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Abstract. Nonsingular continuous and discrete Lidstone boundary value
problems are discussed in this paper. Existence criteria for one or more
solutions are presented.
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1. INTRODUCTION

In this paper we discuss the existence of one and more solutions to Lid-
stone continuous and discrete boundary value problems. Problems of this
type have become quite popular and many articles have appeared in the
literature [4-8, 9, 13-16]. The results presented here extend, complement
and improve those in the literature.

Our paper will be divided into two main sections. In section 2 we discuss
the Lidstone continuous problem

(=) y2m(t) = (1) f(t, y(t), 0<t <1,

. . (L.1)
y(Zl)(O) — y(Zl)(l) = 0’ 0 S Z S n — 1,

where n > 1. We begin Section 2 by presenting an existence principle for
(1.1). This principle together with Krasnosel’skii’s fixed point theorem in
a cone will enable us to establish the existence of one or more solutions to
(1.1). Throughout Section 2 we will let G,(¢,s) denote Green’s function
for the boundary value problem

y?™ =0 on (0,1),

. . (1.2)
yPI0) = y*I(1) =0, 0<i<n—1.

Now G, (t,s) can be expressed as [5]

Gn(t,s):/G(t,u)Gn_l(u,s)du,

where
Gi(t,s) = G(t,s) =
The following inequalities have appeared in the literature [13, 14]

0<(=1)"Gplt,s) <

s(1—s) for (t,5)€[0,1]x [0,1], (1.3)

gn—1
and for § € (0, %) fixed,

(=) Gu(t,s) > 60,s(1—s) for (¢,s)€[6,1—-46]x[0,1], (1.4)
where 0 < 6, < 6"%1 is given by

453—652+1)n—1

9":5n( 6
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In Section 3 we discuss the Lidstone discrete problem

{(—w AT y(k) = f(k,y(k)) for k€ Iy,

. . (1.6)
AZiy(0) = ATiy(N +2m—2i) =0, 0<i<m—1.

Here N € {1,2,...}, m > 1, Iy = {0,1,...,N} and y : Inyom =
{0,1,...,N +2m} — R. Existence of one or more solutions to (1.6) is
established in Section 3. Throughout Section 3 we will let G} (k,{) denote
Green’s function for

{Azmy: 0 on Iy,

. . (1.7)
AZiy(0) = ATiy(N +2m—2i) =0, 0<i<m—1.

Now Gl can be expressed as [1]

N+2m-2

Ghk,y= > Gu(k, )G (1),
=0

where
N+2m—k)(l+1
_WH2m B D ey oy
Gk, 1) = N+2m
e k(N +2m—1-1)
- N . le{k—1,...,N+2m-2}
and

Gi(k, 1) = Gy(k,1).
The following inequalities have appeared in the literature [15, 16]:

0<(=1)"GL(k,D)<am I+ 1)(N+1=1) for (k,{)EInyom x Iy (1.8)

with
i = [
N+j

si= 3 (i+)(N+j+1—i)=

i=0

-1 m-1

(N—I—Qi)] IT se: (1.9)

i=1

—

i=1

where for 57 > 1,

(N +j+3)®,

[or N

and
(=)™ Gl (k,)>by, min{l+1, N+1—1} for (k,l)E€Jn x Iy, (1.10)
where J, ={l,...,N+2m— 1},

-1 m-1

by = [f[l(zvmi)] 1:[1 Tois (1.11)



with

N+j

;= min{i+1,N+j+2—i}=
=1

N =+ §)2 N +4§)+1

(N +7) +i( DL Ny oodd,

YN+ )N+
( +j)(4+j+6) if N+j even

for j > 1, Finally we state Krasnosel’skii’s Fixed Point Theorem in a cone.

Theorem 1.1. Let £ = (F,||.||) be a Banach space and let K C E be a
cone in FE. Assume that €y and Qo are open subsets of F with 0 € €y
and Q; C Qo and let A: KN (Q2\Qy) — K be continuous and completely
continuous. In addition suppose either

[|Aul] < ||u|| for ve KNoQy and ||Au|| > ||ul] for we KNoQ,
or

[|Aul| > ||| for ve KNoQy and ||Au|| < ||u|] for we KNoQ,
hold. Then A has a fired point in K N (Q3\Q).

2. CONTINUOUS PROBLEM

In this section we present existence criteria for one or more solutions to
(1.1). Our theory will rely on the following existence principle.

Theorem 2.1. Assume that

F:[0,1]x R — R is conlinuous, (2.1)
1

¢ € C(0,1) with ¢ >0 on (0,1) and / t(l=t)o(t)dt < 00 (2.2)
0

and
lim, t(1—t)o(t)=0 if /(1—t)¢>(t)dt:oo

L (2:3)
and lim t(1—)?¢(t) =0 of /t(/)(t)dt:oo

t—1—
0

hold. Suppose there s a constant M > 0 with

lylo = sup |y(t)| # M
[0,1]
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for any solution y € C?*"~2[0,1]N C%"(0,1) to

{(—1)” y2M(t) = (1) f(t,y(t)), 0<t <1,
(2.4)

for each X € (0,1). Then (1.1) has a solution y € C*"=2[0,11NC?"(0,1)
with |ylo < M.

Proof. Solving (2.4), is equivalent to finding a solution y € C0,1] to

= /(—1)" Gn(t,s) o(s) f(s,y(s)) ds, (2.5)x

where Gp(t, s) is as in Section 1. O

Remark 2.1. From (1.3) we can see that

/1(—1)" Gin(t,s) 6(s) /1 (1 —s)o(s)ds.

Remark 2.2. Showing the equivalence of (2.4) and (2.5), is just a matter
of modifying slightly the argument in [11, 12] using the ideas in [56 p. 3].
It is enough for us to note that if y € C[0,1] and (2.1)—(2.3) are satisfied,
then

| /\

t

r(t) = /(1 —t)sé(s) f(s,y(s))ds —1—/ t(1—s)d(s) f(s,y(s))ds =

/ 1) Gi(t,5) ¢(s) f(s,y(s))ds € C[0,1]

with r1(0) = ri(1) = 0 and —r{(t) = ¢(t) f(t,y(t)) for t € (0,1). Next
note that

/ )2 Galt, s) 6(5) f(s,4(s)) ds =

1

/Gl(t,x) [/ Gi(x,s) ¢(s) f(s,y(s)) ds| de € C?[0,1]

0
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with 75(0) = 72(0) = ro(1) = r(0) = 0 and (1) = —ry(t) so rsV(t) =
() f(t,y(t)) for t € (0,1). In general,

= [0 Galt ) 606) 1G5, o)) ds € 20,1

with r(zl)( 0) = rﬁf“( 1)=0for 0<i<n-—1and r(zn)( 1) = (=1)"e¢(t) x
F(t,y(8)) for t € (0, 1)
Let N : C[0,1] — C[0, 1] be given by

= 1 Gt 960) 1G5, w(s) .

We now show that N : C[0,1] — [0, 1] is continuous and completely con-
tinuous. The continuity follows immediately from the Lebesgue dominated
convergence theorem since

1
o [ 5= 9600 s (51) = 5,05 s

0
for ym, y € C[0,1]. To show the complete continuity, we will use the Arzela—
Ascoli theorem. To see this, let © C C[0,1] be bounded, i.e., suppose that
there exists 7o > 0 with |u|op < 7y for each u € Q. Also there exists a
constant Ko with |f(s,u(s))] < Ko for s € [0,1] and for all u € Q. Now
if ue and t€]0,1], we have

1
[N u(?) §6” T / (1 —5)é(s)ds (2.6)
0
with
¢ 1
(N u) ()] < Lp / zdxr+ L, /(1 —x)de=n,() if n>1 (2.7)
0 t
and

|(Nu)’(t)|§[(0/5¢(5) ds + Ky /(1 —s)p(s)ds=m() if n=1; (2.8)

here

1
L, = Ky sup / ,$)o(s)ds if n > 1.
xEOl
0
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Remark 2.3. Note that (2.7) is immediate since if n > 1,
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—I—t/ 1-z) (/1 (z,5) 8(5) f(s,u(s))ds) dx

and (2.8) is immediate since if n =1,
¢ 1
Nu®)=(1-1) / so(s) f(s,u(s))ds +1¢ / (1= 3)¢(s) f(s,u(s))ds.
0 t
Note that 7, € L[0,1] for n > 1. Now (2.6) together with (2.7) and
(2.8) imply that N is a bounded, equicontinuous family on [0, 1], so the

Arzela—Ascoli theorem guarantees that N : C[0,1] — C[0, 1] is completely
continuous. Let

U={uel[0,1]: |ulo < M}.

The nonlinear alternative of Leray-Schauder [3, 12] guarantees that N has
a fixed point in U, i.e., (1.1) has a solution y € C?"~2[0,1]N C27(0,1)
with |ylo < M. O

We are now in a position to establish the existence of one or more non-
negative solutions to (1.1). First we present two results which guarantee
the existence of at least one solution.

Theorem 2.2. Suppose the following conditions are satisfied:
{f :[0,1] x [0,00) — [0,00) is continuous with 2.9)
2.9

flt,u) >0 for (t,u)e[0,1] x (0,00),

1
$€C(0,1) with ¢ >0 on (0,1) and /t(l—t)q/)(t)dt<oo, (2.10)
0

Jim (=060 =0 if [ (-0l di=
0 (2.11)

1
and lim t(1—t)?¢(t) =0 of /t¢>(t)dt:
0

t—1—



ft,u) <w(w) on [0,1] x [0,00) with w >0
, | (2.12)
continuous and nondecreasing on [0, c0)
and
Ir>0 with - > 1. (2.13)

w(r) supepo.1] Sy (—1)" Galt,s) ¢(s) ds

Then (1.1) has a solution y; € C?"~2[0,1] N C?"(0,1) with y1 > 0 on
[0,1] and |y1]o < r.

Proof. We will use Theorem 2.1. The idea is to look at the boundary value

problem

{«4w¢wxw:Aawﬁaww»o<t<L
(2.14),

y20(0) =y*(1) =0, 0<i<n—1

for 0 < A < 1; here

- {13 128

Let y be any solution of (2.14),. Then y(¢) > 0 for ¢t € [0,1] and
1
y(t) = A /(—1)" Gn(t, s) d(s) [*(s,y(s)) ds <
0

< ullals) sup [ (1) Gult,5) 60 ds

t€[0,1] 4
for t € [0, 1]. Consequently

|3/|0
w(]ylo) supseony fy (—1)" Galt, s) 6(s) ds

Now (2.13) and (2.15) imply |y|o # r. Thus Theorem 2.1 guarantees that
(2.14); has a solution y; with |y1]o < 7 (note that |y1]o < r by Theorem
2.1 but |yi|lo # » by an argument similar to the one above). In fact,
0<y(t) <r for t €[0,1] and so y; is a solution of (1.1). O

<1 (2.15)

In Theorem 2.2 note that it is possible to have y; with |y1]o = 0 in some
application. We remove this situation in the next theorem.
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Theorem 2.3. Suppose (2.9)~(2.13) are satisfied. In addition assume that
the following conditions hold:

there exists 6 € (0,1) (choose and fix it) and 7€ C[6,1— 8]

with 7>0 on [6’,21 — 8] and with () f(¢t,u) > 7() w(u) (2.16)
on [6,1—86] x(0,00)

and

1-
I R>r with (6" 19 R < / 1" o,8)T(s)ds; (2.17)
5

here 0 <o <1 is such that

t€[0,1]

%\H
|
Ve >

|

—

~—

3

(o,8)7(s)ds = sup / 1" ,8)T(s)ds  (2.18)

and 0 < 0, < 6%1 is as in (1.5). Then (1.1) has a solution ys €
C?7=2[0,1]Nn C?"(0,1) with yo > 0 on [0,1], y2(t) > 0 for t € [6,1 — 8]
and r < |ya2|o < R.

Proof. To show the existence of y2, we use Theorem 1.1. Let E = (C[0, 1],
|.lo) and

K ={ueC0,1]: u(t)>0 for t€[0,1] and f?iné]u(t)26n—19n|u|o}.
te[s,1-

Clearly K is a cone of E. Let A: K — C[0,1] be defined by

The argument in Theorem 2.1 implies that A : K — [0, 1] is continuous
and completely continuous. We now show that A : K — K. If uw € K,
then clearly Awu(t) >0 for ¢t € [0,1]. Also for ¢ € [0, 1] we have from (1.3)
that

| A

/1 (1= 5)(s) f(s, u(s)) ds,

and so

|[Aulp < 6” / (1= 5)é(s) f(s,u(s))ds. (2.19)



In addition, (1.4) and (2.19) yield
1

min _Au(t) = min ] /(—1)" Gn(t,s)¢(s) f(s,u(s))ds >

te[6,1-46] te[6,1-46
0

>0, / s(1—s)p(s) f(s,u(s))ds > 6"71 0, |Aulo.

Consequently Aue K so A: K — K. Let
O ={uel0,1]: |ulo<r} and Qs ={ueC[0,1]: |ulp < R}.
We first show
[Aulp < |u|o for uwe K nNoQ. (2.20)

To see this, let u € K NJQy , so |ulp = r. Then (2.12) and (2.13) imply for
all £ € [0,1] that

1
Au(t) < w(lulo) / s)p(s)ds <
0
1
sup / s)@(s)ds < r = |ulo.
teOl

0

Thus |Awulo < |u|o, and so (2.20) is true. Next we show
|Aulg > |ulp for uwe K NOoQ. (2.21)
To see this, let u € KNJQs, so |ulp = R and fnin : u(t) > 6710, Julo =
1€[6,1—6

6"~1 0, R soin particular u(t) € [6"~1 6, R, R] for t € [§,1—§]. Now with
o as defined in (2.18) we have from (2.16) and (2.17) that

Au(o) = /(—1)" Gpl(o,s)o(s) f(s,u(s))ds >

(=1)" Gulo,s) ¢(s) f(s,u(s)) ds >



118

Thus |Au|p > |ulo and so (2.21) holds. Now Theorem 1.1 implies that A
has a fixed point y» € K N(Qy\Q1), i.e., r < |y2lo < R. In fact, r < |y1]o
(argue as in the first part of the theorem). Also y2 > 0 on [0, 1] and since
ya € K, we have ya(t) > 0 for t €[6,1 — 4] since |ya|o >r. O

Remark 2.4. If in (2.17) we have R < r, then (1.1) has a solution y €
C10,1] with R < |y|o < r. The argument is essentially the same as that in
Theorem 2.3 except here we use the other half of Theorem 1.1.

Theorem 2.4. Suppose (2.9)-(2.13), (2.16) and (2.17) hold. Then (1.1)
has two solutions yi, y2 € C*"=2[0,1]NC?™(0,1) with y1, y2 >0 on [0,1],
y2(t) >0 for t €[6,1—6] and 0 < |yi|o <7 < |y2lo < R.

Proof. The existence of y; follows from Theorem 2.2 and of ys from The-
orem 2.3. [

In Theorem 2.4 it is possible to have |y1|o to be zero in some ap-
plications. Our next theorem guarantees the existence of two solutions
Y1, Y2 € (12”‘2[0, 11N (12”(0, 1) with 0 < |y1]o < 7 < |yz2|o < R.

Theorem 2.5. Suppose (2.9)~(2.13), (2.16) and (2.17) hold. In addition
assume that
1—6
JL,0< L <r with (6= 19 3 / 1" o,8)T(s)ds (2.22)
5

is satisfied. Then (1.1) has two solutions yi, yo € C*"~2[0,1] N C*"(0,1)
with y1, 92 > 0 on [0,1], 11(¢t) > 0 and y2(t) > 0 for t € [6,1 — 6] and
0< L <|yilo<r<]ylo <R.

Proof. The existence of ys follows from Theorem 2.3 and of y; from Re-
mark 2.4. O

Remark 2.5. 1t is easy to use Theorem 2.3 and Remark 2.4 to write a
theorem which guarantees the existence of more than two solutions to (1.1).
We leave the details to the reader.

Example. Consider the boundary value problem
YO+ (y*+y° +1)=0 on (0,1),
y(0) = y"(0) = y™(0) = y(1) = y"(1) = y(1) = 0

with 0 < @ < 1 < 3. Then (2.23) has two solutions y1, y2 € C*[0,1]N
C%(0,1) (in fact in C°[0,1]) with y1 > 0 on (0,1), y2 > 0 on (0, ) and
0<lyilo <1< |y2lo.

(2.23)



To show the above, we will apply Theorem 2.5 with ¢ = 7 =1, n = 3,
w(z) =z +2° +1, r =1 and § = %. Note that (2.9), (2.10), (2.11),
(2.12) and (2.16) hold. Also since

(—1)3 Gs(t,s) < i s(1—s)
bl — 36 bl
we have
/ 1 / 1
sup e (t, ) — / (1-s)d —
1€00,1] / o =36 =216
0 0
Next note that (2.13) holds with » =1 since
r _26
1 = — .
w(r) supyepo ) fo (—1)° Ga(t,s) ¢(s)ds 3
Now since 3 > 1, we have
T ~ im T _ 0,

lim —
pmoo w(36032)  omoo (36032)° + (3603 2)P + 1

so there exists R > r =1 with (2.17) holding. Finally note that
z z

lim ——— = lim =0

eo0 w(36032) om0 (36032)° + (36032)F +1

so there exists L, 0 < L < 1, with (2.22) holding. Theorem 2.5 now
guarantees that (2.23) has two solutions y;, y» € C*[0,1]N C%(0,1) with
y1 >0, y2 > 0 on [0,1], »1(t) > 0 and ys(t) > 0 for ¢ € [1,3] and
0 < |yilo < 1< |ya|o. The extra regularity and the fact that y;(¢) > 0 and
ya(t) > 0 for ¢t € (0,1) follows immediately from the integral representation
of y; and y-.

3. DISCRETE PROBLEM

In this section we discuss the discrete problem (1.6). We first obtain
an existence principle for (1.6). For convenience we note here that by a
solution to (1.6) we mean a w € C(Iyy2m) such that w satisfies the
difference equation and the boundary data in (1.6). Recall that C'(Inyt2m)
denotes the class of maps w continuous on Injam (discrete topology) with
the norm |w|o = maxgery,,,, [wk)|.

Theorem 3.1. Assume that f: Iy x R — R is continuous (i.e., contin-
wous as a map from the topological space In x R wnto the topological space
R (of course the topology on In is the discrete topology)). Suppose there
1s a constant M > 0 with

lylo = max |y(k)| # M

k€EINt2m
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for any solution y € C(INyam) to

(_1)m A2m y(k) = /\f(k,y(k‘)) fOT | = In, (3 1)
A% y(0) = A?y(N+2m—2i)=0, 0<i<m—1 A

for each A € (0,1). Then (1.6) has a solution y € C(Inyam) with |ylo <M.

Proof. Solving (3.1), is equivalent to finding a y € C(Int2m) to

y(k) = A Z(—l)m G (k) f(Ly(D) for k€ Inyam, (3.2)x

where Gl is as in Section 1. Define the operator N : C(Int2m) —
C(INy2m) by setting

N

Ny(t) =Y (=1 G (k. 1) F(1y(1)).

=0

It is easy to see [2, 3] that N : C(Inj2m) — C(INt2m) is continuous and
completely continuous. Let

U={ueC(lntam): lulo< M} and E=C(Intam).

The nonlinear alternative of Leray—Schauder [3, 12] guarantees that N

has a fixed point in U, i.e., (1.6) has a solution y € C(Int2m) with
lylo <M. O

Remark 3.1. It is clear that an existence principle could also be estab-

lished for

(=)™ A2y (k)Y =Af(k,y(k),y(k +1),...,y(k+2m—1)) for k€ Iy,
{Niy(O) =AYy (N+2m—-2i)=0, 0<i<m—1.
We leave the details to the reader.

Theorem 3.2. Suppose the following conditions are satisfied:

f Iy x[0,00) = [0,00) is continuous with f(i,u) >0
for (i,u) € In x (0,00), (3.3)

flhk,u) < q(k)w(u) on Iy x[0,00) with ¢: Iy — (0,00) (3.4)
and w > 0 continuous and nondecreasing on [0, o) .
and
3 >0 with - > 1.(3.5)

w(r) MaXper,y, Soeo(—1)™ GL,(k, 1) g(1)

Then (1.6) has a solution y1 € C(INy2m) with y1 > 0 on Inyam and
ly1]o < r.
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Proof. The i1dea is to use Theorem 3.1, so look at

(=)™ A2 y(k) = X f*(k,y(k)) for k€ Iy, (36)
, . 3.6)x
A2 y(0) = A2 y(N +2m—20) =0, 0<i<m~—1
for 0 < A < 1; here
k’u bl - bl
() = f(k, u)
f(k,0), u<0
Let y be any solution of (3.6),. Then
N
y(k) =AY (=)™ Gk, ) F* (L (D),
=0
so y(k) >0 for k € INyam and
N
O < wlalo) | max S (17" Gk Dalh) for k€ Isann
N+2m =0
Consequently
1vlo <1 (3.7)

w(|ylo) MaXkeryys, Yoreo(—1)™ G (k1) q(l) ~

Now (3.5) and (3.7) imply |ylo # ». Thus Theorem 3.1 guarantees that
(3.6); has a solution 1 € C(Iny2m) With |y1]o < 7 (note that |yi|o # r
by an argument similar to the one above). O

Note that in some application |yi|p may be zero in Theorem 3.2. We
remove this situation in the next result.

Theorem 3.3. Suppose (3.3)—(3.5) are satisfied. In addition assume that
the following conditions hold:

there exists 7: Ky ={1,2,...,N} — (0,00) (3.8)
with f(i,u) > () w(u) on Ky x (0,00) '
and
I N
dR>r with ———— < )™ GL (e, D)), 3.9
e D LU LU
here o € Jy ={1,...,N+2m—1} is such that
N N
(=) GL (e (1) = max } (=) G (k,Or(D),  (3.10)

=1 =1
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and

Crmin{l+ 1, N41-1)
= 11
o= I Tarnwai=pn 170 (3.11)
with an as in (1.9) and by, as in (1.11). Then (1.6) has a solution ys €
C(Iny2m) with ya(k) >0 for k€ Jy and r < |y2|o0 < R.

Proof. To show the existence of y5, we use Theorem 1.1. Let E =

(C(Unt2m), |- [o) and
K= {u € C(Ingam)  u(d) >0 for i € Inyom and
: bm
> — .
Jnin u(k) > - co |u|0}

Let A: K — C(Iny2m) be defined by

Aulk) = 3 (=1 G (kD) £ u(D)).

To show A: K — K, let w € K. Then Au(k) > 0 for k € Inyam. Also
(1.8) implies for k € Iyjam that

<amZ I+ 1) (N +1=1) f(l,u(l))

=0

and so

[Aulo < am Y (+ 1) (N +1=1) f(l,u(l)). (3.12)

In addition (1.10) and (3.12) imply

N

min Au(k) = min }  (=1)" G, (k1) f(1u(D) >

N
> by > min{l+ 1, N +1—1} f(u(l)) >
l:ON b
> bmeo 3 (I+1)(N+1=10) f(l,u(l) > aﬂco |Aulo.
=0 m

Consequently Auée K so A: K — K. Let
O ={ueCInyam): Julo<r} and Qy={u € C(Int2m): |ulo < R}.
We first show

[Aulp < |u|o for uwe K nNoQ. (3.13)
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Let w € K NOQy, so |ulp =r. Now (3.4) and (3.5) imply for k& € Inyom
that

Au(i) £ 37 (=1 GL(k, D gD wlu(D)) <
<w(r) sup (D" Gk al) <7 = [ulo

kelntam g
Thus |Awulg < r = |u|p and so (3.13) is true. Next we show

|Aulg > |ulp for uwe K NOoQ. (3.14)

Let u € KNOQy , 50 |ulo = R, and minges, u(k) > = ¢y R, in particular,

a

u(k) € [b—mcoR,R] for k€ Jy.

m

It is easy to see that 0 < Z—Z cp < 1. Now (3.8) and (3.9) (here ¢ is as in
(3.10)) imply

Au(o) = 3 (1) Ghio. D) Flou() 2 3 (<1 Gh(e, 1) (L u(D)) >

2
3
i

Thus |Aulp > |ulp and so (3.14) is true. Now Theorem 1.1 guarantees that
A has afixed point yo € KN(Q2\Q1),ie., r < |ya|o < R. In fact |ya]o > 7
(argue as in the first part of the theorem). Also y» > 0 on Iyy2., and
ya(k) > 0 for k € Jy since yo € K and |ya|o >r. O

Remark 3.2. If in (3.9) we have R < r, then (1.6) has a solution ys €
C(IN+2m) with R < |y2|0 < r.

Theorem 3.4. Suppose (3.3)-(3.5), (3.8) and (3.9) hold. Then (1.6) has
two solutions y1, y2 € C(INyam) with y1 >0 on Inyam, y2(k) > 0 for
keldy and 0 <|yilo <7 <|y200 < R.

Proof. The existence of y; follows from Theorem 3.2 and of y» from The-
orem 3.3. [

In Theorem 3.4 it is possible for |yi|o to be zero.
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Theorem 3.5. Suppose (3.3)<(3.5), (3.8) and (3.9) hold. In addition as-

sume that

N
L
3L, 0<L<r with ———— < )™ GL (e, (1) (3.15
o) S 2V Gl DT (319)

is satisfied; here o is as in (3.10), cg is as in (3.11), anm s as in (1.9),
and by, is as in (1.11). Then (1.6) has two solutions y1, y2 € C(INy2m)
with y1(k) >0, y2(k) >0 for k€ Jy and 0 < L < |y1lo <7 < |y2]o < R.

Proof. The existence of ys follows from Theorem 3.3 and of y; from Re-
mark 3.2. O
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