

+




0

Z


(t

0

)

Y (s; t)

~

f

x

2

[s]�x(� (s))ds+ o(t; "��): (3.32)
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Owing to the relations (3.24), the expression h

1

(t;

~

t

0

; "��) with [

~

t

1

�

�

3

;

~

t

1

+ �

3

] can be represented as

h

1

(t;

~

t

0

; "��) =


(t

0

)

Z

~

t

0

Y (s; t)R

1

(s; "��)ds+




0

Z


(t

0

)

Y (s; t)R

1

(s; "��)ds+

+

t

Z




0

Y (s; t)R

1

(s; "��)ds =

5

X

i=3

a

i

(t; "��): (3.33)

Now we estimate the �rst term of the expression (3.33). We have (see

(3.26))

ja

3

(t; "��)j � kY k


(t

0

)

Z

~

t

0

�

j

~

f(t; ~x(t) + �x(t); ~'(� (t)) + "�'(� (t))) �

�

~

f (t; ~x(t); ~'(� (t))) �

~

f

x

1

[t]�x(t)� "

~

f

x

2

[t]�'(� (t))j

�

dt �

� kY k

~

t

1

+�

3

Z

~

t

0

�

�

�

�

1

Z

0

d

d�

~

f (t; ~x(t) + ��x(t); ~'(� (t)) + "��'(� (t))) �

�

~

f (t; ~x(t); ~'(� (t))) �

~

f

x

1

[t]�x(t)� "

~

f

x

2

[t]�'(� (t))

�

�

�

�

dt �

� kY k

~

t

1

+�

3

Z

~

t

0

�

1

Z

0

�

j

~

f

x

1

(t; ~x(t) + ��x(t); ~'(� (t)) + "��'(� (t))) �

�

~

f

x

1

[t]j j�x(t)j+ "j

~

f

x

2

(t; ~x(t) + ��x(t); ~'(� (t)) +

+"��'(� (t))) �

~

f

x

2

[t]j j�'(� (t))j

�

d�

�

dt �

� kY k[O(")�

1

("��) + "�

3

�

2

("��)]; (3.34)

where

�

i

("��)=

~

t

1

+�

3

Z

~

t

0

�

1

Z

0

j

~

f

x

i

(t; ~x(t)+��x(t); ~'(� (t))+"��'(� (t)))�

~

f

x

i

[t]jd�

�

dt;

i = 1; 2:

Since �x(t)! 0 as "! 0; t 2 [

~

t

0

;

~

t

1

+ �

2

], by Lebesgue's theorem

lim

"!0

�

i

("��) = 0; i = 1; 2; uniformly for �� 2 V

�

:

Thus a

3

(t; "��) has the order o(t; "��).
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Rewrite the second term of the expression (3.33) as

a

4

(t; "��) =

4

X

i=3

�

i

(t; "��) �




0

Z


(t

0

)

Y (s; t)

~

f

x

2

[s]�x(� (s))ds;

where

�

3

(t; "��) = �




0

Z


(t

0

)

Y (s; t)

~

f

x

1

[s]�x(s)ds;

�

4

(t; "��) =




0

Z


(t

0

)

Y (s; t)

�

~

f(s; ~x(s) + �x(s); ~x(� (s)) + �x(� (s)))�

~

f [s]

�

ds:

It is clear (see (3.22)) that �

3

(t; "��) has the order o(t; "��).

Next, write �

4

(t; "��) as

�

4

(t; "��)=




0

Z


(t

0

)

Y (s; t)

�

~

f (s; ~x(s)+�x(s); ~x(� (s)) +

+�x(� (s)))�

~

f [s]�f

�

1

�

ds+




0

Z


(t

0

)

Y (s; t)f

�

1

ds =

6

X

i=5

�

i

(t; "��):

It is obvious that if s 2 [
(t

0

); 


0

], then � (s) 2 [t

0

;

~

t

0

]. Therefore (see (3.14),

(3.15)) with s 2 [
(t

0

); 


0

]

~x(� (s)) + �x(� (s)) = x(� (s); ~�+ "��) =

= y(� (s); ~� + "��) = ~y(� (s)) + �y(� (s)):

From this equality, taking into consideration (3.16), (3.22) and ~y(

~

t

0

) =

~x

0

, we obtain

lim

"!0

s2[
(t

0

);


0

]

(s; ~x(s)+�x(s); ~x(� (s))+�x(� (s))) = lim

s!


0

(s; ~x(s); ~y(� (s))) = !

0

1

:

It is easy to note that when s 2 [
(t

0

); 


0

], then

~

f [s] =

~

f (s; ~x(s); ~'(� (s)))

and

lim

"!0

s2[
(t

0

);


0

]

(s; ~x(s); ~'(� (s))) = !

�

2

:

Thus

lim

"!0

sup

s2[
(t

0

);


0

]

j

~

f (s; ~x(s) + �x(s); ~x(� (s)) + �x(� (s)))�

~

f [s]� f

�

1

j = 0

uniformly for �� 2 V

�

:
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The function Y (s; t) is continuous on [
(t

0

); 


0

] � [

~

t

1

� �

3

;

~

t

1

+ �

3

] � �

(see (3.24), Lemma 3.4). Besides




0

� 
(t

0

) = �" _


�

�t

0

+ o(t; "��):

Consequently �

5

(t; "��) has the order o(t; "��).

By the equality

lim

s!


�

0

Y (s; t) = Y (


0

; t) uniformly for t 2 [

~

t

1

� �

2

;

~

t

1

+ �

2

];

for �

6

(t; "��) we get

�

6

(t; "��) = �"Y (


0

; t)f

�

1

_


�

�t

0

+ o(t; "��):

For the last term of the expression (3.33) analogously (see (3.34), (3.22))

we obtain

ja

5

(t; "��)j�kY kO(")

~

t

1

+�

3

Z




0

�

1

Z

0

�

j

~

f

x

1

(s; ~x(s)+��x(s); ~x(� (s))+��x(� (s)))�

�

~

f

x

1

[s]j+j

~

f

x

2

(s; ~x(s)+��x(s); ~x(� (s))+��x(� (s)))�

~

f

x

2

[s]j

	

d�

�

ds�

� kY kO(")�

7

("��):

It is obvious that when t � 


0

, then � (t) �

~

t

0

; therefore by (3.22) we

establish that

lim

"!0

�

7

("��) = 0 uniformly for �� 2 V

�

:

Thus

a

5

(t; "��) = o(t; "��):

From (3.33) on the basis of the relations obtained above we get

h

1

(t;

~

t

0

; "��) = �"Y (


0

; t)f

�

1

_


�

�t

0

�

~

t

0

Z

t

0

Y (
(s); t)

~

f

x

2

[
(s)]�x(s) _
(s)ds +

+o(t; "��): (3.35)

Finally we estimate h

2

(t;

~

t

0

; "��). We have (see (3.27))

jh

2

(t;

~

t

0

; "��)j�"kY k

~

t

1

+�

3

Z

~

t

0

�

�

�f(t; ~x(t)+�x(t); ~x(� (t))+�x(� (t)))��f [t]

�

�

dt=

= "kY ka

6

("��):

We represent a

6

("��) as the sum of three addends a

7

("��), a

8

("��), a

9

("��):

a

6

("��) =



45

=


(t

0

)

Z

~

t

0

�

�

�f(t; ~x(t)+�x(t); ~'(� (t))+"�'(� (t)))��f (t; ~x(t); ~'(� (t)))

�

�

dt+

+




0

Z


(t

0

)

�

�

�f(t; ~x(t)+�x(t); ~x(� (t))+�x(� (t)))��f(t; ~x(t); ~'(� (t)))

�

�

dt+

+

~

t

1

+�

3

Z




0

�

�

�f(t; ~x(t) + �x(t); ~x(� (t)) + �x(� (t)))� �f [t]

�

�

dt:

According to (2.1), (3.11), (3.22), we get

a

7

("��) �

k

X

i=1

~

t

1

+�

3

Z

~

t

0

L

�f

i

;K

1

(t)

�

j�x(t)j+ "j�'(� (t))j

�

dt � O("): (3.36)

Next (see (3.11)),

a

8

("��) �

k

X

i=1

�

i




0

Z


(t

0

)

�

�

�f

i

(t; ~x(t) + �x(t); ~x(� (t)) +

+�x(� (t)))� �f

i

(t; ~x(t); ~'(� (t)))

�

�

dt � 2

k

X

i=1

j�

i

j




0

Z


(t

0

)

m

�f

i

;K

1

(t)dt:

Since 
(t

0

)! 


0

as "! 0, we have

lim

"!0

a

8

("��) = 0 uniformly for �� 2 V

�

:

It is clear that

a

9

("��) �

k

X

i=1

j�

i

j

~

t

1

+�

3

Z


(t

0

)

�

�

L

�f

i

;K

1

(t)

�

j�x(t)j+ j�x(� (t))j

�

dt � O("): (3.37)

Using the estimates obtained above, we have

h

2

(t;

~

t

0

; "��) = o(t; "��): (3.38)

From (3.28) according to (3.31), (3.32), (3.35), (3.38) we obtain the de-

sired formula (3.19), where �x(t; ��) has the form (3.20).

Theorem 3.2. Let � (

~

t

0

) <

~

t

0

; � (

~

t

1

) >

~

t

0

and there exist the �nite limits

lim

!!!

+

0

~

f (!) = f

+

0

; ! 2 R

+

~

t

0

� O

2

; !

+

0

= (

~

t

0

; ~x

0

; ~'(� (

~

t

+

0

))); (3.39)

lim

(!

1

;!

2

)!(!

0

1

;!

+

2

)

[

~

f (!

1

) �

~

f (!

2

)] = f

+

1

; !

i

2 R

+




0

� O

2

; i = 1; 2;
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!

+

2

= (


0

; ~x(


0

); ~'(

~

t

+

0

)); lim

t!

~

t

0

_
(t) = _


+

; t 2 R

+

~

t

0

:

Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary (t; "; ��) 2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

+

is valid (3:19), where

�x(t; ��)=Y (

~

t

0

; t)�x

0

�

�

Y (

~

t

0

; t)f

+

0

+ Y (


0

; t)f

+

1

_


+

	

�t

0

+ �(t; ��) (3.40)

(see (3:21)).

Proof. By assumption of the theorem the conditions of Lemma 2.5 are ful-

�lled. Therefore (see (2.27), (2.37), (3.15)) there exists a number �" 2 (0; "

2

]

such that for an arbitrary ("; ��) 2 [0; �"]� V

+

it holds

max

t2[t

0

;

~

t

1

+�

2

]

j�x(t)j � O("); (3.41)

�x(t

0

) = "[�x

0

� f

+

0

�t

0

] + o("��): (3.42)

Let the numbers �

3

2 (0; �

2

]; "

3

2 (0; �"] be so small that for an arbitrary

("; ��) 2 [0; "

3

]� V

+

� (t

0

) <

~

t

0

< 


0

< 
(t

0

) <

~

t

1

� �

3

: (3.43)

The function �x(t); t 2 [� (t

0

);

~

t

1

+ �

3

], on the interval [t

0

;

~

t

1

+ �

3

] sat-

is�es the equation (3.25). Therefore by means of the Cauchy formula the

expression �x(t) can be represented as

�x(t) = Y (t

0

; t)�x(t

0

) + "

t

Z

t

0

Y (s; t)�f [s]ds +

2

X

i=0

h

i

(t; t

0

; "��); (3.44)

t 2 [t

0

;

~

t

1

+ �

3

];

where h

i

(t; t

0

; "��); i = 0; 1; 2, have the form (3.29), (3.30) respectively.

Since t

0

2 [

~

t

0

; � (

~

t

1

��

3

)] (see (3.43)) and Y (s; t) is continuous on [

~

t

0

; � (

~

t

1

�

�

3

)]� [

~

t

1

� �

3

;

~

t

1

+ �

3

] � �, we have

Y (t

0

; t)�x(t

0

) = "Y (

~

t

0

; t)[�x

0

� f

+

0

�t

0

] + o(t; "��): (3.45)

Now we transform h

0

(t; t

0

; "��). We have (see (3.43)):

h

0

(t; t

0

; "��) = "

~

t

0

Z

�(t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
(s)ds +

+

t

0

Z

~

t

0

Y (
(s); t)

~

f

x

2

[
(s)]�x(s) _
(s)ds="

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
(s)ds+

+


(t

0

)

Z




0

Y (s; t)

~

f

x

2

[s]�x(� (s))ds+ o(t; "��): (3.46)
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By the relation (3.43) the exprssion h

1

(t; t

0

; "��) with t 2 [

~

t

1

��

3

;

~

t

1

+�

3

]

may be represented as the sum of three addends a

2

(t; t

0

; "��), a

3

(t; t

0

; "��),

a

4

(t; t

0

; "��):

h

1

(t; t

0

; "��) =




0

Z

t

0

Y (s; t)R

1

(s; "��)ds +

+


(t

0

)

Z




0

Y (s; t)R

1

(s; "��)ds +

t

Z


(t

0

)

Y (s; t)R

1

(s; "��)ds: (3.47)

The �rst addend of the expression (3.47) is estimated analogously (see

(3.34)).

Consequently,

ja

2

(t; t

0

; "��)j � kY k

�

O(")�

1

(t

0

; "��) + "�

3

�

2

(t

0

; "��)

�

; (3.48)

where

�

i

(t

0

; "��) =

~

t

1

+�

3

Z

t

0

�

1

Z

0

j

~

f

x

i

(t; ~x(t) + ��x(t); ~'(� (t)) + "��'(� (t))) �

�

~

f

x

i

[t]jd�

�

dt; i = 1; 2: (3.49)

It is obvious (see (3.15)) that

�x(t) = �y(t); t 2 [t

0

;

~

t

1

+ �

3

]:

In (3.49) we change under the integral the function �x(t) by �y(t), which

allow us to write the following inequality

�

i

(t

0

; "��)�

~

t

1

+�

3

Z

~

t

0

�

1

Z

0

j

~

f

x

i

(t; ~x(t)+��y(t); ~'(� (t))+"��'(� (t)))�

~

f

x

i

[t]jd�

�

dt;

i = 1; 2:

Hence, using (3.16), it follows

lim

"!0

�

i

(t

0

; "��) = 0; i = 1; 2; for �� 2 V

+

:

Thus a

2

(t; t

0

; "��) has the order o(t; "��).

The second addend of the expression (3.47) may be represented as

a

3

(t; t

0

; "��) =

4

X

i=3

�

i

(t; t

0

; "��) �


(t

0

)

Z

t

0

Y (s; t)

~

f

x

2

[s]�x(� (s))ds;
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where

�

3

(t; t

0

; "��) = �


(t

0

)

Z




0

Y (s; t)

~

f

x

1

[s]�x(s)ds;

�

4

(t; t

0

; "��) =


(t

0

)

Z




0

Y (s; t)

�

~

f (s; ~x(s) + �x(s); '(� (s))) �

~

f [s]

�

ds:

It is clear (see (3.41)) that �

3

(t; t

0

; "��) has the order o(t; "��).

Further, rewrite �

4

(t; t

0

; "��) as

�

4

(t; t

0

; "��) =


(t

0

)

Z




0

Y (s; t)

�

~

f (s; ~x(s) + �x(s); '(� (s))) �

~

f [s] + f

+

1

�

ds�

�


(t

0

)

Z




0

Y (s; t)f

+

1

ds =

6

X

i=5

�

i

(t; t

0

; "��):

It is obvious that if s 2 [


0

; 
(t

0

)], then � (s) 2 [

~

t

0

; t

0

]. Therefore

lim

"!0

s2[


0

;
(t

0

)]

(s; ~x(s) + �x(s); '(� (s)))= lim

s!


+

0

(s; ~x(s); ~'(� (s)))=!

+

2

;

lim

"!0

s2[


0

;
(t

0

)]

(s; ~x(s); ~x(� (s))) = !

0

1

:

Thus

lim

"!0

sup

s2[


0

;
(t

0

)]

j

~

f(s; ~x(s) + �x(s); '(� (s))) �

~

f [s] + f

+

1

j = 0

uniformly for �� 2 V

+

:

The function Y (s; t) is continuous on [


0

; 
(t

0

)] � [

~

t

1

�

~

t

3

;

~

t

1

+ �

3

] � �

(see (3.43), Lemma 3.4). Besides


(t

0

)� 


0

= " _


+

�t

0

+ o("��):

Consequently �

5

(t; t

0

; "��) has the order o(t; "��).

The equality

lim

s!


+

0

Y (s; t) = Y (


0

; t) uniformly for t 2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]

allows us to write for �

6

(t; t

0

; "��) the relaiton

�

6

(t; t

0

; "��) = �"Y (


0

; t)f

+

1

_


+

�t

0

+ o(t; "��):
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For the last addend of the expression (3.47) in a simalar way (see (3.34),

(3.41)) we obtain

ja

4

(t; t

0

; "��)j �

� kY kO(")

~

t

1

+�

3

Z


(t

0

)

�

1

Z

0

�

j

~

f

x

1

(s; ~x(s) + ��x(s); ~x(� (s)) + ��x(� (s)))�

�

~

f

x

1

[s]j+j

~

f

x

2

(s; ~x(s) + ��x(s); ~x(� (s)) + ��x(� (s))) �

~

f

x

2

[s]j

	

d�

�

ds�

� kY kO(")�

7

(t

0

; "��):

It is obvious that

�x(� (t)) = �y(� (t)); t 2 [
(t

0

);

~

t

1

+ �

3

]:

Consequently the inequality

�

7

(t

0

; "��) �

~

t

1

+�

3

Z




0

�

1

Z

0

�

j

~

f

x

1

(s; ~x(s) + ��x(s); ~x(� (s)) + ��y(� (s))) �

�

~

f

x

1

[s]j+ j

~

f

x

2

(s; ~x(s) + ��x(s); ~x(� (s)) + ��y(� (s))) �

~

f

x

2

[s]j

	

d�

�

ds

is valid. From this inequality, taking into account (3.16), we establish that

lim

"!0

�

7

("��) = 0 uniformly for �� 2 V

+

:

Thus a

4

(t; t

0

; "��) has the order o(t; "��).

Owing to obtained relations for h

1

(t; t

0

; "��), we get

h

1

(t; t

0

; "��) = �"Y (


0

; t)f

+

1

_


+

�t

0

�

�

t

0

Z

~

t

0

Y (
(s); t)

~

f

x

2

[
(s)]�x(s) _
(s)ds + o(t; "��): (3.50)

Estimate now h

2

(t; t

0

; "��). We have:

jh

2

(t; t

0

; "��)j � "kY k

~

t

1

+�

3

Z

t

0

�

�

�f(t; ~x(t) + �x(t); ~x(� (t)) + �x(� (t)))�

��f [t]

�

�

dt = "kY ka

5

(t

0

; "��): (3.51)

We represent a

5

(t

0

; "��) in the form of three relations

a

5

(t

0

; "��) =
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=




0

Z

t

0

�

�

�f(t; ~x(t) + �x(t); ~'(� (t)) + "�'(� (t))) � �f(t; ~x(t); ~'(� (t)))

�

�

dt+

+


(t

0

)

Z




0

�

�

�f(t; ~x(t) + �x(t); '(� (t)))� �f [t]

�

�

dt+

+

~

t

1

+�

3

Z


(t

0

)

�

�

�f(t; ~x(t) + �x(t); ~x(� (t)) + �x(� (t)))� �f [t]

�

�

dt =

8

X

i=6

a

i

(t

0

; "��):

The estimate of these relations according to (2.1), (3.11), (3.41) yields

a

6

(t

0

; "��) �

k

X

i=1

~

t

1

+�

3

Z

t

0

L

�f

i

;K

1

(t)

�

j�x(t)j+ "j�'(� (t))j

�

dt � O("):

Further (see (3.11)),

a

7

(t

0

; "��) �

k

X

i=1

j�

i

j


(t

0

)

Z




0

�

�

�f

i

(t; ~x(t) + �x(t); '(� (t)))� �f

i

[t]

�

�

dt �

� 2

k

X

i=1

j�

i

j


(t

0

)

Z




0

m

�f

i

;K

1

(t)dt: (3.52)

Since 
(t

0

)! 


0

as "! 0, we have

lim

"!0

a

7

(t

0

; "��) = 0 uniformly for �� 2 V

+

: (3.53)

It is obvious that

a

8

(t

0

; "��)�

k

X

i=1

�

i

~

t

1

+�

3

Z


(t

0

)

�

�

L

�f

i

;K

1

(t)

�

j�x(t)j+ j�x(� (t))j

�

dt � O("): (3.54)

The estimates obtained above allow us to conclude that

h

2

(t; t

0

; "��) = o(t; "��): (3.55)

Finally we note that with t 2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]

"

t

Z

t

0

Y (s; t)�f [s]ds = "

t

Z

~

t

0

Y (s; t)�f [s]ds+ o(t; "��): (3.56)

From (3.44) taking into account (3.45), (3.46), (3.50), (3.55) and (3.56),

we obtain (3.19), where �x(t; ��) has the form (3.40).
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Theorem 3.3. Let � (

~

t

0

) <

~

t

0

, � (

~

t

1

) >

~

t

0

; the function ( ~'(t); ~'(� (t)); _� (t))

is continuous at the point

~

t

0

, while the function

~

f (!) is continuous at the

points !

0

= (

~

t

0

; ~x

0

; ~'(� (

~

t

0

))), !

0

1

; !

0

2

= (


0

; ~x(


0

); ~'(

~

t

0

)). Then there exist

numbers �

3

> 0, "

3

> 0 such that for an arbitrary (t; "; ��) 2 [

~

t

1

� �

3

;

~

t

1

+

�

3

]� [0; "

3

]� V the relation (3:19) is ful�lled , where

�x(t; ��) = Y (

~

t

0

; t)�x

0

�

�

�

Y (

~

t

0

; t)

~

f (!

0

) + Y (


0

; t)[

~

f(!

0

1

)�

~

f(!

0

2

)] _
(tdt

0

)

	

�t

0

+ �(t; ��):

It is not di�cult to note that Theorem 3.3 is a simple corollary of Theo-

rems 3.1, 3.2.

Theorem 3.4. Let � (

~

t

1

) <

~

t

0

and the condition (3:17) is ful�lled. Then

there exist numbers �

3

> 0; "

3

> 0 such that for an arbitrary (t; "; ��) 2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

�

the relation (3:19) is ful�lled, where

�x(t; ��) = Y (

~

t

0

; t)

�

�x

0

� f

�

0

�t

0

�

+ �(t; ��): (3.57)

Proof. From Lemma 2.7 it follows the existence of the numbers �"

3

2 (0; "

2

],

�

�

3

2 (0; �

2

] such that for an arbitrary (t; "; ��) 2 [

~

t

1

�

�

�

3

;

~

t

1

+

�

�

3

]�[0; �"

3

]�V

�

(3.23) and

max

t2[

~

t

0

;

~

t

1

+

�

�

3

]

j�x(t)j � O(") (3.58)

are ful�lled.

Let �

3

2 (0;

�

�

3

]; "

3

2 (0; �"

3

] be so small that


(t

0

) >

~

t

1

+ �

3

;

~

t

0

<

~

t

1

� �

3

: (3.59)

It is clear that if (s; t) 2 [t

0

;

~

t

0

]� [

~

t

1

��

3

;

~

t

1

+�

3

], then 
(s) > t; therefore

Y (
(s); t) = 0:

Consequently (see (3.31)) we get

h

0

(t;

~

t

0

; "��) = "

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
(s)ds + o(t; "��):

In the case under consideration it is easy to note (see (3.30)) that

jh

1

(t;

~

t

0

; "��)j � kY k

~

t

1

+�

3

Z

~

t

0

�

�

�
~

f (t; ~x(t) + �x(t); ~'(� (t)) + "�'(� (t))) �

�

~

f (t; ~x(t); ~'(� (t))) �

~

f

x

1

[t]�x(t)� "

~

f

x

2

[t]�'(� (t))

�

�

�

dt;

jh

2

(t;

~

t

0

; "��)j �
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�"kY k

~

t

1

+�

3

Z

~

t

0

�

�

�f(t; ~x(t)+�x(t); ~'(� (t))+"�'(� (t)))��f (t; ~x(t); ~'(� (t)))

�

�

dt:

In a similar way (see (3.34), (3.36)) using (3.58) we establish that

h

i

(t;

~

t

0

; "��) = o(t; "��); i = 1; 2:

By (3.23) and (3.59), the relation (3.31) is ful�lled .

From (3.28), taking into account the relations obtained above, we have

(3.19), where �x(t; ��) has the form (3.57).

Theorem 3.5. Let � (

~

t

1

) <

~

t

0

and the condition (3:39) be ful�lled. Then

there exist numbers �

3

> 0; "

3

> 0 such that for an arbitrary (t; "; ��) 2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

+

the relation (3:19) is valid, where

�x(t; ��) = Y (

~

t

0

; t)

�

�x

0

� f

+

0

�t

0

�

+ �(t; ��): (3.60)

Proof. By Lemma 2.9 there exist numbers �"

3

2 (0; "

2

];

�

�

3

2 (0; �

2

] such that

(3.42) are ful�lled and

max

t2[t

0

;

~

t

1

+

�

�

3

]

j�x(t)j � O("): (3.61)

Let the numbers �

3

2 (0;

�

�

3

]; "

3

2 (0; �"

3

] be so small that




0

>

~

t

1

+ �

3

; t

0

<

~

t

1

� �

3

: (3.62)

It is clear that if (s; t) 2 [

~

t

0

; t

0

]� [

~

t

1

��

3

;

~

t

1

+�

3

], then 
(s) > t; therefore

Y (
(s); t) = 0:

Consequently (see (3.46)) we get

h

0

(t; t

0

; "��) = "

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
(s)ds + o(t; "��):

In the case under consideration it is easy to see (see (3.30)) that

jh

1

(t; t

0

; "��)j � kY k

~

t

1

+�

3

Z

t

0

�

�

�
~

f (t; ~x(t) + �x(t); ~'(� (t)) + "�'(� (t))) �

�

~

f (t; ~x(t); ~'(� (t))) �

~

f

x

1

[t]�x(t)� "

~

f

x

2

[t]�'(� (t))

�

�

�

dt;

jh

2

(t; t

0

; "��)j �

�"kY k

~

t

1

+�

3

Z

t

0

�

�

�f(t; ~x(t)+�x(t); ~'(� (t))+"�'(� (t)))��f (t; ~x(t); ~'(� (t)))

�

�

dt:
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Analogously, using (3.61) and (3.16) (see the proof of Theorem 3.2) it

can be proved that

h

i

(t; t

0

; "��) = o(t; "��); i = 1; 2:

It is obvious that by virtue of (3.42) and (3.62) the relation (3.45) is

ful�lled.

From (3.44), taking into account the relations obtained above, we have

(3.19), where �x(t; ��) has the form (3.60).

Theorem 3.6. Let � (

~

t

1

) <

~

t

0

, the function ~'(� (t)) be continuous at the

point

~

t

0

, and the function

~

f (!) be continuous at the point !

0

. Then there

exist numbers �

3

> 0; "

3

> 0 such that for an arbitrary (t; "; ��) 2 [

~

t

1

�

�

3

;

~

t

1

+ �

3

]� [0; "

3

]� V the relation (3:19) is valid, where

�x(t; ��) = Y (

~

t

0

; t)

�

�x

0

�

~

f (!

0

)�t

0

	

+ �(t; ��):

This theorem is a simple corollary of Theorems of 3.4, 3.5.

Theorem 3.7. Let � (

~

t

0

) =

~

t

0

and the assumptions of Lemma 2:11 be ful-

�lled. Then there exist numbers �

3

> 0; "

3

> 0 such that for an arbitrary

(t; "; ��) 2 [

~

t

1

��

3

;

~

t

1

+�

3

]� [0; "

3

]�V

�

the relation (3:19) is ful�lled, where

�x(t; ��)=Y (

~

t

0

; t)

�

�x

0

� [f

�

3

+ (f

�

2

� f

�

3

) _


�

]�t

0

	

+ �

1

(t; ��); (3.63)

�

1

(t; ��) =

t

Z

~

t

0

Y (s; t)�f [s]ds:

Proof. By Lemma 2.11 there exists a number "

3

2 (0; "

2

] such that for an

arbitrary ("; ��) 2 [0; "

3

]� V

�

the relation (3.22) is ful�lled and

�x(

~

t

0

) = "

�

�x

0

� [f

�

3

+ (f

�

2

� f

�

3

) _


�

]�t

0

	

+ o(t; "��):

Let the number �

3

2 (0; �

2

] be so small that

~

t

0

<

~

t

1

� �

3

:

The function Y (s; t); (s; t) 2 [t

0

;

~

t

0

] � [

~

t

1

� �

3

;

~

t

1

+ �

3

] is continuous.

Therefore

Y (

~

t

0

; t)�x(

~

t

0

) = "Y (

~

t

0

; t)

�

�x

0

� [f

�

3

+ (f

�

2

� f

�

3

) _


�

]�t

0

	

+ o(t; "��):

It is clear that

h

0

(t;

~

t

0

; "��) = 0:

In the case under consideration we have

jh

1

(t;

~

t

0

; "��)j � kY k

~

t

1

+�

3

Z

~

t

0

�

�

�
~

f (t; ~x(t) + �x(t); ~x(� (t)) + �x(� (t)))�

�

~

f [t]�

~

f

x

1

[t]�x(t)�

~

f

x

2

[t]�x(� (t))

�

�

�

dt;
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jh

2

(t;

~

t

0

; "��)j �

� "kY k

~

t

1

+�

3

Z

~

t

0

�

�

�f(t; ~x(t) + �x(t); ~x(� (t)) + �x(� (t)))� �f [t]

�

�

dt:

From this inequalites, using (3.22) analogously (see (3.34),(3.37)) can be

obtained that

h

i

(t;

~

t

0

; "��) = o(t; "��); i = 1; 2:

On the basis of the obtained relations, from (3.28) it immediately follows

(3.19), where �x(t; ��) has the form (3.63).

Theorem 3.8. Let � (

~

t

0

) =

~

t

0

and there exist the �nite limits lim

!!!

3

~

f (!) =

f

+

2

, lim

!!!

+

4

~

f(!) = f

+

3

, ! 2 R

+

~

t

0

� O

2

, !

+

4

= (

~

t

0

; ~x

0

; ~'(

~

t

+

0

)); lim

t!t

0

_
(t) = _


+

,

t 2 R

+

~

t

0

. Then there exist numbers �

3

> 0; "

3

> 0 such that for an

arbitrary (t; "; ��) 2 [

~

t

1

� �

3

;

~

t

1

+ �

3

] � [0; "

3

] � V

+

the relation (3:19) is

ful�lled, where

�x(t; ��) = Y (

~

t

0

; t)

�

�x

0

� [f

�

3

+ (f

�

2

� f

�

3

) _


�

]�t

0

	

+ �

1

(t; ��): (3.64)

Proof. By Lemma 2.14 there exists a number �" 2 (0; "

2

] such that for an

arbitrary ("; ��) 2 [0; �"]� V

+

the relation (3.41) is ful�lled and

�x(t

0

) = "[�x

0

� f

+

2

�t

0

] + o(t; "��): (3.65)

Let the numbers "

3

2 (0; �"]; �

3

2 (0; �

2

] be so small that


(t

0

) <

~

t

1

� �

3

:

Obviously (see (3.29))

h

0

(t; t

0

; "��) =

t

0

Z

�(t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�x(s) _
(s)ds =

=


(t

0

)

Z

t

0

Y (s; t)

~

f

x

2

[s]�x(� (s))ds:

Further, with t 2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]

h

1

(t; t

0

; "��) =


(t

0

)

Z

t

0

Y (s; t)R

1

(s; "��)ds +

t

Z


(t

0

)

Y (s; t)R

1

(s; "��)ds =

=

6

X

i=5

a

i

(t; t

0

; "��): (3.66)
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Represent the �rst addend of the expression (3.66) as

a

5

(t; t

0

; "��) = �


(t

0

)

Z

t

0

Y (s; t)

~

f

x

1

[s]�x(s)ds+

+


(t

0

)

Z

t

0

Y (s; t)

�

~

f (s; ~x(s) + �x(s); '(� (s)))�

~

f [s]

�

ds �

�


(t

0

)

Z

t

0

Y (s; t)

~

f

x

2

[s]�x(� (s))ds =

=

8

X

i=7

�

i

(t; t

0

; "��)�


(t

0

)

Z

t

0

Y (s; t)

~

f

x

2

[s]�x(� (s))ds:

It is obvious (see (3.41)) that �

7

(t; t

0

; "��) has the order o(t; "��).

Next, write �

8

(t; t

0

; "��) as

�

8

(t; t

0

; "��) =


(t

0

)

Z

t

0

Y (s; t)

�

~

f (s; ~x(s) + �x(s); '(� (s))) �

~

f [s] + f

+

2

� f

+

3

�

ds +

+


(t

0

)

Z

t

0

Y (s; t)[f

+

3

� f

+

2

]ds =

10

X

i=9

�

i

(t; t

0

; "��):

It is clear that if s 2 [


0

; 
(t

0

)], then � (s) 2 [

~

t

0

; t

0

]. Therefore

lim

"!0

s2[t

0

;
(t

0

)]

(s; ~x(s) + �x(s); '(� (s))) = lim

s!

~

t

+

0

(s; ~x(s); ~'(� (s))) = !

+

4

;

lim

"!0

s2[t

0

;
(t

0

)]

(s; ~x(s); ~x(� (s))) = !

3

:

On the basis of these equalities, using the relation


(t

0

) � t

0

= "( _


+

� 1)�t

0

+ o("��);

in a standard way we obtain

�

9

(t; t

0

; "��) = (t; "��);

�

10

(t; t

0

; "��) = �"Y (

~

t

0

; t)[f

+

3

� f

+

2

]( _


+

� 1)�t

0

+ o("��):

The second addend a

6

(t; t

0

; "��) of the expression (3.66) is estimated

analogously to a

4

c(t; t

0

; "��) (see the proof of Theorem 3.2), i.e.,

a

6

(t; t

0

; "��) = o(t; "��):
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According to the obtained relations, in the case under consideration for

h

1

(t; t

0

; "��) we get

h

1

(t; t

0

; "��) = �"Y (

~

t

0

; t)[f

+

3

� f

+

2

]( _


+

� 1)�t

0

�

�


(t

0

)

Z

t

0

Y (s; t)

~

f

x

2

[s]�x(� (s))ds+ o("��):

It remains to estimate h

2

(t; t

0

; "��). We have (see (3.51), (3.54)):

jh

2

(t; t

0

; "��)j � "kY k

�

a

7

(t

0

; "��) + a

8

(t

0

; "��)

�

� O("):

Finally note that the equalities (3.45), (3.56) (see (3.64)) are valid. From

(3.44), taking into account the obtained relations, we have (3.19), where

�x(t; ��) has the form (3.64).

Theorem 3.9. Let � (

~

t

0

) =

~

t

0

and the conditions of Theorems 3:7, 3:8 be

ful�lled. Moreover,

f

�

3

+ (f

�

2

� f

�

3

) _


�

= f

+

3

+ (f

+

2

� f

+

3

) _


+

=

^

f :

Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary (t; "; ��) 2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V the relation (3:19) is valid, where

�x(t; ��) = Y (

~

t

0

; t)

�

�x

0

�

^

f�t

0

�

+ �

1

(t; ��):

This theorem is a corollary of Theorems 3.7, 3.8.

Theorem 3.10. Let � (

~

t

0

) =

~

t

0

and

lim

!!!

3

~

f (!) = f

�

2

; ! 2 R

�

~

t

0

� O

2

; lim

t!t

�

0

_
(t) = 1; t 2 R

�

~

t

0

:

Let, moreover, there exists a neighborhood V

�

(!

�

4

), such that the function

~

f (!); ! 2 V

�

(!

�

4

) is bounded. Then there exist numbers �

3

> 0; "

3

> 0

such that for an arbitrary (t; "; ��) 2 [

~

t

1

� �

3

;

~

t

1

+ �

3

] � [0; "

3

] � V

�

the

relation (3:19) is ful�lled , where

�x(t; ��) = Y (

~

t

0

; t)

�

�x

0

� f

�

2

�t

0

�

+ �

1

(t; ��):

This theorem, by Lemma 2.12, is proved analogously to Theorem 3.7.

Theorem 3.11. Let � (

~

t

0

) =

~

t

0

and

lim

!!!

3

~

f (!) = f

+

2

; ! 2 R

+

~

t

0

� O

2

; lim

t!t

+

0

_
(t) = 1; t 2 R

+

~

t

0

:

Let, moreover, there exist the neighborhood V

+

(!

+

4

), such that the function

~

f (!); ! 2 V

+

(!

+

4

) is bounded. Then there exist numbers �

3

> 0; "

3

> 0

such that for an arbitrary (t; "; ��) 2 [

~

t

1

� �

3

;

~

t

1

+ �

3

] � [0; "

3

] � V

+

the

relation (3:19) is valid, where

�x(t; ��) = Y (

~

t

0

; t)

�

�x

0

� f

+

2

�t

0

�

+ �

1

(t; ��):
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This theorem, by Lemma 2.14, is proved analogously to Theorem 3.8.

The di�erence consists in estimation of the expression �

8

(t; t

0

; "��). Namely,

the integrand in �

8

(t; t

0

; "��) is bounded, while


(t

0

)� t

0

= 
(

~

t

0

) + " _


+

�t

0

+ o("��) = o("��) ( _


+

= 1):

This allows us to conclude that

�

8

(t; t

0

; "��) = o(t; "��):

Theorem 3.12. Let � (

~

t

0

) =

~

t

0

and the function ( ~'(t); _� (t)) be continuous

at the point

~

t

0

. Let the function

~

f (!) be continuous at the point !

3

and be

bounded in the neighborhood of the point !

0

4

= (

~

t

0

; ~x

0

; ~'(

~

t

0

)). Then there

exist numbers �

3

> 0; "

3

> 0 such that for an arbitrary (t; "; ��) 2 [

~

t

1

�

�

3

;

~

t

1

+ �

3

]� [0; "

3

]� V (3:19) is ful�lled, where

�x(t; ��) = Y (

~

t

0

; t)

�

�x

0

�

~

f (!

3

)�t

0

�

+ �

1

(t; ��):

It is easy to note that _c
(

~

t

0

) = 1. Consequently this theorem is a corollary

of Theorems 3.10, 3.11.

Theorem 3.13. Let � (

~

t

1

) =

~

t

0

and the conditions (3:17), (3:18) are ful-

�lled. Then there exist numbers �

3

> 0; "

3

> 0 such that for an arbitrary

(t; "; ��) 2 [

~

t

1

;

~

t

1

]� [0; "

3

]� V

�

the relation (3:19) is valid, where

�x(t; ��) = Y (

~

t

0

; t)�x

0

�

�

Y (

~

t

0

; t)f

�

0

+ Y (

~

t

1

; t)f

�

1

_


�

�

�t

0

+ �(t; ��):

This theorem is proved analogously to Theorem 3.1.

Theorem 3.14. Let � (

~

t

1

) =

~

t

0

and

lim

!!!

+

0

~

f (!) = f

+

0

:

Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary (t; "; ��) 2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

+

the relation (3:19) is ful�lled, where

�x(t; ��) = Y (

~

t

0

; t)

�

�x

0

� f

+

0

�t

0

�

+ �(t; ��):

This theorm, taking into account Y (s; t) = 0; (s; t) 2 [

~

t

1

; 
(t

0

)] � [

~

t

1

�

�

3

;

~

t

1

], is proved analogously to Theorem 3.2.
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CHAPTER II

CONTINUOUS DEPENDENCE AND DIFFERENTIABILITY

OF SOLUTION OF NEUTRAL DIFFERENTIAL EQUATIONS

4. Continuous Dependence of Solution

4.1. Preliminary Notes. Let � : R

1

! R

1

be a continuously di�erentiable

function satisfying �(t) < t, _�(t) > 0; let �

1

(J

2

; R

n

) be the space of con-

tinuously di�erentiable functions ' : J

2

! R

n

; J

2

= [�(a); b]; �(a) =

minf� (a); �(a)g with the norm k'k

1

= supfj'(a)j+ j _'(t)j : t 2 J

2

g; C(J)

be the space of measurable and bounded n�n matrix functions C(t); t 2 J ,

with the norm: kCk = sup

t2J

jC(t)j.

Consider the linear neutral di�erential equation

_x(t) = A(t)x(t) + B(t)x(� (t)) + C(t) _x(�(t)) + f(t); t 2 [t

0

; b]; (4.1)

x(t) = '(t); t 2 [�(t

0

); t

0

); x(t

0

) = x

0

; (4.2)

where A(t); B(t) are summable on J n�n matrix functions C 2 C(J); f :

J ! R

n

is a summable function, ' 2 �

1

(J

2

; R

n

); t

0

2 [a; b); x

0

2 R

n

.

Lemma 4.1 (Cauchy's formula). The solution x(t); t 2 [t

0

; b] of the equa-

tion (4:1) with the initial condition (4:2) may be represented as

x(t) = �(t

0

; t)x

0

+

t

0

Z

�(t

0

)

Y (
(s); t)B(
(s)) _
 (s)'(s)ds +

+

t

0

Z

�(t

0

)

Y (�(s); t)C(�(s)) _�(s) _'(s)ds +

t

Z

t

0

Y (s; t)f(s)ds; (4.3)

where �(s; t); Y (s; t) are matrix functions satisfying the set of equations

with advanced argument

@�(s; t)

@s

= �Y (s; t)A(s) � Y (
(s); t)B(
(s)) _
 (s); s 2 [a; t]; (4.4)

Y (s; t) = �(s; t) + Y (�(s))C(�(s); t) _�(s); s 2 [a; t]: (4.5)

Moreover, Y (s; t) satis�es the condition

Y (s; t) =

�

E; s = t;

�; s > t:

Here �(t) is the inverse function of �(t).
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This lemma is proved by a standard way (see the footnote 5).

It is easy to note that the equation (4.5) allows us to express Y (s; t) by

the function �(s; t). To this end on the set J

2

de�ne the function m(s; t)

taking values from the set of non-negative integer numbers. Namely for

s > t put m(s; t) = 0, while for s � t let m(s; t) be the natural number such

that

s 2 (�

m(s;t)+1

(t); �

m(s;t)

(t)]:

Here as always

�

i

(t) = �(�

i�1

(t)); i = 1; 2; : : : ; �

0

(t) = t:

It is clear that for any �xed t 2 J the function m(s; t); s 2 [a; t] is

piecewise continuous and for an arbitrary (s; t) 2 J

2

, we have m(s; t) 2

[0;m(a; b)].

Solving the equation (4.5) by the method of steps from right to left, we

obtain

Y (s; t) =

m(s;t)

X

i=0

�(�

i

(s); t)C

i

[s]; s 2 [a; t]; (4.6)

where

C

i

[s] =

Y

i

j=1

C(�

j

(s)) _�(�

j�1

(s)); (4.7)

it is assumed that C

0

[s] = E.

Substituting (4.6) into (4.4), we obtain the equation with advanced ar-

guments

@�(s; t)

@s

= �

m(s;t)

X

i=0

�(�

i

(s); t)C

i

[s]A(s) �

�

m(
(s);t)

X

i=0

�(�

i

(
(s)); t)C

i

[
(s)]B(
(s)) _
 (s); s 2 [a; t]: (4.8)

It is obvious that (see (4.5))

�(s; t) =

�

E; s = t;

�; s > t:

(4.9)

Below some properties of the matrix functions �(s; t); Y (s; t) are es-

tablished which are used in proving theorems on di�erentiability of solution

(see x 5).

Lemma 4.2. Let

~

t

1

2 (a; b], while �(s; t) be a solution of the equation

(4:8) with the condition (4:9). Then for an arbitrary " > 0 there exists a

number � = �(") > 0 such that for an arbitrary t

1

2 J : jt

1

�

~

t

1

j � � the

inequality

j�(s; t

1

)� �(s;

~

t

1

)j � "; 8s 2 [a; s

1

]; s

1

= minft

1

;

~

t

1

g;
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is ful�lled.

This lemma is a simple corollary of a theorem analogous to Theorem 1.3,

which is valid for equations with advanced arguments.

Lemma 4.3. The function �(s; t) is continuous on the set

� = f(s; t) : a � s � t; t 2 Jg:

This lemma, using Lemma 4.2, with minor modi�cations can be proved

analogously to Lemma 3.4.

Lemma 4.4. Let �

0

; �

1

2 (a; b); �

0

< �

m

0

(�

1

); m

0

= m(�

0

; �

1

) and

there exist the right and left �nite limits of the function C(s) at the points

�

i

(�

0

); i = 1; : : : ;m

0

. Then there exists a number � > 0 such that

lim

s!�

�

0

Y (s; t) = Y

�

�

0

(t); lim

s!�

+

0

Y (s; t) = Y

+

�

0

(t)

uniformly for t 2 [�

1

� �; �

1

+ �];

where the functions Y

�

�

0

(t); Y

+

�

0

(t) are continuous on [�

1

� �; �

1

+ �].

Proof. By properties of the function �(t), there exist numbers �;

�

� > 0 such

that for every t 2 [�

1

� �; �

1

+ �] � J we have m(�

0

; t) = m(�

0

; �

1

) = m

0

and

[�

0

�

�

�; �

0

+

�

�] � (�

m

0

+1

(t); �

m

0

(t)]

Moreover,

�

m

0

(�

0

+

�

�) < �

1

� �:

Thus with (s; t) 2 [�

0

�

�

�; �

0

+

�

�]� [�

1

� �; �

1

+ �] = �

0

we get

m(s; t) = m

0

; (�

m

0

(s); t) 2 �:

Consequently

Y (s; t) =

m

0

X

i=0

�(�

i

(s); t)C

i

[s] for (s; t) 2 �

0

and the functions (see Lemma 4.3)

�(�

i

(s); t); i = 1; : : : ;m

0

;

are continuous on �

0

.

By assumption the functions C

i

[s]; i = 1; : : : ;m

0

, have one-sided limits

at the point �

0

(see (4.7)).

Thus

lim

s!�

�

0

Y (s; t) =

m

0

X

i=0

�(�

i

(�

0

); t)C

�

i

= Y

�

�

0

(t);

lim

s!�

+

0

Y (s; t) =

m

0

X

i=0

�(�

i

(�

0

); t)C

+

i

= Y

+

�

0

(t);
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where C

�

i

and C

+

i

are the right and left limits of the function C

i

[s] at the

point �

0

.

From these equalites it follows the continuity of the functions Y

�

�

0

(t) and

Y

+

�

0

(t), respectively, for t 2 [�

1

� �; �

1

+ �] .

Lemma 4.5. The solution x(t); t 2 [t

0

; b], of the equation

_x(t) = C(t) _x(�(t)) + f(t); t 2 [t

0

; b]; (4.10)

with the initial condition (4:2) may be represented as

x(t) = x

0

+

t

0

Z

�(t

0

)

Y (�(s); t)C(�(s)) _�(s) _'(s)ds +

t

Z

t

0

Y (s; t)f(s)ds; (4.11)

where Y (s; t) is a matrix function satisfying the equation

Y (s; t) = E + Y (�(s))C(�(s)) _�(s) (4.12)

and having the following form

Y (s; t) =

m(s;t)

X

i=0

�(�

i

(s); t)C

i

[s]; s 2 [a; t]; (4.13)

�(s; t) =

�

1; s � t;

0; s > t:

Proof. In the case under consideration the equation (4.4) has the form

@�(s; t)

@s

= 0; s 2 [a; t]:

Consequently, taking into account (4.9), we obtain �(s; t) = E, �(�

i

(s);

t) = �(�

i

(s); t)E. On the basis of these equalities from (4.3), (4.5), (4.6) it

follows (4.11), (4.12), (4.13), respectively.

Lemma 4.6. If the function x(t); t 2 [�(t

0

); b], has the form

x(t)=

8

>

>

>

<

>

>

>

:

'(t); t 2 [�(t

0

); t

0

);

x

0

+

t

0

Z

�(t

0

)

Y (�(s); t)C(�(s)) _�(s) _'(s)ds +

t

Z

t

0

Y (s; t)f(s)ds; t2 [t

0

; b];

where Y (s; t) is a solution of the equation (4:12) (see (4:13)), then on the

interval [t

0

; b] it satis�es the equation (4:10).
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Proof. Divide the interval [t

0

; b] into the subintervals [�

i

; �

i+1

]; i = 0; : : : ; l,

where �

0

= t

0

; �

i

= �

i

(t

0

); i = 1; : : : ; l; �

l+1

= b.

Let t 2 (�

0

; �

1

). Then �(t) 2 [�(t

0

); t

0

] andm(s; t) = 1 for s 2 [�(t

0

); �(t)],

m(s; t) = 0 for s 2 (�(t); t].

Thus (see (4.13))

Y (s; t) =

(

E +C

1

[s]; s 2 [�(t

0

); �(t)];

E; s 2 (�(t); t]:

It is easy to see that (see (4.12), (4.7))

t

0

Z

�(t

0

)

Y (�(s); t)C(�(s)) _�(s) _'(s)ds =

t

0

Z

�(t

0

)

�

Y (s; t) �E

�

_'(s)ds =

=

�(t)

Z

�(t

0

)

C(�(s)) _�(s) _'(s)ds;

t

Z

t

0

Y (s; t)f(s)ds=

t

Z

t

0

f(s)ds:

Consequently, for t 2 (�

0

; �

1

)

x(t) = x

0

+

�(t)

Z

�(t

0

)

C(�(s)) _�(s) _'(s)ds +

t

Z

t

0

f(s)ds: (4.14)

Thus, the function x(t) is absolutely continuous on the interval [�

0

; �

1

].

From (4.14), we obtain

_x(t) = C(t) _'(�(t)) + f(t) = C(t) _x(�(t)) + f(t):

Let t 2 (�

1

; �

2

). Then

Y (s; t) =

8

>

<

>

:

E +C

1

[s] + C

2

[s]; s 2 [�(t

0

); �

2

(t)];

E +C

1

[s]; s 2 (�

2

(t); �(t)];

E; s 2 (�(t); t]:

We have

x(t) = x

0

+

t

0

Z

�(t

0

)

C

1

[s] _'(s)ds +

�

2

(t)

Z

�(t

0

)

C

2

[s] _'(s)ds +

+

t

Z

t

0

f(s)ds +

�(t)

Z

t

0

C

1

[s]f(s)ds:

It is obvious that x(t); t 2 [�

1

; �

2

], is absolutely continuous and is a

continuation of (4.14).
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Find the derivative of the function x(t):

_x(t) = C(t)C(�(t)) _'(�

2

(t)) + C(t)f(�(t)) + f(t) =

= C(t)

�

C(�(t)) _'(�

2

(t)) + f(�(t))

�

+ f(t) = C(t) _x(�(t)) + f(t):

Continuing this process with respect to i = 1; : : : ; l�1, we establish that

x(t) on [t

0

; b] is a solution of the equation (4.10).

Lemma 4.7. Let

~

C; C

k

2 C(J); k = 1; 2; : : : , and

~

Y , Y

k

be the corre-

sponding solutions (see (4:12), (4:13)), respectively. Then from the equality

lim

k!1

kC

k

�

~

Ck = 0

it follows

lim

k!1

kY

k

�

~

Y k = 0;

where

kY

k

�

~

Y k = supfjY

k

(s; t) �

~

Y (s; t)j : (s; t) 2 J

2

g:

Lemma 4.8. Let

~

C; C 2 C(J); C =

~

C+"�C; " > 0; k�Ck � const;

~

Y ; Y

be the corresponding solutions (see (4:12), (4:13)). Then there exists a num-

ber �

1

, not depending on �C, such that

k

~

Y � Y k � "�

1

: (4.15)

On the basis of (4.12) the above lemmas are easily proved.

Lemma 4.9. Let C(s); s 2 J , be a continuous matrix function, K � O

and a sequence g

i

2 E(J �O;R

n

); i = 1; 2; : : : , satisfy the conditions

Z

J

jg

i

(t; x)jdt � �

2

; 8x 2 K; lim

i!1

H

g

i

(J;K) = 0: (4.16)

Then

lim

i!1

H

Cg

i

(J;K) = 0: (4.17)

Proof. There exists a sequence of continuously di�erentiable matrix func-

tions P

m

(s); s 2 J , such that

lim

m!1

kC � P

m

k = 0:

Further, we have

�

�

�

�

t

00

Z

t

0

C(s)g

i

(s; x)ds

�

�

�

�

�

Z

J

jP

m

(s) � C(s)jjg

i

(s; x)jds+

�

�

�

�

t

00

Z

t

0

P

m

(s)g

i

(s; x)ds

�

�

�

�

�

� �

2

kP

m

� Ck+ �

mi

(t

0

; t

00

; x):
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Integrating by parts yields

�

mi

(t

0

; t

00

; x) =

�

�

�

�

t

00

Z

t

0

P

m

(s)

�

d

ds

s

Z

t

0

g

i

(�; x)d�

�

ds

�

�

�

�

�

�

�

�

�

�

P

m

(t

00

)

t

00

Z

t

0

g

i

(s; x)ds�

t

00

Z

t

0

_

P

m

(s)

�

s

Z

t

0

g

i

(�; x)d�

�

ds

�

�

�

�

�

�

�

jP

m

(t

00

)j+

Z

J

j

_

P

m

(s)jds

�

H

g

i

(J;K):

It is obvious that with a �xed m

lim

i!1

max

t

0

;t

00

2J

x2K

�

mi

(t

0

; t

00

; x) = 0:

Consequently

lim

i!1

H

Cg

i

(J;K) � �

2

kP

m

�Ck:

Hence we obtain (4.17).

Lemma 4.10. Let C(s); s 2 J , be a piecewise continuous matrix function

and a sequence g

i

2 E(J�O;R

n

); i = 1; 2; : : :, satisfy the conditions (4:16).

Then

lim

i!1

H

Cg

i

(J;K) = 0: (4.18)

Proof. It is not de�cult to see that

H

Cg

i

(J;K) �

l

X

p=1

H

Cg

i

(e

p

;K); (4.19)

where e

p

� J are the subintervals of continuity of C(s).

It is clear that

lim

i!1

H

g

i

(e

p

;K) � lim

i!1

H

g

i

(J;K) = 0:

On the basis of the previous lemma we have

lim

i!1

H

Cg

i

(e

p

;K) = 0; p = 1; : : : ; l:

Hence, taking into account (4.19), we obtain (4.18).
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Lemma 4.11. Let C(s); s 2 J be a piecewise continuous matrix function,

Y (s; t); s 2 [a; t]; t 2 J , be a corresponding solution (see (4:12), (4:13)) and

a sequence g

i

2 E(J � O;R

n

); i = 1; 2; : : : , satisfy the conditions (4:16).

Then

lim

i!1

max

t

0

;t

00

2J;x2K

�

�

�

�

t

00

Z

t

0

Y (s; t)g

i

(s; x)ds

�

�

�

�

= 0 uniformly for t 2 J: (4.20)

Proof. Using the expression (4.13) and the condition Y (s; t) = �, s > t, we

get:

sup

�

t

00

Z

t

0

Y (s; t)g

i

(s; x)ds : t

0

; t

00

2 J; x 2 K

�

�

� sup

�

t

00

Z

t

0

Y (s; t)g

i

(s; x)ds : t

0

; t

00

2 [a; t]; x 2 K

�

�

�

m(a;t)

X

k=0

k

X

j=0

sup

�
�

�

�

�

t

00

Z

t

0

C

j

[s]g

i

(s; x)ds

�

�

�

�

: t

0

; t

00

2 (�

k+1

(t); �

k

(t)] \ J; x 2 K

�

�

�

m(a;t)

X

k=0

k

X

j=0

H

C

j

g

i

([a; �

k

(b)];K) for every k = 0; : : : ;m(a; b): (4.21)

The matrix functions C

j

[s]; j = 0; : : : ; k, are piecewise continuous on [a;

�

k

(b)], therefore, by Lemma 4.10 we obtain

lim

i!1

H

C

j

g

i

([a; �

k

(b)];K) = 0; k = 0; : : : ;m(a; b); j = 0; : : : ; k:

Consequently, by (4.21) the relation (4.20) is valid.

Lemma 4.12. Let C 2 C(J) and a sequence g

i

2 E(J � O;R

n

); i =

1; 2; : : : , satisfy the conditions:

jg

i

(s; x)j � �

3

; 8(t; x) 2 J �K; lim

i!1

H

g

i

(J;K) = 0: (4.22)

Then

lim

i!1

H

Cg

i

(J;K) = 0:

Proof. There exists a sequence of continuous matrix functions P

m

(t); t 2

J; m = 1; 2; : : : , such that

lim

i!1

Z

J

jC(s)� P

m

(s)jds = 0:
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It is obvious that

�

�

�

�

t

00

Z

t

0

C(s)g

i

(s; x)ds

�

�

�

�

� �

3

Z

J

jC(s) � P

m

(s)jds +

�

�

�

�

t

00

Z

t

0

P

m

(s)g

i

(s; x)ds

�

�

�

�

:

Thus with a �xed m we get

lim

i!1

H

Cg

i

(J;K) � �

3

Z

J

jC(s)� P

m

(s)jds:

Hence it follows the desired equality.

Lemma 4.13. Let C 2 C(J); Y (s; t) be the corresponding solution (see

(4:12), (4:13)) and a sequence g

i

2 E(J � O;R

n

); i = 1; 2; : : : , satisfy the

condition (4:22). Then

lim

i!1

max

(t

0

;t

00

;x)2J�K

�

�

�

�

t

00

Z

t

0

Y (s; t)g

i

(s; x)ds

�

�

�

�

= 0 uniformly for t 2 J:

This lemma, by Lemma 4.12, follows from the inequality (4.21).

4.2. Theorems on Continuous Dependence of Solution. To every element

� = (t

0

; x

0

; '; C; f) 2 A

1

= J � O ��

1

(J

2

; O)�C(J) �E(J � O

2

; R

n

)

there corresponds the di�erential equation

_y(t) = C(t)h(t

0

; _'; _y)(�(t)) + f(t; y(t); h(t

0

; '; y)(� (t))) (4.23)

with the initial condition

y(t

0

) = x

0

; (4.24)

where the operator h(�) is de�ned by

h(t

0

; '; y)(t) =

�

'(t); t 2 [�(a); t

0

);

y(t); t 2 [t

0

; b]:

(4.25)

The solution of the equation (4.23) is de�ned according to De�nition 1.1,

with a natural modi�cation.

Theorem 4.1. Let ~y(t) be a solution, de�ned on [r

1

; r

2

] � (a; b) corre-

sponding to the element ~� = (

~

t

0

; ~x

0

; ~';

~

C;

~

f) 2 A

1

, Let

~

C(t), t 2 J , be

a pieceswise-continuous matrix function, K

1

contain some neighborhood of

the set ~'(J

2

) [ ~y([r

1

; r

2

]): Then there exist numbers �

i

> 0; i = 0; 1, such

that to an arbitrary element

� 2 V (~�;K

1

; �

0

; �

0

) =

=V (

~

t

0

; �

0

)�V (~x

0

; �

0

)�V ( ~'; �

0

)�V (

~

C; �

0

)�V (

~

f ;K

1

; �

0

)\W (

~

f ;K

1

; �

0

)
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there corresponds the solution y(t; �) de�ned on [r

1

��

1

; r

2

+�

1

] � J . More-

over, for each " > 0 there exists a number � = �(") 2 (0; �

0

) such that for

an arbitrary � 2 V (~�;K

1

; �

0

; �

0

) the inequality

jy(t; �) � y(t; ~�)j � "; t 2 [r

1

� �

1

; r

2

+ �

1

]; (4.26)

is ful�lled.

Proof. In a way similar to the proof of Theorem 1.2, to every � 2 A

1

there

corresponds the equation

_z(t) = C(t)h(t

0

; _'; _z)(�(t)) + g(t; z(t); h(t

0

; '; z)(� (t))) (4.27)

with the initial condition

z(t

0

) = x

0

: (4.28)

The function g has the form (1.9) and satis�es the conditions (1.10), (1.11).

It is easy to see that the equation (4.27) for t 2 [r

1

; t

0

] may be considered

(see (4.25)) as the ordinary di�erential equation

_z

1

(t) = C(t) _'(�(t)) + g(t; z

1

(t); '(� (t))); (4.29)

z

1

(t

0

) = x

0

; (4.30)

while for t 2 [t

0

; r

2

] as the neutral di�erential equation

_z

2

(t) = C(t) _z

2

(�(t)) + g(t; z

2

(t); z

2

(� (t))); (4.31)

z

2

(t) = '(t); t 2 [�(t

0

); t

0

); z

2

(t

0

) = x

0

: (4.32)

It is clear that if z

1

(t); t 2 [r

1

; t

0

], is a solution of the equation (4.29)

with the initial condition (4.30), and z

2

(t); t 2 [t

0

; r

2

], is a solution of the

equation (4.31) with the initial condition (4.32), then the function

z(t) =

�

z

1

(t); t 2 [r

1

; t

0

);

z

2

(t); t 2 [t

0

; r

2

]

will be a solution of the equation (4.27) with the initial condition (4.28)

de�ned on the interval [r

1

; r

2

].

Write the equation (4.29) with the condition (4.30) in the integral form

z

1

(t) = x

0

+

t

Z

t

0

[C(s) _'(�(s)) + g(s; z

1

(s); '(� (s)))]ds; t 2 [a; t

0

]; (4.33)

and the equation (4.31) with the condition (4.32) in the equivalent form

z

2

(t) = x

0

+

�(t

0

)

Z

t

0

Y (s; t)C(s) _'(�(s))ds +
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+

t

Z

t

0

Y (; t)g(s; z

2

(s); z

2

(� (s)))ds; t 2 [t

0

; b]; (4.34)

where Y (s; t) is the matrix function corresponding to C(s) (see (4.13)).

We introduce the notation

Y

1

(s; t; t

0

) =

8

>

<

>

:

E; a � t < t

0

;

Y (s; t); t

0

� t < � = minf�(t

0

); bg;

�; � � t � b;

Y

2

(s; t; t

0

) =

(

E; a � t < t

0

;

Y (s; t); t

0

� t � b:

(4.35)

On the basis of this notation the equations (4.33) and (4.34), and conse-

quently the equation (4.27), may be written in the form of the equivalent

integral equation

z(t) = x

0

+

+

t

Z

t

0

[Y

1

(s; t; t

0

)C(s) _'(�(s))+Y

2

(s; t; t

0

)g(s; z(s); h(t

0

; '; z)(� (s)))]ds: (4.36)

It is obvious that the solution of the equation (4.36) is dependent on the

parameter

� 2 G

1

= J �O ��

1

(J

2

; O)� C(J)�W (

~

f ;K

1

; �

0

) � E

�

=

= R

1

� R

n

��

1

(J

2

; R

n

)� C(J)�E(J �O

2

; R

n

):

The topology in G

1

is induced from E

�

.

On the space C(J;R

n

) de�ne a family of mappings depending on � 2 G

1

F (�; �) : C(J;R

n

)! C(J;R

n

) (4.37)

by the formula

�(t) = �(t; z; �) = x

0

+

+

t

Z

t

0

[Y

1

(s; t; t

0

)C(s) _'(�(s))+Y

2

(s; t; t

0

)g(s; z(s); h(t

0

; '; z)(� (s)))]ds;

t 2 J; z 2 C(J;R

n

):

We de�ne the iterations F

k

(z; �):

�

k

(t) = �

k

(t; z; �) = x

0

+
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+

t

Z

t

0

[Y

1

(s; t; t

0

)C(s) _'(�(s))+Y

2

(s; t; t

0

)g(s; �

k�1

(s); h(t

0

; '; �

k�1

)(� (s)))]ds;

k = 1; 2; : : : ; �

0

(t) = z(t):

Using the inequality (1.11), we get

j�

0

k

(t)� �

00

k

(t)j �

� kY

2

k

t

Z

a

L

f

(s)

�

j�

0

k�1

(s) � �

00

k�1

(s)j + jh(t

0

; '; �

0

k�1

)(� (s)) �

�h(t

0

; '; �

00

k�1

)(� (s))j

�

ds; k = 1; 2; : : : ;

where kY

2

k = supfjY

2

(s; t; t

0

)j : s; t; t

0

2 Jg; it is assumed that �

0

0

(t) =

z

0

(t); �

00

0

(t) = z

00

(t).

On the basis of this inequality in a way similar to the proof of Theorem

1.2 it can be proved that some iteration of the mapping (4.37) is a uniform

contraction. Thus for every � 2 G

1

the equation (4.27) with the initial

condition (4.28) has a unique solution z(t; �); t 2 J .

Now for an arbitrary k = 1; 2; : : : we prove that the mapping

F

k

(z(�; ~�); �) : G

1

! C(J;R

n

)

is continuous at the point � = ~�.

To this end is su�ces to show that if the sequence �

i

= (t

i

0

; x

i

0

; '

i

; C

i

; f

i

) 2

G

1

, i = 1; 2; : : : tends to ~� = (

~

t

0

; ~x

0

; ~';

~

C;

~

f), i.e., if

lim

i!1

�

jt

i

0

�

~

t

0

j+jx

i

0

�~x

0

j+k'

i

� ~'k

1

+kC

i

�

~

Ck+H

�f

i

(J;K

1

)

�

= 0; �f

i

= f

i

�

~

f ;

then

lim

i!1

F

k

(z(�; ~�); �

i

) = F

k

(z(�; ~�); ~�) = z(�; ~�): (4.38)

The proof will be carried out by induction. Let k = 1. Then

j�

i

1

(t)� ~z(t)j � jx

i

0

� ~x

0

j+

+

�

�

�

�

t

Z

t

i

0

Y

i

1

(s; t; t

i

0

)C

i

(s) _'

i

(�(s))ds �

t

Z

~

t

0

~

Y

1

(s; t;

~

t

0

)

~

C(s)

_

~'(�(s))ds

�

�

�

�

+

+

�

�

�

�

t

Z

t

i

0

Y

i

2

(s; t; t

i

0

)g

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s)))ds �

�

t

Z

~

t

0

~

Y

2

(s; t;

~

t

0

)~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))ds

�

�

�

�

= jx

i

0

� ~x

0

j+ a

i

(t) + b

i

(t):
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Here �

i

1

(t) = �

1

(t; ~z; �

i

); ~z(t) = z(t; ~�); ~g = �

~

f ; g

i

= �f

i

(see (1.9));

Y

i

1

; Y

i

2

are matrices corresponding to C

i

(s);

~

Y

1

;

~

Y

2

are matrices corre-

sponding to

~

C(s) (see (4.35)).

First of all we estimate a

i

(t)

a

i

(t) �

�

�

�

�

~

t

0

Z

t

i

0

j

~

Y

1

(s; t;

~

t

0

)

~

C(s)

_

~'(�(s))jds +

+

Z

J

jY

i

1

(s; t; t

i

0

)C

i

(s) _'

i

(�(s)) �

~

Y

1

(s; t;

~

t

0

)

~

C(s)

_

~'(�(s))ds

�

�

�

�

=

= a

1

i

(t) + a

2

i

(t): (4.39)

It is obvious that

a

1

i

(t) � k

~

Y

1

k

~

t

0

Z

t

i

0

j

~

C(s)

_

~'(�(s))jds: (4.40)

It is not di�cult to see that

a

2

i

(t) �

Z

J

jY

i

1

(s; t; t

i

0

)�

~

Y

1

(s; t;

~

t

0

)j jC

i

(s)j j _'

i

(�(s))jds +

+

Z

J

j

~

Y

1

(s; t;

~

t

0

)jC

i

(s) _'

i

(�(s)) �

~

C(s)

_

~'(�(s))jds �

� kC

i

k k'

i

k

1

Z

J

j

~

Y

1

(s; t;

~

t

0

) � Y

i

1

(s; t; t

i

0

)jds+

+k

~

Y

1

ksup

s2J

jC

i

(s) _'

i

(�(s)) �

~

C(s)

_

~'(�(s))j(b� a): (4.41)

Next,

sup

s2J

jC

i

(s) _'

i

(�(s)) �

~

C(s)

_

~'(�(s))j �

� k'

i

k

1

k

~

C � C

i

k+ k'

i

� ~'k

1

k

~

Ck: (4.42)

Let

~

t

0

> t

i

0

and assume that i

0

is so large that �(t

i

0

) >

~

t

0

for i � i

0

.

Then, taking into consideration (4.35), we get

Z

J

j

~

Y

1

(s; t;

~

t

0

)� Y

i

1

(s; t; t

i

0

)jds =

=

~

t

0

Z

t

i

0

jE � Y

i

(s; t)jds+

�(t

i

0

)

Z

~

t

0

j

~

Y (s; t)� Y

i

(s; t)jds+

�(

~

t

0

)

Z

�(t

i

0

)

j

~

Y (s; t)jds �
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� kY

i

� Ek(

~

t

0

� t

i

0

) + k

~

Y � Y

i

k(b� a) + k

~

Y k(�(

~

t

0

)� �(t

i

0

));

where Y

i

;

~

Y are solutions of the equation (4.13) corresponding to C

i

(t) and

~

C(t), respectively.

From the latter inequality by Lemma 4.7 we conclude that

lim

i!1

Z

J

j

~

Y

1

(s; t;

~

t

0

)� Y

i

1

(s; t; t

i

0

)jds = 0 uniformly for t 2 J: (4.43)

Let now

~

t

0

< t

i

0

. Choose a number i

0

so large that �(

~

t

0

) > t

i

0

for i � i

1

.

Then

Z

J

j

~

Y

1

(s; t;

~

t

0

)� Y

i

1

(s; t; t

i

0

)jds =

=

t

i

0

Z

~

t

0

j

~

Y (s; t)� Ejds+

�(

~

t

0

)

Z

t

i

0

j

~

Y (s; t) � Y

i

(s; t)jds+

�(t

i

0

)

Z

�(

~

t

0

)

jY

i

(s; t)jds �

� k

~

Y �Ek(t

i

0

�

~

t

0

) + k

~

Y � Y

i

k(b� a) + kY

i

k(�(t

i

0

)� �(

~

t

0

)):

Hence it follows (4.43).

The inequalities (4.40) and (4.41), in view of (4.42) and (4.43), yield

lim

i!1

a

i

(t) = 0; uniformly for t 2 J: (4.44)

Now we estimate the addend b

i

(t). We have

b

i

(t) �

�

�

�

�

~

t

0

Z

t

i

0

~

Y

2

(s; t;

~

t

0

)~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))ds

�

�

�

�

+

+

�

�

�

�

t

Z

t

i

0

[Y

i

2

(s; t; t

i

0

)g

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s))) �

�

~

Y

2

(s; t;

~

t

0

)~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))]ds

�

�

�

�

= b

1

i

(t) + b

2

i

(t):

It is obvious that

b

1

i

(t) � k

~

Y

2

k

�

�

�

�

~

t

0

Z

t

i

0

m

~

f ;K

1

(t)dt

�

�

�

�

:

Thus

lim

i!1

b

1

i

(t) = 0 uniformly for t 2 J: (4.45)
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Further,

b

2

i

(t) � max

t

0

;t

00

2J

�

�

�

�

t

00

Z

t

0

Y

i

2

(s; t; t

i

0

)�g

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s)))ds

�

�

�

�

+

+

Z

J

jY

i

2

(s; t; t

i

0

)�

~

Y

2

(s; t;

~

t

0

)j j~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))jds +

+

Z

J

jY

i

2

(s; t; t

i

0

)j j~g(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s))) �

�~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))jds =

= b

3

i

(t) + b

4

i

(t) + b

5

i

(t); �g

i

= g

i

� ~g:

First of all we estimate b

3

i

(t):

b

3

i

(t) � max

t

0

;t

00

2J

�

�

�

�

t

00

Z

t

0

Y

i

2

(s; t; t

i

0

)�g

i

(s; ~z(s); h(t

i

0

; ~'; ~z)(� (s)))ds

�

�

�

�

+

+kY

i

2

k

Z

J

L

�g

i

;K

1

(s)jh(t

i

0

; '

i

; ~z)(� (s)) � h(t

i

0

; ~'; ~z)(� (s))jds = �

1

i

(t) + �

2

i

(t):

It is easy to see that

�

1

i

(t) � max

t

0

;t

00

2[a;t

i

0

]

�

�

�

�

t

00

Z

t

0

�g

i

(s; ~z(s); ~'(� (s)))ds

�

�

�

�

+

+ max

t

0

;t

00

2[t

i

0

;s

i

]

�

�

�

�

t

00

Z

t

0

Y

i

(s; t)�g

i

(s; ~z(s); ~'(� (s)))ds

�

�

�

�

+

+ max

t

0

;t

00

2[s

i

;b]

�

�

�

�

t

00

Z

t

0

Y

i

(s; t)�g

i

(s; ~z(s); ~z(� (s)))ds

�

�

�

�

�

� max

t

0

;t

00

2J

�

�

�

�

t

00

Z

t

0

�g

i

(s; ~z(s); ~'(� (s)))ds

�

�

�

�

+

+ max

t

0

;t

00

2J

�

�

�

�

t

00

Z

t

0

~

Y (s; t)�g

i

(s; ~z(s); ~'(� (s)))ds

�

�

�

�

+

+max

t

0

;t

00

2J

�

�

�

�

t

00

Z

t

0

~

Y (s; t)�g

i

(s; ~z(s); ~z(� (s)))ds

�

�

�

�

+2k

~

Y �Y

i

k

Z

J

m

�f

i

;K

1

(t)dt; (4.46)
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where s

i

= minf
(t

i

0

); bg.

By the assumption

Z

J

m

�f

i

;K

1

(t)dt � �

0

: (4.47)

Further

H

�g

i

(J;K

1

) � H

�f

i

(J;K

1

);

consequently H

�g

i

(J;K

1

) ! 0 as i ! 1. After this, using (4.47) and

Lemmas 1.3, 4.7, 4.11, we get

lim

i!1

�

1

i

(t) = 0 uniformly for t 2 J: (4.48)

For �

2

i

(t), taking into consideration (4.25), we easily ascertain the validity

of the inequality (see the proof of Theorem 1.2)

�

2

i

(t) � �

0

(1 + �

1

)kY

i

2

k k'

i

� ~'k

1

: (4.49)

From (4.48), (4.49) we obtain

lim

i!1

b

3

i

(t) = 0 uniformly for t 2 J: (4.50)

Now we estimate b

4

i

(t). For

~

t

0

> t

i

0

we have

b

4

i

(t) �

~

t

0

Z

t

i

0

jY

i

(s; t)� Ejm

~g;K

1

(s)ds +

b

Z

~

t

0

jY

i

(s; t) �

~

Y (s; t)jm

~g;K

1

(s)ds:

If

~

t

0

< t

i

0

, then

b

4

i

(t) �

t

i

0

Z

~

t

0

jE �

~

Y (s; t)jm

~g;K

1

(s)ds +

b

Z

t

i

0

jY

i

(s; t)�

~

Y (s; t)jm

~g;K

1

(s)ds:

Consequently,

lim

i!1

b

4

i

(t) = 0 uniformly for t 2 J: (4.51)

Finally we estimate b

5

i

(t). Let

~

t

0

< t

i

0

. Then

b

5

i

(t) � kY

i

2

k

Z

J

L

~g;K

1

(s)jh(t

i

0

; '

i

; ~z)(� (s)) � h(

~

t

0

; ~'; ~z)(� (s))jds �

� kY

i

2

k

�

~�

Z

a

L

~g;K

1

(s)j'

i

(� (s)) � ~'(� (s))jds+

+

�

i

Z

~�

L

~g;K

1

(s)j'

i

(� (s)) � ~z(� (s))jds

�

;
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where ~� = minf
(

~

t

0

); bg; �

i

= minf
(t

i

0

); bg. If

~

t

0

> t

i

0

, then

b

5

i

(t) � kY

i

2

k

�

�

i

Z

a

L

~g;K

1

(s)j'

i

(� (s)) � ~'(� (s))jds +

+

~�

Z

�

i

L

~g;K

1

(s)j~z(� (s)) � ~'(� (s))jds

�

:

Clearly, from the latter inequalites it follows

lim

i!1

b

5

i

(t) = 0 uniformly for t 2 J: (4.52)

From the equalities (4.44), (4.45), (4.50)-(4.52) it follows (4.38) for k = 1.

Let (4.38) be ful�lled some for k � 1. Now we will prove the validity of

(4.38) for k + 1. We have

j�

i

k+1

(t)� ~z(t)j � jx

i

0

� ~x

0

j+

+

�

�

�

�

t

Z

t

i

0

Y

i

1

(s; t; t

i

0

)C

i

(s) _'

i

(�(s))ds �

t

Z

~

t

0

~

Y

1

(s; t;

~

t

0

)

~

C(s)

_

~'(�(s))ds

�

�

�

�

+

+

�

�

�

�

t

Z

t

i

0

Y

i

2

(s; t; t

i

0

)g

i

(s; �

i

k

(s); h(t

i

0

; '

i

; �

i

k

)(� (s)))ds �

�

t

Z

~

t

0

~

Y

2

(s; t;

~

t

0

)~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))ds

�

�

�

�

= jx

i

0

� ~x

0

j+ a

i

(t) + b

ik

(t):(4.53)

The function a

i

(t) has been estimated above (see (4.44)). For b

ik

(t) we

obtain:

b

ik

(t) � kY

i

2

k

Z

J

jg

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s)))ds �

�g

i

(s; �

i

k

(s); h(t

i

0

; '

i

; �

i

k

)(� (s)))dsj +

+

�

�

�

�

t

Z

t

i

0

Y

i

2

(s; t; t

i

0

)g

i

(s; ~z(s); h(t

i

0

; '

i

; ~z)(� (s)))ds �

�

t

Z

~

t

0

~

Y

2

(s; t;

~

t

0

)~g(s; ~z(s); h(

~

t

0

; ~'; ~z)(� (s)))ds

�

�

�

�

= b

1

ik

(t) + b

i

(t): (4.54)
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The function b

i

(t) has been estimated above (see (4.45), (4.50)-(4.52)). It

is easy to see that for b

1

ik

(t) the inequality

b

1

ik

(t) � kY

i

2

k

Z

J

L

g

i

;K

1

(s)

�

j~z(s) � �

i

k

(s)j + jh(t

i

0

; '

i

; ~z)(� (s)) �

�h(t

i

0

; '

i

; �

i

k

)(� (s))j

�

ds � 2kY

i

2

k k~z � �

i

k

k

Z

J

L

g

i

;K

1

(s)ds

is valid. By assumption

lim

i!1

k~z � �

i

k

k = 0:

Therefore

lim

i!1

b

1

ik

(t) = 0 uniformly for t 2 J: (4.55)

For (4.53) on the basis of (4.44), (4.45), (4.50)-(4.52) and (4.55) we obtain

lim

i!1

k�

i

k+1

� ~zk = 0:

The relation (4.38) is proved for every k = 1; 2; : : :.

Now we use Theorem 1.1, which allows us with an analogous argument

(see the proof of Theorem 1.2) to complete the proof of this theorem.

Introduce a set

W

1

(

~

f ;K

1

; �

0

) =

�

~

f + �f : �f 2 E(J �O

2

; R

n

); j�f(t; x

1

; x

2

)j+

+

Z

J

L

�f

i

;K

1

(s)ds � �

0

; 8(t; (x

1

; x

2

)) 2 J �K

2

1

�

:

Theorem 4.2. Let ~y(t) be the solution corresponding to the element ~� 2

A

1

, de�ned on [r

1

; r

2

] � (a; b); let K

1

contain some neighborhood of the set

~'(J

2

) [ ~y([r

1

; r

2

]): Then there exist numbers �

i

> 0; i = 0; 1, such that to

an arbitrary element

� 2 V

1

(~�;K

1

; �

0

; �

0

) =

=V (

~

t

0

; �

0

)�V (~x

0

; �

0

)�V ( ~'; �

0

)�V (

~

C; �

0

)�V (

~

f ;K

1

; �

0

)\W

1

(

~

f ;K

1

; �

0

)

there corresponds y(t; �) de�ned on [r

1

��

1

; r

2

+�

1

] � J . Moreover, for every

" > 0 there exists a number � = �(") 2 (0; �

0

) such that for an arbitrary

� 2 V

1

(~�;K

1

; �

0

; �

0

) the inequality

jy(t; �)� y(t; ~�)j � "; t 2 [r

1

� �

1

; r

2

+ �

1

]m

is valid.
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This theorem is proved analogously to the previous theorem. In this case

instead of Lemma 4.11 we have to use Lemma 4.13.

To every element � 2 A

1

there corresponds the di�erential equation

_x(t) = C(t) _x(�(t)) + f(t; x(t); x(� (t)))

with the initial condition

x(t) = '(t); t 2 [�(t

0

); t

0

); x(t

0

) = x

0

:

The solution x(t) = x(t; �); t 2 [�(t

0

); t

1

] corresponding to the element

� 2 A

1

is de�ned analogously (see De�nition 1.2).

Theorem 4.3. Let ~x(t) be the solution corresponding to the element ~� 2

A

1

, de�ned on [�(

~

t

0

);

~

t

0

] � (�(a); b); let

~

C(t); t 2 J , be a piecewise-

continuous matrix function, K

1

contain some neighborhood of the set ~'(J

2

)[

~x([

~

t

0

;

~

t

1

]): Then there exist numbers �

i

> 0; i = 0; 1, such that to an ar-

bitrary element � 2 V (~�;K

1

; �

0

; �

0

) there corresponds a solution x(t; �)

de�ned on [�(t

0

);

~

t

1

+ �

1

] � [�(a); b]. Moreover, for every " > 0 there exists

a number � = �(") 2 (0; �

0

) such that for an arbitrary � 2 V (~�;K

1

; �

0

; �

0

)

the inequality

jx(t; �)� x(t; ~�)j � "; t 2 [s

2

;

~

t

1

+ �

1

];

is valid.

Theorem 4.4. Let ~x(t) be the solution corresponding to the element ~� 2

A

1

; de�ned on [�(

~

t

0

);

~

t

0

] � (�(a); b); let K

1

contain some neighborhood of

the set ~'(J

2

) [ ~x([

~

t

0

;

~

t

1

]). Then there exist numbers �

i

> 0; i = 0; 1, such

that to an arbitrary element � 2 V

1

(~�;K

1

; �

0

; �

0

) there corresponds the

solution x(t; �) de�ned on [�(t

0

);

~

t

1

+ �

1

] � [�(a); b]. Moreover, for every

" > 0 there exists a number � = �(") 2 (0; �

0

) such that for an arbitrary

� 2 V

1

(~�;K

1

; �

0

; �

0

) the inequality

jx(t; �)� x(t; ~�)j � "; t 2 [s

2

;

~

t

1

+ �

1

];

is valid.

These theorems follow from Theorems 4.1, 4.2, respectively, and are

proved analogously (see the proof of Theorem 1.3).

We note that Theorems 4.1, 4.2 and 4.3, 4.4 also are valid, respectively,

for the di�erential equations

_y(t)=

�

X

i=1

C

i

(t)h(t

0

; _'; _y)(�

i

(t))+f(t; h(t

0

; '; y)(�

1

(t)); : : : ; h(t

0

; '; y)(�

s

(t)));

_x(t) =

�

X

i=1

C

i

(t) _x(�

i

(t)) + f(t; x(�

1

(t)); : : : ; x(�

s

(t)));

where C

i

2 C(J); �

i

: R

1

! R

1

; i = 1; : : : ; � are continuousle di�erentiable

functions satisfying �

i

(t) < t; _�

i

(t) > 0.
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Finally note that the Theorems 4.3, 4.4, generally speaking, are not

true for the equations whose right-hand sides are non-linear with respect

to _x(�(t)). For illustration consider

Example. Consider the system

(

_x = 0;

_y = _x

2

(t� 1); t 2 [0; 2];

(4.56)

x(t) = 0; t 2 [�1; 0]; y(0) = 0:

It is obvious that the solution of the system (4.56) is x(t) = y(t) = 0.

Consider the petrurbed system

(

_x

k

= f

k

(t);

_y

k

= _x

2

k

(t � 1);

x

k

(t) = 0; t 2 [�1; 0]; y

k

(0) = 0; (4.57)

where

f

k

(t) =

(

v

k

(t); t 2 [0; 1];

0; t 2 [1; 2]:

The function v

k

(t) is de�ned in the following way. For given k = 2; 3; : : : we

devide the interval [0; 1] into the subintervals e

i

; i = 1; : : : ; k, of the length

1=k. Then v

k

(t) = 1; t 2 e

1

, v

k

(t) = �1; t 2 e

2

and so on.

It is easy to see that

lim

k!1

max

t

0

;t

00

2[0;2]

�

�

�

�

t

00

Z

t

0

f

k

(t)dt

�

�

�

�

= 0:

For t � 1, taking into consideration (4.57) and the structure of the function

f

k

(t), we get

y

k

(t) =

t

Z

0

_x

2

k

(� � 1)d� =

t

Z

1

v

2

k

(� � 1)d� = t � 1:

Thus

kx

k

k ! 0; ky

k

k 6! 0 as k!1:

Consequently, for the equation (4.56) Theorems 4.3 and 4.4 are not true.
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5. Lemmas on the Estimation of the Increment

Introduce the set

V

1

=

�

�� = (�t

0

; �x

0

; �'; �C; �f) 2 A

1

� ~� : j�t

0

j � �

3

; j�x

0

j � �

3

;

k�'k

1

� �

3

; k�Ck � �

3

; �f =

k

X

i=1

�

i

�f

i

; j�

i

j � �

3

; i = 1; : : : ; k

	

:

(5.1)

Lemma 5.1. Let ~y(t) be the solution corresponding to the element ~� 2 A

de�ned on [r

1

; r

2

] � (a; b); let K

1

contain some neighborhood of the set

~'(J

2

) [ ~y([r

1

; r

2

]). Then there exist numbers �

2

> 0; "

2

> 0 such that,

for an arbitrary ("; ��) 2 [0; "

2

] � V

1

to the element ~� + "�� 2 A

1

there

corresponds the solution y(t; ~� + "��) de�ned on [r

1

� �

2

; r

2

+ �

2

] � J .

Moreover,

'(t) 2 K

1

; t 2 J

2

; y(t; ~�+ "��) 2 K

1

; t 2 [r

1

� �

2

; r

2

+ �

2

]; (5.2)

lim

"!0

y(t; ~� + "��)=y(t; ~�) uniformly for (t; ��)2[r

1

��

2

; r

2

+�

2

]�V

1

; (5.3)

j _y(t; ~�+"��)j�m(t); (t; "; ��)2 [r

1

��

2

; r

2

+�

2

]�[0; "

2

]�V

1

;

m(�) 2 L

1

(J;R

+

0

):

(5.4)

The relations (5.2), (5.3), on the basis of Theorem 4.4, are proved analo-

gously (see the proof of Lemma 2.1). The relation (5.4) taking into account

(5.1),(5.2) is easily proved by the method of steps for the left to right with

respect to the delay �(t) (see(4.23)).

In the sequel we assume that ~y(t) is de�ned on [r

1

� �

2

; r

2

+ �

2

] (see

Remark 2.1).

De�ne the function

�y(t) = �y(t; "��) = y(t; ~� + "��) � ~y(t);

(t; "; ��) 2 [r

1

� �

2

; r

2

+ �

2

]� [0; "

2

]� V

1

:

(5.5)

Lemma 5.2. Let � (

~

t

0

) <

~

t

0

; � (r

2

) �

~

t

0

and the conditions

lim

"!0

1

"

�

sup

��2V

�

1

~

t

0

Z

t

0

j

~

f(t; ~y(t) + �y(t); '(� (t)))jdt

�

<1; (5.6)

lim

"!0

1

"

�

sup

��2V

�

1




0

Z


(t

0

)

j

~

f (t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t))) �

�

~

f (t; ~y(t); ~'(� (t)))jdt

�

<1; V

�

1

= f�� 2 V

1

: �t

0

� 0g (5.7)

be full�lled. Then there exists a number "

3

2 (0; "

2

] such that for an arbi-

trary ("; ��) 2 [0; "

3

]� V

�

1

we have

max

t2[

~

t

0

;r

2

+�

2

]

j�y(t)j � O("); (5.8)
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r

2

+�

2

Z

~

t

0

j

_

�y(t)jdt � O("): (5.9)

Proof. By assumptions of the lemma there exists a number "

3

2 (0; "

2

] such

that for an arbitrary ("; ��) 2 [0; "

3

]� V

�

1

the conditions


(t

0

) >

~

t

0

; �(t

0

) >

~

t

0

; (5.10)

~

t

0

Z

t

0

j

~

f(t; ~y(t) + �y(t); '(� (t)))jdt � O("); (5.11)




0

Z


(t

0

)

j

~

f(t; ~y(t) + �y(t); ~y(� (t)) + �y(� (t))) �

�

~

f (t; ~y(t); ~'(� (t)))jdt � O(") (5.12)

are ful�lled.

It is easy to see that the function �y(t) on the interval [

~

t

0

; r

2

+�

2

] satis�es

the equation

_

�y(t) =

~

C(t)h(

~

t

0

; "

_

�';

_

�y)(�(t)) + �(t; "��) + a(t; "��) + b(t; "��); (5.13)

where

�(t; "��) = C(t)h(t

0

; _';

_

~y +

_

�y)(�(t)) �

�

~

C(t)h(

~

t

0

;

_

~';

_

~y)(�(t)) �

~

C(t)h(

~

t

0

; "

_

�';

_

�y)(�(t));

a(t; "��) =

~

f (t; ~y(t) + �y(t); h(t

0

; '; ~y +�y)(� (t))) �

�

~

f (t; ~y(t); h(

~

t

0

; ~'; ~y)(� (t))); (5.14)

b(t; "��) = "�f(t; ~y(t) + �y(t); h(t

0

; '; ~y +�y)(� (t))): (5.15)

Rewrite the equation (5.13) in a way analogous to (4.36) in the form of

the integral equation

�y(t) = �y(

~

t

0

) + "

t

Z

~

t

0

~

Y

1

(s; t;

~

t

0

)

~

C(s)

_

�'(�(s))ds +

+

t

Z

~

t

0

~

Y

2

(s; t;

~

t

0

)[�(s; "��) + a(s; "��) + b(s; "��)]ds;

where the matrix functions

~

Y

1

(s; t;

~

t

0

);

~

Y

2

(s; t;

~

t

0

) correspond to

~

C(t) (see

(4.35)).
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Hence

j�y(t)j � j�y(

~

t

0

)j+O(") + k

~

Y

2

k

�

r

2

+�

2

Z

~

t

0

j�(s; "��)jds+

t

Z

~

t

0

ja(s; "��)jds+

+

r

2

+�

2

Z

~

t

0

jb(s; "��)jds

�

: (5.16)

We will estimate j� y(

~

t

0

)j: Taking into consideration (5.5), (5.10), (5.1),

(5.2) and (5.11), we obtain

j�y(

~

t

0

)j = jy(

~

t

0

; ~�+ "��) � ~x

0

)j =

�

�

�

�

~x

0

+ "�x

0

+

+

~

t

0

Z

t

0

�

C(t) _'(�(t))+

~

f (t; ~y(t)+�y(t); '(� (t)))+b(t; "��)

�

dt�~x

0

�

�

�

�

� "j�x

0

j+

+

~

t

0

Z

t

0

�

jC(t) _'(�(t))j+j

~

f (t; ~y(t)+�y(t); '(� (t)))j

�

dt+O(") � O("): (5.17)

Let �(r

2

) �

~

t

0

. Then

�("��) =

r

2

+�

2

Z

~

t

0

j�(s; "��)jds =

�(t

0

)

Z

~

t

0

j�(s; "��)jds+

�(

~

t

0

)

Z

�(t

0

)

j�(s; "��)jds+

+

r

2

+�

2

Z

�(

~

t

0

)

j�(s; "��)jds =

3

X

i=1

�

i

("��): (5.18)

Now we estimate every term of the exspression (5.18). It is clear,that

�

1

("��) =

�(t

0

)

Z

~

t

0

jC(t) _'(�(t)) �

~

C(t)

_

~'(�(t))� "

~

C(t)

_

�'(�(t))jdt =

= "

�(t

0

)

Z

~

t

0

j�C(t)j j _'(�(t))jdt � O("): (5.19)

Further, taking into account (5.1), we have

�

2

("��)=

�(

~

t

0

)

Z

�(t

0

)

jC(t)[

_

~y(�(t))+

_

�y(�(t))]�

~

C(t)

_

~'(�(t))�"

~

C(t)

_

�'(�(t)))jdt�
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� kCk

~

t

0

Z

t

0

_�(t)j

_

~y(t) +

_

�y(t)jdt +

~

t

0

Z

t

0

_�(t)j

~

C(�(t)) _'(t)jdt �

� O(") + k _�k kCk

~

t

0

Z

t

0

j

_

~y(t) +

_

�y(t)jdt:

Since y(t; ~�+ "��) = ~y(t) + �y(t); we have (see (5.11), (2.15))

~

t

0

Z

t

0

j

_

~y(t) +

_

�y(t)jdt =

=

~

t

0

Z

t

0

jC(t) _'(�(t)) +

~

f (t; ~y(t) + �y(t); '(� (t))) + b(t; "��)jdt �

� O(") +

~

t

0

Z

t

0

j

~

f(t; ~y(t) + �y(t); '(� (t)))jdt � O("): (5.20)

Thus

�

2

("��) � O("): (5.21)

Finally we estimate the last relation of the expression (5.18). Namely,

(see (5.4))

�

3

("��)=

r

2

+�

2

Z

�(

~

t

0

)

jC(t)[

_

~y(�(t)) +

_

�y(�(t))]�

~

C(t)

_

~y(�(t))�

~

C(t)

_

�y(�(t))jdt=

= "

r

2

+�

2

Z

�(

~

t

0

)

j�C(t)j j _y(t; ~�+ "��)jdt � "�

3

r

2

+�

2

Z

�(

~

t

0

)

m(t)dt = O("): (5.22)

Consequently, according to (5.19), (5.21) and (5.22), we get

�("��) � O("):

This inequality also is valid for �(r

2

) <

~

t

0

. To see this, it su�ces choose

numbers �

3

; "

3

such that for an arbitrary ("; ��) 2 [0; "

3

] � V

�

1

we would

have �(t

0

) > r

2

+ �

2

. After this �("��) is estimated analogously to �

1

("��).

In an analogous way, using (5.10)-(5.12) (see the proof of Lemma 2.2), it

is proved that

t

Z

~

t

0

ja(s; "��)jds � O(") +

t

Z

~

t

0

L(s)j�y(s)jds; (5.23)
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r

2

+�

2

Z

~

t

0

jb(s; "��)jds � O("): (5.24)

On the basis of the obtained estimates, we can write for �y(t) the �nal

estimate

j�y(t)j � O(") +

t

Z

~

t

0

L(s)j�y(s)jds:

Hence by Gronwall's lemma we obtain (5.8).

Now on the basis of (5.8) we prove the second part of the lemma. We

will carry out the proof by the method of steps with rescpect to the delay

�(t).

After elementary transformations, taking into account (5.23), (5.24) and

(5.20), we obtain

�(

~

t

0

)

Z

~

t

0

j

_

�y(t)jdt =

�(t

0

)

Z

~

t

0

jC(t) _'(�(t)) �

~

C(t)

_

~'(�(t)) + a(t; "��) + b(t; "��)jdt+

+

�(

~

t

0

)

Z

�(t

0

)

jC(t)[

_

~y(�(t)) +

_

�y(�(t))] �

~

C(t)

_

~'(�(t)) + a(t; "��) + b(t; "��)jdt �

�

�(

~

t

0

)

Z

~

t

0

[ja(t; "��)j+ jb(t; "��)jdt] + "

�(t

0

)

Z

~

t

0

j

~

C(t)

_

�'(�(t)) + �C(t) _'(�(t))jdt+

+

~

t

0

Z

t

0

jC(�(t))j j

_

~y(t) +

_

�y(t)j _�(t)dt+

~

t

0

Z

t

0

_�(t)j

~

C(�(t))j j

_

~'(t)jdt �

� O(")kCkk _�k

~

t

0

Z

t

0

j

_

~y(t) +

_

�y(t)jdt � O("): (5.25)

Further,

�

2

(

~

t

0

)

Z

�(

~

t

0

)

j

_

�y(t)jdt =

�

2

(

~

t

0

)

Z

�(

~

t

0

)

jC(t)[

_

~y(�(t)) +

_

�y(�(t))] �

~

C(t)

_

~y(�(t)) +

+a(t; "��) + b(t; "��)jdt � k

~

Ck

�

2

(

~

t

0

)

Z

�(

~

t

0

)

j

_

�y(�(t))jdt +O("): (5.26)
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On the basis of the estimate (5.25), we get

�

2

(

~

t

0

)

Z

�(

~

t

0

)

j

_

�y(�(t))jdt =

�(

~

t

0

)

Z

~

t

0

_�(t)j

_

�y(t)jdt � O("):

Consequently,

�

2

(

~

t

0

)

Z

�(

~

t

0

)

j

_

�y(t)jdt � O("):

Continuing this process, we prove that

r

2

+�

2

Z

�(

~

t

0

)

j

_

�y(t)jdt � O("):

This inequality together with (5.25) yields (5.9).

Lemma 5.3. Let � (

~

t

0

) <

~

t

0

; � (r

2

) �

~

t

0

and the conditions:

lim

!!!

0

f(!) = f

�

0

; ! 2 R

�

~

t

0

� O

2

; !

0

= (

~

t

0

; ~x

0

; ~'(� (

~

t

0

)));

lim

t!

~

t

0

~

C(t) = C

�

~

t

0

; t 2 R

�

~

t

0

;

(5.27)

be ful�lled. Let, besides, there exist neighborhoods V

�

(

~

t

0

), V

�

(!

0

1

), V

�

(!

0

2

),

!

0

1

= (


0

; ~y(


0

); ~x

0

), !

0

2

= (


0

; ~y(


0

); ~'(


0

)) such that the functions _
(t), t 2

V

�

(

~

t

0

),

~

f (!

1

)�

~

f (!

2

), (!

1

; !

2

) 2 V

�

(!

0

1

)�V

�

(!

0

2

) are bounded. Then there

exists a number "

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2 [0; "

3

]� V

�

1

the relations are ful�lled (5:8), (5:9). Moreover,

�y(

~

t

0

) = "

�

�x

0

� [C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

]�t

0

	

+ o("��): (5.28)

Proof. The �rst part of the lemma, on the basis of Lemma 5.2, is proved

analogously (see the proof of Lemma 2.3).

Now we prove (5.28). It is easy to see that (see (5.17))

�y(

~

t

0

) = y(

~

t

0

; ~�+ "��) � ~x

0

= "

�

�x

0

� [C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

]�t

0

	

+

+

~

t

0

Z

t

0

[C(t) _'(�(t)) +

~

f(t; ~y(t) + �y(t); '(� (t))) �C

�

~

t

0

_

~'(�(

~

t

0

)) � f

�

0

]dt+

+

~

t

0

Z

t

0

b(t; "��)dt: (5.29)
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It is clear that

lim

"!0

sup

t2[t

0

;

~

t

0

]

jC(t) _'(�(t))+

~

f (t; ~y(t)+�y(t); '(� (t)))�C

�

~

t

0

_

~'(�(

~

t

0

))�f

�

0

j=0

uniformly for �� 2 V

�

:

Taking into account this and (5.24), from (5.29) we deduce (5.28).

Lemma 5.4. Let � (

~

t

0

) <

~

t

0

, � (r

2

) �

~

t

0

and the conditions

lim

"!0

1

"

sup

��2V

+

1

�

�

�

�

t

0

Z

~

t

0

~

f (t; ~y(t); ~'(� (t)))dt

�

�

�

�

<1; (5.30)

lim

"!0

1

"

sup

��2V

+

1

�

�

�

�


(t

0

)

Z




0

j

~

f(t; ~y(t) + �y(t); '(� (t))) �

~

f (t; ~y(t); ~y(� (t)))]ds

�

�

�

�

<1;

V

+

1

= f�� 2 V

1

: �t

0

� 0g (5.31)

be ful�lled. Then there exists a number "

3

2 (0; "

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

+

1

max

t2[t

0

;r

2

+�

2

]

j�y(t)j � O("); (5.32)

r

2

+�

2

Z

t

0

j

_

�y(t)j � O("): (5.33)

Proof. By assumptions of the lemma it is guaranteed the existence of a

number "

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2 [0; "

3

]� V

+

1

t

0

< 


0

; 
(t

0

) < r

2

+ �

2

; (5.34)

t

0

Z

~

t

0

j

~

f(t; ~y(t); ~'(� (t)))dt � O("); (5.35)


(t

0

)

Z




0

j

~

f(t; ~y(t) + �y(t); '(� (t))) �

~

f (t; ~y(t); ~y(� (t)))jds � O("): (5.36)

The function �y(t) on the interval [t

0

; r

2

+ �

2

] satis�es the equation

_

�y(t)=

~

C(t)h(t

0

; "

_

�';

_

�y)(�(t))+�(t; t

0

; "��)+a(t; "��)+b(t; "��); (5.37)

where a(t; "��), b(t; "��), respectively, have the form (5.14), (5.15), while

�(t; t

0

; "��) = C(t)h(t

0

; _';

_

~y +

_

�y)(�(t)) �

~

C(t)h(

~

t

0

;

_

�';

_

~y)(�(t)) �

�

~

C(t)h(t

0

; "

_

�';

_

�y)(�(t)):
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Rewrite the equation (5.37) in the form of the integral equation

�y(t) = �y(t

0

) +

t

Z

t

0

~

Y

1

(s; t; t

0

)

~

C(s)

_

�'(�(s))ds +

+

t

Z

t

0

~

Y

2

(s; t; t

0

)[�(s; t

0

; "��) + a(s; "��) + b(s; "��)]ds:

Hence

j�y(t)j � j�y(t

0

)j+O(") +

+k

~

Y

2

k

�

r

2

+�

2

Z

t

0

j�(s; t

0

; "��)jds+

t

Z

t

0

ja(s; "��)jds+

r

2

+�

2

Z

t

0

jb(s; "��)jds

�

: (5.38)

We estimate �y(t

0

):

j�y(t

0

)j = j~x

0

+ "�x

0

� ~y(t

0

)j =

=

�

�

~x

0

+ "�x

0

� ~x

0

�

t

0

Z

~

t

0

[

~

C(t)

_

~'(�(t)) +

~

f(t; ~y(t); ~'(� (t)))]dt

�

�

�

�

� O("): (5.39)

In order to estimate

�(t

0

; "��) =

r

2

+�

2

Z

t

0

j�(s; t

0

; "��)jds;

we consider two cases.

Let �(r

2

) �

~

t

0

and assume that a number "

3

is so small that for an

arbitrary ("; ��) 2 [0; "

3

]�V

+

1

the inequality �(t

0

) < r

2

+ �

2

is ful�lled. We

have

�(t

0

; "��) =

�(

~

t

0

)

Z

t

0

j�(s; t

0

; "��)jds+

�(t

0

)

Z

�(

~

t

0

)

j�(s; t

0

; "��)jds+

+

r

2

+�

2

Z

�(t

0

)

j�(s; t

0

; "��)jds =

3

X

i=1

�

i

(t

0

; "��): (5.40)

Now we estimate every term of the expression (5.40).

It is clear that

�

1

(t

0

; "��) =

�(

~

t

0

)

Z

t

0

jC(t) _'(�(t)) �

~

C(t)

_

~'(�(t)) � "

~

C(t)

_

�'(�(t)))jdt =
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= "

�(

~

t

0

)

Z

t

0

j�C(t)j _'(�(t))jdt � O("):

Next, taking into consideration (5.1), we obtain

�

2

(t

0

; "��) =

�(t

0

)

Z

�(

~

t

0

)

jC(t) _'(�(t)) �

~

C(t)

_

~y(�(t)) � "

~

C(t)

_

�'(�(t)))jdt �

�

t

0

Z

~

t

0

_�(t)jC(�(t)) _'(t)� "

~

C(�(t))

_

�'(t))jdt+

t

0

Z

~

t

0

_�(t)j

~

C(t)

_

~y(t)jdt �

� k _�k k

~

Ck

t

0

Z

~

t

0

j

_

~y(t)jdt:

It is obvious that

t

0

Z

~

t

0

j

_

~y(t)jdt � O("): (5.41)

For the last term we have

�

3

(t

0

; "��)=

r

2

+�

2

Z

�(t

0

)

jC(t)[

_

~y(�(t))+

_

�y(�(t))]�

~

C (t)

_

~y(�(t))�

~

C(t)

_

�y(�(t))jdt=

= "

r

2

+�

2

Z

�(t

0

)

j�C(t)j j _y(t; ~�+ "��)jdt � O("):

Thus

�(t

0

; "��) � O("):

This inequality is also valid for �(r

2

) <

~

t

0

. To see this, it su�ces to choose

a number �

2

such that �(

~

t

0

) > r

2

+ �

2

. After this �(t

0

; "��) is estimated

analogously to �

1

(t

0

; "��).

In an analogous way, using (5.34)-(5.36) (see the proof of Lemma 2.4), it

is proved that

t

Z

t

0

ja(s; "��)jds � O(") +

t

Z

t

0

L(s)j�y(s)jds; (5.42)

r

2

+�

2

Z

t

0

jb(s; "��)jds � O("): (5.43)
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On the basis of the obtained estimates, for �y(t) the following estimate can

be written

j�y(t)j � O(") +

t

Z

t

0

L(s)j�y(s)jds:

Hence by Gronwall's lemma (5.32) is obtained.

Now on the basis of (5.32) we prove the second part of the lemma. We

carry out the proof by the method of steps with rescpect to the delay �(t).

After elementary transformation, taking into account (5.42), (5.43) and

(5.41), we obtain

�(t

0

)

Z

t

0

j

_

�y(t)jdt =

�(

~

t

0

)

Z

t

0

jC(t) _'(�(t)) �

~

C(t)

_

~'(�(t)) + a(t; "��) + b(t; "��)jdt+

+

�(t

0

)

Z

�(

~

t

0

)

jC(t) _'(�(t)) �

~

C(t)

_

~y(�(t)) + a(t; "��) + b(t; "��)jdt �

�

�(

~

t

0

)

Z

t

0

[ja(t; "��)j+ jb(t; "��)j]dt+ "

�(

~

t

0

)

Z

t

0

j

~

C(t)

_

�'(�(t)) + �C(t) _'(�(t))jdt+

+

t

0

Z

~

t

0

_�(t)j

~

C(�(t))

_

~y(t)jdt+

t

0

Z

~

t

0

_�(t)j

~

C(�(t)) _'(t)jdt �

� O(")k

~

Ck k _�k

t

0

Z

~

t

0

j

_

~y(t)jdt � O("): (5.44)

Further (see (5.26))

�

2

(t

0

)

Z

�(t

0

)

j

_

�y(t)jdt � k

~

Ck

�

2

(t

0

)

Z

�(t

0

)

j

_

�y(�(t))jdt + O("):

It is clear that

�

2

(t

0

)

Z

�(t

0

)

j

_

�y(�(t))jdt =

�(t

0

)

Z

t

0

_�(t)j

_

�y(t)jdt � O("):

Consequently,

�

2

(t

0

)

Z

�(t

0

)

j

_

�y(t)jdt � O("):
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Continuing this process, we prove that

r

2

+�

2

Z

�(t

0

)

j

_

�y(t)jdt � O("):

This inequality together with (5.44) yields (5.33).

Lemma 5.5. Let � (

~

t

0

) <

~

t

0

, � (r

2

) �

~

t

0

and the conditions

lim

!!!

0

~

f(!) = f

+

0

; ! 2 R

+

~

t

0

�O

2

; lim

t!

~

t

0

~

C(t) = C

+

~

t

0

; t 2 R

+

~

t

0

; (5.45)

be full�lled. Let, moreover, there exist neighborhoods V

+

(

~

t

0

), V

+

(!

0

1

),

V

+

(!

0

2

) such that the functions _
(t), t 2 V

+

(

~

t

0

),

~

f (!

1

)�

~

f(!

2

), (!

1

; !

2

) 2

V

+

(!

0

1

) � V

+

(!

0

2

) are bounded. Then there exists a number "

3

> 0 such

that for an arbitrary ("; ��) 2 [0; "

3

] � V

+

1

the relations (5:32), (5:33) are

ful�lled. Moreover,

�y(t

0

) = "

�

�x

0

� [C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

]�t

0

	

+ o("��): (5.46)

Proof. The �rst part of the lemma, by the previous lemma, is proved ana-

logously to Lemma 2.3.

Now we prove (5.46). It is obvious to see that (see (5.39))

�y(t

0

) = "

�

�x

0

� [C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

]�t

0

	

+

+

~

t

0

Z

~

t

0

[C

+

~

t

0

_

~'(�(

~

t

0

))�

~

C(t) _'(�(t))+f

+

0

�

~

C(t) _'(�(t))�

~

f (t; ~y(t); ~'(� (t)))]dt: (5.47)

It is clear that

lim

"!0

sup

t2[

~

t

0

;t

0

]

jC

+

~

t

0

_

~'(�(

~

t

0

))�

~

C(t) _'(�(t))+f

+

0

�

~

C(t) _'(�(t))�

�

~

f (t; ~y(t); ~'(� (t)))j=0 uniformly for �� 2 V

+

1

:

Hence, taking into account (5.47), it follows (5.46).

Lemma 5.6. Let � (r

2

) <

~

t

0

and the condition (5:6) be ful�lled. Then

there exist numbers "

3

2 (0; "

2

]; �

3

2 (0; �

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

�

1

the relations

max

t2[

~

t

0

;r

2

+�

3

]

j�y(t)j � O("); (5.48)

r

2

+�

3

Z

~

t

0

j

_

�y(t)jdt � O(") (5.49)

are ful�lled.
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Lemma 5.7. Let � (r

2

) <

~

t

0

and the condition (5:27) be ful�lled. Then

there exist numbers "

3

2 (0; "

2

]; �

3

2 (0; �

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

�

1

the relations (5:48), (5:49) and (5:28) are ful�lled.

Lemma 5.8. Let � (r

2

) <

~

t

0

and the condition (5:30) be ful�lled. Then

there exist numbers "

3

2 (0; "

2

]; �

3

2 (0; �

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

+

1

the relations

max

t2[t

0

;r

2

+�

3

]

j�y(t)j � O("); (5.50)

r

2

+�

3

Z

t

0

j

_

�y(t)jdt � O(") (5.51)

are ful�lled.

Lemma 5.9. Let � (r

2

) <

~

t

0

and the condition (5:45) be ful�lled. Then

there exist numbers "

3

2 (0; "

2

]; �

3

2 (0; �

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

+

1

the relations (5:50), (5:51) and (5:46) are ful�lled.

These lemmas are proved analogously to Lemmas 2.3-2.9, respectively.

Lemma 5.10. Let � (

~

t

0

) =

~

t

0

and the condition

lim

"!0

1

"

sup

��2V

�

1

�

�

�

�

�


(t

0

)

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt +

+

~

t

0

Z


(t

0

)

~

f(t; ~y(t) + �y(t); ~y(� (t))) + �y(� (t)))dt

�

�

�

�

�

<1 (5.52)

be ful�lled. Then there exists a number "

3

2 (0; "

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

�

1

the inequalites (5:8), (5:9) are ful�lled.

Proof. Let "

3

2 (0; "

2

] be so small that for an arbitrary ("; ��) 2 (0; "

3

]�V

�

1

�

�

�

�


(t

0

)

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt +

+

~

t

0

Z


(t

0

)

~

f (t; ~y(t) + �y(t); ~y(� (t))) + �y(� (t)))dt

�

�

�

�

� O("):

It is clear that 
(t

0

) 2 [t

0

;

~

t

0

]. Therefore

�y(

~

t

0

) = "�x

0

+

~

t

0

Z

t

0

C(t) _'(�(t))dt +


(t

0

)

Z

t

0

~

f (t; ~y(t) + �y(t); '(� (t)))dt +
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+

~

t

0

Z


(t

0

)

~

f (t; ~y(t) + �y(t); ~y(� (t))) + �y(� (t)))dt +

~

t

0

Z

t

0

b(t; "~�)dt:

Hence, on the basis of the previous inequality and from the boundedness of

the �rst integrand (see also (2.15)), we conclude that

j�y(

~

t

0

)j � O("):

After this, in a standard way (see the proof of Lemmas 5.2, 2.10), (5.8)

and (5.9), are obtained

Lemma 5.11. Let � (

~

t

0

) =

~

t

0

and there exist the �nite limits:

lim

!!!

0

3

~

f (!) = f

�

2

; lim

!!!

0

4

~

f (!) = f

�

3

; ! 2 R

�

~

t

0

�O

2

;

!

0

3

= (

~

t

0

; ~x

0

; ~x

0

); !

0

4

= (

~

t

0

; ~x

0

; ~'(

~

t

0

));

(5.53)

lim

t!

~

t

0

~

C(t) = C

�

~

t

0

; lim

t!

~

t

0

_
(t) = _


�

; t 2 R

�

~

t

0

: (5.54)

Then there exists a number "

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2

[0; "

3

]� V

�

1

the inequalites (5:8); (5:9) are valid. Moreover,

�y(

~

t

0

) = "

�

�x

0

� [C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

3

+ (f

�

2

� f

�

3

) _


�

]�t

0

	

+ o("��):

This lemma, by Lemma 5.10, is proved analogously to Lemma 2.11.

Lemma 5.12. Let � (

~

t

0

) =

~

t

0

and the conditions

lim

!!!

0

3

~

f (!)=f

�

2

; !2R

�

~

t

0

�O

2

; lim

t!

~

t

0

~

C(t)=C

�

~

t

0

; lim

t!

~

t

0

_
(t)=1; t2R

�

~

t

0

; (5.55)

be ful�lled. Let, moreover, there exist a neighborhood V

�

1

(!

0

4

) such that

the function

~

f (!); ! 2 V

�

1

(!

0

4

), is bounded. Then there exists a number

"

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2 [0; "

3

] � V

�

1

the relations

(5:8); (5:9) are valid. Moreover,

�y(

~

t

0

) = "f�x

0

� [C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

2

]�t

0

g+ o("��)

holds.

Lemma 5.13. Let � (t

0

) =

~

t

0

and the conditions

lim

"!0

1

"

sup

��2V

+

1

t

0

Z

~

t

0

j

~

f(t; ~y(t); ~y(� (t)))jdt <1;

lim

"!0

1

"

sup

��2V

+

1


(t

0

)

Z

t

0

j

~

f(t; ~y(t) + �y(t); '(� (t))) �

~

f (t; ~y(t); ~y(� (t)))jdt <1
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be ful�lled. Then there exists a number "

3

2 (0; "

2

] such that for an arbitrary

("; ��) 2 [0; "

3

]� V

+

1

the conditions (5:32); (5:33) are ful�lled.

Lemma 5.14. Let � (

~

t

0

) =

~

t

0

and the conditions

lim

!!!

0

3

~

f (!) = f

+

2

; ! 2 R

+

~

t

0

� O

2

; lim

t!

~

t

0

~

C(t) = C

+

~

t

0

; t 2 R

+

~

t

0

; (5.56)

be ful�lled. Let, moreover, there exist neighborhoods V

+

(

~

t

0

), V

+

(!

0

4

) such

that the functions _
(t), t 2 V

+

(

~

t

0

),

~

f (!), ! 2 V

+

(!

0

4

) are bounded. Then

there exists a number "

3

2 (0; "

2

] such that for an arbitrary ("; ��) 2 [0; "

3

]�

V

+

1

the conditions (5:32), (5:33) are ful�lled. Moreover,

�y(t

0

) = "f�x

0

� [C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

2

]�t

0

g+ o("��):

These lemmas are proved analogously to Lemmas 2.12{2.14, respectively.

6. Differentiability of Solution

Lemma 6.1. Let ~x(t) be the solution corresponding to the element ~� 2 A

1

,

de�ned on [�(

~

t

0

);

~

t

1

] � (�(a); b). Let, K

1

contain some neighborhood of the

set ~'(J

2

) [ ~x([

~

t

0

;

~

t

1

]). Then there exist numbers �

2

> 0; "

2

> 0 such that

for an arbitrary ("; ��) 2 [0; "

2

] � V

1

to the element ~� + "�� 2 A

1

there

corresponds the solution x(t; ~�+ "��), de�ned on [�(t

0

);

~

t

1

+ �

2

] � (�(a); b).

Moreover,

x(t; ~�+ "��) 2 K

1

; j _x(t; ~�+ "��)j � m(t); t 2 [�(t

0

);

~

t

1

+ �

2

];

m(�) 2 L

1

([�(a); b]; R

+

0

):

(6.1)

This lemma, by Lemma 5.1, is proved analogously to Lemma 3.5.

In the sequel we assume that the trajectory ~x(t) is de�ned on the whole

interval [�(

~

t

0

);

~

t

1

+ �

2

] (see Remark 3.1).

We de�ne the function

�x(t)=�x(t; "��)=

8

>

<

>

:

"�'(t); t 2 [�(a); s

1

);

x(t; ~�+ "��) � ~x(t); t 2 [s

1

;

~

t

1

+ �

2

];

s

1

= minft

0

;

~

t

0

g:

(6.2)

It is obvious that

�x(t) = �y(t); t 2 [s

2

;

~

t

1

+ �

2

]; s

2

= maxft

0

;

~

t

0

g: (6.3)

Theorem 6.1. Let

~

f 2 E

1

(J � O

2

; R

n

)

8

, � (

~

t

0

) <

~

t

0

; � (

~

t

1

) >

~

t

0

; �(

~

t

1

) >

~

t

0

; 


0

< �

m

1

(

~

t

1

); �

0

< �

m

2

(

~

t

1

)

9

, �

0

= �(

~

t

0

). Let, moreover, there exist

the �nite limits

lim

!!!

0

~

f (!) = f

�

0

; ! 2 R

�

~

t

0

�O

2

; lim

t!

~

t

0

~

C(t) = C

�

~

t

0

; t 2 R

�

~

t

0

; (6.4)

8

In all theorems of this section, in we will assume that

~

f 2 E

1

(J �O

2

; R

n

).

9

Everywhere we assume that m

1

= m(


0

;

~

t

1

); m

2

= m(�

0

;

~

t

1

).
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lim

(!

1

;!

2

)!(!

0

1

;!

0

2

)

[

~

f(!

1

) �

~

f (!

2

)] = f

�

1

; !

i

2 R

�

~

t

0

� O

2

; i = 1; 2;

lim

t!

~

t

0

_
(t) = _


�

; t 2 R

�

~

t

0

;

(6.5)

lim

t!�

i

(


0

)

~

C(t) = C

�

�

i

(


0

)

; t 2 R

�

�

i

(


0

)

; i = 1; : : : ;m

1

; (6.6)

lim

t!�

i

(�

0

)

~

C(t) = C

�

�

i

(�

0

)

; t 2 R

�

�

i

(�

0

)

; i = 0; : : : ;m

2

: (6.7)

Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary (t; "; ��)2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

�

1

�x(t; "��) = "�x(t; ��) + o(t; "��); (6.8)

where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

] +

+Y

�

�

0

(t)C

�

�

0

[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

�

_

~'(

~

t

0

)] + Y

�




0

(t)f

�

1

_


�

	

�t

0

+ �(t; ��); (6.9)

�(t; ��) =

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
(s)ds +

+

~

t

0

Z

�(

~

t

0

)

Y (�(s); t)

~

C(�(s))

_

�'(s) _�(s)ds +

t

Z

~

t

0

Y (s; t)

�

�C(s)

_

~x(�(s)) + �f [s]

�

ds;

�(s; t), Y (s; t) are matrix functions satisfying the system

8

<

:

@�(s; t)

@s

= �Y (s; t)

~

f

x

1

[s]� Y (
(s); t)

~

f

x

2

[
(s)] _
(s);

Y (s; t) = �(s; t) + Y (�(s); t)

~

C(�(s)) _�(s) s 2 [

~

t

0

; t]:

Moreover,

Y (s; t) =

�

E; s = t;

�; s > t;

Y

�




0

(t)=

m

1

X

i=0

�(�

i

(


0

); t)C

�

i


0

; C

�

i


0

=

i

Y

j=1

C

�

�

j

(


0

)

_�(�

j�1

(


0

)); i=1; : : : ;m

1

;

Y

�

�

0

(t)=

m

2

X

i=0

�(�

i

(�

0

); t)C

�

i�

0

; C

�

i�

0

=

i

Y

j=1

C

�

�

j

(�

0

)

_�(�

j�1

(�

0

)); i=1; : : : ;m

2

;

C

�

0�

0

= C

�

0


0

= E:
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Proof. On the basis of Lemma 5.3 there exists a number "

3

2 (0; "

2

] such

that for an arbitrary ("; ��) 2 [0; "

3

] � V

�

1

the relations (see (5.8), (5.9),

(5.28), (6.3))

max

t2[

~

t

0

;

~

t

1

+�

2

]

j�x(t)j � O("); (6.10)

~

t

1

+�

2

Z

~

t

0

j

_

�x(t)jdt � O("); (6.11)

�x(

~

t

0

) = "

�

�x

0

� [C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

]�t

0

	

+ o("��) (6.12)

are ful�lled.

Let �

3

2 (0; �

2

] be so small that




0

<

~

t

1

� �

3

; �

0

<

~

t

1

� �

3

:

It is easy to see that the function �x(t); t 2 [�(

~

t

0

);

~

t

1

+�

3

], on the interval

[

~

t

0

;

~

t

1

+ �

3

] satis�es the equation

_

�x(t) =

~

f

x

1

[t]�x(t) +

~

f

x

2

[t]�x(� (t)) +

~

C(t)

_

�x(�(t)) +

+"

�

�C(t)

_

~x(�(t)) + �f [t]

�

+

3

X

i=1

R

i

(t; "��); (6.13)

where R

i

(t; "��); i = 1; 2, respectively, have the form (3.26), (3.27), while

R

3

(t; "��) = "�C(t)

_

�x(�(t)): (6.14)

A solution of the equation (6.13), by means of the Cauchy formula (see

Lemma 4.1) may be represented as

�x(t) = �(

~

t

0

; t)�x(

~

t

0

) + "

t

Z

~

t

0

Y (s; t)

�

�C(s)

_

~x(�(s)) + �f [s]

�

ds+

+

3

X

i=�1

h

i

(t;

~

t

0

; "��); t 2 [

~

t

0

;

~

t

1

+ �

3

]; (6.15)

where

h

�1

(t;

~

t

0

; "��) =

~

t

0

Z

�(

~

t

0

)

Y (�(s); t)

~

C(�(s))

_

�x(s) _�(s)ds; (6.16)

h

0

(t;

~

t

0

; "��) =

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�x(s) _
(s)ds; (6.17)
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h

i

(t;

~

t

0

; "��) =

t

Z

~

t

0

Y (s; t)R

i

(s; "��)ds; i = 1; 2; 3: (6.18)

It is obvious (see (6.12), Lemma 4.3), that

�(

~

t

0

; t)�x(

~

t

0

)="�(

~

t

0

; t)

�

�x

0

�[C

�

~

t

0

_

~'(�(

~

t

0

))+f

�

0

]�t

0

	

+o(t; "��): (6.19)

Now we transform h

�1

(t;

~

t

0

; "��):

h

�1

(t;

~

t

0

; "��) = "

t

0

Z

�(

~

t

0

)

Y (�(s); t)

~

C(�(s))

_

�'(s) _�(s)ds +

+

~

t

0

Z

t

0

Y (�(s); t)

~

C(�(s))

_

�x(s) _�(s)ds = "

~

t

0

Z

�(

~

t

0

)

Y (�(s); t)

~

C(�(s))

_

�'(s) _�(s)ds +

+

~

t

0

Z

t

0

Y (�(s); t)

~

C(�(s))

_

�x(s) _�(s)ds + o(t; "��):

Further, using the equality x(t; ~�+ "��) = y(t; ~� + "��); t 2 [t

0

;

~

t

0

], we

get

~

t

0

Z

t

0

Y (�(s); t)

~

C(�(s))

_

�x(s) _�(s)ds =

=

~

t

0

Z

t

0

Y (�(s); t)

~

C(�(s))

�

_y(t; ~�+ "��) �

_

~'(s)

�

_�(s)ds =

=

~

t

0

Z

t

0

Y (�(s); t)

~

C(�(s))

�

C(s) _'(�(s))+

~

f (s; ~y(s)+�y(s); '(� (s)))+b(s; "��) �

�

_

~'(s)

�

_�(s)ds =

~

t

0

Z

t

0

Y (�(s); t)

~

C(�(s))

�

~

C(s)

_

~'(�(s)) +

+

~

f (s; ~y(s) + �y(s); '(� (s))) �

_

~'(s)

�

_�(s)ds + o(t; "��):

From assumptions of the theorem (see Lemma 4.4) it follows

lim

"!0

s2[t

0

;

~

t

0

]

Y (�(s); t)

~

C(�(s))

�

~

C(s)

_

~'(�(s)) +

~

f(s; ~y(s) +

+�y(s); '(� (s)))�

_

~'(s)

�

_�(s)=Y

�

�

0

(t)C

�

�

0

�

C

�

~

t

0

_

~'(�(

~

t

0

))+f

�

0

�

_

~'(

~

t

0

)

�

_�(

~

t

0

):
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After this, in a standard way, we prove

~

t

0

Z

t

0

Y (�(s); t)

~

C(�(s))

_

�x(s) _�(s)ds =

= �"Y

�

�

0

(t)C

�

�

0

�

C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

�

_

~'(

~

t

0

)

�

_�(

~

t

0

)�t

0

+ o(t; "��):

Consequently,

h

�1

(t;

~

t

0

; "��) = �"Y

�

�

0

(t)C

�

�

0

�

C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

�

_

~'(

~

t

0

)

�

_�(

~

t

0

)�t

0

+

+"

~

t

0

Z

�(

~

t

0

)

Y (�(s); t)

~

C(�(s))

_

�'(s) _�(s)ds + o(t; "��): (6.20)

For h

i

(t;

~

t

0

; "��); i = 0; 1; 2, using (6.1), (6.5) and (6.11) we obtain (see

the proof of Theorem 3.1)

h

0

(t;

~

t

0

; "��) = "

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
(s)ds +

+




0

Z


(t

0

)

Y (s; t)

~

f

x

2

[s]�x(� (s))ds+ o(t; "��); (6.21)

h

1

(t;

~

t

0

; "��) = �"Y

�




0

(t)f

�

1

_


�

�t

0

�

�




0

Z


(t

0

)

Y (s; t)

~

f

x

2

[s]�x(� (s))ds+ o(t; "��); (6.22)

h

2

(t;

~

t

0

; "��) = o(t; "��): (6.23)

It remains to estimate h

3

(t;

~

t

0

; "��) (see (6.14))

jh

3

(t;

~

t

0

; "��)j = "�

3

kY k

~

t

1

+�

3

Z

~

t

0

j

_

�x(�(t))jdt:

It is clear that (see (5.10), (6.1), (6.11))

~

t

1

+�

3

Z

~

t

0

j

_

�x(�(t))jdt = "

�(t

0

)

Z

~

t

0

j

_

�'(�(t))jdt+

+

�(

~

t

0

)

Z

�(t

0

)

�

j _x(�(t); ~� + "��)j+j

_

~'(�(t))j

�

dt+
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+

~

t

1

+�

3

Z

�(

~

t

0

)

j

_

�x(�(t))jdt � O(") +

�(

~

t

0

)

Z

�(t

0

)

m(�(t))dt:

Thus

h

3

(t;

~

t

0

; "��) = o(t; "��): (6.24)

From (6.15), taking into account (6.19)-(6.24), the formula (6.8) is ob-

tained, where �x(t; ��) has the form (6.9).

Theorem 6.2. Let � (

~

t

0

) <

~

t

0

; � (

~

t

1

) >

~

t

0

; �(

~

t

1

) >

~

t

0

; 


0

< �

m

1

(

~

t

1

); �

0

<

�

m

2

(

~

t

1

). Let, moreover, there exist the �nite limits

lim

!!!

0

~

f (!) = f

+

0

; ! 2 R

+

~

t

0

� O

2

; lim

t!

~

t

0

~

C(t) = C

+

~

t

0

; t 2 R

+

~

t

0

; (6.25)

lim

(!

1

;!

2

)!(!

0

1

;!

0

2

)

[

~

f(!

1

)�

~

f(!

2

)] = f

+

1

; !

i

2 R

+

~

t

0

�O

2

; i = 1; 2;

lim

t!

~

t

0

_
(t) = _


+

; t 2 R

+

~

t

0

;

(6.26)

lim

t!�

i

(


0

)

~

C(t) = C

+

�

i

(


0

)

; t 2 R

+

�

i

(


0

)

; i = 1; : : : ;m

1

; (6.27)

lim

t!�

i

(�

0

)

~

C(t) = C

+

�

i

(�

0

)

; t 2 R

+

�

i

(�

0

)

; i = 0; : : : ;m

2

: (6.28)

Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary (t; "; ��)2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

+

1

the equality (6:8) is valid, where

�x(t; ��)=�(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

]+

+Y

+

�

0

(t)C

+

�

0

[C

+

~

t

0

_

~'(�(

~

t

0

))+f

+

0

�

_

~'(

~

t

0

)] _�(

~

t

0

)+Y

+




0

(t)f

+

1

_


+

	

�t

0

+�(t; ��); (6.29)

Y

+




0

(t)=

m

1

X

i=0

�(�

i

(


0

); t)C

+

i


0

; C

+

i


0

=

i

Y

j=1

C

+

�

j

(


0

)

_�(�

j�1

(


0

)); i=1; : : : ;m

1

;

Y

+

�

0

(t)=

m

2

X

i=0

�(�

i

(�

0

); t)C

+

i�

0

; C

+

i�

0

=

i

Y

j=1

C

+

�

j

(�

0

)

_�(�

j�1

(�

0

)); i=1; : : : ;m

2

;

C

+

0�

0

= C

+

0


0

= E:

Proof. By assumptions of the theorem the conditions of Lemma 5.5 hold.

Therefore there exists a number �" 2 (0; "

2

] such that for an arbitrary

("; ��) 2 [0; �"]� V

+

1

the conditions

max

t2[t

0

;

~

t

1

+�

2

]

j�x(t)j � O("); (6.30)

~

t

1

+�

2

Z

t

0

j

_

�x(t)jdt � O("); (6.31)
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�x(t

0

) = "

�

�x

0

� [C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

]�t

0

	

+ o("��) (6.32)

are ful�lled.

Let the numbers "

3

2 (0; �"]; �

3

2 (0; �

2

] be so small that for an arbitrary

("; ��) 2 [0; "

3

]� V

+

1


(t

0

) <

~

t

1

� �

3

; �(t

0

) <

~

t

1

� �

3

; 


0

> t

0

; �

0

> t

0

:

The function �x(t); t 2 [�(t

0

);

~

t

1

+�

3

], on the interval [t

0

;

~

t

1

+�

3

] satis�es

the equation (6.15), therefore it may be represented as (see (6.16){(6.18))

�x(t) = �(t

0

; t)�x(t

0

) + "

t

Z

t

0

Y (s; t)

�

�C(s)

_

~x(�(s)) + �f [s]

�

ds+

+

3

X

i=�1

h

i

(t; t

0

; "��); t 2 [t

0

;

~

t

1

+ �

3

]: (6.33)

Since t

0

2 [

~

t

0

; � (

~

t

1

+ �

3

)], the function �(s; t) is continuous on [

~

t

0

; � (

~

t

1

+

�

3

)]� [

~

t

1

� �

3

;

~

t

1

+ �

3

] (see Lemma 4.3). This allows us to write

�(t

0

; t)�x(t

0

)="�(

~

t

0

; t)

�

�x

0

�[C

+

~

t

0

_

~'(�(

~

t

0

))+f

+

0

]�t

0

	

+o(t; "��): (6.34)

Now we transform h

�1

(t; t

0

; "��) (see (6.16), (6.26), (6.30)):

h

�1

(t; t

0

; "��) = "

~

t

0

Z

�(t

0

)

Y (�(s); t)

~

C(�(s))

_

�'(s) _�(s)ds +

+

t

0

Z

~

t

0

Y (�(s); t)

~

C(
(s))

_

�x(s) _�(s)ds = "

~

t

0

Z

�(

~

t

0

)

Y (�(s); t)

~

C(�(s))

_

�'(s) _�(s)ds +

+


(t

0

)

Z




0

Y (s; t)

~

C(s)

_

�x(�(s))ds + o(t; "��):

It is easy to see that

t

0

Z

~

t

0

Y (�(s); t)

~

C(�(s))

_

�x(s) _�(s)ds =

=

t

0

Z

~

t

0

Y (�(s); t)

~

C(�(s))

�

_'(s) �

_

~x(s)

�

_�(s)ds =

=

t

0

Z

~

t

0

Y (�(s); t)

~

C(�(s))

�

_'(s) �

~

C(s)

_

~'(�(s)) �

~

f (s; ~x(s); ~'(� (s)))

�

_�(s)ds:
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The assumptions of the theorem allow us to conclude (see Lemma 4.4)

lim

"!0

s2[

~

t

0

;t

0

]

Y (�(s); t)

~

C(�(s))

�

_'(s) �

~

C(s)

_

~'(�(s)) �

~

f (s; ~x(s); ~'(� (s)))

�

_�(s) =

= Y

+

�

0

(t)C

+

�

0

�

_

~'(

~

t

0

)� C

+

~

t

0

_

~'(�(

~

t

0

))� f

+

0

�

_�(

~

t

0

):

After this, in a standard way, we prove

t

0

Z

~

t

0

Y (�(s); t)

~

C(�(s))

_

�x(s) _�(s)ds =

= �"Y

+

�

0

(t)C

+

�

0

�

C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

�

_

~'(

~

t

0

)

�

_�(

~

t

0

)�t

0

+ o(t; "��):

Thus

h

�1

(t; t

0

; "��) = �"Y

+

�

0

(t)C

+

�

0

�

C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

�

_

~'(

~

t

0

)

�

_�(

~

t

0

)�t

0

+

+"

~

t

0

Z

�(

~

t

0

)

Y (�(s); t)

~

C(�(s))

_

�

'

(s) _�(s)ds + o(t; "��):

For h

i

(t; t

0

; "��); i = 0; 1; 2, using (6.1), (6.26) and (6.30), we obtain

h

0

(t; t

0

; "��) = "

~

t

0

Z

�(

~

t

0

)

Y (
(s); t)

~

f

x

2

[
(s)]�'(s) _
(s)ds +

+


(t

0

)

Z




0

Y (s; t)

~

f

x

2

[s]�x(� (s))ds+ o(t; "��); (6.35)

h

1

(t; t

0

; "��) = �"Y

+




0

(t)f

+

1

_


+

�t

0

�

�


(t

0

)

Z




0

Y (s; t)

~

f

x

2

[s]�x(� (s))ds+ o(t; "��); (6.36)

h

2

(t; t

0

; "��) = o(t; "��): (6.37)

It remains to estimate h

3

(t; t

0

; "��):

jh

3

(t; t

0

; "��)j = "�

3

kY k

~

t

1

+�

3

Z

t

0

j

_

�x(�(t))jdt:

It is clear that (see (6.1), (6.31))

~

t

1

+�

3

Z

t

0

j

_

�x(�(t))jdt � "

�

0

Z

t

0

j

_

�'(�(t))jdt+

�(t

0

)

Z

�

0

�

j

_

~x(�(t))j+ j _'(�(t))j

�

dt+
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+

~

t

1

+�

3

Z

�(t

0

)

j

_

�x(�(t))jdt � O(") +

�(t

0

)

Z

�

0

m(�(t))dt:

Thus

h

3

(t; t

0

; "��) = o(t; "��): (6.38)

From (6.33), taking into account (6.34)-(6.38), we obtain the formula

(6.8), where �x(t; ��) has the form (6.29).

Theorem 6.3. Let � (

~

t

0

) <

~

t

0

, � (

~

t

1

) >

~

t

0

, �(

~

t

1

) >

~

t

0

; 


0

< �

m

1

(

~

t

1

),

�

0

< �

m

2

(

~

t

1

); the function _� (t) is continuous at point

~

t

0

; the function

~

f(!)

is continuous at points !

0

; !

0

1

; !

0

2

; the function

~

C(t) is continuous at points

~

t

0

, �

i

(


0

), i = 1; : : : ;m

1

, �

i

(�

0

), i = 0; : : : ;m

2

. Then there exist numbers

�

3

>0, "

3

>0 such that for an arbitrary (t; "; ��)2 [

~

t

1

��

3

;

~

t

1

+�

3

]�[0; "

3

]�V

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

~

f (!

0

)]+

+Y (�

0

; t)

~

C(�

0

)[

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

~

f (!

0

)�

_

~'(

~

t

0

)] _�(

~

t

0

)+

+Y (


0

; t)[

~

f(!

0

1

�

~

f (!

0

2

)] _
(

~

t

0

)

	

�t

0

+ �(t; ��):

Finally we note that the proof of the theorems given below on the basis

of Lemmas 5.6{5.9, 5.11, 5.12, 5.14 are carried out analogously (see x 3, the

proof of theorems 6.1, 6.2).

Theorem 6.4. Let � (

~

t

1

) <

~

t

0

; �(

~

t

1

) >

~

t

0

; �

0

< �

m

2

(

~

t

1

) and the conditions

(6:4); (6:7) be ful�lled. Then there exist numbers �

3

> 0, "

3

> 0 such that

for an arbitrary (t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

�

1

the formula (6:8)

is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

]+

+Y

�

�

0

(t)C

�

�

0

[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

�

_

~'(

~

t

0

)] _�(

~

t

0

)

	

�t

0

+ �(t; ��):

Theorem 6.5. Let � (

~

t

1

) <

~

t

0

; �(

~

t

1

) >

~

t

0

; �

0

< �

m

2

(

~

t

1

) and the conditions

(6:25); (6:28) be ful�lled. Then there exist numbers �

3

> 0, "

3

> 0 such that

for an arbitrary (t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

+

1

the formula (6:8)

is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

]+

+Y

+

�

0

(t)C

+

�

0

[C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

�

_

~'(

~

t

0

)] _�(

~

t

0

)

	

�t

0

+ �(t; ��):
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Theorem 6.6. Let � (

~

t

1

) <

~

t

0

; �(

~

t

1

) >

~

t

0

; �

0

< �

m

2

(

~

t

1

), the function _� (t)

be continuous at the point

~

t

0

, the function

~

f (!) be continuous at the point

!

0

, the function

~

C(t) be continuous at the points

~

t

0

; �

i

(�

0

); i = 0; : : : ;m

2

.

Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary (t; "; ��)2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

~

f (!

0

)]+

+Y (�

0

; t)

~

C(�

0

)[

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

~

f (!

0

)�

_

~'(

~

t

0

)] _�(

~

t

0

)

	

�t

0

+ �(t; ��):

Theorem 6.7. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) >

~

t

0

; �

0

< �

m

2

(

~

t

1

) and the conditions

(5:53); (5:54); (6:7) be ful�lled. Then there exist numbers �

3

>0, "

3

>0 such

that for an arbitrary (t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

] � [0; "

3

] � V

�

1

the formula

(6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

3

+ (f

�

2

� f

�

3

) _


�

] +

+Y

�

�

0

(t)C

�

�

0

[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

2

�

_

~'(

~

t

0

)] _�(

~

t

0

)

	

�t

0

+ �

1

(t; ��);

�

1

(t; ��) =

~

t

0

Z

�(

~

t

0

)

Y (�(s); t)

~

C(�(s))

_

�'(s) _�(s)ds +

+

t

Z

~

t

0

Y (s; t)

�

�C(s)

_

~x(�(s)) + �f [s]

�

ds:

Theorem 6.8. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) >

~

t

0

;

~

t

0

< �

m

1

(

~

t

1

); �

0

< �

m

2

(

~

t

1

) and

the condition (6:28) be ful�lled. Let, moreover, there exist the �nite limits

lim

!!!

0

3

~

f (!) = f

+

2

; lim

!!!

0

4

~

f (!) = f

+

3

; ! 2 R

+

~

t

0

� O

2

;

lim

t!

~

t

0

_
(t) = _


+

; lim

t!

~

t

0

~

C(t) = C

+

~

t

0

; t 2 R

+

~

t

0

;

lim

t!�

i

(

~

t

0

)

~

C(t) = C

+

�

i

(

~

t

0

)

; t 2 R

+

�

i

(

~

t

0

)

; i = 1; : : : ;m

1

:

(6.39)

Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary (t; "; ��)2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

+

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

2

]+

+Y

+

�

0

(t)C

+

�

0

[C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

2

�

_

~'(

~

t

0

)] _�(

~

t

0

)+

+Y

+




0

(t)(f

+

3

� f

+

2

)(1� _


+

)

	

�t

0

+ �

1

(t; ��):

Theorem 6.9. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) >

~

t

0

; �

0

< �

m

2

(

~

t

1

) and the conditions

(5:55); (6:7) be ful�lled. Let, moreover, there exist a neighborhood V

�

1

(!

0

4

)

such that the function

~

f (!); ! 2 V

�

1

(!

0

4

), is bounded. Then there exist
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numbers �

3

> 0, "

3

> 0 such that for an arbitrary (t; "; ��) 2 [

~

t

1

� �

3

;

~

t

1

+

�

3

]� [0; "

3

]� V

�

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

2

]+

+Y

�

�

0

(t)C

�

�

0

[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

2

�

_

~'(

~

t

0

)] _�(

~

t

0

)

	

�t

0

+ �

1

(t; ��):

Theorem 6.10. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) >

~

t

0

; �

0

< �

m

2

(

~

t

1

) and the condi-

tions (5:56), (6:28) be ful�lled. Let, moreover,

lim

t!

~

t

0

_
(t) = 1; t 2 R

+

~

t

0

; (6.40)

and there exist a neighborhood V

+

1

(!

0

4

) such that the function

~

f (!); ! 2

V

+

1

(!

0

4

), is bounded. Then there exist numbers �

3

> 0, "

3

> 0 such that for

an arbitrary (t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

] � [0; "

3

] � V

+

1

the formula (6:8) is

valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

2

]+

+Y

+

�

0

(t)C

+

�

0

[C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

2

�

_

~'(

~

t

0

)] _�(

~

t

0

)

	

�t

0

+ �

1

(t; ��):

Theorem 6.11. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) >

~

t

0

; �

0

< �

m

2

(

~

t

1

), the function

_� (t) be continuous at the point

~

t

0

, the function

~

C(t) be continuous at the

points

~

t

0

; �

i

(�

0

); i = 0; : : : ;m

2

; the function

~

f (!) be continuous at the

point !

0

3

, the function

~

f (!) be bounded in some neighborhood of the point

!

0

4

. Then there exist numbers �

3

> 0, "

3

> 0 such that for an arbitrary

(t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

~

f(!

0

3

)]+

+Y (�

0

; t)

~

C(�

0

)[

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

~

f (!

0

3

) �

_

~'(

~

t

0

)] _�(

~

t

0

)

	

�t

0

+ �

1

(t; ��):

Theorem 6.12. Let � (

~

t

0

) <

~

t

0

; � (

~

t

1

) >

~

t

0

; �(

~

t

1

) <

~

t

0

and the conditions

(6:4); (6:5) are ful�lled. Then there exist numbers �

3

> 0, "

3

> 0 such that

for an arbitrary (t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

�

1

the formula (6:8)

is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

]+

+�(


0

; t)f

�

1

_


�

	

�t

0

+ �(t; ��):

Theorem 6.13. Let � (

~

t

0

) <

~

t

0

; � (

~

t

1

) >

~

t

0

; �(

~

t

1

) <

~

t

0

and the conditions

(6:25); (6:26) be ful�lled. Then there exist numbers �

3

>0, "

3

>0 such that
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for an arbitrary (t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

+

1

the formula (6:8)

is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

]+

+�(


0

; t)f

+

1

_


+

	

�t

0

+ �(t; ��):

Theorem 6.14. Let � (

~

t

0

) <

~

t

0

; � (

~

t

1

) >

~

t

0

; �(

~

t

1

) <

~

t

0

, the functions

~

C(t); _� (t) be continuous at the point

~

t

0

, the function

~

f (!) be continuous at

the points !

0

; !

0

1

; !

0

2

. Then there exist numbers �

3

> 0, "

3

> 0 such that

for an arbitrary (t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]�V

1

the formula (6:8) is

valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

�

�(

~

t

0

; t)[

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

~

f (!

0

)]+

+�(


0

; t)[

~

f(!

0

1

) �

~

f (!

0

2

)] _
(

~

t

0

)

	

�t

0

+ �(t; ��):

Theorem 6.15. Let � (

~

t

1

) <

~

t

0

; �(

~

t

1

) <

~

t

0

and the condition (6:4) be

ful�lled. Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary

(t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

�

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

��(

~

t

0

; t)[C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

0

] + �(t; ��):

Theorem 6.16. Let � (

~

t

1

) <

~

t

0

; �(

~

t

1

) <

~

t

0

and the condition (6:25) be

valid. Then there exist numbers �

3

> 0, "

3

> 0 such that for an arbitrary

(t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

+

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

�

��(

~

t

0

; t)[C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

0

] + �(t; ��):

Theorem 6.17. Let � (

~

t

1

) <

~

t

0

; �(

~

t

1

) <

~

t

0

, the function

~

C(t) be continuous

at the point

~

t

0

, the function

~

f (!) be continuous at the point !

0

. Then

there exist numbers �

3

> 0, "

3

> 0 such that for an arbitrary (t; "; ��) 2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

� �(

~

t

0

; t)

�

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

~

f (!

0

)

�

�t

0

+ �(t; ��):

Theorem 6.18. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) <

~

t

0

and the conditions (5:53),

(5:54) be ful�lled. Then there exist numbers �

3

> 0, "

3

> 0 such that for

an arbitrary (t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

] � [0; "

3

] � V

�

1

the formula (6:8) is

valid, where

�x(t; ��)=�(

~

t

0

; t)�x

0

��(

~

t

0

; t)

�

C

�

~

t

0

_

~'(�(

~

t

0

))+f

�

3

+(f

�

2

�f

�

3

) _


�

�

�t

0

+�

1

(t; ��):
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Theorem 6.19. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) <

~

t

0

and the condition (6:39) be

ful�lled. Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary

(t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

+

1

the formula (6:8) is valid, where

�x(t; ��)=�(

~

t

0

; t)�x

0

��(

~

t

0

; t)

�

C

+

~

t

0

_

~'(�(

~

t

0

))+f

+

3

+(f

+

2

�f

+

3

) _


+

�

�t

0

+�

1

(t; ��):

Theorem 6.20. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) <

~

t

0

and the conditions (5:53),

(5:54), (6:39) be ful�lled. Moreover, let

~

C(t) be continuous at the point

~

t

0

and

f

�

3

+ (f

�

2

� f

�

3

) _


�

= f

+

3

+ (f

+

2

� f

+

3

) _


+

=

^

f :

Then there exist numbers �

3

>0, "

3

>0 such that for an arbitrary (t; "; ��)2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

� �(

~

t

0

; t)

�

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

^

f

�

�t

0

+ �

1

(t; ��):

Theorem 6.21. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) <

~

t

0

and the condition (5:55) be

ful�lled. Let, moreover, there exist a neighborhood V

�

1

(!

0

4

) such that the

function

~

f (!); ! 2 V

�

1

(!

0

4

), is bounded. Then there exist numbers �

3

> 0,

"

3

> 0 such that for an arbitrary (t; "; ��)2 [

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

] � V

�

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

� �(

~

t

0

; t)

�

C

�

~

t

0

_

~'(�(

~

t

0

)) + f

�

2

�

�t

0

+ �

1

(t; ��):

Theorem 6.22. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) <

~

t

0

and the conditions (5:56),

(6:40) be ful�lled. Let, moreover, there exist a neighborhood V

+

1

(!

0

4

) such

that the function

~

f (!); ! 2 V

+

1

(!

0

4

) is bounded. Then there exist numbers

�

3

>0, "

3

>0 such that for an arbitrary (t; "; ��)2 [

~

t

1

��

3

;

~

t

1

+�

3

]�[0; "

3

]�V

+

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

��(

~

t

0

; t)

�

C

+

~

t

0

_

~'(�(

~

t

0

)) + f

+

2

�

�t

0

+ �

1

(t; ��):

Theorem 6.23. Let � (

~

t

0

) =

~

t

0

; �(

~

t

1

) <

~

t

0

, the functions

~

C(t); _� (t) be

continuous at the point

~

t

0

, the function

~

f (!) be continuous at the point !

0

3

,

the function

~

f(!) be bounded in a some neighborhood of the point !

0

4

. Then

there exist numbers �

3

> 0, "

3

> 0 such that for an arbitrary (t; "; ��) 2

[

~

t

1

� �

3

;

~

t

1

+ �

3

]� [0; "

3

]� V

1

the formula (6:8) is valid, where

�x(t; ��) = �(

~

t

0

; t)�x

0

� �(

~

t

0

; t)

�

~

C(

~

t

0

)

_

~'(�(

~

t

0

)) +

~

f (!

0

3

)

�

�t

0

+ �

1

(t; ��):
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