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Abstract. Non-linear differential equations with variable delay and quasi-
linear neutral differential equations are considered in the case where at the
initial moment of time the value of the initial function, generally speak-
ing, does not coincide with the initial value of the trajectory (discontinuity
at the initial moment). Theorems on continuity of solution of the Cauchy
problem with respect to initial data and right-hand side are proved. The
perturbations of the initial data, i.e., of the initial function and the initial
values (the initial moment, the initial value of the trajectory) are small in
the uniform and Euclidean norms, respectively. The pertrurbation of the
right-hand side of the equation is small in the integral sense. Representation
formulas of the differential of solution are obtained, when pertrurbations are
small in the Euclidean topology. If the effect of discontinuouty at the initial
moment influences upon the right-hand side of the equation, then, in con-
trast to earlier obtained formulas, representation formulas of the differential
contain a new term.
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INTRODUCTION

In the present work two classes of ordinary differential equations with
deviating argument are considered, namely, non-linear equations with vari-
able delay and quasi-linear neutral equations. The question on continuity
and differentiability of solution of the Cauchy problem with respect to ini-
tial data and right-hand side is investigated in the case where at the initial
moment of time the value of the initial function, generaly speaking, does
not coincide with the initial value of the trajectory (discontinuity at the
initial moment).

The first chapter deals with delay differential equations. In §1 a theorem
on continuous dependence of solution on perturbations is proved, which 1s
an analogue of a theorem given in [11], [12]. The perturbations of the initial
data, i.e., of the initial function and the initial values (the initial moment,
the initial value of the trajectory) are small in the uniform and Euclidean
norms, respectively. The petrurbation of the right-hand side of the equation
is small in the integral sense.

Theorems on continuous dependence of solutions of the Cauchy prob-
lem and boundary value problems for various classes of ordinary differential
equations and differential equations with deviating argument, when petrur-
bation of the right-hand side is small in the integral sense, were proved in
[3], [4], [7], [8], [L6], [17], [19-21], [23], [24], [26-29].

Differential equations with deviating argument, when pertrubations of
the initial data and the right-hand side are small in the Fuclidean norm
were considered in [9], [13-15], [18], [22].

In §2 estimates of the increment of solutions are established with respect
to small perturbations in the sense of the Euclidean topology. In §3 on
the basis of these estimates representation formulas for the differential of
solutions are obtained. If the effect of discontinuouty at the initial moment
influences upon the right-hand side of the equation, then, in contrast to
formulas given in [16], representation formulas for the differential contain a
new term (see the formula (3.20)).

In the second chapter the above results are extended to neutral differen-
tial equations whose right-hand sides are linear with respect to the phase
velocity.

Finally we note that the results obtained in this work play an important
role in investigating optimal control problems with deviating argument.



CHAPTER 1
CONTINUOUS DEPENDENCE AND DIFFERENTIABILITY OF
SOLUTION OF DELAY DIFFERENTIAL EQUATIONS

1. CoNTINUOUS DEPENDENCE OF SOLUTION

1.1. Preliminary Notes. Let X be a metric space, p be the distance function
on X and let

Fop): X —X (1.1)

be a family of mappings depending on a parameter y € (G, where G is a
topological space. The family (1.1) is said to be a uniform contraction if
there exists a number & € (0, 1) not depending on p and such that for any
1 € G the inequality

p(F(yr, 1), F(yo, 1) < aplyr, ya) Yy, y2) € X7
1s fulfilled.
Define the k-iteration of the mapping (1.1) by

F¥y,p) = F(F* "Ny, p), 1), k=1,2,..., F'(ypu)=uy.
It 1s obvious that
FFopu): X — X, Yueda. (1.2)

Theorem 1.1 ([25]). Let X be a complete melric space. If some k-ileration
(1.2) is a uniform contraction family, then for any p € G the mapping (1.1)
has a unique fized point y,, i.e. Fyu, ) = yu. Moreover, if the mapping

Fk(yﬂ,~):G—>X, e d,

15 continuous at the point i, then the mapping y, : G — X s also conti-
nuous at the pownt fi.

Let R™ be the n-dimensional Euclidean space of the points

n

LR =Y

n i=1

J = [a,b] be a finite interval; O C R™ be an open set; Li(J, RY) be the
space of integrable functions m : J — R¥ = [0, 00).

We denote by E(J x O% R™) the space of n-dimensional functions f :
J x O? — R" satisfying the conditions

1) for every (z1,22) € O? the function f(-, 21, 22) : J — R™ is measur-
able;



2) for any compact K C O and any function f € E(J x O% R"), there
exist functions my g (t), Ly x(t) from the space L;(J, RY) such that

|F(t, w1, @2)| <y (t), V(t,er,22) € J x K2,
2

F(0, 2, )= F (0,2 ) < Ly e (O3 e, (e, 2t 2ty € x K
i=1

From the conditions 1), 2) it easily follows the following
Lemma 1.1. For every f € E(J x O?, R™) the function

tll
Hi(t' t" wy,20) = ‘/f(t,l‘l,l‘z)dt‘
tl

is continuous in (' 1" 21, 22) € J? x O?.

Let 7 : R! — R! be an absolutely continuous function satisfying 7(¢) < ¢,
7(t) > 0; A(J1,0) be the space of piecewise continuous functions? ¢ : J; =
[T(a),b] — O satisfying the condition elp(J1) C O, ¢(J1) = {p(t) :t € J1},
el = sup{le(t)] : t € J1}.

Lemma 1.2. Let ¢(t) € K, t € J, be a continuous function and ¢ €
A(J1,0), t) € K, t € J1. Lett; € (a,b), i = 1,...,, be points of
discontinuity of the function ¢(t) = (¥(t),¢(r(1))), t € J. Then for any
Junction f € E(J x O% R™) and for any natural number s the inequality

8 = max
tted

t”
[t oorar] < ots.6) [ 1500004504 1850 5)
t! J
1s valid, where
o(s,¢) = max{o(s,¢;): 1 <i <41},
o(s,61) = sup {[U(t') = v(t")| +

t—t;_
+Hoi(t') — @i(t")| ' 4" € [tiy, 1], [t/ = 7| < —— 1};

oi = (¥, 9i), (1.3)
p(T(ty), =ty
pi(t) =9 #(7()), t € (tima,ti), (1.4)
p(r(t7)), t=t,

i=1,..04+1 to = a, tix1 = b; He(J,K) = sup{H;(',t", 2", 2") :
(' t" 2" x2") € J? x K%} (see Lemma 1.1).

1Here and in the sequel by K, Ko, K1 we denote compact subsets of the set O.
2Everywhere we assume that piecewise continuous functions have finite number of
discontinuity points of the first kind.



Proof. There exist numbers a1, b; € J such that

5= / st oo

Let a1 € [tp—1,tp), b1 € (tg-1,t4), 1 < p < ¢ <14 1. We divide the
intervals [a1,tp], [ti=1,t], i =p+1,¢—1, [t4—1,t,] into s equal parts A?,
A;, t=p+1,...,9—1, A;]», j=1,..., s, respectively.

It is obvious that

g—1 q s i
[a1,b1] = [ar, 6] U (U [tic1, ti]) Ute—1,b1] = U U AL
i=p+1 i=p j=1

Taking into account this equality and the notation (1.4), we obtain

b= ‘/tpf(t,qbl(t))dt —|—§ /tlf(t,qﬁi(t))dt—i— /blf(t,(bq(t))dt‘ <

1,7

< quz /f(t,qsi(t))dt‘.

i=p j=1 Al
7

Let t; € A;, t=p,...,q, 3 = 1,..., s, be arbitrary but fixed points.
Then

523057 U b il0) = 100006 (6 e+

=P =l
q s ' '
+ 3| 5 et ety <
==l A
q s
< Z Z /Lf,K(t)O'i(m, (/)i)dt —+ 5((] —-p+ 1)Hf(J’ [() <
=PI=la

< U(S,(f))/Lf’K(t)dt-F 5(1—1— 1)Hf(J, [{) |

Lemma 1.3. Let ¢(t) € K, t € J, be a continuous function and ¢ €
A(J1,0), o(t) € K, t € Jy. Let the sequence §f; € E(J x O? R"), i =
1,2,..., satisfy

/Lgf“K(t)dt < ag =const, lim Hsyp,(J,K)=0.
J



Then
lim 3; =0,
where
= g, | [ec o)), o0 = (00, ot

tl
Proof. Let € > 0 be an arbitrary number. By virtue of Lemma 1.2
5. < 7(s,0) [ Log,wlt)d + (0 + ) Hs7, (0.1, (15)
J

The functions ¢;(t), t € [ti—1,t], ¢ = 1,...,{ 4+ 1, are continuous (see
(1.3), (1.4)). Therefore

lim o(s,¢) = 0.

§— 00

Consequently there exist natural numbers sg and ¢y such that
o(so, @)an <e/2, so(l+ D)Hsp,(J, K) <¢/2, i> . (1.6)
From (1.5) taking into consideration (1.6) we obtain
Gi <e, 124 O
By induction and integration by parts we can easily prove the following

Lemma 1.4. Let m(:) € Li(J, RY). Then

t

/m({fl)d&?m(gz)d& e 7_1m(§k)d§k = %(/m(&)d&)k (1.7)

a

Lemma 1.5 ([25]). Let K C intK; and there exist a compact set Q C O?
with K? C Q C K? and an infinitely differentiable function x : R* x R™ —
[0,1] such that

=y (e e

Lemma 1.6. Let f € E(J x O R"). Then the function

t K2t
oty ) = ) n SR EE T )
0, (x1,22) ¢ K7, t € J,



10

satisfies the following conditions:

lg(t, 21, 22)| < my i, (1), Y(E, xl,xz) € Jx R, (1.10)
t,x), ! t,z], 29)| < Ls( xh— alf
lg(t, 21, 25) — g(t, x, 25)] #( Z| E (1.11)
V(t xlaxZaxlllaxZ) € J x R4n
where
Lp(t) = Ly, (1) + army i, (1), (1.12)
ay = sup{|xe, (21, 22)] + [Xeo (21, 22)] : (21, 22) € K7},
Ix
v, = , t=1,2.
Xz, O ¢

Proof. By (1.9) the validity of the inequality (1.10) is obvious. Let (2}, %) €
K#, (29 ,2%) € K. Then (see (1.8))
lg(t, 2, @5) — g(t, @1, 2)| = x (2, )| (¢, 21, 25) — f(¢, 2, 25)[ +
+x(ah, vh) — (l"fal‘z)Hf(t vy, 25)] <
2 2
< Lig, ()Y _laf—af |+ avmpk, (Ule‘Q — x| = Ly(t)) et —af|.
i=1 i=1 i=1
Let (2}, 2%) € KI, (2/,24) ¢ K. Then recalling that x(z/,2%) = 0, we
get

lg(t, ), 25) — g(2, 1’1al’2)| < Il 2h) — (l"f,wz)Hf(t vy, x5)] <
< oumyk, (t)le;» — x| < L;(t)lei» - zi].
i=1 i=1

It is not difficult to see that the last inequality is valid in the case (2}, #5) ¢

K? and (2f,2%) € K? as well the inequality (1.11) is likewise obvious, if
/

the points (2, %) and (x7,2%) do not belong to K. [
1.2. Theorems on Continuouty of Solution. To every element
p=(to,x0,0, ) EA=Jx 0 xA(J,0) x E(J x O*, R")
there corresponds the differential equation
(t) = Jy(0), h(to, ¢, )(7(1))) (1.13)
with the initial condition
y(to) = xo, (1.14)

where the operator

h:J x A(Jy,0) x C(J,R*) — A(Jy, R™)
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is defined by

S v ST

C(J, R"™) is the space of continuous functions y : J — R" with the distance
= t) — 1)]|.
Py, y2) = max |yy(t) — ya(1)]

Definition 1.1. An absolutely continuous function y(t) = y(t,u) € O, t €
[r1,72] C J,is said to be a solution corresponding to the element p € A and
defined on [ry, 73], if to € [r1, 2], y(to) = xo and the function y(#) satisfies
the equation (1.13) almost everywhere (a.e.) on [ry, ra].

In the space E(J x O?, R™) let us introduce a topology by means of the
following basis of neighborhoods of zero [11]

B={V(K,8)C E(J xO*,R"): K CO, >0},
V(K,8) ={6f € E(J x O, R"): Hs;(J,K) < §}.

Theorem 1.2. Let §(t) be the solution corresponding to the element i =
(fo,i‘o,gﬁ,f) € A defined on [r1,ra] C (a,b); let K1 contain some neighbor-
hood of the set Ko = cl@(J1) U g([r1,ra]). Then there exist numbers é; > 0,
t = 0,1, such that to an arbitrary element

H € V(/]a[(laéoaao) =
=V ({0, 60) x V(Z0,60) X V($,80) x V(f, K1,60) N W(f, K1, cvg)

there corresponds a solution y(t, 1) defined on [r1 — 61,72+ 61] C J. More-
over, for each ¢ > 0 there exists a number &6 = 6(c) € [0, ég] such that for
an arbitrary p € V(fi, K1, 80, ag) the inequality

|y(taﬂ)_y(ta/j)| <¢ te [7“1—(51,7“2—1—61], (116)
s fulfilled.

Here V(%0,60), V(Z0,80), V($,80) are closed é-neighborhoods of the
points to, #o, ¢ in the spaces R', R®, A(Jy, R") respectively;

V(f, K1,80) = {f+6f:6f € V(Ky,6)},

W(f, K1, a0) = (117

I{f+5f DO0fEE(T x 02,R”),/[méf,Kl(t)JrLéf,Kl (t)]dtéao}
J
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Proof. Let €5 > 0 be so small that the closed £g-neighborhood of the set
Ky : K(eg)={x € R":3& € Ky, |vt — &| < &p} lies in int K.

On the basis of Lemma 1.5 there exists a compact ), K?(g9) C Q C K?
and an infinitely differentiable function y : R” x R™ — [0, 1] such that

X(w1,w2) = { é: Eii:iz; ; g’lz (1.18)

Now to every element y € A we correspond the differential equation
A(t) = gl 20, hlto, 0, 2)(7(1)) (1.19)
with the initial condition
Z(to) = Xy, (120)

where g = xf and satisfies (1.10), (1.11).
It is obvious that the solution of the equation (1.19) with the initial
condition (1.20) depends on the parameter
peG=Jx0xAJ,0)x W(f,Ki,a0) C E, =
= R' x R" x A(J1, R") x E(J x O* R").
The topology in & is induced from F£,,.

On the complete space C'(J, R™) we define a family of mappings depend-
ing on the parameter pu

F(,pu):C(J,R")— C(J,R") (1.21)
by the formula

t

Ct)y=C(t,z, ) = xo + /g(s, z(8), h(to, ¢, 2)(7(s)))ds,

to

teld, zeC(J,R").

Tt is clear that every fixed point z(¢, ), t € J, of the mapping (1.21) is
a solution of the equation (1.19) with the initial condition (1.20).
Let us define the k-iteration F*(z, u) by

t

Ck(t) = Ck(t’ Z’ﬂ) =xo+ /g(S’Ck—l(S)’ h(to’ QD’Ck—l)(T(S)))dS’

to

k=1,2,..., Colt) = =(t).

We will now prove that, for a sufficiently large k, F*(z, u) is a uniform
contraction family. To this end, we estimate the difference (see (1.11))

G () = GO = G, 2, p) = G (2", p)] <
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< / 1005, Ch_1(5), hito, 0, Co1)(7(5))) —

( S CE-1(8), hlto, 0, G 1)(7(s)))ds <

t

< L6116k (9)=GHr (5] 1Bt . Gh ) (6 =t 0, G (),

a

k=1,2,..., (1.22)

where L;(s) has the form (1.12). We assume that ({(¢) = 2/(¢), {{'(¥) =
().

From the definition of the operator h(-) (see (1.15)) it follows
h(to, ¢, G-1)(7(1)) = h(to, 0, CH_1)(7(t) = hlto, 0, Gy — G1)((2))-
Thus with s € [a,v(t9)) we get (see (1.15))
h(to, 0,¢—1 — CE_1)(7(s)) = 0. (1.23)
Let v(to) < b. Then with s € [y(to), b] we have

|h(to,0,Cry = CGo)(T(s)] = [Ch=1(7(s5) — Cl/c/ 1( (s)I <
< sup {161 (7(€) = GHoa(7(€)] - € € [y(to), 8]} <
<sup {[¢h_1 () — ¢8| - € € [a,s]}. (1.24)

If 4(tg) > b, then the equality (1.23) holds on the whole interval J.
From (1.22) taking into account (1.23), (1.24) it follows

sup {[¢k_1(€) = G ()] - € € [0, ]} <

t

§2/LA&NM%KLA®—CLJOM€Ehfﬂﬂ&,kZLZ~~

a

Consequently
ICr(t) — ¢ (1)) <
1 &1
S?/fﬂﬁwﬁ/fﬂéhmﬂkhxa—C#ﬂ@h€Ehfﬂﬂ&.

Continuing this process, we obtain

G (1) = G (0] < 2P| — 2",
where

t &1 Er—1 t

et = [istentes [ryienes [ Ly = & ( 1)

a a a a
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(see (1.7)). Thus

p(EE( ), FRE ) = (IG (1) = ]| <

1 k N
< g (2fEwm) 1 - = dne ),
J

Now we will show the existence of a number as > 0 such that

/Lf(t)dt <ay, Vf=f+6feW(f K1, ao). (1.25)

J
Indeed, let (z1,27) € K2 and f € W(f, K1, ag). Then
[f(t, w1, w2)| < mf e (8) + msp i, (1) =mypx, (1), te . (1.26)
Further, let (2}, 24) € K? and (27, 24) € K}. Then
|f(t, 2, 25) — f(t, =], 25)] < |f(t 'y, xh) — f(t l’/fa zy)| +
HSF(t et 2h) = 6 f(t, @ 25)] < (L7 g, () + Log i, (t le‘ —zf|=

= Lk, (O)]z; — x| (1.27)

On the basis of (1.12), taking into consideration (1.26), (1.27), (1.17) we
obtain (1.25), where

as = ap(l+aq) + /[LJ;’K1 )+ almnyl]dt.
J

Thus
(20[2)k

k'

Consequently, there exists a natural number kq for which &, < 1. There-
fore ky-iteration of the familly (1.21) is a contraction. According to Theorem
1.1 the mapping (1.21) for every p has a unique fixed point. Hence it fol-
lows that the equation (1.19) with the initial condition (1.20) has a unique
solution z(¢, p), t € J.

Now we prove that for an arbitrary £ = 1,2,... the mapping

Fk(z('a/])aﬂ) (G — C(‘]’ Rn)

ap <

is continuous at the point u = .
To prove this, it suffices to show that if the sequence p; = (s, x4, i, fi) €
G,i=1,2,... is convergent to ji = (fo, %o, P, f) le.,

Tim (1th = To| + |z — ol + llgs — ¢l + Hop,(J, K1) =0, 8fi = fi = J.
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then

lim F*(2(, ), i) = FE(2(, ), 1) = 25 o) (1.28)

71— 00

The proof of the equality (1.28) will be carried out by induction.
Let £ = 1. We have

G (1) = Z(t)] < Jah — Fol +

+‘/gi(5,5(5),h(t6,% Z)(r(s )))ds—/ (5,2(s), h(to, ¢, 2)(7(s)))ds| =
= al + di(t), (1.29)
where

) =Gt 2 w), 5(15)22(15 i), ¢=xf, §=xf

Ig 5,2(s), h(lo, 2, 2)(7(5)))lds|,

aj = |$0_l’0|+

ay(t) = ‘/[gi(s,Z( ), h(ty, @i, 2)(7(5))) = 4(s, 2(5), h(fo, @, 2)(7(s)))lds .

According to (1.10) we have

ay < |ah — &0l +

F Ky (t)dt‘.

Consequently,
lima$ = 0. (1.30)

11— 00

It is easy to see that after elementary transformations for aé(t) we obtain

ay(t) = ‘/[ﬁ(s,f(S)W(té,%5)(7(5))) = §(s, 2(5), h(to, 2, 2)(7(5))))ds| +

_|_

‘/ [69:(s, 2(s), h(to, i, 2)(7(5))) = 89i(s, 2(5), h(to, @, 2)(7(s)))]ds

+\ [ 50105261, 2, 20| < by + b+ ko), (13D



Lit)[h(ty, i, 2)(7(1))) = h(lo, &, 2)(7(1)))|dt,

Lag, (D)[h(ty, ei, 2)(7(1)) = hty, &, 2)(r(1))ldt,
ays(t) = ‘/5%(5,5(5),]1(156,%5, A)(r(s)ds|, b9i=9i— 9.

Now we will estimate ay, a4, a5(t). We have

by < / LAt 91 — $, 0)(r(1)|dt +

+/Lf(t)|h(t6, ,2)(r(1))) = h(lo, &, 2)(7(1)))]dt <

7(53)
<lles =2l [0+ [ L) = 2rioiae
J 7(st)
st =min{t), 4o}, s, = max{t} i}
The function () is continuous, therefore

lim [y(sh) — v(s1)] = 0.

Thus
lim @}y, = 0. (1.32)
Further,
by = [ Lot (Olr(0) = SOt < llos = 21 [ Log, (o)t
J J

On the basis of (1.12) and (1.17), we have

J a0t = [, 0+ asmss, i, (0t < ot +a),
J J

whence we can conclude that
lim ab, = 0. (1.33)

Now we will estimate ab3(t). Here we consider two cases.
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Let t € [a, b;], b; = min{b,v(t})}. Then

"

/6gi(5, Z(s), ¢(7(8)))ds|.

< max
t’,t”EJ

dalt) = \ / S0i(s, 2(s), #(r(5))ds

It is not difficult to see that b; > by = min{vy(a), b} since v(t}) > v(a).
Therefore with ¢ € [b;, b] we have

<

(0= | / b, 29, () +| / $01(s, 2(5), 2(r(s)))ds

_|_

< max
t’,t”EJ

/ 5:(5, 2(5), $(r(5)))ds

i
+ max = Oy

.17 €[bo,b]

/6gi(5, Z(s), 2(7(s)))ds

Thus
abs(t) < aby, tEJ
It is easy to note that
Hiyo([bo,V), K1) < Hog (0, Kn) < Hig, (K.

By the hypothesis
hHl H&fl(J, [(1) =0.

Consequently, all the conditions of Lemma 1.3 are fulfilled (see (1.17)).
Therefore

. i
limat, = 0.
11— 00

Thus
lim ab4(t) =0 uniformly for ¢ € J. (1.34)
The conditions (1.32)-(1.34) yield (see (1.31))
limay(t) =0 for t € J. (1.35)
Taking into consideration (1.30), (1.35), from (1.29) we obtain the equal-
ity '
lim ] - 21| = 0.

The equality (1.28) for k£ = 1 is proved.
Let now the condition (1.28) hold for some k& > 1. We will prove the
validity of (1.28) for k + 1.
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By elementary transformations we obtain

[Chra (1) = Z(0)] < | — ol +

<

+‘/gi(5,Ci(5),h(té,%Ci)(T(S)))ds - /ﬁ(s,5(5),/1(50,%5,5)(7(5)))615

to

_|_

< Jof— ol + \ [1866,26), il 2,26

t

+‘/[gz’(5,5(5),h(t6,%5)(7(5))) — (s, 2(s), h(lo, @, 2)(7(s))lds| +

tg
+‘/|gi(5aCi(5), h(th, @i, Ci)(T(s)))ds — gi(s, 2(s), h(th, i, 2)(7(5)))|ds
7
= aj + ay(t) + ay.
Now we estimate agk (see (1.25))

oh < [ La1IGk) = 26) + [h(th, 0,6 = Hr(sDlds <

<1k = 21 [ Ltos + [ Lok (r(s)) = r(a)ds <

bi

<26} - 2 [ L1, (6)ds < 200]Gi5) = 2],
J

Since
lim |, — 2[| = 0,
T — 00

hence we have

lim a;, = 0. (1.36)

Owing to (1.30), (1.35) and (1.36), we get
lim l¢L. - 2l =0.

The equality (1.28) for every k =1,2,... is proved.
Let a number &; > 0 be so small that [ry — 81,72 + 6] C J and

|2(t, 1) — z(r1, 1)| < €o/2 with ¢ € [ry —61,71],
|z(t, 1) — z(ra, )| < eo/2  with t € [ra,ra + 61].
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It 1s clear that

and
. - . 9 /€
(=(t, /1), h(lo, . 2( W)(7(1)) € K*(5) € Q, €[ —bi,rz+ 1] (137)
Consequently,
X(Z(ta /j)a h({o, QB, Z('a /]))(T(t))) = 1a te [7“1 - 61’ r2 + 61]
The function z(t, ji) satisfies the equation
(1) = F(t,y(1), h(lo, &, 9)(7(1)), T € [r1— 61,72+ 1),
with the initial condition
y(to) = Zo.
Thus
y(taﬁ):’z(taﬁ)a te[rl_élar2+61]'

By Theorem 1.1 for e5/2 there exists a number &y € (0,£q) such that
to every element pu € V(ji, K1, 80, ag) there corresponds a solution z(t, ut)
satisfying the condition

|2(t, p) — 2(t, 1)] < e0/2, tEJ
Thus with ¢ € [r1 — 61, r2 + 6]
[2(t, 1) — (¢ )] < 20/2

Hence by (1.37) we conclude that for an arbitrary u € V(ji, K1, 8o, ag) it
holds

(Z(t’ﬂ)’ h(to’ b Z(’ﬂ))(T(t))) € Q’ te [7“1 - 61a r2 + 61]'

Thus the function z(¢, u) satisfies the equation (1.13) with the initial
condition (1.14), i.e.,

y(t,p) = z(t,p), teri—8,ra+ 6] (1.38)

The first part of the theorem is proved.
By Theorem 1.1 for an arbitrary ¢ > 0 there exists a number 6 = 6(¢) €
(0, 80) such that for an arbitrary p € V(fi, K1, ég, ovg)

|Z(t,ﬂ)—2(t,ﬁ)|§€, tEJa

whence using (1.38) we obtain (1.16). O
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To every element pu = (tg,z0,¢,f) € A there corresponds the delay
differential equation

(1) = f(L,2(1), 2(7(1))) (1.39)

with the initial condition

2(t) = ¢(t), te[r(to),to), x(to) = 0. (1.40)

Definition 1.2. The function z(¢) = x(¢t, p) € O, t € [r(t0),t1] C [7(a),b],
is said to be a solution of the equation (1.39) with the initial condition
(1.40) or a solution corresponding to the element p € A and defined on the
interval [1(tg), t1], to € [a,t1), if on [7(0), o] it satisfies the condition (1.40),
is absolutely continuous on the interval [{g,%1] and satisfies the equation

(1.39) a.e.

Theorem 1.3. Let (1) be the solution corresponding to the element i € A
defined on [1(to),t1] C (7(a),b); let Ky contain some neighborhood of the
set el@(J1)Ug([r1, r2]). Then there exist numbers &; > 0, i = 0,1, such that
to every element p € V (i, K1,80, ag) there corresponds a solution x(t, )
defined on [T(tg),11 + 61] C [r(a),b]. Moreover, for each ¢ > 0 there exists
8 =6(¢) € (0,680 such that for an arbitrary p € V (i1, Ky, 8o, )

le(t, 1) —x(t, i) <e, ¢ €[so, 114 61), s2=max{to,to}.

Proof. Let in Theorem 1.2 vy = %y, 7o = t1. Then Z(t) on the interval
[to,11] satisfies the equation

9(t) = F(t, (1), h(lo, &, 9)(7(1)))

with the initial condition

y(to) = Zo.
Thus in Theorem 1.2 instead of §(¢) we can take #(¢). By this theorem
there exist numbers 6; > 0, ¢ = 0,1, such that to every element u €

V (i, K1, by, ) there corresponds a solution y(¢, ) defined on the interval

[to— 61,11 +61] C J. Moreover, for each £ > 0 there exists § = é(g) € (0, &)
such that for an arbitrary p € V(ji, K1, éo, ag)
ly(t, 1) — y(t, @) <&, tEJ[to— 61,11+ &) (1.41)
It is easy to see that for an arbitrary g € V(ji, K1, 80, og) the function
gD(t), te [T(to),to),
i = Y
e ={ 5 ek

is the solution corresponding to the element u € V(ji, K1, ép, ag), defined
on the interval [7(to),t1 +&] C [r(a), b] (see Definition 1.2). Hence the first
part of the theorem 1s proved.

It is obvious that

l‘(t,/,t) = y(taﬂ) te [52,1?1 + 61]
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Therefore from (1.41) it follows the desired inequality. O

Finally we note that Theorems 1.2, 1.3 are also valid, respectively, for
the equations with delays

y(t) = f(ta h(to, P y)(Tl (t))’ R h(to, P y)(TS (t)))’
2(t) = f(t,2(mi(t)), ..., 2(7s(1))),
where 7; : R — R', i = 1,...,s are absolutly continuous functions satisfy-
ing () <t, 7;(¢) >0, i=1,...,s, while the right-hand side f belongs to
E(J x O*, R™).

2. LEMMAS ON THE ESTIMATION OF THE INCREMENT

Introduce the set

V = {6p = (8to,620,80,6f) € A= ji: |8lo] < ag = const, |8z0] < as,

k
||6g0|| S O[3,(Sf = ZAZ(SfZ’ |AZ| S a3, i = 1a cee ak}a (21)

i=1
where 6f; € E(J x O? R") — f,i=1,... k are fixed points.

Lemma 2.1. Let §(t) be the solution corresponding to the element i =
= (fo,i‘o,gﬁ,f) € A defined on [ri,r3] C (a,b); let K1 contain some neigh-
borhood of the set Ky = cl@(J1) U g([r1,r2]). Then there exist numbers
82 > 0, €2 > 0 such that for an arbitrary (¢,6p) € [0,e2] x V to the element
fi+ by € A there corresponds the solution y(t, i + cép) defined on
[r1 — bg, 70 + 82] C J. Moreover,

A1) = Bl1) +2b9(1) € K1, tE T, s
y(t, i +ebp) € Ky, t€[r— 8,70+ 8], .
(

lir%y(t,/]—l—gép):y t, 1) uniformly for (¢, p)E[ri—béa,ra+8] x Vo (2.3)
Proof. Let a number ¢35 > 0 be so small that the ¢p-closed neighborhood
K(gg) of the set Ky lies in intKy. By Theorem 1.2 there exist numbers
8, ¢ = 0,1, such that to every element i + cép € V(fi, K1, ép, cvg) there
corresponds the solution y(t, fi + ¢ép) defined on [ry — é1,72 + 6] C J. Tt

is obvious that there exist numbers 1 > 0, 2 € (0,61] such that for an
arbitrary (¢,6u) € [0,¢1] x V' we have

futedp € V(jr, K1,60,0), ¢(t) € Ky,
- e
tEJl, y(t,/,L)E[X(EO), tE[Tl—(Sz,Tz—i—(Sz].

From the second part of Theorem 1.2 it follows the existence of a number
£9 € [0, 1] such that for an arbitrary (¢,8u) € [0,e2] x V

y(ﬁ+€6#)€[{1, tE[Tl—(Sz,Tz—i—(Sz].
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Moreover, the equality (2.3) is fulfilled. O

Remark 2.1. Due to the uniqueness, the solution y(t, i) defined on the
interval [ry — 62, ra 4 82] is a continuation of the solution §(#). Therefore the
trajectory g(¢) in the sequel is assumed to be defined on the whole interval
[7“1 — 62, r9 + 62]

We set

Ay(t) = Ay(t,ep) = y(t, i+ <) — (1),
(t,E,(S/,L) S [7“1 — 62,7“2 + 62] X [0,62] x V. (24)

Lemma 2.2. Let 7(to) < to, 7(rs) > 1o and the following hypotheses hold

io
ing £ sup | [ 0,30+ 8ut0) ot <0, (25)
e— suev - ;
. t
lir% — sup sup / [f(s, y(s) + Ay(s), 9(7(s)) + Ay(7(s))) —
e—=0 ¢ suev- t€[v(to),vo]

Y(to)

—[(s,9(5), p(7(s)))]ds| < oo, (2.6)

where
V- I{(S/,LEV(%QSO}, to 21?0—1—66150, ’70:7({0)

Then there exists a number e3 € (0,23] such that for an arbitrary (¢,é6u) €
[0a€3] x V=
max |Ay(t)| < O(e).? (2.7)
t€to,ra+62]

Proof. By assumption of the lemma there exists a number 3 € (0, 9] such
that for an arbitrary (¢,6u) € [0,e3] x V™ the conditions

7(to) > o, (2.8)

/ F(t5(1) + Ay(t), o(r(1)dt| < O(e), (2.9)

/ [F(s, 5(s) + Ay(s), 5(r(5)) + Ay(r(s)) = f(5,5(s), $(7(s))))ds| <
Y(to)
<O0(e), Vtely(to), o] (2.10)

SHere and in the sequel the symbols O(e), oft,e6u) (scalar or vector) mean that

Iim[O(e)/e] < oo, lim[o(¢,e61)/c] < co uniformly for (¢,6u).
e—0 e—0
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are fulfilled. It is easy to see that the function Ay(t) on the interval [ty, 72 +
8-] satisfies the equation

Ay(t) = %Ay(t) = a(t,ebp) + b(t, dp), (2.11)

where
a(t,ebp) =
= J(t. 5 +Ay(1), h(to, ¢, §+Ay)((1)) = (1, 5(¢), h(lo, &, §)(7(1))),
bt edp) = e8f(t, 4(t) + Ay(t), h(to, ¢, 5 + Ay)(7(1))).
Now rewrite the equation (2.11) in the integral form

t

Ay(t) = Ay(fo) + /[a(s,eéﬂ) + b(s,e6p)lds, t € [to, 72 + 6]
to
Hence it follows
' ro+82
20| = 30} + | fats,conias] + [ pis.ctnlas =
i

o fﬂ

= |Ay(to)| + ai(t,e6u) + by(t,ebp). (2.12)
We will estimate Ay(ty). Taking into consideration (2.8), we get

|Ay(to)| = ly(fo, i + e6p) — y(to)| =

to

= |#0 + ebzo + /[f(t, y(t) + Ay(t), h(to, ¢,y + Ay)(7(1))) + b(t, edp)]dt —

to

—i‘o| S €|6l‘0| +

[t + s rona] + [zl @213)
It is obvious that (see (2.1), (2.2))

k
|b(t,€(§/,t)| S Eagmgf(t), te [{0,7“2 + 62], TTMf(If) = ngf“}(l(t). (214)
i=1

Therefore

/|b(t,56p)|dt < olebp). (2.15)

From (2.13), taking into account (2.1), (2.9) and (2.15), we obtain
Ag(io)l < O(e). (2.16)
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To estimate a1 (t,e6p), t € [to, 2 + 8], we consider three cases.
Let ¢ € [to,¥(t0)]. Then

ay(t,edp) = ‘/[f(s,ﬂ(S) + Ay(s), o((5)) = f(s,5(s), &(r(s)))lds| <

< [ 27 a1206) + canids = [ L7 4, () Au()lds +0(e). (217)

to to

If ¢t € [y(t0), vo], then on the basis of (2.17) and (2.10) we get

/ [F(5,5(5) + Ay(s), §(r(5)) + Ay(r(s))) —

Y(to)

ai(t,ebp) = ai(y(to), e6p) +

— (s, (s), $(r(s)))ds| < / L; . (9)|Ay(s)lds + O(e).

to

Let t € [y0, 72 + 82]. After elementary transformations we obtain

ai(t,eép) = ar(yo,cdp) +
¢

+/|f(5, 3(s) + Ay(s), §(r(s)) + Ay(r(s))) = f(5,5(s), §(7(5)))|ds <

Yo

< / L, (5)|Ay(s)|ds + O() + / L7, (5)(|12y(s)] + |Ay(r(s)) )ds =
D t (1)
= / L g, ()| Ay(s)|ds + / L e, ((sD|Au(s)5(s)ds + O(e).  (2.18)

It is clear that [to, 7(t)] C [to,t] with ¢ € [y, 72 + 62]. Therefore
i
ai(t,ebp) < /L(5)|Ay(5)|d5—|—0(6), V(t,e,8p) € [y, ra+62] %[0, 5] x V™,
to
where
L(s) = Ly g, (5) + X (s)7(8) L7 i, (7(5)) (2.19)

and x(s) is the characteristic function of the interval [r(a), 7(b)].
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Now, on the basis the obtained estimates, for a;(¢,e6u) write out the
final estimate

¢
at.cw < [LAu)lds +0(). (2.20)
fo
V(t,E, (S/,L) & [{0, T2 =+ 62] X [0,63] X V_.
By virtue of (2.14) we have
bi(ebp) < O(e). (2.21)

According to (2.16), (2.20) and (2.21), from the inequality (2.12) it fol-

lows
t

mwnsma+/u®mwww,temﬂ+@y

to
By virtue of Gronwall’s inequality we have
rot+é2
|[Ay(t)] < O(e) exp ( / L(s)ds), t € [to, ro + 6]
io
Hence it follows the desired inequality (2.7). O
Lemma 2.3. Let 7({y) < to, 7(r2) > 1o and

lim_f(w):fo_, w:(t,xl,xz)ER{_D x 0%,
wow ~ ~ ) (2.22)
Ry = (—00,to], wy = (to, To, (7(ty)))-

Next, let there exist neighborhoods V= (t), V—(w)), V= (w3),* Wi = (0,
¥(70), To), wy = (70, 9(70), §(to)) such that the functions ¥(t), t € V'~ (to)
Fw1) = flwa), (w1,w2) € V™ (w)), xV~ (w3 ) are bounded. Then there exists
a number e3 € (0,£2] such that the for an arbitrary (¢,6u) € [0,e3] x V'~
the inequality (2.7) is fulfilled. Moreover,

Ay(tNO) = e[bxo — fi 6to] + o(ebp). (2.23)
Proof. From (2.22) it follows the existence of a nighborhood V~(wy) =
V= (to) x V(&) x V(@((t7))) such that the function f(w), w € V™ (wy ),

1s bounded.

YV—(fo) ={t € V(io): t < To}, V({o) is some neighborhood of the point 7o,

VT (@) =V () x V(#(0)) x V(Eo), V7 (wy) =V (1) x V(i(10)) x V((f0)).
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Let £ € (0, 3] be so small that for an arbitrary (e,ép) € [0,€] x V'~ the
conditions

[to. 0] € V™ (To): (£, 9(t) + Ay(t), ¢(7(1))) € V™ (wy ), t € [to, o];
(t, 9(t) + Ay(t), y(r(t ))+Ay( (1)) € V™ (1),
(t,9(1), o(r(1)) € V(w3 ), t € [7(to), 70],

are fulfilled.
_ Consequently, the functions ¥(?), j':(tJ g(t) + Ay(t), o(7(1))), t € [to, 1o,
£<t,§§t>d+ Ay(t), 5(r (1)) + Ay(r(1))), Ft, §(t), &((1))), t € [¥(to), 70] are

It 1s obvious that

to

Yo —(to) = /"y(t)dt < O(e).

to

Thus the conditions of Lemma 2.2 are fulfilled. Therefore there exists
a number e3 € (0, g3] such that for an arbitrary (¢,6u) € [0,e3] x V'~ the
inequality (2.7) is valid.

Now we prove the second part of the lemma. We have (see (2.13))

Ay(to) = elbxg — fy 6to] +

to

+ U310+ 80, et = fhit+ [oie.come. 220

to to

It 1s obvious that

hm sup |f(t () + Ay(t), o(r()) — f51 =0 uniformly for éue V™.

OtE[tuyto]

Consequently the second addend of the right-hand side of (2.24) has the
order o(eép). Taking into account this and the relation (2.15), from (2.24)
we obtain the formula (2.23). O

Lemma 2.4. Let 7(to) < to, 7(rs) > 1o and the following hypotheses hold

to
1 -
lim — sup /f(t,g(t),gﬁ(r(t)))dt‘ < 00, (2.25)
e—=0 g Suev+
to
t
hr% ~ sup sup /[f(s, 9(s) + Ay(s), p(1(s))) —
€=U € suev+ telvo,v(to)]

_.f(sa g(s)a g(T(S)))]dS < 00, (226)
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where VY = {ép € V : 8tg > 0}. Then there exists a number c5 € (0,¢e1]
such that for an arbitrary (e,6p) € [0,e3] x VT

Ay(t)| < O(e). 2.97
te[tTi)iaQN y(t)| < O(e) (2.27)

Proof. By assumption of the lemma there exists a number 3 € (0, 9] such
that for an arbitrary (¢,6p) € [0,£3] x VT the conditions

to <70, Y(to) <72+ 02, (2.28)
\ i, 66w < o), (2.29)

\ JUGssi5) + B0t5). o(r(0) = T, (6), G (5Dl <

Yo

< O(g) Vi€ [y0,7(to)] (2.30)

are fulfilled.
The function Ay(t) on the interval [tg, ro+62] satisfies the equation (2.11),
which we rewrite in the integral form

t

Ay(t) = Ay(to) + /[a(s, gbp) + b(s,ebp)lds, 1t € [to, ra + 62].

to
Hence 1t follows
t ro+6a
0] < Agtto)] + [lats,zoids+ [ s colds =
to to
= |Ay(to)| + ax(t,ebp) + bo(ebp). (2.31)

We will estimate Ay(ty). Taking into consideration of (2.28) and (2.29), we
get

|Ay(to)l = ly(to, o+ ebp) — y(to)| =

= [#0-+ 2000 = [0+ [ F(t.30), rie)at]| <

o

< elonol +| [ e300, &) < 0 (2.32)

To estimate as(t,e6p), t € [to, r2 + 2], we consider three cases.



28

Let t € [to,70]. Then analogously to (2.17) we obtain

t

as(t,ebp) < /Lny1(5)|Ay(5)|ds + O(e). (2.33)

to
Let ¢ € [y0,7(%0)]- Then on the basis (2.33) and (2.30) we get

Y(to)

aﬂw&OSMmew+‘/fﬂ&ﬁ®+Aw®wﬁ@W—

Yo

t

< [ Lk 9Bu(o)ds +0().

to

—f(S, :(7(5), g(T(S)))]dS

Let ¢ € [y(to), 2 + é2]. Then analogously to (2.18) and (2.19) it can be
proved that
t

aalt,zon) < [ L) Au()lds +O(),

to
Now for as(t,e6u) write out the final estimate

t

as(t,ebp) < /L(5)|Ay(5)|d5 + O(e), (2.34)

to

V(t,E, (S/,L) S [to, ro 4+ 62] X [0,63] < VT,
By virtue of (2.14), for b2(céu), we obtain
ba(ebp) < O(e). (2.35)

From (2.31), taking into account (2.32), (2.34) and (2.35), we get

t

0] £ 06 + [LAuolds, 1€ ltosra+ 8]

to
By virtue of Gronwall’s inequality, we have

|[Ay(t)] < O(e) exp <T762L(5)d5) , tEty,re+ 83

to

Thus the inequality (2.27) is proved. O
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Lemma 2.5. Let T(fo) < 1o T(re) > to and the following conditions are
fulfilled

lim f(w):fd", wERZJ x 0%,

w—»w;
RE =T[to, 00), wi = (fo, %o, (7(1])))- (2.36)

Let, moreover, there exist neighborhoods V*t(ty), V*t(wY), Vi(wy), gu;' =
(70, 5(70), p(tF)) such that the functions ¥(t), t € VT ({y) flwi) — fwa),
(wi,w2) € VHWY), x VT (w]) are bounded. Then there exists a number
g3 € (0,e2] such that for an arbitrary (¢,6p) € [0,e3) x V1 the inequality

(2.27) s fulfilled. Moreover,
Ay(ty) = e[bag — f&" 8to] + o(edp). (2.37)

This lemma can be proved as Lemma 2.4 with insignificant changes (see
the proof of Lemma 2.3).

Lemma 2.6. Let 7(ry) < to and the condition (2.5) be fulfilled. Then
there exist numbers e3 € (0,¢2], b3 € (0,682 such that for an arbitrary
(e,6p) € [0,e3] x V™ it holds

max |Ay(t)] < O(e). (2.38)
t€[to,ra+63]

Proof. By assumption of the lemma there exist numbers e3 € (0,¢2], b3 €
(0, 85] such that for an arbitrary (g,6u) € [0,£3] x V™ the relation (2.9) is
fulfilled and

”y(to) > 1o + 83. (239)

Analogously to the proof of Lemma 2.2 we obtain (see (2.12))

t ro46s
0] < 1Autio)] + [lats,zsnids+ [ s colds =
o to

= |Ay({0)| =+ Cll(t, E(S/,L) =+ b3(t, E(S/,L), t e [{0, ro + 63]

Since (2.39) holds, for an arbitrary (¢,¢,6u) € [fo, 72 + 63] x [0,e3] x V~

we have
t

ai(t,ebp) < /Lny1(5)|Ay(5)|ds + O(e).

Besides (see (2.14))
bs(eép) < O(e).
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Hence, taking into account (2.16), we get

t

0] £ 0O+ [L7 , (Au(e)ds, 1€ ffo,r+ 2]
to
Therefore by Gronwall’s inequality we obtain (2.38). O

Lemma 2.7. Let 7(r2) < to and the condition (2.22) be fulfilled. Then
there exist numbers e3 € (0,¢2], b3 € (0,682 such that for an arbitrary
(g,6p) € [0,e3] x V™~ the conditions (2.23) and (2.38) are fulfilled.

This lemma, using Lemma 2.6, is proved analogously to Lemma 2.3.

Lemma 2.8. Let 7(r2) < to and the condition (2.25) be fulfilled. Then
there exist numbers e3 € (0,¢2], b3 € (0,682 such that for an arbitrary
(e,6p) € [0,e3] x VT

Ay(t)| < O(e). 2.40
te[tg}gﬁi%]l y(t)| < O(e) (2.40)

Proof. By assumption of the lemma there exist numbers e3 € (0,¢2], b3 €
(0, 62] such that for an arbitrary (¢,6p) € [0,e3] x VT the condition (2.29)
1s fulfilled and

Yo > 19 + 0. (2.41)

Analogously to the proof of Lemma 2.4 we obtain (see (2.31))

1 ro+63
00| < [Butto)] + [lats,esplds+ [ s comlds =
to to

= |Ay(t0)| + az(t, E(S/,L) + b4(t, E(S/,L), te [to, ro 4+ 63]

Since (2.41) is fulfilled, for an arbitrary (¢,¢,6p) € [to, ra+63]x[0,e3]x VT

we have
t

as(t,ebp) < /Lny1(5)|Ay(5)|ds + O(e).
to
Besides (see (2.14))
ba(edp) < O(e).
After this, taking into account (2.32), we get
¢
[Ay(?)] < O(e) + /Lny1(5)|Ay(5)|d5, t € [to, ra + 63].
to

Hence, by Gronwall’s inequality we obtain (2.40). O
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Lemma 2.9. Let 7(r2) < to and the condition (2.36) be fulfilled. Then
there exist numbers e3 € (0,¢2], b3 € (0,682 such that for an arbitrary
(e,6p) € [0,e3] x VT (2.23) and (2.38) are fulfilled.

This lemma, using Lemma 2.8, is proved analogously to Lemma 2.3.
Lemma 2.10. Let 7(tg) = to and the condition

v(to)
1 Fip o~
ti 2 sup {70300+ a(0), o(rt0) +

o

# [ 5030+ A0 3000 + O]} <6, 242
¥(to)
be fulfilled. Then there exists a number e3 € (0, 2] such that for an arbitrary
(g,6p) € [0,e3) x V7~ the inequality (2.7) is valid.
Proof. Let g5 € (0, £2] be so small that for an arbitrary (e, éu) € [0, 23] x V™
Y(to)
[ it + v, o

to

to
+ [ 50+ ul0).5((0) + Au(r(0))de] < O,
Y(to)
Since v(to) € [to, o], the expression for Ay(fy) has the form
Y(to)

Ay(io) = 620 + / F(L 300 + Ag(t), o (r(1))dt +

to

to to
s [ a0+ 200, 570) + utra + [ott s (243
v(to) to
Hence, on the basis of the previous inequality (see (2.15)), we obtain
|Ay(to)] < O(e).

It is easy to see that for an arbitrary (t,e,8p) € [to, 72+ 8] x [0,e3] x V™
the inequality (see (2.19))

an(t, 2bp1) < / 1F(5,5(5) + Ag(s), 5(7(5)) + Ay(r(s))) -

o
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t

= s, ()l < [ 1(5)|Au(s)lds + OC)

to

1s valid.
After this the inequality (2.7) is proved in the standard way (see the
proof of Lemma 2.2). O

Lemma 2.11. Let 7(f5) = o and there exist the finite limits

lim f(w)=f;, lim f(w)=/f;, w € Ry x 0%,

w—Wws w_>w4—

w3 = (o, %0, %0), wy = (fo, %0, p({5)); limy(t)=4", te€ R .

t—to

Then there exists a number e3 € (0,23] such that for an arbitrary (¢,é6u) €
[0,e3] X V™~ the inequality (2.7) is valid. Moreover,

Ay(lo) = efbzo = [f5 + (f5 — f3)7718t0} + o(ebp). (2.44)
Proof. First of all we prove the equality (2.44). Tt is easy to see that

to

to —7(to) = 7(loe) —7(to) = /‘V(t)dt = —y7 6to + o(ebp).
Consequently
”y(to) = {0 + E”.y_ (Sto + O(E(S/,L) (245)
Further, with ¢ € [0, 5]
Y(to)
[ a0+ S0, o) = e~ 15 500+
Y(to) D
+ [ 130+ A0, o) J5 Vit =257 = Df So-+a(etn), - (2.46)

/ F(t, () + Ay(®), H(r(1) + Ay(r()dt = —5 f5 6t +
Y(to)

+ / L7, 5(t) + Ag(t), 5 (1)) + Ay(r(t) — f5 Jdt =
Y(to)
— ey f5 8ty + B(ebp). (2.47)
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It 1s obvious that

lim sup |f(t, g(t) + Ay(t), o(r(1))) — f5 | =0,

€= 0se[to,7(t0)]

lim sup  |f(2,5(t) + Ay(t), #(r(1)) + Ay(r()) — f5] =0

== %€M (ta), o]

uniformly for éu € V~. Therefore

alebp) = o(ebp), Plebp) = o(ebp). (2.48)

If in (2.43) we use the relations obtained above (see also (2.15) ), then
we obtain (2.44).

Tt is clear that the conditions (2.46)—(2.48) guarantee that (2.42) is valid.
Consequently, by Lemma 2.10 the first part of the lemma is also valid. O

Lemma 2.12. Let T(fo) =ty and the conditions
lim flw)=f;, we Ry xO% limj(t)=1, t€R;,

w—Wws3 t—to

be fulfilled. Let, moreover, there exist a neighborhood V™ (wy ) such that
the function f(w), w € V™ (wy ) is bounded. Then there exists a number
ez € (0, 2] such that for an arbitrary (¢,8p) € [0,e3] x V™~ the relation (2.7)
1s valid. Moreover,
Ay(tNO) = e[bxg — f5 6to] + o(ebp). (2.49)
Proof. Tt is clear (see (2.45)) that
v(to) = fo + o(ebp).
Next, there exists a number € € (0, £5] such that for an arbitrary (¢, ép) €
[0,€] x V'~ the condition
(, 9(t) + Ay(t), o(r(t))) € V7 (wi), t € [to, v(to)]-
is fulfilled. Consequently the function f(t, g(t) + Ay(t), (7(t))) with (¢, ¢,
Sp) € [to, v(to)] x [0,2] x V~ is bounded. Thus
Y(to)
[ a0+ 300, e 0)dt| = ofzon).
to
It is obvious that
io
/ F(&, () + Ay(t), §(r(0) + Ay(r(t)))dt = —¢f5 6to + o(ebp).
¥(to)

Thus the condition (2.42) is fulfilled. Consequently the first part of the
lemma is proved (see Lemma 2.10.). Finally, from (2.43) on the basis of the
last relations (see also (2.15)) we obtain (2.49). O
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Lemma 2.13. Let 7(ty) = to and the conditions

to

/ e, i, g<r<t>>>dt\ <,

o

o1
lim — sup
e—0 & 5NEV+

/ (s 5(5) + Au(s), o(7(s))) —

to

1
lim — sup sup
€=0 € sueV+te[to,v(t0)]

—f(S, :(7(5), g(T(S)))]dS

< 0

be fulfilled. Then there exists a number e3 € (0, 2] such that for an arbitrary
(e,6p) € [0,e3] x VT the inequality (2.7) is valid.

Proof. By assumption of the lemma there exists a number 3 € (0, 9] such
that for an arbitrary (¢,6p) € [0,£3] x VT the conditions

Y(to) < 2 + 82,

[, §<r<t>>>dt\ <0,

to

‘/[f(s,ﬂ(S) +Ay(s), ¢(7()) = f(5,8(s), 5(r(5)))]ds

to

< 0(¢)

Yt € [to,v(to)]

are fulfilled.
It is obvious that the inequality (2.32) is valid. In order to estimate

as(t,edp), t € [to, ra + 82] (see (2.31)), we consider two cases.
Let t € [to,7(to)]. Then we have (see (2.31))

as(t,ebp) = ‘/[f(s, 3(s) + Ay(s), o(7(5))) = [(s,5(s), §(7(5)))lds| < O(e).
Let t € [y(to), 2 + 62]. Then (see (2.18), (2.19))
oalt,28p) < aala(to), o)+ [ latst)lds <

Y(to)

SOE)+ [ L (H120(s) + [Au(r(5))ds <

v(to)



35

<0() + / L(s)| Ay(s)]ds.

After this in the standard way we can estimate |Ay(¢)| (see (2.31)) and
prove the inequality (2.27). O

Lemma 2.14. Let 7(f5) = 1o and the folowing conditions

lim f(w)=ff, w € Rf x 07

w—ws

be fulfilled. Let, moreover, there exist neighborhoods V¥ (to), V*(w]) such
that the functions %(t), t € V*(ty), f(w), w € V= (wl) are bounded. Then
there exists a number e3 € (0, £2] such that for an arbitrary (¢,6p) € [0, €3] ¥
VT the inequality (2.7) is fulfilled. Moreover,

Ay(to) = e[bzo — fof 6to] + o(ebp). (2.50)

This lemma, by Lemma 2.13, is proved analogously to Lemma 2.3.

3. DIFFERENTIABILITY OF SOLUTION

3.1. Preliminary Notes. We denote by E;(J x O? R") the space of n-
dimensional functions f : J x 0% — R" satisfying the conditions:
1) for any fixed ¢ € J the function f is continuously differentiable with
respect to (21, rs) € O
2) for any fixed (z1,22) € O? the function f and the matrix functions
Jo, = (fgz)nyn 1=1,2,

p,j=1’

are measurable with respect to ¢;
For an arbitrary K C O and f € E1(J x O?, R") there exists a function
my i () €€ Li(J, REIJ') such that

2
[f(t o, o)+ D | Fe (O <mpk(t), V(i zi,2:) €T x K2

i=1

By the modulus |fz,
le.,

of the matrix f;, we mean the Fuclidean modulus,

| fos 2 (3.1)

n
=
3

p,j=1
Lemma 3.1. The inclusion
Ey(J x O*, R™) C E(J x O*, R"™) (3.2)

15 valid.
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Proof. Let f € E1(Jx0?% R™), K C O be an arbitrary compact. In order to
prove the inclusion (3.2), it suffices to show the existence of such a function

Ly k(-) € Li(J, RY) for which
|F(t, 27, 25) — f(t, 27, 23)] <

2
< Lny(t)Zh:; — x|, Yt @), a2 ey e T x K*
i=1

Introduce the function g(¢, x1, z2) (see (1.9)). Tt is obvious with (z1, 22) ¢
K2
gz, (L1, 22) =0, i=1,2.
Thus there exists a function my g, (+) € L1(/J, REIJ') such that

n
Z|gl‘z(t’x1’x2)| S mg,Kl(t)a V(t,l‘l,l‘z) € J X R2n~
i=1

Let (2}, 2%) and (2, 2%) be arbitrary points from K?. Then (see (1.8))
we get

|f(ta xlla x/Z) - f(ta xllla $/2/)| = |g(ta xlla x/Z) - g(ta xlll’ $/2/)| =

<

1
d
= | [ pates st o = a0t st s
0
2

1
</ [Zm,(t, o4 s(ah — ), o+ (e — )| xﬂ]ds <
0

i=1

2
< mg i, (1))l — 7.
i=1

Thus as Ly g (t) we can take my g, (). O
Now we consider the linear differential equation with delayed argument
B(0) = AW(0) + BO2(r() + [(1), LEM0b,  (33)
z(t) = (1), t €[r(te),to), x(to)= xo,

where A(t), B(t) are summable n x n matrix functions, f : J — R" is a
summable function, ¢ € A(Jy, R"), tg € [a,b), o € R™.

Lemma 3.2 (Cauchy’s formula). The solution x(t), t € [to,b] of the equa-
tion (3.3) with the initial condition (3.4) can be represented in the form

2= Xt ot [ VG OBOE)) s+ [ V(s 01(:)ds, (35)

7(to) to
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where Y(s,t) is the matriz function satisfying the equation

aya(z,t) = —Y(s,0)A(s) — B(y(s))Y (7(s),1)7(s), s€[a,t], (3.6)
and the condition
E, s=1,
Yist) = { O, s>t (3.7)

Here F 1is the identity matriz, © 1s the zero matriz.
This lemma is proved in a standard way.®

Lemma 3.3. Let 1, € (a,b], and Y(s,t) be the solution of the equation
(3.6) with the condition (3.7). Then for each ¢ > 0 there exists a number
6 = 6(g) > 0 such that for an arbitraryt, € J : [t — 1| < 6 the inequality

|V (s,81) — Y(s,fl)| <e, Vs€la, 5], s1= min{tl,fl}
s fulfilled.

This lemma is a simple corollary of a theorem analogous to Theorem 1.3,
which is valid for equations with advanced argument.

Lemma 3.4. The solution Y (s,t) is continuous on the set
D={(s,t):a<s<t telJ}

Proof. Let (s,t) € Il and s < t. Then there exists a number §; > 0 such that
s+ As < min{t+ At t} with |As| < b1, |At] < b1, ie. (s+As, t+AL) €1l
On the basis of Lemma 3.3 for each ¢ > 0 there exists 65 € (0, 41) such that
for an arbitrary As, At satisfying the conditions |As| < 62, |At]| < 89 ,the
inequality
[V(s+ As,t+ At) =Y (s+ As,t)] < /2

1s fulfilled.

On the other hand the function Y(s,) is continuous on [a,?], i.e., there
exists a number 85 € (0, 61) such that

V(s +As,t) =Y (s, 1) <e/2, |As| < és.
Consequently with [As| < é, |At] <6, é = min{éz, b3} we have
a(s,t,As, At) = |Y(s+ As, t + At) = YV (s,1)] <
<|IY(s+As, 1+ A=Y (s+As, )|+ |Y(s+ As, t) —Y(s,8)| <e. (3.8)

Let s =t and the increments As, At are such that (t + As,t + At) € II,
le., As < At.

If As < 0, then ¢t + As < min{t{,t + At}. Therefore the smallness of
a(t,t, As, At) for small As, At is proved analogouosly (see (3.8)).

5For various classes of linear differential equations with deviating argument represen-
tation formulas of solutions are given in [1], [4-6], [9], [10], [13], [14], [18], [21], [22].
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If As > 0, then we will use the inequalites
a(t,t, As, A)<|Y(t4+As, t+ A=Y (¢, t+AL)|+]|Y (¢, t+AL) — Y (t,1)|=

= a(t, At, As) + a(t, At),

[V (s,8)] < M =const, (s,t) €Il (3.9)

The inequality (3.9) will be proved later.
Now we estimate a(t, At, As). We have (see (3.6)):

t+As oy A
a(t,At,As) < / ‘w
s

t

ds <

t+As

< [ (A6 306N BOEDE s,

where x(s) is the characteristic function of the interval [r(a), 7(b)].
Hence it follows

lim a(t, At, As) = 0.
At—0
As—0

The smallness of a(t, At) for small At follows from Lemma 3.3. Thus the
continuity of the function Y (s,t) on II is proved.

Prove now the inequality (3.9). From the equation (3.6) taking into
account (3.7) we get:

Y (s, )l < |E]+
13

+/(|A(€)|IY(€J)| +IBEHONY (& 1)F(€))de, 5 € [a,1]. (3.10)

5

We set

s,t) = max |Y(£,1)], 5,1) =10, s>t.
ol5.8) = max V(€0 g0

The following inequalites are obvious:
[Y(s, )| <g(s,t),  [Y(9(s),0)] < g(y(s),1) < g(s,1), s€lad]
From the inequality (3.10) we obtain (see (3.1))

t

g(s,t) <V + /(IA(€)| +X(ENIB(E)IF(€)) g€, t)de.

a
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For any fixed ¢ the function g(s,t) is continuous with respect to s € [a,t].
Therefore by Gronwall’s lemma we obtain

o(6:0) < Viresp ([ (1AQ1+ 1 GEOIBOE ©)de) = M. ©

3.2. Theorems on differentiability of the solution.

Lemma 3.5. Let (t) be the solution corresponding to the element ji € A,
defined on [7(t9),11] C (7(a),b). Let K1 contain some neighborhood of the
set clp(Jy) U i‘([fo,fl]). Then there exist numbers 65 > 0, g9 > 0 such
that for an arbitrary (¢,6p) € [0,29] x V to the element i + cbp € A there
corresponds the solution x(t, i+ eép), defined on [r(to), 11 + &3] C (7(a),b).
Moreover

l‘(t,ﬁ+€6ﬂ) E[(l, te [T(to),{1+62]. (311)
Proof. In Lemma 2.1 we assume that
ri =1y, r=11, Ft)=(). (3.12)

Then there exist numbers é3 > 0, £2 > 0 such that for an arbitrary (¢, 6p) €
[0,e2] X V to the element ji+e6y € A there corresponds the solution y(¢, i+
ebpt), defined on [t; — 82,71 + 83] C (7(a), b). Moreover,

go(t) e Ky, teJy, y(t,ﬂ + E(S/,L) e Ky, te [{1 — 62,{1 + 62]
It is easy to see that
a(t, i+ e6p) =h(to, o, y(-, itebp))(t) € K1, t€[r(to), {1+ &]. O (3.13)

Remark 3.1. Due to uniqueness, the solution (¢, fi) on the interval [(),
t1 + 63] is a continuation of the solution Z(#). Therefore the trajectory #(t)
in the sequel is assumed to be defined on the whole interval [7(y), 1 + 83].

By virtue of Lemma 3.5 and Remark 3.1, it can be defined

5630(t)’ te [T(a)’ 51),
Az(t) = Aw(t,ebp) =  w(t, i+ ebp) — #(t), € [s1,11 48], (3.14)
51 = min{to,{o}.

It is obvious (see (2.4), (3.12), (3.13), (2.3)) that

Ax(t) = Ay(t), t € [s2,11 4 8], s2 = max{to, o}, (3.15)
lir%Ay(t) =0, uniformly for (¢,6u) € [to — 82,11 4+ 62] x V. (3.16)
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Theorem 3.1. Let f € E1(J x O% R™)", T({o) < to, T(t~1) > 1y and there
exist the finite limits

lim fw)=f;, we Ry x 0% wy = (lo,&,3(r({7))), (3.17)
lim [Flw1) — flw2)] = 7, wi € Ry, x O i=1,2,
(wi,w2)—(wl wy)

W?:('Yo,i’(%),i‘o)a wz_:(PyOai;(PyO)agB({O_))”? lim '}/(t):"}/_,tER{_D

t—tg

(3.18)

Then there~ exist @umbers 63 > 0, €3 > 0 such that for an arbitrary
(t,E,(S/J) S [tl — 63,11 + (53] X [0,63] x V=

Ax(t,cbp) = eba(t,ép) + o(t, cép), (3.19)
where

sx(t, op)=Y (to, t)6x0 — {Y (to, ) f5 + Y (70, 0)f; 7 }6to + al(t, 6p), (3.20)

altom = [ YO0 s+ [Yis08sslds, (320
T(fg) io

Feolt] = Foa (8, 2(1), 2(7(1))), 6f[t] = 6£(t, &(1), 2((1))), Y(s,1) is a matriz

function satisfying the equation

@Yéjﬂ = =Y (5, fo,[8] = Y (1(5), 0. [1(8)]5(5). 5 € [fo. 1],

and the condition (3.7).

Proof. Tt is easy to see that #(yo) = §(70) (see (3.12)) and the assumptions
of Lemma 2.3 are fulfilled. Therefore there exists a number £ € (0, £2] such
that for an arbitrary (¢,éu) € [0,£] x V'~ we have (see (2.7), (2.23), (3.15))

max |Ax(?)] < O(e), (3.22)
t€[to,t1462]
Aa:(tNO) = e[bxo — fi 6to] + o(ebp). (3.23)

Let numbers é3 € (0, §2] and €3 € (0, £] be so small that for each (g,ép) €
[0,e3] x V™ is the relation

tNQ < ’y(to) <7 < t~1 — (53 (324)
1s valid.

6In all theorems of this section, in the sequelit is assumed that f € Eqi(J x 02, R™).
TSince #(vo) = 4(70) (see (3.12)), here and in the sequel we preserve notation used
in §2.
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The function Axz(t),t € [T({o), {1 +63] on the interval [{o, {1 + 8] satisfies
the equation

2

Az(t) = fo, []AZ(1) + fo [t]Az(7(2)) + 6 f[1] + ZRi(t,eép), (3.25)

i=1

where

Ru(t,ebp) = flt, &(1) + Aw(t), #(r(0) + Aa(7(1))) — F11] -
e [0AR () — Fo [Ax(r(1)), (3.26)
Ro(t, ebp) = (8 (1 £(1) + Aa(t), #(r(1) + Aa(7(1))) — 61[1)). (3.27)

By means of the Cauchy formula (see Lemma 3.2) the solution of the
equation (3.25) can be represented in the form

t

Ax(t) = Y(to, t)Ax(to) + E/ (s,t)0f[s]ds + Zhi(t, to,eép),  (3.28)

i=0
to

t € [to, {1 + 62),
where
to

ot fo, e6p1) = / Y(3(8), ) fes () A2 (s)i(5)ds,  (3.29)
T(fg)

¢
hi(t, o, e6p) = /Y(s,t)Ri(s,eép)ds, i=1,2. (3.30)
7o
It is obvious (see (3.23) and Lemma 3.4),
(to, )Al‘(to) Y({o,t)[él‘o — fO_ (Sto] + O(t, E(S/,L) (331)

Now we transform ho(t, %o, £6). We have:

to

ho(t, o, c64) = ¢ / Y (3(5), 1) e [1(5)) Ao (53 (5)ds -+

T(fg)
+[Y 0.0 b s =2 [ Y06 0fBEIA) )5+
to 7(%o)
+ / Y (5,1) fo,[s]Ax(7(5))ds + o(t,ebp). (3.32)

v(to)
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Owing to the relations (3.24), the expression hy(t,to,c6p) with [t; —
83,11 + 83] can be represented as

v(to) Yo

hl(t,fo,géﬂ) = / Y(s,t)R1(s,ebp)ds + Y(s,t)R1(s,ebp)ds +
to Y(to)
? 5
—|—/Y(S,t)R1(S,E(5/,L)dS = a;(t,ebp). (3.33)
=3

Yo

Now we estimate the first term of the expression (3.33). We have (see

(3.26))
Y(to)
las(t,eop)| < [|Y]] / [1F(8, 8(t) + Ax(t), (7(t)) + bp(7(1))) —
—f(t,#(1), 3(7(1)) — o, [}]Aw(t) — e fo, [116(7(1))]] dt <
f1465 1

< Y]] f( 2(1) + EAx(t), p(7(1)) + e€bp(r(1))) —

]|
to

0,30, 5 (0) = Fe[AA0(0) <o [t ()t <
f146s_ 1
S [ [ U 0:500) + 30000 500+ <e8(ri00) -

A 4+ | ot B(0) + EA2(D), $(r(1)) +
etbip(r(1)) — Fll] |530(T(t))|)d€] it <

< IV HOE1(eb0) + cosrlipl, (334
where
tidds 1
oi(eim = [ | [l 008000, B(r(0) +600(r0) - [0 dE]
t=12.

Since Ax(t) — 0 as ¢ — 0, t € [to, 1 + 62], by Lebesgue’s theorem

lir%ai(eéu) =0, ¢=1,2, uniformly for épec V™.

Thus ag(t,£ép) has the order o(t,e8u).
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Rewrite the second term of the expression (3.33) as

Yo

a4(t,56p):§;0i(t,56p)— /Y(s,t)fo[s]Ax(r(s))ds,
where "
@@¢@02- f5q&wﬁJﬂAu@@,
7(to)
oa(t,ebp) = }9Y@Jﬂﬂ&i@y+Ax@%§@@»—kAxﬁ@»)—thﬁ.
¥(to)

Tt is clear (see (3.22)) that o3(¢,£6p) has the order o(t,c6p).
Next, write o4(t,e6p) as

oa(t,cbp)= /Y(s,t)(f(s,i(s)—l—Ax(s),f(r(s)) +
Y(to)
FAa(ro)) = Flsl- D )dst [ V(s 007 ds = Yoot o).
¥(to) =5

It is obvious that if s € [y(¢0), 0], then 7(s) € [to,o]. Therefore (see (3.14),
(3.15)) with s € [3(t0), 70
)+

(@) Aw(r(s)) = x(7(s), i + ebp) =
=y(r(s), i +ebp) = y(7(s)) + Ay(7(s)).

From this equality, taking into consideration (3.16), (3.22) and g(ts) =
Zg, we obtain

lim (s, #(s)+Ax(s), #(7(s))+Ax(r(s))) = lim (s,(s), §(7(s))) = wi.

=0 $—Yo
s€[v(to),v0]

It is easy to note that when s € [y(%0), o], thenf[s] = f(s,%(s),&(7(5)))
and

lim (5, 5(s), $(r(5))) = w5

s€[v(to), ol
Thus

lim  sup  |f(s, 2(s) + Aw(s), #(r(s)) + Ax(r(s))) — fls] — f7| =0

€= 0sey(tn),70]

uniformly for ép e V™.
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The function Y(s,t) is continuous on [y(tg),vo] X [{1 — 63,61 + 63 C 1T
(see (3.24), Lemma 3.4). Besides

Yo — v(to) = —e¥~ btg + o(t, cbp).

Consequently o5(¢,£61) has the order o(t,e6p).
By the equality

lim Y(s,t) = Y(70,t) uniformly for t € [t; — 62,1, + 8],

s—vyo_
for os(t, cbpu) we get
o6(t,ebp) = —Y (y0,1) f1 7~ 6to + o(t, cbp).

For the last term of the expression (3.33) analogously (see (3.34), (3.22))
we obtain

f1+6s 1
st 26n)| <IVIOE) [ | [ (3061 He020), 2r(6)) +€80(r(5)) -
ool a5, 2(5)+€AR(s), 2(7(5)+EAw(7(5))) — fos [s] e | ds <
< IV 0()as(=t10).

It is obvious that when ¢ > vo, then 7(t) > fo; therefore by (3.22) we
establish that

lir%a7(66u) =0 uniformly for épe V™.
Thus
as(t,ebp) = o(t,cbp).
From (3.33) on the basis of the relations obtained above we get

to

ha (L, To, £61) = —= (y0, )75 8o — / Y (1(5), ) s [1(3)] A ()35 (5)ds +
+o(t, Egﬂ). (3.35)

Finally we estimate ho(t, %o, 264). We have (see (3.27))

t14683
|ha(t, o, eép)| <e[[Y] / |6 f(t, 2(t)+Az(t), #(r(1))+Ax(r ()~ f[1]|dt =

to

= el flas(zbp).
We represent ag(£6yt) as the sum of three addends a7(eép), ag(edp), ag(cédp):

ag(ebp) =
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Y(to)
= / |8f(t, (1) +Az(t), p(T(1) +ebp(r(1)) = f (1, & (1), p(7(1)))|dt +

to

+/ |6 f(t, 2(t)+Ax(t), #((1)+Ax(r()) =8 f(t, £(1), (7(1)))|dt +
Y(to)
t14683
+ / |6£(t, #(1) + Ax(t), #(7(1)) + Aw(r(t))) — 6 f[t]|dt.

According to (2.1), (3.11), (3.22), we get

o) <3 / Lo (O(1A2(0) |+ elop(r()])dt < O().  (3.36)

Next (see (3.11)),
ag(edpu) < Z / |6fi(t,i=(t) + Az(t), 2(7(t)) +

i=1 ’Y(to)

+Az(r(t))) — 6 fi(t, )| dt < 22|/\ | / ms . i, (1)dt.
v(to)
Since y(tg) — o as € — 0, we have

lir%ag(eéu) =0 uniformly for épe V™.

It 1s clear that

s i1463
acen) < YO [ [Los s (O(180(0)] + 182 (0) )it O (3:37)
= (i)

Using the estimates obtained above, we have
ho(t,to, ebp) = o(t,cbp). (3.38)

From (3.28) according to (3.31), (3.32), (3.35), (3.38) we obtain the de-
sired formula (3.19), where §z(¢, 6it) has the form (3.20). O

Theorem 3.2. Let 7(fg) < 1o, 7(f1) > o and there exist the finite limits

lim f(w)=ff, weR} x0% wf=(lo,&,&(r(I})); (339
lim [Flwi) = fw2)] = £, wi € RT, x 0%, i=1,2,

(w17w2)—*(wfng')
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wi = (70, 8(70), G()); lim3(0) = 4%, 1€ R,
Then there exist numbers 63>0, €3>0 such that for an arbitrary (t,e,é6p) €
[t — 63,11 + 63] x [0,e3] x V' is valid (3.19), where
(Sl‘(t, (S/,L)IY({(),t)(Sl‘o - {Y({Oat)f(j— + Y(Pyoat)fl-l—’y-l—}éto + a(ta 6”) (340)
(see (3.21)).

Proof. By assumption of the theorem the conditions of Lemma 2.5 are ful-
filled. Therefore (see (2.27), (2.37), (3.15)) there exists a number £ € (0, &3]
such that for an arbitrary (g,éu) € [0,2] x VT it holds

max |Au(t)] < O(:), (3.41)
t€to,t1462]
Ax(ty) = elbzg — f&" 8to] + o(edp). (3.42)

Let the numbers é3 € (0, 82], e3 € (0, 2] be so small that for an arbitrary
(Ea 6”) € [OaES] x V+

T(to) < 1?0 <7 < ’y(to) < t~1 — 63. (343)

The function Ax(t), t € [T(to),fl + 63], on the interval [to, ] + &3] sat-
isfies the equation (3.25). Therefore by means of the Cauchy formula the
expression Az(t) can be represented as

! 2
Az(t) =Y (to, t)Az(ty) + E/Y(S, )6 f[s]ds + Zhi(t, to,ebp), (3.44)
to i=0
t e [to,{l =+ 63],
where h;(t,t0,e6p), i = 0,1,2, have the form (3.29), (3.30) respectively.
Since tg € [to, T(t~1—63)] (see (3.43)) and Y (s, 1) is continuous on [{o, 7'(t~1—
63)] X [{1 — 63,{1 + 63] C II, we have
Y (to, t)Ax(to) = €Y (to,t)[6x0 — fif 6to] + o(t, cbp). (3.45)

Now we transform hq(t,%g,28p). We have (see (3.43)):

ot to,26m) = = [ V(20,072 ()R (5)ds +
7(to)
4 G0 E bR s =2 [V 0/ (s)ds+
io T(fg)
Y(to)
+ / Y (5,1) fr,[s]Az(7(5))ds 4 o(t, ebp). (3.46)

Yo
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By the relation (3.43) the exprssion h1(t,ty,e6p) with ¢ € [t1 — 63,11 + 85]
may be represented as the sum of three addends as(2,tg, ), as(t, to, ép),
as(t,ty,edp):

Yo
hi(t, to,e6p) = /Y(s,t)Rl(s,Eéu)ds +
to
¥(to) t
+ / Y(s,t)Ri(s,cbp)ds + /Y(s,t)Rl(s,eéu)ds. (3.47)
Yo ¥(to)

The first addend of the expression (3.47) is estimated analogously (see

(3.34)).
Consequently,
laa(t, to, cép)| < |Y] [0(6)01 (to,ebp) + eagoa(to, Eéu)] , (3.48)
where
T1+6s_ 1
ittozin) = [ | [1Fnt50) + €300, p1r(0) + 680001 -

—fx,[t]ug]dt, i=1,2. (3.49)

It is obvious (see (3.15)) that
Az(t) = Ay(t), t€ [to,t1 + 83].

In (3.49) we change under the integral the function Az (¢) by Ay(t), which
allow us to write the following inequality

1465 1
ltn, )5 [ [ [, 30 A0(0) BUr(0) 42600 (r(0) - Fo 11

t=12.

bl

Hence, using (3.16), it follows

lir%ai(to,eéu)zo, i=1,2, for épeV™T.

Thus az(t,%0,28p) has the order o(t,£ép).
The second addend of the expression (3.47) may be represented as

4 ¥(to)
as(t,to,edp) = Y _oi(t,to, edp) — /Y(s,t)fo[s]Ax(r(s))ds,

1=3 io



48

where
Y(to)
os(t, to,e0p) = — / Y(s,t)fxl[s]Ax(s)ds,
Y(to) D
o4t to,e6p) = /Y(s,t)(f(s,i*(s)—l—Ax(s),go(r(s)))—f[s])ds.

It is clear (see (3.41)) that os(t,t0,c6p) has the order o(t, e6u).
Further, rewrite o4(t, o, cép) as

v(to)
waltsto,eom) = [ ¥ (5, 00(F(s,5(5) + Aalo) 9(r(6)) = Fls 4 s
D Y(to) 6
- / Y(s,t)ffds = Zai(t,to,eéu).

It is obvious that if s € [y0,7(t0)], then 7(s) € [to,t0]. Therefore

lim  (s,2(s) + Ax(s), ¢(7(s))) = lim (s, (s), @(T(s))):w;,

e—0 s—»’y+
5€[vo,v(t0)] °
lir% (s, %(s), &(7(s))) = wi.

s€[vo,v(to)]

Thus

lim  sup  [f(s,%(s) + Aw(s), p(7(5))) = fls] + S| = 0
€7 Yselvo ,v(to)]

uniformly for épu € VT,

The function Y'(s,t) is continuous on [yg, y(t0)] x [t1 — 13,01+ 63] C O
(see (3.43), Lemma 3.4). Besides

Y(to) — 70 = €T 6t + o(edp).

Consequently o5(t, %0, c8p) has the order o(t, e6p).
The equality

lim+Y(5,t) =Y (y0,t) uniformly for ¢e€ [t — 63,11 + 85]

$—%Yq

allows us to write for o6(t,%g,£6p) the relaiton

o6t to, ebp) = —eY (y0,t) fiF 46t + o(t, ebp).



49

For the last addend of the expression (3.47) in a simalar way (see (3.34),
(3.41)) we obtain

|a4(tat0a€6ﬂ)| <
ti4+6s 1
VIO [ | [ (:866) + €800, 3(r(0)) + €80(r(6)) -
y(to) O
— fo [s)14 | fea (5, 8(5) + EAw(s), #(7(s)) + EAR(7(5))) — fou[s]] }d€ | ds <
< |IY[|O(e)or(to, cbp).
It is obvious that
Ax(r(t)) = Ay(r(1), € [y(to), Ty + 65].

Consequently the inequality

{1465 1
o1(to, =8p) < / [ / {1 Fer (5, 5(5) + EA(5), 2(7(5)) + EAY(r(5))) —

~For[1] + foa (5, #(5) + EA(5), #(7(5)) + EAy(7(5))) — foa[s]] | ds

is valid. From this inequality, taking into account (3.16), we establish that

hHéOW(E(S/,L) =0 uniformly for épue V™.

Thus a4(t,%0,8p) has the order o(t,£ép).
Owing to obtained relations for hy(¢,tg,£6p), we get

hl(t,to,E(S/,L) = —EY(”}/Q,t)fl-I_".}/-I_(StQ —

—/Y(’Y(S)a ) fea [1(5)] A2(5)3 (5)ds + oft, 8p). (3.50)

to

Estimate now hs(t,t0,c6p). We have:

t1463
|ha(t, to, eop)| < el]Y| / |6f(t, () + Ax(t), 2(7(1)) + Az(r(1))) —
—6 f[t]|dt = e[| ||as(to, e6p1). (3.51)

We represent as(tg,6p) in the form of three relations

as(to, 26p1) =
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Yo

= /|5f(t, (1) + Ax(t), §(1(1)) +ebp(r(1))) = 6 (¢, E(1), (r(1)))|dt +

to

Y(to)
+ [ 1860300+ A(t). olr(0) - 8510t +
t1465 " 3
+ / 652, E(t) + Aw(t), #(r(t)) + Aw(r(1)) — 6 f[]|dt =Y ai(to, e6p).

’Y(to) i=6

The estimate of these relations according to (2.1), (3.11), (3.41) yields
k +

CUEIEDY / Lis, i (O (|22(0)| + log(r(e))) e < O(e).

Further (see (3.11)),

b ¥(to)
alto,260) < I / 1658, B(1) + Ax(t), ¢(r(8))) — 6 1] i <
D Y(to)
<22|A | / - (3.52)

Since y(tg) — o as € — 0, we have
lir%a7(t0,66u) =0 uniformly for épuecVt. (3.53)

It 1s obvious that

s i1463
oslto, 00 <3N [ [Lag e, (O(180(0)]+ [Aa(ri) it < O). (350
=1y (1)

The estimates obtained above allow us to conclude that
ha(t,to, ebp) = o(t, eép). (3.55)

Finally we note that with ¢ € [{; — 63,1, + 63]

E/Y(s,t)éf[s]ds = E/Y(s,t)éf[s]ds + o(t, ebp). (3.56)

to io

From (3.44) taking into account (3.45), (3.46), (3.50), (3.55) and (3.56),
we obtain (3.19), where 8x(¢, ép¢) has the form (3.40). O
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Theorem 3.3. Let 7(1o) < to, 7(t1) > to; the Sunction (&(t), ¢(7(t)), 7(t))
is continuous at the point to, while the function f(w) is continuous at the
points wo = (to, Fo, P(7(10))), Wi, w9 = (y0,#(70), @(to)). Then there ewist
numbers &3 > 0, €3 > 0 such that for an arbitrary (t,e,6u) € [t1 — 63,11 +
83) x [0,e3] x V the relation (3.19) is fulfilled , where

sx(t,6p) = Y(to, t)bxo —
—{Y (fo, ) f(wo) + Y (30, )[ (&) = F(wi)]F(tdto) } 8o + a(t, 6p0).

It is not difficult to note that Theorem 3.3 is a simple corollary of Theo-
rems 3.1, 3.2.

Theorem 3.4. Let 7(t1) < 1o and the condition (3.17) is fulfilled. Then
there exist numbers 63 > 0, g3 > 0 such that for an arbitrary (t,¢,6p) €
[t — 63,11 + 63] x [0,e3] x V= the relation (3.19) is fulfilled, where

sx(t,op) = Y(to, ) [6z0 — fy 8to] + alt, bp1). (3.57)

f’roof. From Lemma 2.7 it follows the existence of th§ numhers g3 € (0, 9],
63 € (0, 62] such that for an arbitrary (¢, ¢, 6p) € [t1—83,1+63] x[0,83] x V'~
(3.23) and

max _ |Az(t)] < O(e) (3.58)
t€to,t1463]

are fulfilled.
Let b3 € (0,83], €3 € (0, 3] be so small that
V(to) > 1+ 83, To <11 — 6. (3.59)
It is clear that if (s,t) € [to, o] x [f1 — 63, %1 +63], then y(s) > t; therefore
Y(v(s),t) = 0.

Consequently (see (3.31)) we get

io

ot ose) == [ V(050,07 (AR (5)ds + ot 2600
T(fg)

In the case under consideration it is easy to note (see (3.30)) that

t14683
oozt < IV |17 300+ Aa(0), (0 + 2b(r(0) -

to

— [, 2(t), p(r(1))) = fo [1]A2(t) = e fe,[80(r(1))| | dt,

|ha(t, to, €bp1)| <
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t1465
§€||Y||/ |6f(t, &()+Ax(t), p(r(1) +edp(T(1) =6 f(t, (1), (7(1)))|dt.
7o
In a similar way (see (3.34), (3.36)) using (3.58) we establish that
hi(t,to,e6p) = o(t,cbp), i=1,2.

By (3.23) and (3.59), the relation (3.31) is fulfilled .
From (3.28), taking into account the relations obtained above, we have

(3.19), where §z(t, 6) has the form (3.57). O

Theorem 3.5. Let 7(11) < t5 and the condition (3.39) be fulfilled. Then
there exist numbers 63 > 0, €3 > 0 such that for an arbitrary (t,¢,6p) €
[t — 63,11 4 63] x [0,e3] x V't the relation (3.19) is valid, where

Sx(t, op) = Y (fo, 1) [6mo — fif 6to] + alt, bp). (3.60)

Proof. By Lemma 2.9 there exist numbers &5 € (0,¢2], 63 € (0, 8] such that
(3.42) are fulfilled and

max _ |Az(t)| < O(e). (3.61)
t€[to,t14+65]

Let the numbers 63 € (0, &3], €5 € (0,£3] be so small that
o > 11 4063, to <t —bs. (3.62)
It is clear that if (s,t) € [{o, o] x [f1 — 63,%1 + &3], then y(s) > t; therefore
Y(v(s),t) = 0.
Consequently (see (3.46)) we get

to

ho(t,to,ebp) = ¢ / Y (7(s),0) fur [7(s)]Ap(s)¥(s)ds + o(t, ebp).
7(fo)
In the case under consideration it is easy to see (see (3.30)) that

t1465
ntosto, o)) < VI [ |17 300+ Aa(0), (0 + 2b(r(0) -
—f(t,2(6), (r(1)) = fou [ A (1) — e fo [1]6(7(1)] | dt,
|h2(tat0a€6ﬂ)| S
t1465

<ef¥|] / |65(1, &(t)+Az(t), o(7(1))+edp(r(1) =8 F (¢, &(t), &(7(1)))|dt.

to
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Analogously, using (3.61) and (3.16) (see the proof of Theorem 3.2) it
can be proved that

hi(t,to,e0p) = o(t,ebp), i=1,2.

It is obvious that by virtue of (3.42) and (3.62) the relation (3.45) is
fulfilled.
From (3.44), taking into account the relations obtained above, we have

(3.19), where §z(t, 6) has the form (3.60). O

Theorem 3.6. Let 7(t1) < 1o, the function @(7(t)) be continuous at the
point to, and the function f(w) be continuous at the point wy. Then there
exist numbers 83 > 0, €3 > 0 such that for an arbitrary (t,e,6p) € [t; —
63,11 + 63] x [0, 3] x V the relation (3.19) is valid, where

Sa(t,8u) = Y (fo, 1) {60 — flwo)bto} + alt,ép).
This theorem is a simple corollary of Theorems of 3.4, 3.5.

Theorem 3.7. Let T(fo) =10 and the assumptions of Lemma 2.11 be ful-
filled. Then there exist numbers 63 > 0, €3 > 0 such that for an arbitrary
(t,e,6p) € [t1 — 63,11 +63] x [0, 3] x V'~ the relation (3.19) is fulfilled, where

S (t,8p)=Y (fo,){8x0 — [f5 + (fy — f5)7716to} +ai(t,8p), (3.63)

t

ay(t,ép) = /Y(s,t)éf[s]ds.

to

Proof. By Lemma 2.11 there exists a number £3 € (0,¢2] such that for an
arbitrary (¢,6u) € [0,e3] x V'~ the relation (3.22) is fulfilled and

Az(to) = e{éxo — [f5 +(f5 — f5)7 16to} + o(t, edp).
Let the number 85 € (0, 62] be so small that
lo <1 — 6.
The function Y (s,t), (s,f) € [to, 0] x [t1 — 83,11 + 63] is continuous.
Therefore
Y (o, t)Ax(to) = eY (o, t){6z0 — [f5 + (f5 — f3)¥ 16t0} + o(t,bp).
It is clear that .
ho(t,to,e0p) = 0.
In the case under consideration we have
t1+63
|7t to, )| <[] / (|78, 2(t) + Ax(t), #(7(1)) + Aw(r (1)) -
to

— 10 = fo [0A2(t) = fou[(]A2(r(t))[] dt,
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|h2(tat~0a€6ﬂ)| S
t1+635
<Vl [ oAt 0 + Aat), 3 ((0) + Aa(r(0) - 67111

to
From this inequalites, using (3.22) analogously (see (3.34),(3.37)) can be
obtained that
hi(t,to,e6p) = o(t,ebp), i=1,2.

On the basis of the obtained relations, from (3.28) it immediately follows
(3.19), where §z(t, 6) has the form (3.63). O

Theorem 3.8. Let 7(1o) = 1o and there exist the finite limits lim f(w) =

w—ws

f2+7 11m+f(W) = fél—f w € R;”: X 027 wjl— = ({0,1‘0,@({3—)), tliglopy(t) = ;}/+,

t € RYly. Then there exist numbers 85 > 0, €3 > 0 such that for an
arbitrary (t,e,6p) € [t1 — 63,11 + 63] x [0,e3] x V't the relation (3.19) is
fulfilled, where

S (t,8p) =Y (to,t){6x0 — [fs +(f2 — f5 )37 16t0} +au(t, 6p). (3.64)

Proof. By Lemma 2.14 there exists a number € € (0, 2] such that for an
arbitrary (¢,6p) € [0,&] x VT the relation (3.41) is fulfilled and

Ax(to) = e[6zg — fif 6to] + o(t, ebp). (3.65)
Let the numbers g5 € (0,£], 85 € (0, 82] be so small that
v(to) < t1 — 63.
Obviously (see (3.29))

to

ot to,25m) = [ ¥ (36,0 e A (5)5 (s)ds =
7(to)
Y(to)
= /Y(s,t)fo[s]Ax(T(s))ds.

to

Further, with ¢ € [{; — 83,11 + &3]

¥(to) t
hi(t, to,e6p) = /Y(S,t)Rl(S,E(S/J)dS—I— /Y(s,t)Rl(s,Eéu)dsz
to Y(to)
= ai(t,to,ebp). (3.66)

1=5
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Represent the first addend of the expression (3.66) as

Y(to)

as(t,to, e6p) = — / Y (5,1) fo, [s]Az(s)ds +

Y(to) D
+ / Y (5,)(f(s,2(s) + Au(s), o(7(s))) — fs])ds —
D Y(to)
— | Y(s,0)f0,[s]Ax(7(s))ds =

s D v(to)
= it to, 6p) — /Y(s,t)fo[s]Ax(r(s))ds.

i=7 fo

It is obvious (see (3.41)) that o7(t, %0, £6p) has the order o(t, £ép).
Next, write og(t, o, ép) as

O'g(t,to, E(S/,L) =

Y(to)
[ Y60 (60506) + Aal) (5D = Fls] + £ = s +
D 7(to) 10
+ / Y (s, )[fF — fds = Zai(t,to,eéﬂ).

It is clear that if s € [y0,7(¢0)], then 7(s) € [fo,t0]. Therefore

lim (s, 2(s) + Aw(s), ¢(7(5)) = lim (s, 2(s), §(7(5))) = o,
s€lto 1(to)] o
lim (s, &(s), #(7(s))) = ws.

e—0

5€[to,v(t0)]
On the basis of these equalities, using the relation
1(to) —to = e(3" — 1)ty + ofebp),
in a standard way we obtain
oo(t, to, ebp) = (t,e6p),

O'lo(t,to,E(S/,L) = _EY({O,t)[f;— — f;—]("}/-l— — 1)6t0 + O(E(S/,L)
The second addend ag(?,tg,£6) of the expression (3.66) is estimated
analogously to asc(t,t0,e6p) (see the proof of Theorem 3.2), i.e.,

ag(t, to,ebpu) = o(t,ebp).
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According to the obtained relations, in the case under consideration for
ha(t,tg, ebp) we get

ha(t, to,e6p) = —eY (fo, )[f5 — f 17 — 1)bto —
¥(to)
- / Y (5,1) fuo [s]Az(7(s5))ds + o(edp).
to
It remains to estimate hs(?,tg,£64). We have (see (3.51), (3.54)):
|ha(t,to, e6p0)| < el|Y || (ar(to, e8p) + as(to, e6p)) < O(e).

Finally note that the equalities (3.45), (3.56) (see (3.64)) are valid. From
(3.44), taking into account the obtained relations, we have (3.19), where
8x(t, 6ut) has the form (3.64). O

Theorem 3.9. Let 7(to) = to and the conditions of Theorems 3.7, 3.8 be
fulfilled. Moreover,

s+ s =)y =+ -t =1

Then there exist numbers 63>0, €3>0 such that for an arbitrary (t,e,é6p) €
[t — 63,11 + 63] x [0,e3] x V the relation (3.19) is valid, where

Sx(t,6p) = Y ({o,1) [61‘0 - f&to] + aq(t, 6p).
This theorem is a corollary of Theorems 3.7, 3.8.
Theorem 3.10. Let T(fo) =1y and
whlf}f(“) =fy, wE R, x 0%, limi(t)=1, t€R.

t—tg

Let, moreover, there exists a neighborhood V™~ (wy ), such that the function
f(w), w € V- (wy) is bounded. Then there exist numbers é3 > 0, €3 > 0
such that for an arbitrary (t,e,6p) € [t; — 63,11 + 63] x [0,e3] x V™ the
relation (3.19) is fulfilled , where

S (t,bp) = Y(fo,t)[éxo - fz_éto] + aq(t, 6p).
This theorem, by Lemma 2.12, is proved analogously to Theorem 3.7.
Theorem 3.11. Let T(fo) =1y and
lim f(w)=ff, weRf x0% limj(t)=1, t€R}.

wW—Wws t—»t'D"
Let, moreover, there exist the neighborhood V"’(wj{), such that the function
f(w), w € VY(w]) is bounded. Then there exist numbers 63 > 0, €3 > 0
such that for an arbitrary (t,e,6u) € [t1 — 63,11 + 63] x [0,e3] x VT the
relation (3.19) is valid, where

S (t,bp) = Y(fo,t)[éxo - f;'éto] + aq(t, 6p).
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This theorem, by Lemma 2.14, is proved analogously to Theorem 3.8.
The difference consists in estimation of the expression og(,tg, £6). Namely,
the integrand in os(t,tp, €ép) is bounded, while

$(to) — o = (Jo) + &5+ blo + ofebu) = o(ebp) (3 = 1).
This allows us to conclude that
os(t,to, ebp) = o(t,cbp).

Theorem 3.12. Let 7(fo) = to and the function (@(t), 7(t)) be continuous
at the point ty. Let the function f(w) be continuous at the point wz and be
bounded in the neighborhood of the point w§ = (fo, %o, P(ts)). Then there
exist numbers 83 > 0, €3 > 0 such that for an arbitrary (t,e,6p) € [t —
63,11 + 63] x [0,e3] x V (3.19) is fulfilled, where

Sx(t, 8u) = Y(lo, t)[620 — F(ws)bto] + i (t, 6p).

It is easy to note that c"y(tNO) = 1. Consequently this theorem is a corollary
of Theorems 3.10, 3.11.

Theorem 3.13. Let 7(t1) = to and the conditions (3.17), (3.18) are ful-
filled. Then there exist numbers 63 > 0, €3 > 0 such that for an arbitrary
(t,e,86p) € [t1,11] x [0,e3] x V™ the relation (3.19) is valid, where

St op) =Y (To, t)6xo — [Y(to, ) fy + Y (1, 8)f7 77 |6to + alt,ép).
This theorem is proved analogously to Theorem 3.1.

Theorem 3.14. Let 7'(t~1) =1y and
lim f(w) = f7.

w—»wu

Then there exist numbers 63>0, €3>0 such that for an arbitrary (t,e,é6p) €
[t1 — 83,11 4 63] x [0,e3] x VT the relation (3.19) is fulfilled, where

sx(t,6p) = Y(to,t) [61‘0 - f&"éto] + a(t, ép).

This theorm, taking into account Y'(s,t) = 0, (s,t) € [t1,7(to)] x [t1 —
83,11], is proved analogously to Theorem 3.2.
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CHAPTER II
CONTINUOUS DEPENDENCE AND DIFFERENTIABILITY
OF SOLUTION OF NEUTRAL DIFFERENTIAL EQUATIONS

4. CONTINUOUS DEPENDENCE OF SOLUTION

4.1. Preliminary Notes. Let  : R' — R! be a continuously differentiable
function satisfying n(t) < t, n(t) > 0; let Ay(Jz, R™) be the space of con-
tinuously differentiable functions ¢ : Jo, — R", Jo = [p(a),b], pla) =
min{r(a), 5(a)} with the norm [lglly = sup{lp(a)] + |G(0)] : ¢ € Ja}; C(J)
be the space of measurable and bounded n x n matrix functions C(¢), t € J,
with the norm: ||C|| = sup|C(?)|.

teJ

Consider the linear neutral differential equation
#(t) = A()z(t) + B)z(r(t)) + C(O)x(n(t)) + f(1), telto, ], (41)
2(t) = @(t), telp(to)to), alto)=

where A(t), B(t) are summable on J n x n matrix functions C € C(J), f:
J — R" is a summable function, ¢ € Ay(Jo, R"), tg € [a,b), x € R".

Lo,

Lemma 4.1 (Cauchy’s formula). The solution x(t), t € [to,b] of the equa-
tion (4.1) with the initial condition (4.2) may be represented as

a(t) = @(lo, t)xo + / Y(7(s), ) B(7(s))7 (s)p(s)ds +
7(to)

+ / Y(U(s),t)C(U(s))d(s)gb(s)ds—1—/Y(s,t)f(s)ds, (4.3)
n(to) to

where ®(s,t), Y(s,t) are matriz functions satisfying the set of equations
with advanced argument

a@éz,t) =~V (5,0)A(s) = Y(v(5),t) B(v(5))%(5), s€[a,t], (4.4)
Y(s,t) = ®(s,t) + Y (0(s))C(c(s),t)o(s), s € [a,t]. (4.5)

Moreover, Y (s,t) satisfies the condition

E, s=1,
ven={g Iy

Here o(t) is the inverse function of n(t).
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This lemma is proved by a standard way (see the footnote 5).

It is easy to note that the equation (4.5) allows us to express Y (s,t) by
the function ®(s,¢). To this end on the set J? define the function m(s,t)
taking values from the set of non-negative integer numbers. Namely for
s >t put m(s,t) = 0, while for s <t let m(s,t) be the natural number such
that

s€ (Um(s’t)-l_l(t), Um(s’t)(t)].

Here as always

) =" @), i=1,2,..., ’t)=t

It is clear that for any fixed ¢ € J the function m(s,t), s € [a,t] is
piecewise continuous and for an arbitrary (s,t) € J?, we have m(s,t) €
[0,m(a,b)].

Solving the equation (4.5) by the method of steps from right to left, we
obtain

m(s,t) '
Y(s,t) = Z O(a'(s),t)Ci[s], s € [a,t], (4.6)
i=0
where
Cils] = T _, C(e7 (s))é(e? " (5)); (4.7)
]:
it is assumed that Cy[s] = E.

Substituting (4.6) into (4.4), we obtain the equation with advanced ar-

guments

m(vy(s),t)
- Z O(a' (7(s)), )Ci[y(s)]B(1(5))7(5), s € [a,1]. (4.8)
It is obvious that (see (4.5))

E, s=1,
D(s,t) = { 0 s>t (4.9)

Below some properties of the matrix functions ®(s,t), Y (s,t) are es-
tablished which are used in proving theorems on differentiability of solution

(see § 5).

Lemma 4.2. Let t; € (a,b], while ®(s,t) be a solution of the equation
(4.8) with the condition (4.9). Then for an arbitrary ¢ > 0 there exisis a
number 6§ = 8(¢) > 0 such that for an arbitrary t; € J : [ty — 1] < & the
mequality

|D(s,%1) — @(s,fl)| <e VYs€la, 5], s1= min{tl,fl},
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s fulfilled.

This lemma is a simple corollary of a theorem analogous to Theorem 1.3,
which is valid for equations with advanced arguments.

Lemma 4.3. The function ®(s,t) is continuous on the set
D={(s,t):a<s<t telJ}

This lemma, using Lemma 4.2, with minor modifications can be proved
analogously to Lemma 3.4.

Lemma 4.4. Let &, & € (a,b), & < 9™ (&), mo = m(&p, &) and
there exist the right and left finite limits of the function C(s) at the points
(&), i=1,...,mg. Then there exists a number & > 0 such that

lim Y(s,%) = Y, (®), EmY(s,) = Ve (1)

s—»fu

uniformly for t € [&1 — 6,&1 + 6],
where the functions Yy (1), Yg-l')'(t) are continuous on [§1 — 6,& + 6].

Proof. By properties of the function 5(¢), there exist numbers 4, 6 > 0such
that for every ¢t € [£1 —6,&1 + 6] C J we have m(&y,t) = m(&p,&1) = mg and

[€0 = 8,60+ 8] C (™ * (1), ™ (1)]
Moreover, B
O'mu(fo + (S) < fl — 6.
Thus with (s,t) € [€o — 8,&0 + 6] x [€1 — 6,&1 + 8] = Ty we get

m(s,t) = mg, (c™°(s),t) €1l

Consequently
) = Z@(Ui(s),t)C’i[s] for (s,t) € Il
i=0

and the functions (see Lemma 4.3)
(' (s),t), i=1,...,mq,

are continuous on Il,.

By assumption the functions C;[s], i = 1, ..., mg, have one-sided limits
at the point & (see (4.7)).
Thus
1_121 Y (s,1) Z@ =Yg (1),
lim Y'(s,t) Zq) C’+—Y+()

s—>§+
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where C; and C;" are the right and left limits of the function Cj[s] at the
point &g.
From these equalites it follows the continuity of the functions YE; (t) and

YE‘ID' (1), respectively, fort € [&, — 6,6 +6] . O
Lemma 4.5. The solution x(t), t € [to,b], of the equation
2(t) = C()x(n(t)) + f(t), t € [to,b], (4.10)

with the initial condition (4.2) may be represented as

z(t) =xo+ / Y(o(s),t)C(a(s))o(s)(s)ds + /Y(s,t)f(s)ds, (4.11)
n(to) to

where Y(s,t) is a matriz function satisfying the equation
Y(s,t) = E4+Y(0(s))C(c(s))(s) (4.12)
and having the following form

m(s,t)

Y(s,t)= Y x(c'(s),)Cils], s € [a,1], (4.13)

;s
X(S’t)_{ 0, s>t
Proof. In the case under consideration the equation (4.4) has the form

IP(s,1)
Os

=0, s€lalt.

Consequently, taking into account (4.9), we obtain ®(s,t) = E, ®(c'(s),
t) = ®(c'(s),t)E. On the basis of these equalities from (4.3), (4.5), (4.6) it
follows (4.11), (4.12), (4.13), respectively. O

Lemma 4.6. If the function x(t), t € [p(to), b], has the form

So(t)’ te [p(to),to),

z(t)= x —1—/ Y(o(s),t)C(o(s))o(s)p(s)ds —|—/Y(5,t)f(5)d5, L€ [to, b],
n(to) to

where Y (s,1) is a solution of the equation (4.12) (see (4.13)), then on the
interval [to, b] it satisfies the equation (4.10).
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Proof. Divide the interval [tg, b] into the subintervals [£;,&;41], 1=0,...,1,
where &y = 1o, & =oi(te), i=1,...,1, &1 =b.

Let t € (€0,&1). Then n(t) € [n(to),to] and m(s,t) = 1for s € [n(to), n(t)],
m(s,t) = 0 for s € (n(t),1].

Thus (see (4.13))

It is easy to see that (see (4.12), (4.7))

to to

[y )00 060 = [ (75,0~ B)pls)ds =
n(to) n(to)
n(t) t t
= /C’(U(s))d(s)gb(s)ds,/Y(s,t)f(s)ds:/f(s)ds.
n(to) to to

Consequently, for ¢ € (&, &1)

n(t) t
z(t) = wo + / C(o(s)o(s)p(s)ds + /f(s)ds. (4.14)
n(to) to

Thus, the function #(t) is absolutely continuous on the interval [£p, &1].
From (4.14), we obtain

2(t) = C(t)e(n(t)) + £(t) = C(O)z(n(t) + f(1).
Let t € (&1,€2). Then

{E +Cils]+ Cals], s € [n(to), (1)),
Y(s,t) = { £+ Cils], s € (n*(1), n(t)],
E, s € (n(t),1].
We have
to n°(t)
z(t) = wo + / Cy[s]@(s)ds + / Cals]e(s)ds +
n(to) n(to)
1 n(t)
—|—/f(5)d5 + /Cl[s]f(s)ds.

It is obvious that z(t), t € [£1,&2], is absolutely continuous and is a
continuation of (4.14).
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Find the derivative of the function #():
#(t) = COC ) (1) + CO f(n(t) + f(t) =
= CO[CNe(* () + F(1)] + () = C()i(n(t)) + f(1).

Continuing this process with respect toi =1,... [ —1, we establish that
z(t) on [tg, b] is a solution of the equation (4.10). O

Lemma 4.7. Let C', C) € C(J), k=1,2,..., and Y, Vi be the corre-
sponding solutions (see (4.12), (4.13)), respectively. Then from the equality

Jim [0 — Cll=0
it follows
Jim [Y Y =0,

where

Vi = Y|| = sup{|Yi(s,1) = Y (s,8)| : (s,1) € J*}.

Lemma 4.8. Let C, C € C(J), C = C+e8C, ¢ >0, ||6C|| < const, Y, Y
be the corresponding solutions (see (4.12), (4.13)). Then there exists a num-
ber ay, not depending on 6C', such that

IV =Y < eay. (4.15)
On the basis of (4.12) the above lemmas are easily proved.

Lemma 4.9. Let C(s), s € J, be a continuous matriz function, K C O
and a sequence g; € E(J x O, R™), i = 1,2, ..., satisfy the conditions

/|gi(t, z)|dt <o, Yee K, limH,(J,K)=0. (4.16)
J
Then
lim Hey,(J, K) = 0. (4.17)

Proof. There exists a sequence of continuously differentiable matrix func-
tions Pp,(s), s € J, such that

lim [|C' = Pl = 0.

Further, we have

t//
< [1Pus) = COllastsallts +| [ Poori(e, 00
J t
< s||Py — O + ami (P, 17, ).

<

‘/t”C'(s)gi(s, z)ds
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Integrating by parts yields

ami(t' 1" ) ‘/ ( /gl(f, )dg)ds <
< ‘Pm(t”)]gi(s,x)ds—/Pm(5)</sgi(§,x)d£)ds <

< (1Put1+ [ 1Pn0lds ) 11,0, 5)

It 1s obvious that with a fixed m

lim max ami(t' 1", 2) = 0.
71— 00 t t EJ

xEK
Consequently
lim Hey, (J, K) < as|| P — C|.

Hence we obtain (4.17). O

Lemma 4.10. Let C(s), s € J, be a piecewise continuous matriz function
and a sequence g; € E(JxO,R™), i = 1,2,..., satisfy the conditions (4.16).
Then

lim Hey (J,K) = 0. (4.18)

Proof. It is not defficult to see that

l
Hey (1K) Z g:(ep, K, (4.19)

where e, C J are the subintervals of continuity of C(s).
It is clear that

lim H,,(e,, K) < lim H,,(J, K) = 0.

11— 00

On the basis of the previous lemma we have

hchgl(ep,A) 0, p=1,...

T — 00

l.

bl

Hence, taking into account (4.19), we obtain (4.18). O
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Lemma 4.11. Let C(s), s € J be a piecewise continuous matriz function,
Y(s,t), s €[a,t], t € J, be a corresponding solution (see (4.12), (4.13)) and
a sequence g; € E(J x O,R™), i = 1,2,..., satisfy the conditions (4.16).
Then

y

‘/Y(s,t)gi(s, z)ds

¢!

li = ] [ t . 4.2
Jim t’,t”HEl?,);EK 0 uniformly for t€J. (4.20)

Proof. Using the expression (4.13) and the condition Y(s,t) = ©, s > t, we
get:

Ry

sup {/Y(s,t)gi(s,x)ds ot elJ xe K} <

¢

y

< sup {/Y(s,t)gi(s,x)ds At elat], v € K} <

¢!

m(a,t) t
< Zsup {‘/C’j[s]gl(s, z)ds| ' 1" € (P ), nF ()N, & € K} <
k=0 j=0 M
m(a,t) k
< Z ZHCng([a’ nk(b)], K) for every k=0,...,m(a,b). (4.21)
k=0 j=0
The matrix functions Cj[s], j =0,..., k, are piecewise continuous on [a,

n*(b)], therefore, by Lemma 4.10 we obtain

lim He oy, ([a, " ()], K) =0, k=0,...,m(a,b), j=0,... k.

11— 00

Consequently, by (4.21) the relation (4.20) is valid. O

Lemua 4.12. Let C € C(J) and a sequence ¢; € F(J x O,R™), i =
1,2,..., satisfy the conditions:

lgi(s,2)| S s, W(tw) €T x K, lim Hy (], K)=0.  (4.22)

Then
lim Hey,(J, K) = 0.

Proof. There exists a sequence of continuous matrix functions Pp(t), t €
J, m=12,..., such that

lim [|C(s) — Pn(s)|ds = 0.

J
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It 1s obvious that

Py

< a3/|C’(5) — Po(s)|ds + ‘/Pm(s)gi(s, z)ds

¢!

‘/t”C'(s)gi(s, z)ds

Thus with a fixed m we get

11— 00

lim Hey, (J,K) < a3/|C’(5) — Pn(s)|ds.
J
Hence 1t follows the desired equality. [
Lemma 4.13. Let C' € C(J), Y(s,t) be the corresponding solution (see

(4.12), (4.13)) and a sequence g; € E(J x O, R™), i = 1,2,..., satisfy the
condition (4.22). Then

Ry

lim max ‘/Y(s,t)gi(s, z)ds| =0 uniformly for t € J.
t/

t—o00 (/1" z)eJ XK

This lemma, by Lemma 4.12, follows from the inequality (4.21).
4.2. Theorems on Continuous Dependence of Solution. To every element
p=(to,x0,0,C, f) €A1 =J x O x A1(Jo,0) x C(J) x E(J x O*, R™)
there corresponds the differential equation
y(t) = COh(to, £, 9) (1)) + F(1, y(1), h(lo, o, 9)(7(1)))  (4.23)

with the initial condition

y(to) = o, (4.24)
where the operator h(-) is defined by
e ={ 0 TERG (129

The solution of the equation (4.23) is defined according to Definition 1.1,
with a natural modification.

Theorem 4.1. Let y(t) be a solution, defined on [ri,r2] C (a,b) corre-
sponding to the element o1 = (fo,i‘o,gﬁ,é, f) € Ay, Let é(t), t e J, be
a pieceswise-continuous matriz function, Ky contain some neighborhood of
the set ¢(J2) U g([r1,r2]). Then there exist numbers & > 0, i = 0,1, such
that to an arbitrary element

H € V(/]a[(laéoaao) —

=V (T, 80)x V (&0, 80) x V($,80)x V(C,60)x V (f, K1,80)NW(f, K1, a0)
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there corresponds the solution y(t, 1) defined on [ry —é1,r2+61] C J. More-
over, for each € > 0 there exists a number § = 6(¢) € (0,6y) such that for
an arbitrary p € V(fi, K1, 80, ag) the inequality

|y(taﬂ) _y(ta/j” <e te [7“1 —(51,7“2—1—(51], (426)
s fulfilled.

Proof. In a way similar to the proof of Theorem 1.2, to every u € Ay there
corresponds the equation

(t) = C(t)h(to, ¢, 2)(n(t)) + g(t, 2(t), h(to, p, 2)(7(1)))  (4.27)
with the initial condition
z(tg) = wg. (4.28)

The function ¢ has the form (1.9) and satisfies the conditions (1.10), (1.11).
Tt is easy to see that the equation (4.27) for ¢t € [r1,%o] may be considered
(see (4.25)) as the ordinary differential equation

a(t) = CWen)) + gt z1(1), o(7(1))), (4.29)

Zl(to) = Xy, (430)

while for ¢ € [to, ro] as the neutral differential equation
2(t) = C(O)z2(n(1)) + g(t, 22(1), 22(7(1))), (4.31)
za(t) = (1), t€[plto) to),  z2(to) = 0. (4.32)

Tt is clear that if z1(¢), t € [r1,%0], is a solution of the equation (4.29)
with the initial condition (4.30), and z2(?), t € [tg, 2], is a solution of the
equation (4.31) with the initial condition (4.32), then the function

th, tE[Tl,to,
Z(t) - { ZzEt;, tE [to,?“z])

will be a solution of the equation (4.27) with the initial condition (4.28)
defined on the interval [ry, rs].
Write the equation (4.29) with the condition (4.30) in the integral form

t

z(t) = xo—l—/[C’(s)gb(n(s)) +9(s,21(8),0(7(3))]ds, 1 € [a,t0], (4.33)

to
and the equation (4.31) with the condition (4.32) in the equivalent form
o(to)

)= a0t [ V0CE)RE)s +

to
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t

—|—/Y(,t)g(5, z2(8), z2(7(s)))ds, t € [to,b], (4.34)

to

where Y'(s,t) is the matrix function corresponding to C(s) (see (4.13)).
We introduce the notation

E, a <t <tp,
Yi(s,t,t0) = Y (s,1), to <t <o =min{o(ty),b},
o, o<t<b, (4.35)
E <t <t
YZ(SatatO): ’ ‘= < 0
Y(s,t), to<t<b.

On the basis of this notation the equations (4.33) and (4.34), and conse-
quently the equation (4.27), may be written in the form of the equivalent
integral equation

z(t) = 2o +
t

+/[Y1(8,t,to)C(S)sb(n(S))JrYz(S,t,to)g(s,Z(S),h(to,%Z)(T(S)))]d& (4.36)

to

Tt is obvious that the solution of the equation (4.36) is dependent on the
parameter

peG =Jx0xA(Jy,0)x C(J)x W(f,Ki,a0) C E, =
=R x R" x Ay(Ja, R™) x C(J) x E(J x O* R").

The topology in G is induced from F,,.
On the space C'(J, R™) define a family of mappings depending on p € Gy

by the formula

C(t) = C(ta Zaﬂ) = o+

t

+/[Yl(s,t,to)C(S)sb(n(S))JrYz(s,t,to)g(s,Z(S),h(to,so,Z)(T(S)))]ds,

teld, zeC(J,R").
We define the iterations F*(z, u):

Ce(t) = Gty z, 1) = w0 +
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+/[Y1(5’ i, tO)C(S)Qb(U(S))"i'Y? (5’ i, to)g(s, Ck—l(S), h(to’ b Ck—l)(T(S)))]dS’

k=1,2,..., ¢o(t) ==(t).

Using the inequality (1.11), we get
|CL (1) — G (D) <

< Vel [ L) (1G61(5) = a9 + Bt .G (r() -

—h(to, go,C,’C/_l)(T(s))Dds, k=1,2,...,
where ||Ya|| = sup{|Ya(s,t,%0)| : s,¢,t0 € J}; it is assumed that /() =

Z(1), C(t)=="().

On the basis of this inequality in a way similar to the proof of Theorem
1.2 it can be proved that some iteration of the mapping (4.37) is a uniform
contraction. Thus for every p € G the equation (4.27) with the initial
condition (4.28) has a unique solution z(¢, p), t € J.

Now for an arbitrary £ = 1,2,... we prove that the mapping

Fk(z('a/])a/") (G — C(‘]’ Rn)

is continuous at the point u = .
To this end is suffices to show that if the sequence y; = (th, zh, i, Ci, i) €
Gi,i=1,2,... tends to g = (to, &0, 5, C, f), i.e., if

Jim ([t o[ +h o+l @i~ @l HICi=Cll+Hsp (. K1) =0, 8fi = fi~f,
then

lim Fk(z(aﬁ)aﬂl) = Fk(z(a/])a/]) = Z(a/]) (438)

11— 00

The proof will be carried out by induction. Let £ = 1. Then

G = 2(0)] < | — 7] +
+\ [Yit s — [Fi6s, 1) C) 00505 +
+\ [ ¥ttt 261t 1, 261 -
- / Vas,t,80)ii(5, 2(5), h(fo, ¢, 2)(r(s)))ds

to
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Here (j(t) = Ci(t, %), 2(t) = 2(t,1); § = xf, i = xfi (see (1.9));
YY, Yy are matrices corresponding to Cy(s), Y1, Ya are matrices corre-
sponding to C(s) (see (4.35)).

First of all we estimate a;(?)

=al(t) +ai(t). (4.39)

It 1s obvious that
) < I / C(s)p(n(s))ds. (4.40)

It 1s not difficult to see that

/ Vi (5,4,8) — Vi(s,1,70)] [Ci(5)] | (n(s))lds +
/ 194 (5, £, 20)|Ci(5) i (n(5)) — C(5)b(n(5))|ds <

< el ||soz»||1/|ﬁ<s,t,fo> (s, 1, )]ds +

+||?1||§25>|Ci(53¢i(ﬁ(5)) C(s)@(n())|(b - a). (4.41)
Next,
sup|Ci(s)¢:(n(s)) = C(s)2(n(s))] <
<ol IC = Cill + llei = IR IICY- (4.42)

Let {op > t) and assume that ig is so large that o(th) > to for i > ip.
Then, taking into consideration (4.35), we get

/|y1 Yi(s,t,41)|ds =

o o(tg) a(fo)
= [lE=violis+ [ 10 -visolis+ [ [TGsuolds <

4 to o(ty)
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<IYi = Elltto — t) +[|Y = Yill(b — a) +[[Y[|(o(Fo) = o(t5)),

where Y;, Y are solutions of the equation (4.13) corresponding to C;(¢) and
C(1), respectively.
From the latter inequality by Lemma 4.7 we conclude that

lim |§~/1(5,t,fo) —Yi(s,t,t})|ds =0 uniformly for ¢ € J. (4.43)
J

Let now o < ti. Choose a number iq so large that o(to) >t for i > ;.
Then

/|}71(5,t,{0) - Yf(s,t,t%ﬂds =

J
g a(to) o(tg)
= (s - Blas+ [ 5.0 -vits.0lds+ [ its.olds <
10 it U(fg)

<Y = El|(th = To) + IV = Yill(b = a) + [[ill(o(t) — o (o).

Hence it follows (4.43).
The inequalities (4.40) and (4.41), in view of (4.42) and (4.43), yield

lima;(t) =0, uniformly for teJ. (4.44)

Now we estimate the addend b;(¢). We have

_|_

bt) < ‘ / Va(s, 1, 10)i (s, 2(5), h(fo, 3, 2)(7(5)))ds

+\ [0 80105, 266), bt 1,261 -

tg

~Ya(s, 1, 80)g(s, 2(s), h(lo, ¢, 7)(7(s)))]ds| = bj (1) + b (2).

It 1s obvious that

to
b0) < Tl 7, 00
tg
Thus
limb}(t) =0 uniformly for ¢ € J. (4.45)

11— 00
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Further,

Py

b2(1) < max / Vi (5,1, 6)8gi(5, 2(5), hth, i, 2)(7(5)))ds| +

ot tied

[ 1V, 8)= Va8 (5. 25, il 5,2)(r()))ds +

+ / Y3 (5,2, 28] [i(s, (5, h(th, 91, )(7(5))) —
(s, 5(5), h(Fo, &, 2)(r(s)))|ds =
= B0 4 B + 030, bgi=gi—

First of all we estimate b3(¢):

Py

/ Y3 (5,1, 80)005(5, 2(5), h(th, @, )(7(s)))ds

¢

3
S (1) <
bl( ) tlyHtlIEIiX

_|_

+||Y§||/Légl,K1(5)|h(t6, i, 2)(7(s)) = h(ty, @, 2)(7(s))lds = B} (1) + 57 (1).

It is easy to see that

Ry

G} () <  max /6gi(5, Z(s), ¢(7(s)))ds

Tt €la,tl]
tl

_|_

y

/ Yi(s, 0)6gi(s, 2(s), @(7(s)))ds
/ Yils, 0)6gi(s, 2(s), 2(7(s)))ds
/ 59:(5, (), §(7(5)))ds

¢

_|_

4+ max
ety sil

max

+ <
1" €[s54,0]

< max
t’,t”EJ

_|_

1t

/}7(5, 1)bg:(s, 2(s), p(7(s)))ds

¢!

_|_

4+ max
t’,t”EJ

y

/f/(s, 1)6gi(s, 2(s), 2(7(s)))ds

¢!

+ max
t’,t”EJ

—|—2||}~/—YZ'||/m5f“Kl(t)dt, (4.46)
J
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where s; = miﬂ{’Y(té)a b}.
By the assumption

/th“Kl (t)dt S Q. (447)
J

Further
Hsg,(J, K1) < Hsp,(J, K1),

consequently Hsy,(J, K1) — 0 as ¢ — oo. After this, using (4.47) and
Lemmas 1.3, 4.7, 4.11, we get

lim 8 (t) =0 uniformly for ¢ & J. (4.48)

For 32(t), taking into consideration (4.25), we easily ascertain the validity
of the inequality (see the proof of Theorem 1.2)

(1) < o1+ an)[|Y5 | les — &lls- (4.49)
From (4.48), (4.49) we obtain
lim b2(t) = 0 uniformly for ¢ € J. (4.50)

Now we estimate b}(t). For g > ¢} we have

7o b
bi(t) < /|Yi(s,t) — E|lmj i, (s)ds + /|Yi(5,t) - }N/(s,t)|m§7K1(5)d5.
ty to
If {5 < ti), then
i b
bi(t) < /|E - 57(5,15)|m§7K1(5)d5 + /|Yi(5,t) - ?(5,t)|m§7K1(5)d5.
to L
Consequently,
lim b}(t) = 0 uniformly for ¢ € J. (4.51)

11— 00

Finally we estimate b?(¢). Let 5 < t. Then
bi(t) < ||Y5||/L§,K1(5)|h(t6,%5)(7(5)) — h(to, $,2)(7(s))lds <
7

g

< VI [ Lo @ltr (o)) - plr(op s +

a

g5

+ [ L ()pi(r(o)) = 2ot .

&
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where & = min{y(fo), b}, o; = min{v(t}),b}. If {, >}, then

g5

820 < ] [ 2.k, 06D = otrlds +

a

+/& Ly ics (5)|E(7(5)) - ¢<r<s>>|ds}.

g5

Clearly, from the latter inequalites it follows

lim b2(t) = 0 uniformly for ¢ € J. (4.52)
From the equalities (4.44), (4.45), (4.50)-(4.52) it follows (4.38) for k£ = 1.

Let (4.38) be fulfilled some for & > 1. Now we will prove the validity of
(4.38) for k 4+ 1. We have

[Chgn (1) = Z(0)] < fag — Fo| +
t t

+\ [riGabiciei s - / T2 (5,1, 70) C()3(n())ds | +

t} i

‘/Yz 5.1, 14)01(5, G (5), h(th, 01, G (r(5)))ds —

t

—/?2<s,t,fo>g<s,z<s>,h<fo,¢, 2)(7(s))ds

to

=|ah — Fo| + a;(t) + bir(1).(4.53)

The function a;(¢) has been estimated above (see (4.44)). For b;p(t) we
obtain:

bir <||Y2||/|gzsz h(th, o1, 2)(r(s)))ds
(51 G B G ()] +

\ / (5,1, 5)gs(s. 2(s), h{th, i, 5)(r()))ds -

—/Yz(s,t,to)g(s, Z(s), h(to, 3, Z)(7(s)))ds| = bl () + bi(t). (4.54)

to
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The function b;(¢) has been estimated above (see (4.45), (4.50)-(4.52)). Tt
is easy to see that for b}, (¢) the inequality

bix(t) < IIYJII/Lg,,Kl(S)(IE(S) = G(s)| + |ty 21, 2)(7(s)) —
=h(ty, ei, C)(r(s)l)ds < 2/¥5 1|12~ CéII/Lg,,Kl(S)ds

is valid. By assumption
lim 12 = ¢l = 0.
Therefore
lim b}, (t) =0 uniformly for ¢ € J. (4.55)
For (4.53) on the basis of (4.44), (4.45), (4.50)-(4.52) and (4.55) we obtain
lim ¢y — 2 =0.

The relation (4.38) is proved for every k = 1,2,....
Now we use Theorem 1.1, which allows us with an analogous argument
(see the proof of Theorem 1.2) to complete the proof of this theorem. O

Introduce a set
Wi(f, K1, a0) = {f+ §f:6f € E(J x O R"), 6f(t, 1, 22)| +

—|—/L5f“K1(5)ds < ag, V(t, (21, 22)) € T x Klz}.
7

Theorem 4.2. Let §(t) be the solution corresponding to the element i €
Ay, defined on [r1, 73] C (a,b); let Ky contain some neighborhood of the set
&(J2) U g([r1,72]). Then there exist numbers & > 0, i = 0,1, such that {o
an arbitrary element

H € Vl(/]a[(laéoaao) —

=V (To,80)x V (&0, 60) x V(@,60)x V(C,80)x V(f, K1, 80) W1 (f, K1, o)

there corresponds y(t, p) defined on [r1—61,r0+61] C J. Moreover, for every
£ > 0 there exists a number 6 = é(c) € (0,80) such that for an arbitrary
€ Vi(ji, Ky, 60, a0) the inequality

ly(t, p) —y(t, p)| <e, telri—0b1,ra+b1]m

15 valid.
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This theorem is proved analogously to the previous theorem. In this case
instead of Lemma 4.11 we have to use Lemma 4.13.
To every element u € Ay there corresponds the differential equation

(1) = CO)(n(t) + f(t, z(1), 2(r(1)))

with the initial condition

x(t) = p(t), tep(to) to), x(to)=xo.

The solution z(t) = #(t, 1), t € [p(to),t1] corresponding to the element
p € Ay is defined analogously (see Definition 1.2).

Theorem 4.3. Let (1) be the solution corresponding to the element i €
Ay, defined on [p(to),t0] C (p(a),b); let é(t), t € J, be a piecewise-
continuwous matriz function, Ky contain some neighborhood of the set $(J2)U
#([to,11]). Then there exist numbers & > 0, i = 0,1, such that to an ar-
bitrary element p € V(ji, K1,60,a0) there corresponds a solution x(t, p)
defined on [p(to), 11 + &1] C [p(a),b]. Moreover, for every ¢ > 0 there exists
a number § = () € (0,80) such that for an arbitrary p € V(ji, K1, 8o, o)
the inequality

|l‘(t,/,t)—l‘(t,/])| SE, te [52,{1—1—61],
s valid.

Theorem 4.4. Let (1) be the solution corresponding to the element i €
Ay, defined on [p(to),10] C (p(a),b); let Ky contain some neighborhood of
the set 3(J2) U #([to,11]). Then there exist numbers & > 0, i = 0,1, such
that to an arbitrary element p € Vi(f1, K1, 80, c0) there corresponds the
solution x(t,pt) defined on [p(to),t1 + 61] C [p(a),b]. Moreover, for every
£ > 0 there exists a number 6 = é(c) € (0,80) such that for an arbitrary
€ Vi(ji, Ky, 60, a0) the inequality

|l‘(t,/,t)—l‘(t,/])| SE, te [52,{1—1—61],
s valid.

These theorems follow from Theorems 4.1, 4.2, respectively, and are
proved analogously (see the proof of Theorem 1.3).

We note that Theorems 4.1, 4.2 and 4.3, 4.4 also are valid, respectively,
for the differential equations

y(t)IZCi(t)h(to, @, 9) (i () + [t hlto, 0, 9)(T1(1)), - hllo, £, 9)(75 (1)),

(1) = Z@(t)i‘(m(t)) + G e(n(), .. w(m),

where C; € C(J), n; : R* — R, i = 1,..., v are continuousle differentiable
functions satisfying n;(¢) < ¢, %;(¢) > 0.
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Finally note that the Theorems 4.3, 4.4, generally speaking, are not
true for the equations whose right-hand sides are non-linear with respect
to #(n(t)). For illustration consider

Example. Consider the system

{ #=0, (4.56)

y=2z%(t-1), t€l0,2],

z(t)=0, te[-1,0], y(0)=0.
It is obvious that the solution of the system (4.56) is z(¢) = y(¢) = 0.

Consider the petrurbed system
gk = a3t —1),
zp(t) =0, te[-1,0], wi(0)=0, (4.57)

where

The function v () is defined in the following way. For given &k = 2,3, ... we
devide the interval [0, 1] into the subintervals e;, i = 1,... k&, of the length
1/k. Then vip(t) =1, t € ey, v3(t) = —1, ¢ € e and so on.

It is easy to see that

lim max
k—oot! 1" €[0,2]

t”
/fk(t)dt‘ =0.
tl

For t > 1, taking into consideration (4.57) and the structure of the function
Jilt), we get

1 1

wl) = [ite—1de = [vie—ndg =1~ 1.

0 1

Thus
||xk||_>0, ||yk|| 7L>0 as k — oo.

Consequently, for the equation (4.56) Theorems 4.3 and 4.4 are not true.
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5. LEMMAS ON THE ESTIMATION OF THE INCREMENT

Introduce the set

Vi = {6p = (6to, 6x0,60,6C,8f) € Ay — fi : [6to]| < as, |6xo| < as,
ul , (5.1)
160l < as, [16CI < a3, 6 =Y Nbfi, [N <as, i=1,... k}.
i=1
Lemma 5.1. Let §(t) be the solution corresponding to the element i € A
defined on [r1,rs] C (a,b); let Ky contain some neighborhood of the set
&(J2) U g([r1,72]). Then there exist numbers 8§z > 0, €2 > 0 such that,
for an arbitrary (e,6p) € [0,e3] x V1 to the element i + cép € Ay there
corresponds the solution y(t,ji + €bp) defined on [ry — 82,70 + 2] C J.
Moreover,

gD(t)E[{l, tEJz, y(t,/j—FE(S/,L)E[{l, tE[Tl—éz,Tz—i—éz], (52)

lir% y(t, i+ cbp)=y(t, i) uniformly for (t,6p)E[r1—0ba, rota] x Vi, (5.3)
|y(t, /]+€(S/,L)| S m(t), (t, £, (S/,L) & [7“1—62, 7“2—|—62] X [0, 62] X Vl,
m(-) € L1(J, RY).

The relations (5.2), (5.3), on the basis of Theorem 4.4, are proved analo-
gously (see the proof of Lemma 2.1). The relation (5.4) taking into account
(5.1),(5.2) is easily proved by the method of steps for the left to right with
respect to the delay n(t) (see(4.23)).

In the sequel we assume that g(t) is defined on [r1 — 82,72 + 82] (see
Remark 2.1).

Define the function

Ay(t) = Ay(t,ebp) = y(t, i +ebp) — g(t),
(t,E,(S/J) S [7“1 — 89,79+ 62] X [0,62] x V1.

(5.4)

(5.5)

Lemma 5.2. Let T(fo) < tg, T(rq) > to and the conditions

iy 2 { sup [ 170,30+ M) oDy <o 60

e—0 ¢ 5NEV1

Yo

lim 1 { sup |f(t, g(t) + Ay(t), y(r(1)) + Ay(r(t))) —

~F(HO O} < o VT = (e Visito <0} (5D
be fullfilled. Then there exists a number €3 € (0,e9] such that for an arbi-
trary (e,6p) € [0,e3] x V™ we have

max [Ay(t)] < O(e), (5.8)
t€to,r2+62]
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ro+6a
Ay()ldt < O(e). (5.9)

to

Proof. By assumptions of the lemma there exists a number £3 € (0, 5] such
that for an arbitrary (¢,6u) € [0,e3] x V|~ the conditions

”y(to) > {0, O'(to) > {0, (510)
/ﬁwmw+awmwvwmws0@» (5.11)
L/ (50 + Ay(t), 57 (1) + Ay(r(1))) -

Y(to)
— i, (), (1)) |dt < O(e) (5.12)

are fulfilled.
It is easy to see that the function Ay(t) on the interval [to, ro+62] satisfies
the equation

Ay(t) = C(t)h(io, cbp, Ay)(n(t)) + p(t, ebp) + alt, ebp) + b(t, e6p), (5.13)

where

p(t,eép) = C(t)h(to, ¢, + Ay)(n(t)) —
—C(t)h(lo, 3, 9)(n(t)) = C(D)h(lo, e, Ay)(n(t)),
a(t,ebp) = f(t, §(t) + Ay(t), h(to, ¢, § + Ay)(r(1))) —
—F(t,3(t), h(to, &, §)(7(1))), (5.14)
b(t,ebp) = 6 f(L,§(t) + Ay(t), h(to, o, 5+ Ay)(r(1))).  (5.15)

o
(t
_|_

Rewrite the equation (5.13) in a way analogous to (4.36) in the form of
the integral equation

t

Ay(t) = Ay(to) + 5/1?1(5,t,tg)é(s)(s;o(n(s))ds +

to
1

+/§;2(5,t,t~0)[p(5, gbp) + a(s,ebp) + b(s,ebpu)]ds,

to

where the matrix functions 371(5,15,{0), }72(5,15,1;0) correspond to é(t) (see
(4.35)).
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Hence
ra+6a t
Ay(t)] < |Ay(io)| + O(e) + ||f/2||[ [ tots.comlas+ [lats,con)lds +
7o to
rot62
+ / |b(5,€6/,t)|d5:|. (5.16)

to

We will estimate |A y(Zp)|. Taking into consideration (5.5), (5.10), (5.1),
(5.2) and (5.11), we obtain

Tg+ebrg +

|Ay(to)| = ly(to, it + €bp) — Zo)| =

to

4[RO+ 50+ 200, o)) 400, 8] i3

to

f; €|6J?0|—F

to

+/[|C(t)s'0(77(t))|+|f(t,@(t)+Ay(t),@(T(t)))l]dtJrO(E) <O0(e). (5.17)

Let n(rg) > to. Then

ra+62 a(to) a(%o)
peony = [ otscomlds = [ lots.comlds+ [ In(s,zo)lds +
o o o(to)
rats 3
[ ot cowlds = St (5.18)
o(i) i=1

Now we estimate every term of the exspression (5.18). Tt is clear,that
a(to)

pr(edp) = / IC(0)@(n(1) = C)E((1)) = C(O)s(n(1))]dt =

o(to)
== [ el < o). (5.19)
Further, taking into account (5.1), we have
a(fg)
p2(edp) = /|C(t)[37(77(t))+Ay(77(t))]—é(t)sz(ﬁ(t))—Eé(t)580(ﬁ(t)))|dtS

o(to)



81

to

<licll [l + Autolde + [o0ICeA0kd <

to

t

< 0() + el 1] 150 + Ao

Since y(t, o+ edp) = §(t) + Ay(t), we have (see (5.11), (2.15))

J1io + Autoyiae =
= [1C@300) + 71500 + A1) (1) + bt b0l <

<0() + / (50 + Ay(t), p(r(O)]dt < O().  (5.20)

Thus
pale8ps) < O(2). (5.21)

Finally we estimate the last relation of the expression (5.18). Namely,

(see (5.4))

ro+6a
ps(edp) = / ICOFn()) + Ay(n(t)]-C (@)g(n(t) — C(O)Ay(n(t))|dt =
o(%o)
ro+béo ro+béo
= / 160 ()] |t i + )| dt < cas / m(t)dt = O(e).  (5.22)
a(to) a(%o)

Consequently, according to (5.19), (5.21) and (5.22), we get

pledp) < O(e).

This inequality also is valid for n(rq) < to. To see this, it suffices choose
numbers é3, 3 such that for an arbitrary (e¢,éu) € [0,e3] x V]~ we would
have o(tg) > ra+ 8. After this p(eép) is estimated analogously to py(gép).

In an analogous way, using (5.10)-(5.12) (see the proof of Lemma 2.2), it
1s proved that

t

/|a(5,66u)|ds <O0(g)+ /L(5)|Ay(5)|d5, (5.23)

0 to
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ro+6o
1b(s, e610)|ds < O(e). (5.24)

to

On the basis of the obtained estimates, we can write for Ay(¢) the final

estimate
t

Au0)] £ 0@+ [L05)1ay(s)lds.

to

Hence by Gronwall’s lemma we obtain (5.8).

Now on the basis of (5.8) we prove the second part of the lemma. We
will carry out the proof by the method of steps with rescpect to the delay
n(t).

After elementary transformations, taking into account (5.23), (5.24) and

(5.20), we obtain

a(fo) a(to)

[ 1duolat = [ 1Cp0) - ) + alt,eon) + bie. ol +

o(%o)
+ / ICO(n()) + Ay(n(t)] = C(OG((t)) + a(t,ebp) + b(t, bp)|dt <
a(to)

o(to) o(to)

< /[Ia(t,Eéu)lJrIb(t,Eéu)ldt]JrE / IC(0)op(n(t)) + 8C(1)R(n(0)|dt +

t to

to

+ [ICEO)13t) + A0l + [e0ICm)IH01 <

to

< 0@l [l + Auto)lde < 0c). (5.25)
Further,
02(50) 02(50)
/ |Ay(t)]dt = / COEM0) + Ag(n(t)] — C@F() +
a(fg) a(fg)
02(50)

Falt, e8p) + b(t, e6p)|dt < ||C] / |Ay(n(t))|dt + Oe).  (5.26)

a(fg)



83

On the basis of the estimate (5.25), we get

o2(fo) (o)
[ 1autatenide = [ swlduoid < ofe).
a(fg) to
Consequently,
o*(io)
[ 1auiar < o).
o(%o)

Continuing this process, we prove that
ro+62
[ 181 < o)
a(fg)

This inequality together with (5.25) yields (5.9). O

Lemma 5.3. Let T(fo) < tg, T(rq) > to and the conditions:

lim f(w) = fy, @€ R; x 0% wo = (lo, &0, p(7({0))),

w—wo

- 5.27
limC(t)=C;, te R, (5:27)
t—tg o o
be fulfilled. Let, besides, there exist neighborhoods V= (1), V= (w}), V™ (wY),

W = (70,9(70), %o), wd = (70, 9(70), @(70)) such that the functions (1), t €
V=(to), f(w1)—f(wa), (w1, ws) € V(W)X V= (w3) are bounded. Then there

exists a number £3 € (0, 1] such that for an arbitrary (¢,6p) € [0,e3] X V|~
the relations are fulfilled (5.8), (5.9). Moreover,

Au(fo) = {60 — [C53(n(i0) + i 1ot0} + oletp).  (5.28)

Proof. The first part of the lemma, on the basis of Lemma 5.2, is proved
analogously (see the proof of Lemma 2.3).
Now we prove (5.28). It is easy to see that (see (5.17))

Ay(lo) = y(lo, o+ £bp) — Fo = e{6wo — [CF G(n(lo)) + f5 16t} +

+/[C(t)s'0(77(t)) + J(1 (1) + Ay(), o(r(1)) = CF p(n(le)) — f7 1dt +
—|—/b(t,56u)dt. (5.29)

to
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It 1s clear that

lim sup C(8)@(n(t)+F(, 5(t)+Ay(t), ¢(7(1) = C;, G(n(t))~ fy |=0

aAOtE[tuyfu]

uniformly for ép e V™.
Taking into account this and (5.24), from (5.29) we deduce (5.28). O

Lemma 5.4. Let T(fo) < tg, T(rq) > to and the conditions

to

[0 @(r(t)))dt\ <. (5.30)

o

o1
lim — sup
e—0 g suc V1+

Y(to)

|F(,5(8) + Ay(t), o(r(1))) = (L, 5(1), §(r(1)))]ds

o1
lim — sup

< 00,
e—=0 g 5NEV1+ K

Vit = {6p e Vi : 6ty > 0} (5.31)

be fulfilled. Then there exists a number e3 € (0, 3] such that for an arbitrary
(Ea 6”) € [0a€3] X V1+

Ay(t)] < O(e), 5.32
te[t?,li)i@ﬂ y(t)] < O(e) (5.32)

ro+6o
|Ay(t)] < O(e). (5.33)

to

Proof. By assumptions of the lemma it is guaranteed the existence of a
number e3 € (0, £2] such that for an arbitrary (g, 6u) € [0,e3] x V;*

to < Yo, ’y(to) < 7o+ (52, (534)
/ 1t 5(0), $(r(0)dt < O(e), (5.35)

v(to)
/ (8, 5(8) + Ay(t), ¢(7(1)) = F(,5(1), #(7(t)))]ds < O(e).  (5.36)
Yo
The function Ay(t) on the interval [to, 75 + 8] satisfies the equation
Ay(t)=C(t)h(to, cbp, Ay)(n(t))+p(t, to, edp)+a(t, edp)+b(t, e6p), (5.37)
where a(t,e8p), b(t,c6p), respectively, have the form (5.14), (5.15), while
p(t, to,e6p) = C(D)h(to, ¢, 5 + Ay)(n(1)) — C(6)h(lo, b, y)(n(t)) —
—C(t)h(to, b, Ay)(n(t)).
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Rewrite the equation (5.37) in the form of the integral equation

t

Autt) = Apfto) + [Tals,t,10)Cbp(as))ds +

[ Tals o t0) oot 2000 + als, 20y + (s, bl
to

Hence

Au0)] < [Aglto)] + O() +
rat62 t rot62
—|—||}~/2||[ / |p(5,t0,66/1)|d5—|—/|a(5,66u)|d5—|— / |b(5,66u)|d5]. (5.38)
to

to to

We estimate Ay(ty):

|Ay(to)| = [0 +ebxo — y(to)| =

to

= |[Zo +ebwo — To — /[é(t)sz(ﬂ(t)) + f(t,9(1), SE(T(t)))]dt‘ < 0(e). (5.39)

to
In order to estimate
ro462
pltacom = [ lotsto,con)lds,
to
we consider two cases.
Let n(rz) > to and assume that a number e3 is so small that for an

arbitrary (g, 8p) € [0, 3] x Vit the inequality o (ty) < ra+ 62 is fulfilled. We
have

(o) o(to)
pltacomy = [ Ip(s.tocomlds+ [ Ip(suta,con)lds +
to a(to)
2462 3
+ / |p(s,to, e8p)lds = > pi(to, e8p). (5.40)
o(to) i=1

Now we estimate every term of the expression (5.40).
It is clear that

o(%o)

pr(to, ebp) = / [C(0@(n(1) = COE()) = <C)dp(n(t)))|dt =
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a(fo)

= / 6C (@) n(t)]dt < Oe).

to
Next, taking into consideration (5.1), we obtain

a(to)

p2(to, ebp) = / IC(0)@(n(t)) = COG(t)) — eC(1)bdp(n(1))dt <
o(%o)
< [s01ceO1p0 - Cesaoi [saicmi <

to
< lelle f130)1ae.
to

It 1s obvious that

Jiiwia < oo (5.41)
For the last term we have
ro+béo
p3(to, ebp)= /|C(t)[§(77(t))+Ay(77(t))]—(j(t)?(ﬁ(t))—é(t)Ay(U(t))ldt=

a(to)

ro+béo

== [ BCollitt. i+ <o)l < O)
a(to)

Thus
p(to,eép) < O(e).
This inequality is also valid for (1) < f5. To see this, it suffices to choose
a number 85 such that 0'({0) > rg + 82. After this p(to,eép) is estimated
analogously to p1(to, ).
In an analogous way, using (5.34)-(5.36) (see the proof of Lemma 2.4), it
1s proved that

/|a(5,66u)|ds <O0(e) + /L(5)|Ay(5)|d5, (5.42)
ro+62

/ [b(s,e6u)|ds < O(g). (5.43)

to
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On the basis of the obtained estimates, for Ay(t) the following estimate can

be written
t

0] < 0@+ [Ls)1Ay(s)lds.
to
Hence by Gronwall’s lemma (5.32) is obtained.
Now on the basis of (5.32) we prove the second part of the lemma. We
carry out the proof by the method of steps with rescpect to the delay ().

After elementary transformation, taking into account (5.42), (5.43) and
(5.41), we obtain

a(to) o(%o)

[ 1duolat = [ 1Cp0) - a1 + alt,eop) + bie. ol +

to to
o(to)

+ [ 1CWO#0(0) = COI0) + att,26m) + bt ol <

o(to) a(tn)

< /[Ia(t,Eéu)lJrIb(t,Eéu)l]dHE / IC(0)op(n(t)) + 8C(1)R(n(0)|dt +

to to
to to

+ [eiCtonitlie+ [aOICempl <
< 0@ I [ litolat < O, (5.4)

Further (see (5.26))
3 (to) 3 (to)
[ 1wl < el [ v+ o),
a(to) a(to)
It is clear that
%(to) a(to)
[ 1autatenide = [ swlduoid < ofe).
o(t0) to

Consequently,
a(to)

[ 1auiar < o).

o(to)
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Continuing this process, we prove that
ra+63
[ 181 < o)
o(to)
This inequality together with (5.44) yields (5.33). O
Lemma 5.5. Let T(fo) < tg, T(rq) > to and the conditions

lim flwy= 1, weRrt x0?, tm?é(t) =CF, teRE, (545)
be fullfilled. Let, moreover, there exist meighborhoods V¥ (o), V1t (w?),
VH(wY) such that the functions 4(t), t € V* (o), f(wl) — f(wzj, (wi,ws) €
VH(w)) x VT (wY) are bounded. Then there exists a number e3 > 0 such
that for an arbitrary (¢,6p) € [0,e3] x VT the relations (5.32), (5.33) are
fulfilled. Moreover,

Ay(to) = {600 — [C 3(n(i0)) + 150} +o(cbp).  (5.46)

Proof. The first part of the lemma, by the previous lemma, is proved ana-
logously to Lemma 2.3.
Now we prove (5.46). It is obvious to see that (see (5.39))

Ay(ty) = {820 — [CF $(n(i0)) + f6ta} +

to
B ~CORO)+ I ~CWRN0) =0, 50, BNt (547)
7o
It is clear that
liny s G 0000 GO0+ ~CO00)~
t€lto,to
—f(t, §(t), p(7(t)))|=0 uniformly for &u € V;t.
Hence, taking into account (5.47), it follows (5.46). O
Lemma 5.6. Let 7(ry) < to and the condition (5.6) be fulfilled. Then

there exist numbers e3 € (0,¢2], b3 € (0,682 such that for an arbitrary
(g,6p) € [0,e3] x Vi~ the relations

max [Ay(t)] < O(e), (5.48)
t€[to,r2+6s]
ra+6s
Ag(o)ldt < O(e) (5.49)
to

are fulfilled.
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Lemma 5.7. Let 7(r2) < to and the condition (5.27) be fulfilled. Then
there exist numbers e3 € (0,¢2], b3 € (0,682 such that for an arbitrary
(g,6p) € [0,e3] x V|7 the relations (5.48), (5.49) and (5.28) are fulfilled.

Lemma 5.8. Let 7(r2) < to and the condition (5.30) be fulfilled. Then
there exist numbers ez € (0,¢2], 63 € (0,682 such that for an arbitrary
(,6p) € [0,e3] x Vit the relations

Ay(t)] < O(e), 5.50
te[trur}g)i&a]l y()| < O(e) (5.50)
ro46s
[ 1auiar < o) (5.51)
to

are fulfilled.

Lemma 5.9. Let 7(r2) < to and the condition (5.45) be fulfilled. Then
there exist numbers ez € (0,¢2], 63 € (0,682 such that for an arbitrary
(,6p) € [0,e3] x Vit the relations (5.50), (5.51) and (5.46) are fulfilled.

These lemmas are proved analogously to Lemmas 2.3-2.9, respectively.
Lemma 5.10. Let T(fo) =1y and the condition

v(to)

ti £ s {0,500+ 000 00+

+ [ fat+ e atron + datronar]f <o (552
Y(to)

be fulfilled. Then there exists a number e3 € (0, 2] such that for an arbitrary
(g,6p) € [0,e3] x V|7 the inequalites (5.8), (5.9) are fulfilled.

Proof. Let e3 € (0, €] be so small that for an arbitrary (¢, 6p) € (0,e3]x V|~

Y(to)

[ it + v, o
+ [ F0+ A0 it 0) + o) < 06
Y(to)

Tt is clear that () € [to,10]. Therefore

To v(to)
Ay(ty) = ebuy + / C(t)p(n(t))dt + / F(, () + Ay(t), o(r(t)))dt +

to to
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4 [ 30 + Aut0) 300 + utroyie+ [oce
¥(to) to

Hence, on the basis of the previous inequality and from the boundedness of
the first integrand (see also (2.15)), we conclude that

|Ay(fo)] < O(e).

After this, in a standard way (see the proof of Lemmas 5.2, 2.10), (5.8)
and (5.9), are obtained [

Lemma 5.11. Let T(fo) =1y and there exist the finite limits:

lim f(w)=f;, lim f(w)=f;, weR; x0

e T i i (5.53)
w§ = (lo, &0, #0), wi = (fo, &0, #({0)),
limC(t) = C;, limy(t) =5, t€R;. (5.54)
t—to 0 t—ip 0

Then there exists a number e3 € (0,23] such that for an arbitrary (¢,é6u) €
[0,e3] x V|~ the inequalites (5.8),(5.9) are valid. Moreover,

Aglio) = {820 — [CoS(n(T)) + fi + (5 = J7 )~ 16t} + ofebp).
This lemma, by Lemma 5.10, is proved analogously to Lemma 2.11.
Lemma 5.12. Let T(fo) =ty and the conditions

lim f(w)=f;, weR; xO°, lim C(1)=C;, lim#(1)=1, t€ R}, (5.55)
w—w} 0 t—1to 0t 0

be fulfilled. Let, moreover, there exist a neighborhood V™ (w]) such that
the function f(w), w € Vi (wY), is bounded. Then there exists a number
£z € (0,e2] such that for an arbitrary (¢,6pu) € [0,e3] x V]~ the relations
(5.8),(5.9) are valid. Moreover,

Ay(i) = {820 — [O7 (i) + f5 1ot} + o(e8p)
holds.
Lemma 5.13. Let 7(tg) = to and the conditions
hm— sup /|fty T(1)))|dt < oo,
e—=0 g 6uev+

Y(to)

lim & sup / |F (8, 5(8) + Ay(t), o((1)) — F(¢,5(1), §(r(8)))]dt < oo

e—0 ¢ 6N6V1+ ;
0
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be fulfilled. Then there exists a number e3 € (0, 3] such that for an arbitrary
(,6p) € [0,e3] x Vit the conditions (5.32),(5.33) are fulfilled.

Lemma 5.14. Let T(fo) =ty and the conditions

lim f(w)=f, we R x0% lmC(t)=CF, te RY, (5.56)
w—w? 0 t—to 0 0
be fulfilled. Let, moreover, there erist neighborhoods V*E(to), VH(w)) such
that the functions 5(t), t € V*t(to), f(w), w € VT(w)) are bounded. Then
there exists a number e3 € (0, £2] such that for an arbitrary (¢,6p) € [0, €3] ¥
Vit the conditions (5.32), (5.33) are fulfilled. Moreover,

Ay(to) = efbr0 — [CF G(n(i0)) + [416t0) + ol=6p).

These lemmas are proved analogously to Lemmas 2.12-2.14, respectively.

6. DIFFERENTIABILITY OF SOLUTION

Lemma 6.1. Let Z(t) be the solution corresponding to the element i € Ay,
defined on [p(to),11] C (p(a),b). Let, Ky contain some neighborhood of the
set ¢(J2) U i‘([fo,fl]). Then there exist numbers 65 > 0, €5 > 0 such that
for an arbitrary (e,6p) € [0,e3] x V1 to the element i + cép € Ay there
corresponds the solution (t, i+ eép), defined on [p(to),t1 + 62] C (p(a),b).

Moreover,
2(t, i+ ebp) € Ky, |a(t, fi+eép)| <m(t), t € [p(to),t1 + 62,
m(-) € Li([p(a),b], RY).

This lemma, by Lemma 5.1, 18 proved analogously to Lemma 3.5.

In the sequel we assume that the trajectory () is defined on the whole
interval [p(fo),fl + 83] (see Remark 3.1).

We define the function

(6.1)

5630(t)’ te [p(a), 51),
Az(t)=Az(t,ebp)= < o(t, i +ebp) — &), 1€ [s1,t1 +62], (6.2)
51 = min{to,{o}.

It is obvious that
Az(t) = Ay(t), t € [s2,11+ 6], s2 = max{to,to}. (6.3)

Theorem 6.1. Let f € Bi(J x 0%, RY)®, 1(to) < 1o, 7(t1) > 1o, n(t1) >
to, 7o < nml(fl), op < 77m2(t~1)9, op = 0'({0). Let, moreover, there exist
the finite limits

lim f(w)=f7, we Ry xO%, limC()=C;, teR; (6.4)

w—wo t—1o to

8In all theorems of this section, in we will assume that f € Ei(J x 02, R™).
9Everywhere we assume that m1 = m(vo,1), ma = m(co,%1).
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lim  [f(w) = flws)] = 7, wi € Ry x 0% i=1,2,

(wi,wa)—(w? wd)

(6.5)

lin§(0) = 5~ €€ R

t—to o
t_»lillr?%)C(t) = C'U_,(%), c R, (70)’ 1=1,...,my; (6.6)
t_»l;{{lau)C(t) = C'U_,(UD), te R, (o) 1=0,...,ms. (6.7)

Then there exist numbers b3 >0, e3>0 such that for an arbitrary (t,,6p) €
[tl — 63,t1 =+ 63] X [0,63] X Vl_

Ax(t,ebp) = eba(t, bp) + ot cbp), (6.8)
where

b(t, bp) = ®(To,1)dx0 — {@(f0,1)[C1 o(n(f0)) + f5]+
+Y, (0C, 105 g(n(lo)) + fo — @(lo)] + Yy, (OF7 37 Y6to + B(t, 8p), (6.9)

Bt 6) = / Y (3(5), 1) fuu [1(5)]650(5)7 (3)ds +
7(f0)
+ / ¥ (0(5), )C(0(5)dp(5)3(5)ds + / (5,)(6C(5)i(n(s)) + 8 15]) ds
77(50) fo

D(s,t), Y(s,t) are matriz functions satisfying the system

Os

{ D oy (0031~ Y (4 Do I 6),
Y(s,t) = ®(s,t) + Y (o(s),)C(c(s))o(s) s € [to,1].

Moreover,

:Zq)(o-i(PVO)at zTyD’ Yo HCU]('YD) j 70)) i=1,...,my,
=0

YO‘T] (t):Zq)(Ui(Uo)at Czaua i0g HCUJ(U ) 1 UO)) = 1a ..., M,

COO'U

_C%:E.
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Proof. On the basis of Lemma 5.3 there exists a number €3 € (0, 2] such
that for an arbitrary (¢,6u) € [0,e3] x V|~ the relations (see (5.8), (5.9),
(5.28), (6.3))

max |Ax(?)] < O(e), (6.10)
tE[tD,t1+62]
f14+62
|Az(t)]dt < O(e), (6.11)
Aa(to) = e{dwo — [C@(n(t0)) + f5 18t0} + o(ebp) (6.12)

are fulfilled.
Let é3 € (0, 82] be so small that

"}/0<{1—63, 0'0<{1—63.

It is easy to see that the function Az(t), t € [p(fo),1+65], on the interval
[to, 11 + é3] satisfies the equation

Ax(t) = fo, [0 A2(1) + fo, [1]Aw(r(8)) + C(1) Az (n(1)) +

+e(6C(E(n(t) + 8S11]) + > Ri(t,e6p), (6.13)

i=1
where R;(t,e6p), ¢ = 1,2, respectively, have the form (3.26), (3.27), while
Rs(t,cép) = 6C (1) Ax(n(t)). (6.14)
A solution of the equation (6.13), by means of the Cauchy formula (see
Lemma 4.1) may be represented as

t

Ax(t) = ®(to, t)Ax(lo) + E/Y(S,t) (60(5)9'?(77(5)) + 6f[5])d5 +

to
3
+ ) hilt, o, edp), t € [fo, Ty + 6], (6.15)
i=—1
where

to
h_yi(t,10,e6p) = / Y(U(s),t)é(a(s))Ax(s)d(s)ds, (6.16)

(o)

ot fo, e6p1) = / Y(3(8), ) fes () A2(s)i(5)ds,  (6.17)

7({0)
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¢
hi(t,to,e6p) = /Y(s,t)Ri(s,eéu)ds, i=1,2,3. (6.18)
fo
It is obvious (see (6.12), Lemma 4.3), that
<I>(t~0,t)Ax(fo):5<I>(t~0,t){éa:o—[C’{_Dglﬁ(n(fo))—l—fg]éto}—l—o(t,eéu). (6.19)

Now we transform h_y(¢, g, eép):

to

h_y(t,to,e6p) = ¢ / Y(U(s),t)é(a(s))égp(s)d(s)ds +

7(fo)
+ / Y (o(s),1)C(0(s))Az(s)d(s)ds = ¢ / Y (o(s),1)C(0(5))bp(s)0(s)ds +
to n(%o)

—|—/Y(U(5),t)é(a(s))Ax(s)d(s)ds +o(t,ebp).

to

Further, using the equality z(t, i + cép) = y(t, i +cép), t € [to, o], we
get

io

(5, 0(5) + Ay(s), (7(s)) — §(5)] 6(s)ds + o{t, ).

From assumptions of the theorem (see Lemma 4.4) it follows

lim Y (0(s),1)C(0()) [C(s)p(n(s)) + f(s,5(s) +

e—0
s€[to,t0]

+AY(5), 9(7(9)) =6 ()] 6(5) = Yoo () C, [CF, 2n(E0)) + i —(E0)] (o).



After this, in a standard way, we prove

to

/Y(a(s), t)C(a(s))Az(s)o(s)ds =

to

= =Y, ()C5, [Cr én(io)) + f5 — ¢(H0)]6(F0)8to + oft, edp).

Consequently,

hoy(t, 1o, ep) = =Y, (VC7 [Cr e(n(io)) + fo — (o)

to

+e / Y(U(s),t)é(a(s))égp(s)d(s)ds—|—o(t,Eéu).

7(fo)
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o (to)sto +

(6.20)

For h;(t,t0,e6u), i = 0,1,2, using (6.1), (6.5) and (6.11) we obtain (see

the proof of Theorem 3.1)

to

ho(t, o, cbp) = ¢ / Y (3(5), ) fou [1(5)]650(5)7 (3)ds +

7(f0)

Yo
+ / Y (5,1) fun [s]A2(7(s))ds + oft, edp),
Y(to)

hy(t,to,ebp) = =Y, (1) f7 7~ 6to —

Yo
- / Y (5,1) fun [s]A2(7(s))ds + oft, edp),
v(to)

ha(t,to,eép) = o(t,cdp).
It remains to estimate hs(t, o, 6p) (see (6.14))

t1465

e, io,50)| = caallv | [ 1As(u(0)ldr

to

It is clear that (see (5.10), (6.1), (6.11))

t1465 a(to)

[ 1Betniie =< [ st +
fo to

o(io)

+ [ 1), i+ edp)|+|3(n(t))]] dt +

o(to)

(6.21)

(6.22)

(6.23)
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t1465 ‘7(50)
+ [ Betenld < 0@+ [ mafenar
o(fo) o(to)
Thus
ha(t,to,ebp) = o(t,cbp). (6.24)

From (6.15), taking into account (6.19)-(6.24), the formula (6.8) is ob-
tained, where 8x(t,ép) has the form (6.9). O

Theorem 6.2. Let 7(to) < to, T(t1) > to, n(t1) > to; vo < W™ (1), 00 <
n™2(t1). Let, moreover, there exist the finite limits

lim fw)=fff, weRf x 0% lmC()=CF, teRE; (6.25)

w—wo 0 t—tg

lim [flw1) — flws)] = fiF, wi € RE x 0%, i=1,2,

(wi,w2)—(w?,wd)

lim4(t) = 4%, te R;’; (6.26)
t—tg o
; A —_ 7t - .
t_»l;llr?%)C(t) = C’U,(%), te RU ey = 1,...,mq; (6.27)
t_}laiglau)é(t) = Oy tERE ), 1=0,00 ma. (6.28)

Then there exist numbers b3 >0, e3>0 such that for an arbitrary (t,,6p) €
[t1 — 83,11 4 63] x [0,e3] x V;© the equality (6.8) is valid, where

ba(t, )= (lo, )0 — { @(lo, [CF(n(lo)) + fF ]+
+Y I (OCHICHe(n(lo) T — (1 o)]U(to)+Y+( VAT ototB(t, p), (6.29)

:Zq)(gl(ﬂyo)’ Z’YD C;—YD_HCU](’YU) , O-j_l('}/o))’ 1=1,...,mq,
=0

Z@ ch CZJ;D—HCU](UD)' “Yop)), i=1,...,my,
. = CS’% =E.

Proof. By assumptions of the theorem the conditions of Lemma 5.5 hold.
Therefore there exists a number £ € (0,¢9] such that for an arbitrary
(¢,6p) € [0,€] x V/T the conditions

max [Az(t)] < O(e), (6.30)
t€to,t1462]

t1+62

/ |Az(t)|dt < O(e), (6.31)

to
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Aa(to) = e{dxo — [CF @(n(to)) + f18t0} + o(ebp) (6.32)

are fulfilled.
Let the numbers e3 € (0,€], 63 € (0, 62] be so small that for an arbitrary
(Ea 6”) € [0a€3] X V1+

’y(to)<{1—(§3, O'(to)<t~1—($3, Yo > to, o0 > 1p.

The function Az(t), t € [p(to),1+63], on the interval [tg, #1+63] satisfies
the equation (6.15), therefore it may be represented as (see (6.16)—(6.18))
¢
Az(t) = ®(tg, t)Ax(to) + E/Y(S,t) (60(5)9'?(77(5)) + 6f[5])d5 +
to
3
+ ) hi(t,to,e8p), t € [to, {1+ bs). (6.33)

i=—1

Since to € [fo, (1 + 83)], the function ®(s,t) is continuous on [to, T(f; +

83)] x [t — 63,11 + 85] (see Lemma 4.3). This allows us to write
@(to,t)Ax(to)zeq)(tNO,t){éa:o—[C’;;glé(n(fo))—l—fg']éto}—l—o(t, gbp). (6.34)
Now we transform h_1(¢,tg,£é6p) (see (6.16), (6.26), (6.30)):

h_1(t,tg,eép) =¢ / Y(U(s),t)é(a(s))égp(s)d(s)ds +
n(to)
—|—/Y(a(5),t)é(y(s))Ax(s)d(s)ds = / Y(o(s),1)C(0(s))op(s)0(s)ds +

To 7(fo)

Y(to)

+ / Y (5,8)C(s)Ax(n(s))ds + o(t, bp).

It is easy to see that

/Y(a(s), t)C(o(s))Az(s)o(s)ds =

= [Y(e().0C ) [660) - 3(5)]6(e)ds =
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The assumptions of the theorem allow us to conclude (see Lemma 4.4)

lim ¥ (a(s), O)0(a()[$() — CE0(5)) — (5. 5(s). 5(r(s)))] (s) =
s€[to,to]
=Y ()O3, [0) — C;;S.E(U(fo)) = fof]a(to).
After this, in a standard way, we prove
/Y(a(s), HC(o(s)Aw(s)o(s)ds =

— eV [CF S(in) + £F — $00)] o(in)ots + olt, o).

Thus
hoa(t,to,e8p) = =Y (OO [CFE(n(E0)) + fiF — ¢(10)] 6(10)6t0 +
+e / Y(U(s),t)é(a(s))(éw (s)a(s)ds + o(t,cbp).
(o)

For h;(t,to,e6p), i = 0,1,2, using (6.1), (6.26) and (6.30), we obtain
to
ot to,260) = £ [ V(20,07 (s)050) (s)ds +

7(to)
Y(to)
+ / Y (5,1) fun [s]A2(7(s))ds + oft, edp), (6.35)
Yo
hy(t,to,ebp) = =Y F () f 4T 6to —
Y(to)
- / Y (5,1) fun [s]A2(7(s))ds + oft, edp), (6.36)
Yo
ha(t,to, ebp) = o(t, eép). (6.37)
It remains to estimate hg(t,%g,28p):
t1465
e, to,50)| = caallv | [ 1As(u(0)ldr
to
It is clear that (see (6.1), (6.31))
t1465 a(to)
/ |Aa(n(t)dt < = / Setnoldr+ [ T+ (o) dr +

Jo
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t1465 a(to)
+ [ 1aetular< 0@+ [ mGaear
o(to) o
Thus
hs(t,to,e6p) = o(t, eép). (6.38)

From (6.33), taking into account (6.34)-(6.38), we obtain the formula
(6.8), where 6x(t, ép) has the form (6.29). O

Theorem 6.3. Let m(to) < to, T(t1) > to, n(t1) > to; 70 < nml(_tNl),
oo < M2 (t1); the function T(t) is continuous at point ty; the function f(w)
is continuous at points wo, w9, wY; the function é’(t) 15 continuous at points
to, o' (70), i=1,...,my, 6'(ag), i = 0,... ,ma. Then there exist numbers
63>0, €3> 0 such that for an arbitrary (t,,6p) € [t1—b3,11+63] x[0, €3] x V3
the formula (6.8) is valid, where

b (t, 6p) = B(fo, )60 — {®(fo, 1)[C(T0)B(n(f0)) + f(wo)l+

+Y (00, £)C(00)[C(t0)B(n(to)) + Flwo) — $(T0)]é(fo)+

+Y (30, OLF (@ — (W) (Ta) }oto + B(1, p).

Finally we note that the proof of the theorems given below on the basis
of Lemmas 5.6-5.9,5.11, 5.12, 5.14 are carried out analogously (see § 3, the
proof of theorems 6.1, 6.2).

Theorem 6.4. Let 7(f1) < to,n(t1) > to, 00 < 9™2(t1) and the conditions
(6.4),(6.7) be fulfilled. Then there exist numbers 83 > 0, €3 > 0 such that
for an arbitrary (t,e,6p) €[t; — 83,1 + 63] x [0,e3] x V|~ the formula (6.8)
1s valid, where

ba(t, 8p) = ®(lo, 1)sz0 — {B(lo, [T B(n(fo)) + f5 1+
+Y, (1)C7 [Cr e(n(fo)) + 5 — ¢(To)]o(To) foto + B(t, op).
Theorem 6.5. Let 7(f1) < to,n(t1) > to, 00 < 9™2(t1) and the conditions
(6.25), (6.28) be fulfilled. Then there exist numbers 63 > 0, €3 > 0 such that

for an arbitrary (t,e,6p) €[ty — 83,11 + 63] x [0,e3] x Vi the formula (6.8)
1s valid, where

sx(t, op) = ®(to,t)6xg — {@(fo,t)[C;ts'B(n(fo)) + 1+

+Y;H)CH, [C;;S.E(U(fo)) + - 5({0)]6({0)}6150 + B(t, o).
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Theorem 6.6. Let 7(t1) < to, n(t1) > to, 00 < 72(11), the function 7(t)
be continuous at the point ty, the function f(w) be continuous at the point
wy, the function é(t) be continuous at the points ty, o'(oo), i =0,... ms.
Then there exist numbers b3 >0, e3>0 such that for an arbitrary (t,,6p) €
[t; — 63,11 + 63] x [0,e3] x V} the formula (6.8) is valid, where

sx(t,6p) = ®(to, t)6x0 — {q)(fo,t)[é({o)sz(ﬁ({o)) + JE(WO)H'

+Y (00, )C(00)[C(E0)@(n(fo)) + Flwo) — ¢(E0)]o(lo) }bto + B(t, 5p).

Theorem 6.7. Let 7(1o) = to,n(t1) > to, 00 < n™2(t1) and the conditions
(5.53),(5.54), (6.7) be fulfilled. Then there exist numbers §3>0, £3>0 such
that for an arbitrary (t,e,6p) € [ty — 63,11 + 63] x [0,e3] x V|~ the formula
(6.8) is valid, where

bat, 1) = B0, )60 — {D(io, DT $(nlio)) + i + (5 — F5 )71+
Y (00 (Cr Snli)) + £ — $(E)loio) Yoto + B (t, on),
futt.ew) = [ Y(o(5).00(0()sp(o)5(s)ds +

7(fo)
t

+/Y(5,t)(50(5)§(n(5)) + 6 f[s]) ds.
to
Theorem 6.8. Let 7(to) = to,n(t1) > to, to < Nt (t1), oo < n™2(t1) and
the condition (6.28) be fulfilled. Let, moreover, there exist the finite limits

lim f(w) = £, limuf(w) =ff, weR:x 0?,

lim5(t) = 4%, limC(t)=CF, te RY; (6.39)
t—1o t—1o 0 0
Ay — + _
tﬁlilzl(lfu)c(t) = Cal({u), te Ral({o), i=1,...,my.

Then there exist numbers b3 >0, e3>0 such that for an arbitrary (t,,6p) €
[t — 63,11 + 63] x [0, €3] V1+ the formula (6.8) is valid, where

sx(t, op) = ®(to,t)6xg — {@(fo,t)[C;ts'B(n(fo)) + 1+
Y HOCH[CF a(n(To)) + [ — (t0)]e(fo)+

A = S0 = 31)oto + (L, 8p).

Theorem 6.9. Let 7(to) = o, n(t1) > to, 00 < n™2(t1) and the conditions
(5.55),(6.7) be fulfilled. Let, moreover, there exist a neighborhood VT (wd)
such that the function f(w), w € V; (w)), is bounded. Then there exist
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numbers 63 > 0, e3 > 0 such that for an arbitrary (t,e,6p) € [ty — 63,11 +
83] x [0,e3] x Vi~ the formula (6.8) is valid, where

6x(t, 6p1) = ®(io, )swo — {@(fo, 1)[Cr(n(fo)) + f5 1+
+Y, (DC, [CFe(n(l0)) + 5 — @(f)lo(lo) }oto + Bu(t, 8p).

Theorem 6.10. Let 7(to) = to, n(t1) > to, g0 < ™2(t1) and the condi-
tions (5.56), (6.28) be fulfilled. Let, moreover,

lim5(t) =1, teRf, (6.40)

t—to

and there exist a neighborhood Vit (w9) such that the function f(w), w €
Vit(wY), is bounded. Then there exist numbers &3>0, e3> 0 such that for
an arbitrary (t,e,61) € [t1 — 63,11 + 63] x [0,e3] x Vit the formula (6.8) is
valid, where

bax(t,6p) = @(fo, )80 — {@(f0, )[CF G(n(f0)) + F 1+
+Y (O, [C;;S.E(U(fo)) + [ = $(lo))é(To) } oto + Bi(t, Sp).

Theorem 6.11. Let 7(to) = to, n(t1) > to, o < n"2(t1), the function
7(t) be continuous at the point to, the function C(t) be continuous at the

points 1y, 0'(00), i = 0,...,ma; the function f(w) be continuous at the

point w3, the function f(w) be bounded in some neighborhood of the point

wY. Then there erist numbers 63 > 0, 3 > 0 such that for an arbitrary

(t,e,6p)€ [t~1 — 63,11 + 83) x [0,e3] x V1 the formula (6.8) is valid, where
Sa(t,u) = ®(lo, t)6xo — {®(lo, )[C(o)F(n(lo)) + f(w)]+

Y (00, 0C(00) Clia)5(1i0)) + F(wh) — S o) o + B (t,50)
Theorem 6.12. Let 7(1o) < to, 7(t1) > o, n(t1) < o and the conditions
(6.4),(6.5) are fulfilled. Then there exist numbers é3 >0, e3> 0 such that

for an arbitrary (t,¢,6p) €[ty — 63,11 + 63] x [0, 3] x V|~ the formula (6.8)
1s valid, where

ba(t, ) = ®(lo, )z0 — {@(lo, )[C G(n(l0)) + f7 ]+
+®(vo, ) f; 3~ }6to + B(t, ).

Theorem 6.13. Let 7(1o) < to, 7(t1) > o, n(t1) < to and the conditions
(6.25),(6.26) be fulfilled. Then there exist numbers é3>0, £3>0 such that
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for an arbitrary (t,e,6p) €[ty — 83,11 + 63] x [0,e3] x VT the formula (6.8)
1s valid, where

ba(t, 6p) = ®(fo, t)6wo — {@(fo, )[CF 2(n(To)) + fF ]+

+® (70, 1) f 7T }5t0 + 5(t, 5p).

Theorem 6.14. Let 7(1y) < o, (t~1) > to, n(t1) < to, the functions
C(t), 7(t) be continuous at the point to, the function f( ) be continuous at
the points wo, w?, wy. Then there exist numbers 63 >0, 3 > 0 such that
for an arbitrary (t,e,6p) €[ty — 83,1 4 63] x [0, 3] x Vi the formula (6.8) is
valid, where

sx(t,6p) = ®(to, t)6x0 — {q)(fo,t)[é({o)sz(ﬁ(to)) + fwo)]+

+@(y0, O)[F(w?) — FW (o) }oto + B(1, p).

Theorem 6.15. Let T(t~1) < to, 77(t~1) < 1y and the condition (6.4) be
fulfilled. Then there exist numbers 63>0, €3 >0 such that for an arbitrary
(t,e,6p)€ [t~1 — 63,11 + 83] x [0,e3] x Vi the formula (6.8) is valid, where

Sx(t,6p) = ®(to, )bxo—
(i, O[CT H0(E0) + ]+ (L, 530

Theorem 6.16. Let 7'(t~1) < ty, 77(t~1) < to and the condition (6.25) be
valid. Then there exist numbers 63 > 0, 3 > 0 such that for an arbitrary
(t,e,6p)E[t1 — 63,11 + 63] x [0,e3] x VT the formula (6.8) is valid, where

sx(t,6p) = ®(to, t)6x0—
= (lo, )[CF p(n(io)) + S5 ] + B¢, 8p).

Theorem 6.17. Let 7(t1) < to, n(t1) < o, the function é’(t) be continuous
at the point ty, the function f(w) be continuous at the point wg. Then
there exist numbers é3 > 0, e3 > 0 such that for an arbitrary (t,¢,6p) €
[t — 63,11 + 63] x [0,e3] x Vi the formula (6.8) is valid, where

b(t,6p) = ®(lo, )80 — D(do, ) [C(Lo)p(n(t0)) + f(wo)]6to + B(t, 5p).

Theorem 6.18. Let T({o) = tp, 77(t~1) < 1o and the conditions (5.53),
(5.54) be fulfilled. Then there exist numbers 63 > 0, €3 > 0 such that for
an arbitrary (t,e,61) € [t1 — 63,11 + 63] x [0,e3] x V;~ the formula (6.8) is
valid, where

(1, 811) = ®(To, )20~ (l0, 1) [C5 Enin) vHfis +( 5 — F5 )3 ]8tokh (1, o).
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Theorem 6.19. Let T(fo) = 1y, 77(t~1) < to and the condition (6.39) be
fulfilled. Then there exist numbers 63>0, €3 >0 such that for an arbitrary
(t,e,6p)€ [t~1 — 63,11 + 83] x [0, e3] x V1+ the formula (6.8) is valid, where

(1, 811) = B(lo, )20 —B(in, ) [C:H(n(in) e+ FF — ]Stk (1, o).

Theorem 6.20. Let 7({y) = o, n(f1) < to and the conditions (5.53),
(5.54), (6.39) be fulfilled. Moreover, let é’(t) be continuous at the point
to and R

Fs + Uz =I5 =+ -t =1
Then there exist numbers b3 >0, e3>0 such that for an arbitrary (t,,6p) €
[t — 63,11 + 63] x [0,e3] x Vi the formula (6.8) is valid, where

b(t, 8p) = ®(Lo, )80 — (o, )[C(To)p(n(lo)) + f]6to + Bi(t, p).

Theorem 6.21. Let T(fo) = 1y, 77(t~1) < to and the condition (5.55) be
Julfilled. Let, moreover, there exist a neighborhood V™ (w) such that the
function f(w), w € Vi (w]), is bounded. Then there exist numbers 83> 0,
e3> 0 such that for an arbitrary (t,e,6u) € 1 — 63,11 + 63] x [0,e3] x V™
the formula (6.8) is valid, where

s (t, ) = @(io, )0 — @(io, 1) [C5 G(n(i0)) + f7 |80 + Br(t, bp1).

Theorem 6.22. Let T({o) = tp, 77(t~1) < 1o and the conditions (5.56),
(6.40) be fulfilled. Let, moreover, there exist a neighborhood ViF(wY) such
that the function f(w), w € VT (wY) is bounded. Then there exist numbers
63>0, e3> 0 such that for an arbitrary (t,¢, 6p) € [f1—063,11+63] x [0, £3] x VT
the formula (6.8) is valid, where

ba(t, 8p) = ®(lo, t)dwo — B(lo, )[CF(n(lo)) + f5]6t0 + Bi(t, 6p0).

Theorem 6.23. Let 7(ty) = 1o, n(t1) < to, the functions é(t), 7(t) be
continuous at the point to, the function f(w) be continuous at the point w3,
the function f(w) be bounded in a some neighborhood of the point w9. Then
there exist numbers é3 > 0, e3 > 0 such that for an arbitrary (t,¢,6p) €
[t — 63,11 + 63] x [0,e3] x Vi the formula (6.8) is valid, where

be(t, ) = @(fo, )60 — B(lo, 1) [C(l0)p(n(fo)) + f(w§)] 6to + Bi(t, op).
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