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Boundary value problems for elliptic di�erential equations with pseudod-

i�erential boundary conditions were apparently �rst considered by

A. S. Dynin in [34]. Further, boundary value problems for a more wide

class of pseudodi�erential equations were investigated by M. S. Agranovich

in [3].

General theory of boundary value problems for elliptic 	DOs was cre-

ated in a series of works by M. I. Vishik and G. I. Eskin [114]{[119]. The

monograph [37] is devoted to the exposition of this theory. The theory

developed by Vishik and Eskin is the L

2

-theory in which boundary value

problems are considered in Sobolev{Slobodecki�� spaces H

s

2

. Like probably

every \elliptic" L

2

-theory, it must possess an L

p

-analogue. This was un-

derstood as early as in the period of origination of the theory of boundary

value problems for elliptic 	DOs. The �rst results in this direction were

announced by A. S. Dynin in [35] (see also [81]). However there is no de-

tailed account of L

p

-analogue of the Vishik{Eskin theory so far. This can be

apparently explained by the fact that such a description is connected with

certain technical di�culties and does not promise the results of principally

new character.

The L. Boutet de Monvel theory (see [20]) dealing with boundary value

problems for elliptic 	DOs with transmission property was generalized to

the case of Besov{Triebel{Lizorkin spaces in [38], [45], [82, 3.1.1.4].

1

Multi-dimensional singular integral operators in a half-space and on a

manifold with boundary have been investigated in [100] (L

2

-theory), [92],

[31] (L

p

-theory), [33] (the case of L

p

spaces with power weights).

The present paper is concerned with boundary value problems for elliptic

pseudodi�erential operators (	DOs) in Besov and Bessel-potential spaces

and the most part is devoted to 	DOs not possessing the transmission

property. Let us explain the choice of functional spaces. Bessel-potential

space H

s

p

is an L

p

-analogue of the space H

s

2

. This space is most convenient,

for, the norm in it is de�ned by the Fourier transform and we are concerned

with 	DOs (and hence with the Fourier transform). We fail in restricting

ourselves only to Bessel-potential spaces, for, the traces of functions from

H

s

p

on manifolds of lesser dimension belong to Besov spaces. Therefore

we investigate boundary value problems whose formulations contain either

Bessel-potential and Besov spaces or Besov spaces only. Note that these

problems are the generalizations of boundary value problems in the H

s

2

spaces, since H

s

2

= B

s

2;2

(see [109, 2.3.3]).

1

This paper was in print when I received from Dr. J. Johnsen his preprints:

{ The stationary Navier{Stokes equations in L

p

-related spaces. Copenh. Univ. Math.

Dept. Ph. D. Series No. 1, 1993.

{ Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel{

Lizorkin spaces. Copenh. Univ. Math. Dept. Prepr. Series No. 25, 1994.
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Chapter I is devoted to boundary value problems for anisotropic elliptic

	DOs with \constant coe�cients" in a half-space. When studying these

problems one have to overcome principal technical di�culties of the theory,

however we need the obtained results mainly for investigation of boundary

value problems on compact manifolds. By well understandable reasons we

consider these boundary value problems in the isotropic case only (see Ch.

II). Therefore in Chapter I we could also con�ne ourselves to the isotropic

case but the �nal example of Chapter I (Example 1.42) has won us over

the anisotropic case. The author wished to show how one, by means of

purely \elliptic" theory, could obtain the results on the Cauchy problem for

parabolic equations. This subject is not new even in the framework of the

theory of 	DOs (in this connection see [80]). Anisotropic elliptic (= half-

elliptic= quasi-elliptic) partial di�erential operators have been investigated

by many authors (see, e.g., [112, x3.8], [54], [9] and references therein).

Very interesting results on boundary value problems for a model anisotropic

elliptic di�erential operator in a unit circle have been obtained in [111] (see

also 4.8, [89]).

Chapter III deals with boundary value problems on two-dimensional

manifolds. From the point of view of the theory of boundary value prob-

lems for elliptic (pseudo-)di�erential operators the two-dimensional case is

a particular one (for details see x3.1). Note that examples in x3.5 are given

only to show the e�ciency of the methods developed in the present pa-

per. One can obtain similar results with the help of more classical means.

In analogous situations methods of complex analysis are usually applied.

In general, the theory of boundary value problems for elliptic equations in

two-dimensional domains (and on the Riemann surfaces) resembles by itself

more a part of the complex analysis than a part of the theory of partial

di�erential equations. The approach used by us enables one to consider

elliptic boundary value problems in the case of two independent variables

in the same way as in the multi-dimensional case, reducing application of

the complex analysis to a minimum.

In x3.5 we try to impose minimal restrictions on the smoothness of co-

e�cients. On \freezing" the coe�cients in the case of the Nikol'ski�� spaces

B

�

p;1

, there arise complications. x3.6 is concerned with these di�culties as

well as with the ways of their handling. Of course, one could avoid these dif-

�culties by rising slightly the restrictions on the smoothness of coe�cients,

but sporting excitement did not permit us to make a compromise.

The most important applications of the Vishik{Eskin theory are not con-

sidered in the paper. Such in the author's opinion are the applications to

the boundary value problems for elliptic di�erential equations with bound-

ary conditions on open surfaces (see [120], [37], [26], [102], [103], [104], [121],

[44] and also [84], [86]). Solution of these problems by the potential method

(the method of boundary integral equations) leads to the pseudodi�eren-

tial equations on manifolds with boundary, 	DO as a rule being free from

transmission property. Scientists working in the theory of boundary value
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problems are frequently interested in the information on the smoothness

of generalized solutions. Unfortunately, it is impossible to get su�ciently

exact results from the L

2

-theory by means of embedding theorems. In fact,

H

s

2

� C

�

if � < s � n=2 (see, e.g., [109, 4.6]), i.e. the di�erence between

exponents of smoothness in Sobolev{Slobodecki�� and H�older spaces must be

more than n=2. In this respect the theory of boundary value problems for

elliptic 	DOs without transmission property in H�older spaces (with weight)

would be ideal. For the present no such theory is available (as it has been

noted above, we have results for 	DOs with transmission property). The

L

p

-theory gives satisfactory answers to the requirements of practice. Indeed,

for Bessel-potential H

s

p

and Besov B

s

p;q

spaces the embeddings H

s

p

� C

�

,

B

s

p;q

� C

�

take place if � < s� n=p (see [109, 4.6]). Taking p 2]1;1[ su�-

ciently large, we can make the di�erence between s and � arbitrarily small.

Thus we can obtain the exponent of smoothness which is arbitrarily close

to the best possible. The L

p

-theory of 	DOs on manifolds with boundary

([31], [94], [95]) has been applied to the problems of elasticity in [32], [72],

[97], [73], [71], [51], [23], [24], etc. Note that all this direction was antici-

pated by the works [92], [93] the importance of which cannot be belittled

by the mistakes contained in them.

The present work is a revised version of papers [94]{[96] which were

submitted for publication in 1988{1989 but irrespective of the author they

have not appeared so far.

The author wishes to express appreciation to T. G. Gegelia and I. T. Ki-

guradze for leaving it to him to collect the results of papers [94]{[96] and

present them in this volume. Most particular thanks are due to my scien-

ti�c supervisor R. V. Duduchava dealings with whom for almost ten years

exercised great in
uence on me and, in particular, stimulated my interest

to the given subject matter.
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CHAPTER I

	

x

1

�

. Recall some standard notation:

D(
) is a space of in�nitely smooth functions with compact supports

belonging to 
 � R

n

;

D

0

(
) is a corresponding space of distributions;

S(R

n

) is a space of rapidly decreasing in�nitely smooth functions;

S

0

(R

n

) is a corresponding space of tempered distributions;

F

�1

are direct and inverse Fourier transforms,

(F

�1

 )(z) =

1

(2�)

n=2

Z

R

n

e

�izt

 (t) dt; z 2 R

n

; zt =

n

X

k=1

z

k

t

k

:

Fix an arbitrary vector a = (a

1

; : : : ; a

n

) 2 R

n

such that a

k

> 0, k =

1; : : : ; n and

n

X

k=1

a

k

= n: (1.1)

For any s 2 R we put

s =

�

s

a

1

; : : : ;

s

a

n

�

= (s

1

; : : : ; s

n

) 2 R

n

: (1.2)

Introduce the following sets:

E

j

=

�

� 2 R

n

�

�

j�

k

j � 2

ja

k

; k = 1; : : : ; n

	

; j = 0; 1; 2; : : : ; (1.3)

M

0

= E

1

; M

j

= E

j+1

nE

j�1

; j = 1; 2 : : : : (1.4)

For s 2 R, 1 � p � 1, 1 � q �1 we put

2

B

s

p;q

(R

n

) =

n

f

�

�

f 2 S

0

(R

n

); f =

S

0

1

X

j=0

f

j

; suppFf

j

�M

j

;

kff

j

gk

l

s

q

(L

p

)

=

�

1

X

j=0

�

2

sj

kf

j

k

L

p

�

q

�

1=q

<1

o

(1.5)

(as usual, the last expression is substituted for q =1 by sup

j

2

sj

kf

j

k

L

p

):

2

De�nition of Besov spaces di�ers in form from de�nitions accepted in the works [74]

and [105] we are always referred to. In a standard way one can prove that all these

de�nitions are equivalent (see [110, 2.5.2, 2.5.3], [105, Theorem 2], [74, 5.6]).
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We endow the space B

s

p;q

(R

n

) with the norm







f

�

�

B

s

p;q

(R

n

)







= inf

f=

P

f

j

kff

j

gk

l

s

q

(L

p

)

: (1.6)

Let further

hyi=(1+jyj

2

)

1=2

=

�

1+

l

X

k=1

y

2

k

�

1=2

; 8y2R

l

; l=1; : : : ; n; (1.7)

hyi

a

= (1 + jyj

2

a

)

1=2

=

�

1 +

�

l

X

k=1

jy

k

j

2a

1

=a

k

�

1=a

1

�

1=2

; (1.8)

8y 2 R

l

; l = 1; : : : ; n;

I

�

k

= F

�1

h�

k

i

�

F; (1.9)

I

s

= F

�1

h�i

s

a

F (1.10)

(see (1.2)). De�nition of jyj

a

given in (1.8) di�ers from a more standard one

jyj

a

=

�

l

X

k=1

jy

k

j

2=a

k

�

1=2

:

Our choice can be explained by the fact that in the case when a

1

= � � � =

a

n�1

we will have j�

0

j

a

= j�

0

j

1=a

1

, 8�

0

2 R

n�1

. The most part of x1.4 is

devoted to this case.

For s 2 R

n

, 1 < p <1 we put

H

s

p

(R

n

) =

�

f

�

�

f 2 S

0

(R

n

); kf jH

s

p

(R

n

)k = kI

s

fk

L

p

<1

	

: (1.11)

B

s

p;q

(R

n

) is called anisotropic Besov space andH

s

p

(R

n

) is called anisotropic

Bessel-potential space (or either the Liouville or the Lebesgue space). For

a = (1; : : : ; 1) we obtain isotropic Besov B

s

p;q

(R

n

) and isotropic Bessel-

potential H

s

p

(R

n

) spaces. (In the isotropic case we always write s instead

of s = (s; : : : ; s)).

Note that unlike the notations accepted in the given paper, the symbol

H

s

p

often denotes the Nikol'ski�� space B

s

p;1

, while the symbol L

s

p

is often

used to denote Bessel-potential spaces (see, e.g., [12], [74]).

Spaces B

s

p;q

(R

n

), H

s

�

(R

n

), s 2 R, 1 � p; q � 1, 1 < � <1, are Banach

spaces and D(R

n

), S(R

n

) are dense in them for p; q < 1 (see, e.g., [105,

Theorem 2], and also [110, 2.3.3]).

We can easily see (see, e.g., Theorem 1.4 below) that for s � 0

kf jH

s

p

(R

n

)k

(1)

=










�

n

X

k=1

I

s

k

k

�

f










L

p

; kf jH

s

p

(R

n

)k

(2)

=

n

X

k=1

kI

s

k

k

fk

L

p

(1.12)

are the equivalent norms in the space H

s

p

(R

n

).



48

If s = (s

1

; : : : ; s

n

), s

k

2 Z

+

= N [ f0g, k = 1; : : : ; n, then H

s

p

(R

n

)

coincides with an anisotropic Sobolev space W

s

p

(R

n

):

H

s

p

(R

n

) =W

s

p

(R

n

) =

n

f jf 2 S

0

(R

n

); kf jW

s

p

(R

n

)k =

= kfk

L

p

+

n

X

k=1










@

s

k

f

@x

s

k

k










L

p

<1

o

=

=

n

f jf 2S

0

(R

n

); kf jW

s

p

(R

n

)k

(1)

=

X

0�m

k

�s

k










@

m

k

f

@x

m

k

k










L

p

<1

o

(1.13)

(see [74, 9.1]).

Let f be an arbitrary function on R

n

, h = (h

1

; : : : ; h

n

) 2 R

n

. Introduce

the notation

(�

1

h

f)(x) = f(x+ h)� f(x);

(�

l

h

f)(x) = �

1

h

(�

l�1

h

f)(x); l = 2; 3; : : : ;

(�

1

h

k

f)(x) = f(x

1

; : : : ; x

k�1

; x

k

+ h

k

; x

k+1

; : : : ; x

n

)� f(x);

(�

l

h

k

f)(x) = �

1

h

k

(�

l�1

h

k

f)(x); l = 2; 3; : : : :

Suppose s = (s

1

; : : : ; s

n

) 2 R

n

, s

k

> 0, l

k

2 N, m

k

2 Z

+

, l

k

> s

k

�m

k

>

0, k = 1; : : : ; n. Then (see [74, 4.3 and 5.6])

kf jB

s

p;q

(R

n

)k

(1)

=kfk

L

p

+

n

X

k=1

0

B

@

Z

1

�1

0

B

@










�

l

k

h

k

@

m

k

f

@x

m

k

k










L

p

jh

k

j

s

k

�m

k

1

C

A

q

dh

k

jh

k

j

1

C

A

1=q

(1.14)

is an equivalent norm in the space B

s

p;q

(R

n

) (in the case q =1 the last sum

is substituted by

n

X

k=1

sup

0<jh

k

j<1

jh

k

j

m

k

�s

k










�

l

k

h

k

@

m

k

f

@x

m

k

k










L

p

�

:

In the isotropic case s = (s; : : : ; s), s > 0, we have (see [74, 4.3, 5.6] or

[110, 2.3.8, 2.5.12]):

kf jB

s

p;q

(R

n

)k

(2)

=kfk

L

p

+

n

X

k=1

�

Z

R

n

jhj

(m�s)q










�

l

h

@

m

f

@x

m

k










q

L

p

dh

jhj

n

�

1=q

; (1.15)

where l 2 N, m 2 Z

+

, l > s�m > 0, is an equivalent norm in B

s

p;q

(R

n

) (in

the case q =1 the last sum is, as usual, replaced by

n

X

k=1

sup

h2R

n

nf0g

jhj

m�s










�

l

h

@

m

f

@x

m

k










L

p

�

:
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In (1.14) we can replace

Z

1

�1

� � �

�

sup

0<jh

k

j<1

� � �

�

by

Z

R

� � �

�

sup

h

k

2Rnf0g

� � �

�

:

Similarly, in (1.15) we can replace

Z

R

n

� � �

�

sup

h2R

n

nf0g

� � �

�

by

Z

jhj<1

� � �

�

sup

0<h<1

� � �

�

:

In the sequel for an arbitrary s 2 R we shall use the following represen-

tations:

s = [s] + fsg; [s] 2 Z; 0 � fsg < 1; (1.16)

s = [s]

�

+ fsg

+

; [s]

�

2 Z; 0 < fsg

+

� 1: (1.17)

It is clear that in (1.14) we can take m

k

= [s

k

]

�

, l

k

= 2 and when s

k

62 Z

we can take m

k

= [s

k

], l

k

= 1. The same is true for the formula (1.15). In

particular, B

s

1;1

(R

n

) coincides with the Zygmund space Z

s

(R

n

)

B

s

1;1

(R

n

) = Z

s

(R

n

) =

n

f jf 2 C

[s]

�

(R

n

); kf jZ

s

(R

n

)k = kf jC

[s]

�

(R

n

)k+

+

X

j�j=[s]

�

sup

h2R

n

nf0g

jhj

�fsg

+

k�

2

h

@

�

f jC(R

n

)k <1

o

(1.18)

for s > 0 and with the H�older space C

s

(R

n

)

B

s

1;1

(R

n

) = Z

s

(R

n

) = C

s

(R

n

) =

n

f jf 2 C

[s]

(R

n

); kf jC

s

(R

n

)k =

=kf jC

[s]

(R

n

)k+

X

j�j=[s]

sup

h2R

n

nf0g

jhj

�fsg

k�

1

h

@

�

f jC(R

n

)k<1

o

(1.19)

for s > 0, s 62 N (note that [s] = [s]

�

, fsg = fsg

+

for s 62 Z).

In (1.18),(1.19) we have used the following standard notation:

j�j=�

1

+� � �+�

n

; 8�2Z

n

+

=(Z

+

)

n

; @

�

=@

�

x

=

@

j�j

@x

�

1

1

� � � @x

�

n

n

;

C(R

n

) is the space of bounded uniformly continuous on R

n

functions,

kf jC(R

n

)k = sup

x2R

n

jf(x)j;

C

m

(R

n

) =

�

f j@

�

f 2 C(R

n

) for j�j � m

	

; 8m 2 Z

+

;

kf jC

m

(R

n

)k =

X

j�j�m

k@

�

f jC(R

n

)k:

2

�

. We present here some well-known facts from the theory of function

spaces. Not trying to attain maximal generality, we shall formulate them in

a form more convenient for us. In particular, we shall consider Besov spaces

for 1 < p <1, though great many assertions are also true for p = 1;1.



50

Let s 2 R, 1 < p < 1, 1 � q < 1,

1

p

+

1

p

0

= 1,

1

q

+

1

q

0

= 1. Then

�

H

s

p

(R

n

)

�

�

= H

�s

p

0

(R

n

),

�

B

s

p;q

(R

n

)

�

�

=

B

�s

p

0

;q

0

(R

n

):

Proof. For Bessel-potential spaces the proof is completely similar to that

of Theorem 2.6.1-(a) in [109], and for Besov spaces to that of Theorem

2.11.2-(i) in [110]. �

Let s; � 2 R, 1 < p

0

; p

1

; p

2

< 1, 1 �

q

0

; q

1

; q

2

� 1, 0 < � < 1, r = (1� �)s + ��,

1

p

=

1��

p

1

+

�

p

2

,

1

q

=

1��

q

1

+

�

q

2

.

Then (see (1:2))

a) [B

s

p

1

;q

1

(R

n

); B

�

p

2

;q

2

(R

n

)]

�

= B

r

p;q

(R

n

) if at least one of the numbers

q

1

; q

2

does not equal 1;

b) (B

s

p

0

;q

1

(R

n

); B

�

p

0

;q

2

(R

n

))

�;q

0

= B

r

p

0

;q

0

(R

n

) if s 6= �;

c) [H

s

p

1

(R

n

); H

�

p

2

(R

n

)]

�

= H

r

p

(R

n

);

d) (H

s

p

1

(R

n

); H

s

p

2

(R

n

))

�;p

= H

s

p

(R

n

);

e) (H

s

p

0

(R

n

); H

�

p

0

(R

n

))

�;q

0

= B

r

p

0

;q

0

(R

n

) if s 6= �.

Proof. The proof is completely similar to that of Theorems 2.4.1, 2.4.2 in

[109] (see also [105, Theorem 7], [110, Theorem 2.11.2-(ii)], and Theorem

1.1 above). �

Let s; � 2 R, 1 < p <1, 1 � q �1.

Then the mappings

I

s

: H

s

p

(R

n

)! H

��s

p

(R

n

); B

�

p;q

(R

n

)! B

��s

p;q

(R

n

)

are the (continuous) isomorphisms.

Proof. The assertion in the case of Bessel-potential spaces is the direct con-

sequence of the de�nition (1.11). In the case of Besov spaces it su�ces to

apply interpolation (see Theorem 1.2-e) and [109, 1.3.3]). �

Let s 2 R, 1 < p < 1, 1 � q �

1, X(R

n

) = H

s

p

(R

n

) or B

s

p;q

(R

n

),

kAk

�

=

X

j�j�[n=2]+1

ess sup

�2R

n

j�

�

@

�

�

A(�)j < +1:

Then the function A is Fourier X(R

n

)-multiplier and

kF

�1

AF jX(R

n

)! X(R

n

)k � CkAk

�

;

where C < +1 depends only on n, p and q.

Proof. ForX(R

n

) = L

p

(R

n

) the above assertion is a variant of the Mikhlin{

H�ormander{Lizorkin theorem on Fourier multipliers. In such a form it has

been proved in [91]. By means of de�nition (1.11) it can be transferred to

Bessel-potential spaces, while by interpolation (see Theorem 1.2-e)) or by

de�nitions (1.5),(1.6) it can be transferred to Besov spaces. �
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Let s 2 R, 1 < p < 1, 1 � q � 1, m 2 Z

+

,

s

n

> m+ 1=p (see (1:2)),

�

j

= 1�

1

s

n

(j + 1=p); j = 0; : : : ;m: (1.20)

Then the mapping given by

�

m

0

f =

�

f(x

0

; 0);

@f

@x

n

(x

0

; 0); : : : ;

@

m

f

@x

m

n

(x

0

; 0)

�

; (1.21)

x

0

= (x

1

; : : : ; x

n�1

); (1.22)

is a continuous invertible from the right (and hence surjective) operator from

H

s

p

(R

n

) to

m

Q

j=0

B

�

j

s

p;p

(R

n�1

) and from B

s

p;q

(R

n

) to

m

Q

j=0

B

�

j

s

p;q

(R

n�1

).

Proof. See, e.g., [74, 6.4, 6.7, 6.8, 9.5]. �

Let s; � 2 R, 1 < p; p

1

; p

2

< 1,

p

1

� p

2

, s� n=p

1

� � � n=p

2

, 1 � q; q

1

; q

2

� 1, q

1

� q

2

, " > 0. Then

a) B

s+"

p;1

(R

n

) � B

s

p;1

(R

n

) � B

s

p;q

1

� B

s

p;q

2

(R

n

) � B

s

p;1

(R

n

) � B

s�"

p;1

(R

n

);

b) B

s

p;min(2;p)

(R

n

) � H

s

p

(R

n

) � B

s

p;max(2;p)

(R

n

);

c) B

s

p

1

;q

(R

n

) � B

�

p

2

;q

(R

n

);

d) H

s

p

1

(R

n

) � H

�

p

2

(R

n

).

Proof. The proof of points c) and d) for positive s and � may be found

in [74, 6.3 and 9.6] (see also (1.1),(1.2)). The general case is reduced to

that by Theorem 1.3. Point a) is proved, e.g., in [74], 6.2. Point b) can

be proved in exactly the same way as in the isotropic case (see, e.g., [110,

Proposition 2.3.2-2, (iii)] and also [105, Theorem 7], [110, Theorem 2.11.2-

(ii)] and Theorem 1.1 above). As for point b), see also [74, 9.3]. �

Introduce the notation

R

n

�

=

�

xjx = (x

0

; x

n

) = (x

1

; : : : ; x

n�1

; x

n

) 2 R

n

; �x

n

> 0

	

: (1.23)

Let s 2 R, 1 < p < 1, 1 � q � 1, 1=p � 1 < s

n

< 1=p

(see (1:2)). Then �

+

I, the operator of multiplication by the characteristic

function of the upper half-space R

n

+

, is continuous both in H

s

p

(R

n

) and in

B

s

p;q

(R

n

).

Proof. In the case of the spaces H

s

p

(R

n

), 0 � s

n

< 1=p, using the second

norm in (1.12), we can easily reduce the problem to one-dimension, and

hence, to isotropic case. The assertion in this case has been proved in [90],

[106] (see also [110], 2.8.7). The proof can be completed by means of duality

(see Theorem 1.1) and by interpolation (see Theorems 1.2-e)). �
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x

R

n

+

1

�

. Let X(R

n

) = H

s

p

(R

n

) or B

s

p;q

(R

n

), s 2 R, 1 < p < 1, 1 � q � 1.

In the sequel the following spaces will play an important role:

e

X(R

n

�

) =

�

uju 2 X(R

n

); suppu � R

n

�

	

(1.24)

and X(R

n

�

) { the space of all restrictions on R

n

�

of elements from X(R

n

)

endowed with the norm

kujX(R

n

�

)k = inf

�

ku

0

jX(R

n

)k

�

�

u

0

2 X(R

n

); u

0

j

R

n

�

= u

	

: (1.25)

The spaces

e

X(R

n

�

) and X(R

n

�

) are Banach ones. Clearly

X(R

n

�

) = X(R

n

)=

e

X(R

n

�

): (1.26)

D(R

n

�

) is dense in

e

X(R

n

�

) for q <1.

Proof. For an arbitrary h 2 R

n

we put (�

h

f)(x) = f(x�h), 8x 2 R

n

. Then

if q <1, we have

kf � �

h

f jX(R

n

)k ! 0 for h! 0; 8f 2 X(R

n

): (1.27)

Indeed: �rst, S(R

n

) is dense in X(R

n

); second, for any ' 2 S(R

n

) the

function �

h

' tends to ' in S(R

n

) for h! 0; third,

k�

h

f jX(R

n

)k = kf jX(R

n

)k; 8h 2 R

n

; 8f 2 X(R

n

):

The operator of multiplication by the function from D(R

n

�

) is continuous

in X(R

n

). This can be proved by the same scheme as Theorem 1.7 (the only

di�erence is that instead of [110, 2.8.7] we have to refer to [110, Theorem

2.8.2]). From this and (1.27) (for h = (0; : : : ; 0; h

n

), �h

n

> 0) we can easily

complete the proof of the assertion, taking into account that D(R

n

) is dense

in X(R

n

). �

Pseudodi�erential operator (	DO) with the symbol A(�) will be denoted

by A(D), i.e.

A(D) = F

�1

A(�)F: (1.28)

Let X(R

n

) and Y (R

n

) be arbitrary spaces from the scale of

spaces H

s

p

(R

n

), B

s

p;q

(R

n

), s 2 R, 1 < p < 1, 1 � q � 1, a 	DO with

the symbol A(�) being bounded from X(R

n

) to Y (R

n

) and let the symbol

A(�

0

; �

n

) admit for almost all �

0

2 R

n�1

an analytic with respect to �

n

continuation to the upper (lower) complex half-plane such that

jA(�

0

; �

n

+ i�)j � C(j�j + j� j+ 1)

N

; �� � 0; (1.29)

where C and N are some constants. Then the operator A(D) is continuous

from

e

X(R

n

�

) to

e

Y (R

n

�

).
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Proof. Let us take 8u 2 D(R

n

�

). It is easily seen that (Fu)(�

0

; �

n

) continues

analytically with respect to �

n

to the upper (lower) half-plane and admits

the estimate

j(Fu)(�

0

; �

n

+ i�)j � C

M

(j�j+ j� j+ 1)

�M

; �� � 0; 8M > 0:

Using the Paley{Wiener theorem (see, e.g., [37, Theorem 4.5]), it is easy

to show that A(D)u 2 L

2

(R

n

), suppA(D)u � R

n

�

. On the other hand,

A(D)u 2 Y (R

n

). Taking into account that D(R

n

�

) is dense in

e

X(R

n

�

) for

q < 1 (see Lemma 1.8), due to the continuity we obtain that A(D) is

bounded from

e

X(R

n

�

) to

e

Y (R

n

�

) for q < 1.

It remains for us to consider the case X(R

n

) = X

s

(R

n

) = B

s

p;1

(R

n

). For

the sake of convenience we will write Y

�

(R

n

) instead of Y (R

n

). By virtue of

Theorem 1.3, the boundedness of the operator A(D) : X

s

(R

n

) ! Y

�

(R

n

)

implies that of A(D) from X

s�"

(R

n

) to Y

��"

(R

n

), " > 0. Using interpola-

tion (see Theorem 1.2-b)), we get that A(D) is bounded from B

s�

1

2

"

p;q

0

(R

n

),

1 � q

0

<1, to the corresponding function space. Now the assertion of the

theorem (for q = 1) follows from already proven and from the embedding

Theorem 1.6-a). �

Denote by �

�

the restriction operator from R

n

to R

n

�

:

�

�

: X(R

n

)! X(R

n

�

): (1.30)

For the function u 2 X(R

n

�

) an extension on R

n

will be denoted by `u 2

X(R

n

): �

�

`u = u:

Let the conditions of the previous theorem be ful�lled. Then

the operator �

�

A(D)` does not depend on the choice of the extension ` and

is continuous from X(R

n

�

) to Y (R

n

�

).

Proof. Let us take an arbitrary u 2 X(R

n

�

) and its arbitrary extensions

`

1

u; `

2

u 2 X(R

n

). Clearly �

�

(`

1

u�`

2

u) = 0, i.e. `

1

u�`

2

u 2

e

X(R

n

�

). Then

according to Theorem 1.9, A(D)(`

1

u � `

2

u) 2

e

Y (R

n

�

), i.e. �

�

A(D)(`

1

u �

`

2

u) = 0, i.e. �

�

A(D)`

1

u = �

�

A(D)`

2

u:

Continuity of the operator �

�

A(D)` follows from the fact that we can

always choose `u so that the inequality k`ujX(R

n

)k � 2kujX(R

n

�

)k be ful-

�lled (see (1.25)). �

Remark. It follows from Theorem 1.10 that if the pseudodi�erential

operator A(D) satis�es the conditions of Theorem 1.9, then (�

�

A(D)`)�

�

= �

�

A(D). We shall use this fact in x1.4.

In the sequel for function spaces on R

n

�

we shall need an analogue of

Theorem 1.3.

Introduce the operators

I

s

�

= F

�1

(�

n

� ih�

0

i

a

n

a

)

s=a

n

F (1.31)
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(see (1.2),(1.8),(1.23)).

Let X

�

(R

n

) = H

�

p

(R

n

) or B

�

p;q

R

n

), � 2 R, 1 < p < 1,

1 � q �1, s 2 R. Then the mappings

I

s

�

: X

�

(R

n

)! X

��s

(R

n

);

e

X

�

(R

n

�

)!

e

X

��s

(R

n

�

);

�

�

I

s

�

` : X

�

(R

n

�

)! X

��s

(R

n

�

)

are (continuous) isomorphisms.

Proof. To prove this it su�ces to refer to Theorems 1.3, 1.4, 1.9, 1.10. �

2

�

. In the assertions given below by �

(k)

will be denoted the k-th deriva-

tive of the Dirac �-function � 2 D

0

(R).

Let 1 < p <1, 1 � q �1, s

n

<

1

p

� 1, v

j

2 B

�

j

s

p;p

(R

n�1

)

(B

�

j

s

p;q

(R

n�1

)),

�

j

= 1 +

1

s

n

(j � 1=p); j = 1; : : : ; [1=p� s

n

]

�

(1.32)

(see (1:2), (1:17)). Then

u =

[1=p�s

n

]

�

X

j=1

v

j

(x

0

)� �

(j�1)

(x

n

) 2

e

H

s

p

(R

n

�

)

�

e

B

s

p;q

(R

n

�

)

�

: (1.33)

Proof. Using Theorems 1.1 and 1.5, we obtain that u is a continuous linear

functional on H

�s

p

0

(R

n

) (B

�s

p

0

;q

0

(R

n

) for 1 < q � 1). Therefore, by virtue

of Theorem 1.1, u 2 H

s

p

(R

n

) (B

s

p;q

(R

n

), 1 < q � 1). To prove the last

relation for q = 1, it su�ces to apply interpolation Theorem 1.2-b) to the

operator (v

k

) 7�! u. Now (1.33) follows from the obvious fact that suppu 2

R

n

+

\ R

n

�

. �

Let 1 < p < 1, 1 � q � 1, s

n

> m � 1 + 1=p, m 2 N,

f 2 H

s

p

(R

n

) (B

s

p;q

(R

n

)). Then

@

k

x

n

(�

+

f)(x) = (�

+

@

k

x

n

f)(x) +

k�1

X

j=0

(@

j

x

n

f)(x

0

; 0)� �

(k�1�j)

(x

n

); (1.34)

k = 1; : : : ;m;

where �

+

is a characteristic function of the upper half-space R

n

+

.

Proof. For an arbitrary function f 2 S(R

n

) the formula (1.34) can be easily

obtained from the de�nition of a generalized derivative by integration by

parts. S(R

n

) is dense in H

s

p

(R

n

) (B

s

p;q

(R

n

) for q < 1). Hence using

Theorems 1.5 and 1.7 we can prove (1.34) by simple passage to the limit.

(Convergence of the right- and left-hand sides of the corresponding equalities

of the type (1.34) occurs, for example, in S

0

(R

n

)). In the case of spaces
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B

s

p;1

(R

n

) formula (1.34) follows from the already proven and the embedding

Theorem 1.6-a). �

Before going further on, it should be noted that Theorem 1.5 remains

valid if we replace the spacesH

s

p

(R

n

) andB

s

p;q

(R

n

) byH

s

p

(R

n

�

) andB

s

p;q

(R

n

�

),

respectively.

Let 1 < p < 1, 1 � q � 1, m+ 1=p� 1 < s

n

< m+ 1=p,

m 2 N, f 2 H

s

p

(R

n

+

) (B

s

p;q

(R

n

+

)), f

�

is the extension of f by zero from R

n

+

onto R

n

: f

�

�

�

R

n

+

= f , f

�

�

�

R

n

�

= 0. Then f

�

2

e

H

s

p

(R

n

+

) (

e

B

s

p;q

(R

n

+

)) if and

only if �

m�1

0

f = 0 (see (1:21)). In this case

kf

�

j

e

H

s

p

(R

n

+

)k � Ckf jH

s

p

(R

n

+

)k

�

kf

�

j

e

B

s

p;q

(R

n

+

)k � Ckf jB

s

p;q

(R

n

+

)k

�

;

where C < +1 is a constant depending only on p; q; s; a and n.

Proof. Assume f

�

2

e

H

s

p

(R

n

+

) (

e

B

s

p;q

(R

n

+

)). Then

�

m�1

0

f = �

m�1

0

�

f

�

�

�

R

n

+

�

= �

m�1

0

f

�

= �

m�1

0

�

f

�

�

�

R

n

�

�

= 0

(see Theorem 1.5).

Let now �

m�1

0

f = 0. Take an arbitrary extension f

0

2 H

s

p

(R

n

) (B

s

p;q

(R

n

))

of the function f . It is clear that

f

�

= �

+

f

0

; �

m�1

0

f

0

= 0: (1.35)

By virtue of (1.31) we have

I

a

n

m

+

= i

m

m

X

k=0

�

m

k

�

@

k

x

n

I

a

n

(m�k)

0

; (1.36)

where

I

�

0

= F

�1

h�

0

i

�

a

F; �

0

= (�

1

; : : : ; �

n�1

): (1.37)

From (1.35) and Lemma 1.14 we obtain @

k

x

n

f

�

= �

+

@

k

x

n

f

0

, k = 1; : : : ;m.

It is also easily seen that I

a

n

(m�k)

0

f

�

= �

+

I

a

n

(m�k)

0

f

0

. Therefore

I

a

n

m

+

f

�

= �

+

I

a

n

m

+

f

0

: (1.38)

Put � = s�a

n

m. The component �

n

= s

n

�m of the vector � = s�a

n

m

(see (1.2)) satis�es the inequality

1

p

� 1 < �

n

<

1

p

whence and from (1.38)

and Theorems 1.7, 1.12 it follows that

kf

�

j

e

H

s

p

(R

n

+

)k � C

1

kI

a

n

m

+

f

�

j

e

H

�

p

(R

n

+

)k = C

1

k�

+

I

a

n

m

+

f

0

j

e

H

�

p

(R

n

+

)k �

� C

2

kI

a

n

m

+

f

0

jH

�

p

(R

n

)k � C

3

kf

0

jH

s

p

(R

n

)k:

Similar inequalities are also valid in the case of Besov spaces. To complete

the proof it su�ces to refer to the de�nition of the norm in X(R

n

+

) (see

(1.25)). �
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Remark. The above-proven theorem can be formulated quite di�er-

ently: the kernel of the operator (see Theorem 1.5)

�

m�1

0

: H

s

p

(R

n

+

)!

m�1

Y

j=0

B

�

j

s

p;p

(R

n�1

)

�

B

s

p;q

(R

n

+

)!

m�1

Y

j=0

B

�

j

s

p;q

(R

n�1

)

�

satis�es the equality

Ker�

m�1

0

= �

+

e

H

s

p

(R

n

+

)

�

�

+

e

B

s

p;q

(R

n

+

)

�

(1.39)

for m+ 1=p� 1 < s

n

< m+ 1=p.

Let 1 < p < 1, 1 � q � 1, s

n

< 1=p� 1, s

n

� 1=p 62 Z,

u 2

e

H

s

p

(R

n

+

) \

e

H

s

p

(R

n

�

) (

e

B

s

p;q

(R

n

+

) \

e

B

s

p;q

(R

n

�

)). Then

u =

[1=p�s

n

]

X

j=1

v

j

(x

0

)� �

(j�1)

(x

n

); (1.40)

where v

j

2 B

�

j

s

p;p

(R

n�1

)

�

B

�

j

s

p;q

(R

n�1

)

�

(see (1:32)).

Proof. Consider �rst the case of Bessel-potential spaces. In view of Theorem

1.1, u is a continuous linear functional on H

�s

p

0

(R

n

). Moreover, suppu �

R

n

+

\ R

n

�

. Hence u considered as a functional on H

�s

p

0

(R

n

) vanishes on

e

H

�s

p

0

(R

n

�

) (see Lemma 1.8). Therefore u can be considered as a functional

on H

�s

p

0

(R

n

+

) = H

�s

p

0

(R

n

)

�

e

H

�s

p

0

(R

n

�

) (see (1.26)). But u equals zero on

e

H

�s

p

0

(R

n

+

) as well. Thus we can consider it as a functional on

H

�s

p

0

(R

n

+

)

�

�

+

e

H

�s

p

0

(R

n

+

): (1.41)

From the condition s

n

< 1=p � 1 it follows that [1=p � s

n

] � 1, and

from the condition s

n

� 1=p 62 Z we have 0 <

1

p

� s

n

�

h

1

p

� s

n

i

< 1, i.e.

h

1

p

� s

n

i

� 1 +

1

p

0

< �s

n

<

h

1

p

� s

n

i

+

1

p

0

. Then from Theorem 1.5 and

Remark 1.16 we obtain that �

m�1

0

induces an isomorphism of the space

(1.41) on

[1=p�s

n

]

Q

j=1

B

��

j

s

p

0

;p

0

(R

n�1

).

Taking into account the form of this isomorphism and using Theorem

1.1, we arrive at (1.40).

Exactly in the same way we can prove the assertion of the lemma in the

case of the spaces B

s

p;q

for 1 < q � 1.

In a general case the assertion of the lemma for the spaces B

s

p;q

, 1 �

q � 1, can be obtained from the already proven part of the theorem by

applying interpolation to the operator u 7�! (v

k

) (see points b) and e) of

Theorem 1.2). �
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Consider the equation

�

+

f = g; (1.42)

where g 2 H

s

p

(R

n

+

) (B

s

p;q

(R

n

+

)) is a given function and f 2

e

H

s

p

(R

n

+

)

(

e

B

s

p;q

(R

n

+

)) is an unknown function.

Let 1 < p <1, 1 � q � 1, m+1=p� 1 < s

n

< m+1=p,

m 2 Z. Then

a) if m = 0, then equation (1:42) has a unique solution and this solu-

tion is equal to �

+

`g, where `g 2 H

s

p

(R

n

) (B

s

p;q

(R

n

)) is an arbitrary

extension of the function g;

b) if m > 0, then for equation (1:42) to be solvable it is necessary

and su�cient that the equality �

m�1

0

g = 0 be ful�lled (see (1:21));

moreover, the solution is unique and equals �

+

`g;

c) if m < 0, then equation (1:42) is solvable and its arbitrary solution

is given by (see (1:31))

f = I

�a

n

m

+

�

+

I

a

n

m

+

`g +

jmj

X

j=1

v

j

(x

0

)� �

(j�1)

(x

n

); (1.43)

where v

j

2 B

�

j

s

p;p

(R

n�1

) (B

�

j

s

p;q

(R

n�1

)), j = 1; : : : ; jmj (see (1:32)).

Proof. a) Let 1=p�1 < s

n

< 1=p. Using Theorem 1.7, we readily obtain that

�

+

`g 2

e

H

s

p

(R

n

+

) (

e

B

s

p;q

(R

n

+

)). It is clear that �

+

�

+

`g = g, i.e., f = �

+

`g is

in fact a solution of (1.42). Let us prove its uniqueness.

Assume u 2

e

H

s

p

(R

n

+

) (

e

B

s

p;q

(R

n

+

)) and �

+

u = 0. In this case suppu �

R

n

+

nR

n

+

= R

n

+

\ R

n

�

, i.e. u 2

e

H

s

p

(R

n

+

) \

e

H

s

p

(R

n

�

) (B

s

p;q

(R

n

+

) \

e

B

s

p;q

(R

n

�

)).

Check that

�

�

w = 0; 8w 2

e

H

s

p

(R

n

�

)

�

B

s

p;q

(R

n

�

)

�

; (1.44)

where �

�

= 1 � �

+

. If q < 1, then according to Lemma 1.8 w can be

approximated by functions from D(R

n

�

) for which (1.44) is obvious. Taking

into account Theorem 1.7, due to continuity we get (1.44). For q =1 (1.44)

is obtained from the already proven and from the embedding Theorem 1.6-

a).

Apply (1.44) to the function u: u = �

+

u+�

�

u = 0. Thus the uniqueness

of the solution of equation (1.42) in the case under consideration is proved.

b) For m > 0 our assertion follows from the already proven part of the

theorem (the uniqueness) and from Lemma 1.15.

c) By virtue of Theorems 1.7 and 1.12, w = I

�a

n

m

+

�

+

I

a

n

m

+

`g 2

e

H

s

p

(R

n

+

)

(

e

B

s

p;q

(R

n

+

)). Moreover,

�

+

w = �

+

I

�a

n

m

+

I

a

n

m

+

`g � �

+

I

�a

n

m

+

�

�

I

a

n

m

+

`g =

= g � �

+

I

�a

n

m

+

�

�

I

a

n

m

+

`g: (1.45)
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Using again Theorems 1.7 and 1.12, we obtain

�

�

I

a

n

m

+

`g 2

e

H

s�a

n

m

p

(R

n

�

)

�

e

B

s�a

n

m

p;q

(R

n

�

)): (1.46)

On the other hand, �m = jmj > 0. Therefore the function (�

n

+ ih�

0

i

a

n

a

)

�m

admits analytic with respect to �

n

continuation to the lower half-plane sat-

isfying the estimate of type (1.29).

Then, according to Theorem 1.9, I

�a

n

m

+

�

�

I

a

n

m

+

`g 2

e

H

s

p

(R

n

�

)

�

e

B

s

p;q

(R

n

�

)

�

(see (1.46)) and hence �

+

I

�a

n

m

+

�

�

I

a

n

m

+

`g = 0:

Thus �

+

w = g (see (1.45)), i.e. w is a solution of (1.42). It remains to

notice that the kernel of the operator �

+

in the case under consideration is a

set of distributions of the type

jmj

P

j=1

v

j

(x

0

)��

(j�1)

(x

n

) where v

j

2 B

�

j

s

p;p

(R

n�1

)

(B

�

j

s

p;q

(R

n�1

)), j = 1; : : : ; jmj, (see Theorem 1.13 and Lemma 1.17). �

x

a

Let r 2 N, � 2 C , b = (b

1

; : : : ; b

n�1

), b

k

> 0, k = 1; : : : ; n� 1, a be the

same vector as in xx1.1, 1.2. Then O

a;�

b;r

denotes an algebra of continuous

on R

n

nf0g functions satisfying the following conditions:

i) g(t

a

1

�

1

; : : : ; t

a

n

�

n

) = t

�

g(�

1

; : : : ; �

n

), 8t > 0, 8� 2 R

n

nf0g, (1.47)

ii) for any of 2

n�1

collections e = (e

1

; : : : ; e

n�1

) of numbers e

k

= �1

g

b;e

2 C

r

�

((R

+

)

n�1

� R)nf0g

�

; (1.48)

where

g

b;e

(t

1

; : : : ; t

n�1

; t

n

) = g(e

1

t

b

1

1

; : : : ; e

n�1

t

b

n�1

n�1

; t

n

); (1.49)

t

k

� 0; k = 1; : : : ; n� 1; t

n

2 R:

Explain the de�nition by several examples. In case a = (1; : : : ; 1), b =

(1; : : : ; 1) any positively homogeneous of order � function whose restriction

on the unit sphere S

n�1

� R

n

belongs to C

r

(S

n�1

) is an element of the

algebra O

a;�

b;r

.

If the numbers a

k

, k = 1; : : : ; n, are rational and m 2 N is such that the

set of multiindices � 2 Z

n

+

= (Z

+

)

n

satisfying the equality �a �

n

P

k=1

�

k

a

k

=

m is nonempty, then any polynomial P of the type P(�) =

P

�a=m

c

�

�

�

,

c

�

2 C , belongs to the algebra O

a;m

b;r

, 8r 2 N, where b = (1; : : : ; 1).

The functions

�

�

n

� ij�

0

j

a

n

a

�

�=a

n

, �

0

= (�

1

; : : : ; �

n�1

), (see (1.8)) belong

to O

a;�

b;r

when minfa

n

; 2a

1

g min

k=1;:::;n�1

b

k

a

k

� r.

We shall denote by (O

a;�

b;r

)

N�N

the algebra of matrix functions of type

A = kA

jk

k

N

j;k=1

, A

jk

2 O

a;�

b;r

.

The symbol A 2 (O

a;�

b;r

)

N�N

is said to be a-elliptic if detA(�) 6= 0 for

� 6= 0 (in scalar case A(�) 6= 0 for � 6= 0).
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Using the results from [37, x6] and [37, Lemma 17.1], it is not di�cult

to prove (see also [92] and [31]) that for an a-elliptic symbol A 2 O

a;�

b;[n=2]+2

the representation

A(�) = (�

n

� ij�

0

j

a

n

a

)

�=2a

n

+{(!)+�

A

�

0

(�)A

+

0

(�)�

� (�

n

+ ij�

0

j

a

n

a

)

�=2a

n

�{(!)��

(1.50)

is valid, where

� =

1

2�i

log

A(0; : : : ; 0;+1)

A(0; : : : ; 0;�1)

;

{(!) 2 Z,! = (�

1

=j�

0

j

a

1

a

; : : : ; �

n�1

=j�

0

j

a

n�1

a

), {(!) =

1

2�

�arg

�

A(�

0

; �

n

)(�

2

n

+

j�

0

j

2a

n

a

)

��=2a

n

�

�

n

�ij�

0

j

a

n

a

�

n

+ij�

0

j

a

n

a

�

��

�

�

�

+1

�

n

=�1

, {(!) depends continuously on ! 2

S

n�2

a

,

S

n�2

a

=

�

�

0

2 R

n�1

�

�

j�

0

j

a

= 1

	

; (1.51)

(A

�

0

)

�1

(respectively (A

+

0

)

�1

) is an a-homogeneous of order 0 function (i.e.

for it the equality of type (1.47) with � = 0 is ful�lled) satisfying the

conditions of Theorem 1.4 and admitting bounded analytic with respect to

�

n

continuation to the lower (respectively, upper) complex half-plane.

Let A 2 (O

a;�

b;[n=2]+3

)

N�N

be an a-elliptic symbol; let �

1

; : : : ; �

l

be eigen-

values of the matrix A

�1

(0; : : : ; 0;�1)A(0; : : : ; 0;+1) to which there corre-

spond Jordan blocks of dimensions m

1

; : : : ;m

l

, respectively,

l

P

j=1

m

j

= N:

Consider the matrices

B

m

(z) = kB

�k

(z)k

m

�;k=1

; B

�k

(z) =

8

>

<

>

:

0; � < k;

1; � = k;

z

��k

(��k)!

; � > k:

(1.52)

They possess the following properties: B

m

(z

1

+ z

2

) = B

m

(z

1

)B

m

(z

2

),

B

m

(0) = I and hence B

m

(�z

1

) =

�

B

m

(z

1

)

�

�1

:

Introduce the notation

B

�

(t) = diag

h

B

m

1

�

1

2�i

log(t� i)

�

; : : : ; B

m

l

�

1

2�i

log(t� i)

�i

; (1.53)

�

0

j

=

log �

j

2�i

(the branch of the logarithm is chosen arbitrarily), �

k

= �

0

j

for

j�1

P

�=1

m

�

< k �

j

P

�=1

m

�

, k = 1; : : : ; N:

Consider the matrix function A

0

(�) = (�

2

n

+ j�

0

j

2a

n

a

)

��=2a

n

A(�), which is

a-homogeneous of zero order. In exactly similar way as in [92], [31] we can
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prove that for the symbol A

0!

(�) = A

0

(!; �

n

=j�

0

j

a

n

a

) (! 2 S

n�2

a

is �xed) we

have the factorization:

A

0!

(�)=c

�

A

�

0!

(�)

�

�1

diag

�

�

�

n

�ij�

0

j

a

n

a

�

n

+ij�

0

j

a

n

a

�

{

k

(!)+�

k

�

N

k=1

A

+

0!

(�); (1.54)

where A

�

0!

(�) = A

�

0

(!; �

n

=j�

0

j

a

n

a

), A

�

0

(!; t) = A

�

1

(!; t)B

�1

�

(t)g

�1

,

(A

�

1

(!; t))

�1

(respectively, (A

+

1

(!; t))

�1

) admits bounded analytic with re-

spect to t continuation into the lower (upper) complex half-plane and the

elements of the matrix A

�

1

(!; t)� I satisfy the inequalities

�

�

@

m

t

(A

�

1

(!; t)� I)

jk

�

�

� const(1 + jtj)

���m

; (1.55)

m = 0; 1; : : : ; [n=2] + 1; � > 0;

c; g are constant non-degenerate matrices; {

1

(!) � � � � � {

N

(!), {

k

(!) 2 Z,

the integer {(!) =

P

N

k=1

{

k

(!) depends continuously on ! while partial

sums

P

r

k=1

{

k

(!), 1 � r < N , are upper semicontinuous, i.e. they do not

increase for small variations of !.

Transform the symbols A

�

0

(!; t):

A

�

0

(!; t) =

�

(A

�

1

(!; t)� I) + I

�

B

�1

�

(t)g

�1

=

= B

�1

�

�

B

�

(t)

�

A

�

1

(!; t)� I

�

B

�1

�

(t) + I

�

g

�1

�

� B

�1

�

(t)A

�

2

(!; t)g

�1

: (1.56)

From (1.53) and (1.55) it easily follows that matrices A

�

2

(!; t) possess

the same properties as A

�

1

(!; t) with the only di�erence that in (1.55) one

should replace � by an arbitrary �

0

2 (0; �).

Using properties of block-diagonal matrices, we obtain from (1.54) and

(1.56) that

A

0

(!; t) = cg

�

A

�

2

(!; t)

�

�1

B

�

(t) diag

�

�

t� i

t+ i

�

{

k

(!)+�

k

�

N

k=1

�

�B

�1

+

(t)A

+

2

(!; t)g

�1

= cg

�

A

�

2

(!; t)

�

�1

diag

�

�

t� i

t+ i

�

{

k

(!)+�

k

�

N

k=1

�

� diag

h

B

m

1

�

1

2�i

log

t� i

t+ i

�

; : : : ; B

m

l

�

1

2�i

log

t� i

t+ i

�i

A

+

2

(!; t)g

�1

�

� cg

�

A

�

2

(!; t)

�

�1

d(!; t)A

+

2

(!; t)g

�1

;

where d(!; t) is a lower triangular matrix with elements (

t�i

t+i

)

{

k

(!)+�

k

lying

on its diagonal.

Summarizing the above-said, we come to the following statement

Let A 2 (O

a;�

b;[n=2]+3

)

N�N

be an a-elliptic symbol. Then

A

!

(�) = A(j�

0

j

a

1

a

!

1

; : : : ; j�

0

j

a

n�1

a

!

n�1

; �

n

) admits the factorization

A

!

(�)=(�

n

�ij�

0

j

a

n

a

)

�=2a

n

A

�

!

(�)D(!; �)A

+

!

(�)(�

n

+ij�

0

j

a

n

a

)

�=2a

n

; (1.57)
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where (A

�

!

(�))

�1

((A

+

!

(�))

�1

) is an a-homogeneous of zero order matrix

function (i.e. for its components the equality of type (1:47) with � = 0 is

ful�lled) satisfying the conditions of Theorem 1:4 and admitting bounded

analytic with respect to �

n

continuation into the lower (upper) complex half-

plane; D(!; �) is a lower triangular matrix with elements

�

�

n

� ij�

0

j

a

n

a

�

n

+ ij�

0

j

a

n

a

�

{

k

(!)+�

k

lying on its diagonal and with a-homogeneous of zero order functions lying

under it and satisfying the conditions of Theorem 1:4; {

1

(!) � � � � � {

N

(!),

{

k

(!) 2 Z, the integer

{(!) =

N

X

k=1

{

k

(!) =

=

1

2�

�argdet

�

(�

2

n

+ j�

0

j

2a

n

a

)

��=2a

n

A

!

(�

0

; �

n

)

�

�

�

+1

�

n

=�1

�

N

X

k=1

Re �

k

depends continuously on ! 2 S

n�2

a

while partial sums

P

r

k=1

{

k

(!), 1 � r <

N , are upper semicontinuous;

�

k

=

log�

j

2�i

for

j�1

X

�=1

m

�

< k �

j

X

�=1

m

�

; k = 1; : : : ; N;

�

j

are eigenvalues of the matrix A

�1

(0; : : : ; 0;�1)A(0; : : : ; 0;+1) to which

there correspond Jordan blocks of dimension m

j

.

Both in matrix and scalar cases {(!) depends continuously on ! 2 S

n�2

a

(see (1.51)) and takes integer values. For n � 3 an \a-sphere" S

n�2

a

is

connected. Hence {(!) = { = const.

Throughout this chapter we shall additionally assume that

{(�1) = {(+1) = { = const (1.58)

for n = 2 (when S

n�2

a

= S

0

a

= f�1g).

The case when (1.58) is not ful�lled will be considered in Chapter III.

x

a

The most part of this section is devoted to the investigation of the bound-

ary value problem for an a-elliptic system of pseudodi�erential equations.

Moreover, unless otherwise stated, we shall assume that

a

1

= a

2

= � � � = a

n�1

: (1.59)
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In this case j�

0

j

a

= j�j

1=a

1

(see (1.8)) and B

�

p;q

(R

n�1

) = B

�=a

1

p;q

(R

n�1

) (see

(1.2)). Nevertheless we shall use anisotropic notation to make them appli-

cable to the case of one equation when (1.59) is not required to be ful�lled

(see Remark 1.26). When studying a system of equations we can do without

restriction (1.59) only if p = 2 (see Remark 1.27).

In this chapter

b

G will denote the following:

b

G(�) = G

�

h�

0

i

a

1

a

�

1

j�

0

j

a

1

a

; : : : ; h�

0

i

a

n�1

a

�

n�1

j�

0

j

a

n�1

a

; �

n

�

: (1.60)

Let A 2 (O

a;�

b;[n=2]+3

)

N�N

be an a-elliptic symbol, 1 < p <1, 1 � q � 1,

s 2 R.

Consider the boundary value problem (see (1.28))

�

+

b

A(D)u

+

+

m

�

X

k=1

�

+

b

C

k

(D)

�

w

k

(x

0

)� �(x

n

)

�

= f(x); (1.61)

�

0

b

B

j

(D)u

+

+

m

�

X

k=1

b

E

jk

(D

0

)w

k

(x

0

) = g

j

(x

0

); 1 � j � m

+

; (1.62)

where B

j

; C

k

are N -dimensional vector functions and E

jk

are scalar func-

tions satisfying the following conditions:

B

j

(�) = j�

0

j

�

j

��

1j

a

�

�

2

n

+ j�

0

j

2a

n

a

�

�

1j

=2a

n

B

0j

(�); (1.63)

Re�

1j

< s�

a

n

p

; 1 � j � m

+

; (1.64)

C

k

(�) = j�

0

j




k

�


1k

a

�

�

2

n

+ j�

0

j

2a

n

a

�




1k

=2a

n

C

0k

(�); (1.65)

Re 


1k

< �s+Re�� a

n

�

1�

1

p

�

; 1 � k � m

�

; (1.66)

E

jk

(�

0

) = j�

0

j

�

jk

a

E

0jk

(�

0

); (1.67)

�

jk

= �

j

+ 


k

� �+ 1; 1 � j � m

+

; 1 � k � m

�

; (1.68)

B

0j

, C

0k

, E

0jk

are a-homogeneous of zero order (vector) functions such

that the components of vector functions

b

B

0j

,

b

C

0k

satisfy the conditions of

Theorem 1.4, while the functions

b

E

0jk

satisfy the conditions obtained from

those of Theorem 1.4 by substituting n and � by n� 1 and �

0

, respectively;

f 2H

r

p

(R

n

+

; C

N

)

�

B

r

p;q

(R

n

+

; C

N

)

�

; r = s�Re�; (1.69)

g

j

2B

r

(j)

p;p

(R

n�1

)

�

B

r

(j)

p;q

(R

n�1

)

�

; r

(j)

=s�Re�

j

�a

n

=p; (1.70)
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are given functions;

u

+

2

e

H

s

p

(R

n

+

; C

N

)

�

e

B

s

p;q

(R

n

+

); C

N

)

�

;

w

k

2 B

s

(k)

p;p

(R

n�1

)

�

B

s

(k)

p;q

(R

n�1

)

�

;

s

(k)

= s�Re�+Re 


k

+ a

n

�

1�

1

p

�

(1.71)

are the unknown functions;

�

0

= �

0

0

is an operator of restriction to R

n�1

(see (1.21)).

The left-hand sides of equations (1.61) and (1.62) de�ne the continuous

operator

U =

 

�

+

b

A(D) �

+

b

C(D)(� � �(x

n

))

�

0

b

B(D)

b

E(D

0

)

!

: H

1

(s; p) =

=

e

H

s

p

(R

n

+

; C

N

)

�

m

�

�

k=1

B

s

(k)

p;p

(R

n�1

)

�! H

2

(s; p) =

H

r

p

(R

n

+

; C

N

)

�

m

+

�

j=1

B

r

(j)

p;p

(R

n�1

)

; (1.72)

�

U : B

1

(s; p; q) =

e

B

s

p;q

(R

n

+

; C

N

)�

m

�

�

k=1

B

s

(k)

p;q

(R

n�1

)!

! B

2

(s; p; q) = B

r

p;q

(R

n

+

; C

N

)�

m

+

�

j=1

B

r

(j)

p;q

(R

n�1

)

�

(see (1.69){(1.71)), where

b

B(D) =

�

b

B

j

(D)

�

m

+

j=1

{ is a matrix m

+

�N 	DO;

b

C(D) =

�

b

C

k

(D)

�

m

�

k=1

{ is a matrix N �m

�

	DO;

b

E(D

0

) =

�

b

E

jk

(D

0

)

�

j=1;:::;m

+

k=1;:::;m

�

{ is a matrix m

+

�m

�

	DO:

The proof of this fact goes in a standard way (see Theorems 1.3 and

1.4). Note only that conditions (1.64) allow us to use Theorem 1.5, while

Theorem 1.13 is used in the case of conditions (1.66).

Fix an arbitrary ! 2 S

n�2

a

.(Note that by virtue of (1.59) S

n�2

a

(see (1.8)

and (1.51)) coincides with ordinary unit sphere S

n�2

= f�

0

2 R

n�1

�

�

j�

0

j =

1g. Nevertheless by the above mentioned arguments we prefer anisotropic

notation). Introduce the notation (see Lemma 1.19)

A

!

(�) = A(j�

0

j

a

1

a

!

1

; : : : ; j�

0

j

a

n�1

a

!

n�1

; �

n

): (1.73)

The notations B

!j

(�), C

!k

(�), E

!jk

(�

0

) are treated analogously. The oper-

ator corresponding to these symbols we denote by

U

!

: H

1

(s; p)! H

2

(s; p)

�

B

1

(s; p; q)! B

2

(s; p; q)

�

: (1.74)

The operator U is invertible if and only if the operators U

!

,

8! 2 S

n�2

a

, are invertible.



64

Proof. Let � : R

n�1

! R

n�1

, j��

0

j = j�

0

j, be a rotation of the space R

n�1

about origin and �

�

'(�

0

) = '(��

0

):

Consider the function

�

1

+

(�) = �

1

+

(�

0

) = �

+

(�

1

) =

1

2

(1 + sgn �

1

): (1.75)

It is well known (see, e.g., [37, Lemma 5.2]) that (see (1.28))

�

�

1

+

(D)'

�

(x

1

; : : : ; x

n

) =

1

2

'(x

1

; : : : ; x

n

)�

�

1

2�i

Z

R

'(t

1

; x

2

; : : : ; x

n

)

t

1

� x

1

dt

1

; 8' 2 S(R

n

):

Therefore �

1

+

is bounded in L

p

(R

n

) (see, e.g., [55, Ch. VI, point D]) and

hence in the spaces H

s

p

(R

n

), B

s

p;q

(R

n

) (see the last phrase in the proof of

Theorem 1.4). Exactly in the same way �

1

+

(D

0

) is also bounded in the

spaces H

s

p

(R

n�1

), B

s

p;q

(R

n�1

). Moreover,

k(�

�

�

1

+

)(D)jL

p

(R

n

)! L

p

(R

n

)k = k�

�

(�

1

+

(D))�

0

�

jL

p

(R

n

)! L

p

(R

n

)k =

= k�

1

+

(D)jL

p

(R

n

)! L

p

(R

n

)k (1.76)

since �

�

and �

0

�

(where �

0

is a matrix conjugate to �) are isometric iso-

morphisms in L

p

(R

n

). Therefore the norm of the operator (�

�

�

1

+

)(D) in

H

s

p

(R

n

) and B

s

p;q

(R

n

) is majorized by the value independent of the rotation

�. Similar arguments are valid for the operator (�

�

�

1

+

)(D

0

).

Denote by � the set of all functions of the type

�(�) = �(�

0

) =

n�1

Y

k=1

(�

(k)

�

�

1

+

)(�

0

); (1.77)

where �

(1)

; : : : ; �

(n�1)

are certain rotations.

It follows from the above-said and (1.77) that norms of 	DOs with sym-

bols from � in H

s

p

and B

s

p;q

are uniformly bounded:

k�(D)k � C < +1; k�(D

0

)k � C

0

< +1; 8� 2 �: (1.78)

Let

m

[

k=1

supp�

(k)

\

S

n�2

a

= S

n�2

a

; g =

m

X

k=1

�

(k)

; �

(k)

2 �:

Then the operator g(D) (g(D

0

)) is invertible in spaces H

s

p

, B

s

p;q

. Indeed,

the function g

�1

can be represented as a linear combination of products of

functions from �, and (g

�1

)(D) ((g

�1

)(D

0

)) will be the inverse operator.

Consider the operators (see Theorem 1.10)

K

1

�

= �(D)� �(D

0

) : H

1

(s; p)! H

1

(s; p)

�

B

1

(s; p; q)! B

1

(s; p; q)

�

;

K

2

�

= �

+

�(D)`� �(D

0

) : H

2

(s; p)! H

2

(s; p)

�

B

2

(s; p; q)! B

2

(s; p; q)

�

;



65

where � 2 �. We can easily see that

K

2

�

U =

 

�

+

�(D)

b

A(D) �

+

�(D)

b

C(D)(� � �(x

n

))

�

0

�(D)

b

B(D) �(D

0

)

b

E(D

0

)

!

= UK

1

�

:

Choosing �

(1)

; : : : ; �

(n�1)

properly, we can make �j

S

n�2

a

(see (1.77)) to be

the characteristic function of arbitrarily small neighbourhood of any point

! 2 S

n�2

a

= S

n�2

. Thus the operator

K

2

�

(U � U

!

) : H

1

(s; p)! H

2

(s; p)

�

B

1

(s; p; q)! B

2

(s; p; q)

�

can be achieved to be arbitrarily small in norm. Really, 	DOs contained

in this operator have small norms in the appropriate pairs of spaces H

�

2

.

Moreover, they are uniformly bounded in the appropriate pairs of spaces

H

�

p

, B

�

p;q

(see (1,78)). Therefore to prove the statement it su�ces to use

the interpolation (see Theorem 1.2).

Let the operators U

!

be invertible 8! 2 S

n�2

a

. Take �

!

2 � such that

kK

2

�

!

(U � U

!

k < kU

�1

!

k

�1

. Then the operator U

!

+ K

2

�

!

(U � U

!

) has an

inverse R

!

.

Choose from the family f�

!

g

!2S

n�2

a

a �nite subfamily f�

k

g

k=1;:::;m

such

that

m

[

k=1

supp�

k

\ S

n�2

a

= S

n�2

a

:

Denote g =

P

m

k=1

�

k

: Consider the operator

R = K

1

g

�1

m

X

k=1

K

1

�

k

R

k

K

2

�

k

: (1.79)

Note that �

2

= �, 8� 2 �. Hence

(K

1

�

)

2

= K

1

�

; (K

2

�

)

2

= K

2

�

;

RU = K

1

g

�1

m

X

k=1

K

1

�

k

R

k

K

2

�

k

U =

= K

1

g

�1

m

X

k=1

K

1

�

k

R

k

K

2

�

k

(U

k

+K

2

�

k

(U � U

k

)) =

= K

1

g

�1

m

X

k=1

K

1

�

k

R

k

(U

k

+K

2

�

k

(U � U

k

))K

1

�

k

=

= K

1

g

�1

m

X

k=1

K

1

�

k

I

H

1

(s;p)

K

1

�

k

= K

1

g

�1

m

X

k=1

K

1

�

k

=

= K

1

g

�1

K

1

g

= I

H

1

(s;p)

;

�

� � � = I

B

1

(s;p;q)

�

:

Analogously we obtain UR = I

H

2

(s;p)

(I

B

2

(s;p;q)

).

The su�ciency is proved. Let us prove the necessity.
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Let U be invertible. Take 8! 2 S

n�2

a

= S

n�2

and choose �

!

2 � such

that kK

2

�

!

(U �U

!

)k < kU

�1

k

�1

. Then the operator U +K

2

�

!

(U

!

�U) has

its inverse R

!

.

K

2

�

!

U

!

R

!

= K

2

�

!

�

U +K

2

�

!

(U

!

� U)

�

R

!

= K

2

!

: (1.80)

Similarly

R

!

U

!

K

1

�

!

= K

1

�

!

: (1.81)

Obviously �

�

U

!

= U

!

�

�

for any rotation of space R

n�1

(see (1.73) and

(1.8)).

Apply rotations to equalities (1.80) and (1.81). We conclude that there

exist bounded operators R

1

; : : : ;R

m

and functions �

1

; : : : ; �

m

2 � such

that

K

2

�

k

U

!

R

k

= K

2

�

k

; R

k

U

!

K

1

�

k

= K

1

�

k

; k = 1; : : : ;m;

g =

m

X

k=1

�

k

is an invertible symbol.

Consider the operator R(!) = K

1

g

�1

m

P

k=1

K

1

�

k

R

k

K

2

�

k

. As above we can

prove that

R(!)U

!

= I

H

1

(s;p)

�

I

B

1

(s;p;q)

�

; U

!

R(!) = I

H

2

(s;p)

�

I

B

2

(s;p;q)

�

;

8! 2 S

n�2

a

= S

n�2

: �

Consider now the boundary value problem

�

+

b

A

!

(D)u

+

+ �

+

b

C

!

(D)

�

w(x

0

)� �(x

n

)

�

= f(x); (1.82)

�

0

b

B

!

(D)u

+

+

b

E

!

(D

0

)w(x

0

) = g(x

0

) (1.83)

corresponding to the operator U

!

, where w = (w

1

; : : : ; w

m

�

), g =

(g

1

; : : : ; g

m

+

).

Apply the operator

�

+

b

�

�

!

(D)` � �

+

(

b

A

�

!

)

�1

diag

"

I

�

(k)

�

(!)

�

#

N

k=1

`; (1.84)

�

(k)

�

(!) = ��=2�

�

{

k

(!) + �

k

�

a

n

(1.85)

(see (1.31), Theorem 1.10 and Lemma 1.19) to (1.82). We obtain (see

Remark 1.11)

�

+

b

G

!

(D)v

+

= f

0

� �

+

b

Q

!

(D)

�

w(x

0

)� �(x

n

)

�

; (1.86)



67

where (see (1.84), (1.85))

v

+

=

b

�

+

!

(D)u

+

�diag

"

I

�

(k)

+

(!)

+

#

N

k=1

b

A

+

!

(D)u

+

; (1.87)

f

0

= �

+

b

�

�

!

(D)`f; (1.88)

b

Q

!

(D) =

b

�

�

!

(D)

b

C

!

(D); (1.89)

G

!

=kG

!jk

k

N�N

; G

!jk

(�)=

8

>

<

>

:

0 for j<k,

1 for j=k,

j�j

{

jk

(!)

G

0

!jk

(�) for j>k,

(1.90)

{

jk

(!) = {

k

(!)+�

k

�

�

{

j

(!)+�

j

�

; (1.91)

G

0

!jk

are a-homogeneous of zero order functions satisfying the conditions of

Theorem 1.4.

By means of Theorems 1.3, 1.4, 1.9 and 1.10 we obtain that

v

+

2

N

Y

k=1

e

H

s�Re�

(k)

+

(!)

p

(R

n

+

)

�

N

Y

k=1

e

B

s�Re�

(k)

+

(!)

p;q

(R

n

+

)

�

; (1.92)

f

0

2

N

Y

j=1

H

r�Re�

(j)

�

(!)

p

(R

n

+

)

�

N

Y

j=1

B

r�Re�

(j)

�

(!)

p;q

(R

n

+

)

�

; (1.93)

where

s�Re�

(k)

+

(!)=r�Re�

(k)

�

(!)=s�

1

2

Re�+

�

{

k

(!)+Re �

k

�

a

n

(1.94)

by virtue of (1.69) and (1.85).

Assume (see (1.2))

s

n

�Re�=2a

n

+Re �

m

� 1=p 62 Z; m = 1; : : : ; N: (1.95)

Then

s

n

�Re�=2a

n

+{

m

(!)+Re �

m

=d

m

(!)+�

m

;

d

m

(!)2Z;

1

p

�1<�

m

<

1

p

:

(1.96)

Consequently 0 < �

m

+ 1� 1=p < 1,

�

m

+ 1�

1

p

=

�

s

n

�Re�=2a

n

+Re �

m

+ 1� 1=pg =

= fs

n

�Re�=2a

n

+Re �

m

� 1=pg; (1.97)

that is

�

m

= 1=p� 1 +

�

s

n

�Re�=2a

n

+Re �

m

� 1=pg (1.98)
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and �

m

does not depend on !.

Obviously {

1

(!) � � � � � {

N

(!)) d

1

(!) � � � � � d

N

(!):

Let d

m

(!) > 0 for m = 1; : : : ;m

1

(!), d

m

(!) = 0 for m = m

1

(!) +

1; : : : ;m

2

(!) and d

m

(!) < 0 for m = m

2

(!)+1; : : : ; N . It may happen that

m

1

(!) = 0 or m

1

(!) = N or m

1

(!) = m

2

(!), etc.

Keep in mind (1.90) and rewrite (1.86) in a scalar form,

�

+

v

+m

+ �

+

m�1

X

l=1

b

G

!ml

(D)v

+l

=

= f

0m

� �

+

m

�

X

k=1

b

Q

!mk

(D)(w

k

� �); m = 1; : : : ; N: (1.99)

We shall act as follows. Using Theorem 1.18, express v

+1

from the �rst

equation in (1.99) by f

01

and w and substitute the result in the second

equation. Apply again Theorem 1.18 and express v

+2

by f

02

, f

01

and w.

The obtained expressions for v

+1

and v

+2

we substitute in the third equation

in (1.99), etc.

From point b) of Theorem 1.18 we �nd that the �rst m

1

(!) equations of

(1.99) yield

M

+

(!) =

m

1

(!)

X

m=1

d

m

(!)

equations with respect to w = (w

1

; : : : ; w

m

�

).

Apply point c) of Theorem 1.18 to obtain that from equations (1.99) for

m = m

2

(!) + 1; : : : ; N there arise

M

�

(!) =

N

X

m=m

2

(!)+1

jd

m

(!)j

new functions of the variable x

0

by which v

+m

, m = m

2

(!) + 1; : : : ; N , can

be expressed. Denote these functions by w

m

�

+1

; : : : ; w

m

�

+M

�

(!)

:

Introduce the notation

s

(k)

= s�

1

2

Re�+

�

{

m

(!) + Re �

m

+ t�

1

p

�

a

n

for k = m

�

+

m�1

X

e=m

2

(!)+1

jd

e

(!)j+ t;

m = m

2

(!) + 1; : : : ; N; t = 1; : : : ; jd

m

(!)j:

(1.100)

By virtue of point c) of Theorem 1.18

w

k

2B

s

(k)

p;p

(R

n�1

)

�

B

s

(k)

p;q

(R

n�1

)

�

; k=m

�

+1; : : : ;m

�

+M

�

(!): (1.101)



69

It follows from point a) of Theorem 1.18 that the group of equations

(1.99) for m = m

1

(!) + 1; : : : ;m

2

(!) generates neither new functions nor

new equations.

Thus from equations (1.99) we have expressed v

+

and hence u

+

(see

(1.87)) by f and w

0

= (w

1

; : : : ; w

m

�

; w

m

�

+1

; : : : ; w

m

�

+M

�

(!)

). Moreover,

we have obtained M

+

(!) equations with respect to w = (w

1

; : : : ; w

m

�

).

Substitute the obtained expression for u

+

into the boundary condition (1.83)

to obtain m

+

more equations with respect to w

0

.

Introduce the notation

r

(j)

= s�

1

2

Re�+

�

{

m

(!) + Re �

m

� t+ 1�

1

p

�

a

n

for j=m

+

+

m�1

X

e=1

d

e

(!)+t; m=1; : : : ;m

1

(!); t=1; : : : ; d

m

(!):

(1.102)

The obtained system of equations with respect to w

0

is of the form

T

!

w

0

= g

0

; (1.103)

where

w

0

2

m

�

+M

�

(!)

�

k=1

B

s

(k)

p;p

(R

n�1

)

�

m

�

+M

�

(!)

�

k=1

B

s

(k)

p;q

(R

n�1

)

�

; (1.104)

g

0

2

m

+

+M

+

(!)

�

j=1

B

r

(j)

p;p

(R

n�1

)

�

m

+

+M

+

(!)

�

j=1

B

r

(j)

p;q

(R

n�1

)

�

(1.105)

and T

!

is an operator bounded in the appropriate spaces.

It is not di�cult to verify that T

!

is a translation invariant operator.

Moreover, �

�

T

!

= T

!

�

�

for any rotation � of space R

n�1

. Therefore T

!

is

a pseudodi�erential operator:

T

!

= Z

!

(D

0

) (1.106)

(see [48] or the proof of [101, Ch.I, Theorem 3.16]), the matrix function Z

!

being dependent on j�

0

j

a

and not on (

�

1

j�

0

j

a

1

a

; : : : ;

�

n�1

j�

0

j

a

n�1

a

) 2 S

n�2

a

. Analysing

the deduction of system (1.103) convinces us that

Z

!

= kZ

!jk

k; Z

!jk

(�

0

) = h�

0

i

s

(k)

c

�r

(j)

c

a

Z

jk

(!); (1.107)

where s

(k)

c

and r

(j)

c

are the numbers obtained from formulas (1.71), (1.100)

and, respectively, (1.70), (1.102) by omitting the sign \Re"; Z

jk

(!) are some

constants (for ! 2 S

n�2

a

�xed), and moreover,

Z

jk

(!) = 0 for j=m

+

+1; : : : ;m

+

+M

+

(!);

k = m

�

+ 1; : : : ;m

�

+M

�

(!): (1.108)

Hence

kZ

!jk

(�

0

)k = diag

�

h�

0

i

�r

(j)

c

a

�

m

+

+M

+

(!)

j=1

kZ

jk

(!)k diag

�

h�

0

i

s

(k)

c

a

�

m

�

+M

�

(!)

k=1

:
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Thus the unique solvability of the boundary value problem (1.82), (1.83)

for any right-hand sides is equivalent to that of the system (1.103) for any

right-hand sides which in turn is equivalent to the invertibility of the oper-

ator of multiplication by a constant matrix kZ

jk

(!)k (see (1.106), (1.107))

acting from the space B

0

p;p

(R

n�1

; C

m

�

+M

�

(!)

) (B

0

p;q

(R

n�1

; C

m

�

+M

�

(!)

))

into the space B

0

p;p

(R

n�1

; C

m

+

+M

+

(!)

) (B

0

p;q

(R

n�1

; C

m

+

+M

+

(!)

)) since

Re s

(k)

c

= s

(k)

, Re r

(j)

c

= r

(j)

(see Theorem 1.3). Hence the invertibility

of the operator U

!

(see (1.74)) is equivalent to that of the matrix kZ

jk

(!)k

(j = 1; : : : ;m

+

+M

+

(!), k = 1; : : : ;m

�

+M

�

(!)

�

:

For the matrix to be invertible we need, �rst of all, it to be quadratic.

Thus we arrive at the condition

m

�

+M

�

(!) = m

+

+M

+

(!); (1.109)

that is

m

�

+

N

X

m=m

2

(!)+1

jd

m

(!)j = m

+

+

m

1

(!)

X

m=1

d

m

(!):

From (1.96), (1.97) and said in x1.3 we have

m

1

(!)

X

m=1

d

m

(!)�

N

X

m=m

2

(!)+1

jd

m

(!)j =

N

X

m=1

d

m

(!) =

=

N

X

m=1

{

m

(!) +

N

X

m=1

�

s

n

�Re�=2a

n

+Re �

m

�

�

N

X

m=1

�

m

=

= {(!) +

N

X

m=1

�

s

n

�Re�=2a

n

+Re �

m

+1�1=p

�

�

N

X

m=1

(�

m

+1�1=p)=

= { +

N

X

m=1

�

s

n

�Re�=2a

n

+Re �

m

+ 1� 1=p

�

�

�

N

X

m=1

�

s

n

�Re�=2a

n

+Re �

m

+ 1� 1=p

	

=

= { +

N

X

m=1

�

s

n

�Re�=2a

n

+Re �

m

+ 1� 1=p

�

=

= { +N +

N

X

m=1

�

s

n

�Re�=2a

n

+Re �

m

� 1=p

�

:

Hence we can choose the integers m

+

and m

�

not depending on ! such

that (1.109) holds for any ! 2 S

n�2

a

(see (1.58)).
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Thus for the matrix kZ

jk

(!)k to be invertible it is necessary that the

equality

m

�

�m

+

= { +N +

N

X

m=1

�

s

n

�Re�=2a

n

+Re �

m

� 1=p

�

(1.110)

be ful�lled.

Consider now the boundary value problem on a semi-axis

�

+

A(!;D

n

)u

+

(x

n

) +

m

�

X

k=1

w

k

�

+

C

k

(!;D

n

)�(x

n

) = f(x

n

); (1.111)

�

0

B

j

(!;D

n

)u

+

(x

n

) +

m

�

X

k=1

E

jk

(!)w

k

= g

j

; j = 1; : : : ;m

+

; (1.112)

where

f 2 H

(s�Re�)=a

n

p

(R

1

+

; C

N

)

�

B

(s�Re�)=a

n

p;q

(R

1

+

; C

N

)

�

;

u

+

2

e

H

s=a

n

p

(R

1

+

; C

N

)

�

e

B

s=a

n

p;q

(R

1

+

; C

N

)

�

;

w

k

; g

j

are complex numbers, A(!;D

n

), C

k

(!;D

n

), B

j

(!;D

n

) are the 	DOs

with respect to x

n

depending on ! 2 S

n�2

a

with the symbols A(!; �

n

),

C

k

(!; �

n

), B

j

(!; �

n

), respectively.

Repeate almost word for word the investigation of boundary value prob-

lem (1.82), (1.83) and take into account the form of factors in Lemma 1.19

(see [92], [31]) to see that the unique solvability of the system (1.111),

(1.112) for any right-hand sides is equivalent to the invertibility of the ma-

trix kZ

jk

(!)k when (1.95) is ful�lled.

Let (1:95) be ful�lled. Then the following statements are

equivalent:

a) the operator U

!

is invertible;

b) boundary value problem (1:111), (1:112) is uniquely solvable for any

right-hand sides;

c) the matrix kZ

jk

(!)k is invertible.

For a){c) to be ful�lled it is necessary that the equality (1:110) hold.

Assume that the condition (1:95) is not ful�lled. Then the

operator U is not invertible.

Proof. Assume the contrary: the operator U is invertible. Denote by U

�"

the operator obtained from U by substitution 	DO

b

A(D) by 	DO with the

symbol

�

�

n

� ih�

0

i

a

n

a

�

n

+ ih�

0

i

a

n

a

�

�"

b

A(�); " > 0:

In a standard way (as in proving Lemma 1.20) we can easily ascertain that

the operators U and U

�"

may be made arbitrarily close in norm by reducing
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". Let us take su�ciently small " > 0, such that U

�"

are invertible and for

them the conditions of the form (1.95) are ful�lled.

Denote by l the number of values of the index m for which the condition

(1.95) is violated for the operator U . Apply Lemmas 1.20{1.21 to operators

U

�"

and write for them the equalities of type (1.110). We obtain

m

�

�m

+

= { +N +

N

X

m=1

�

s

n

�Re�=2a

n

+Re �

m

� 1=p

�

;

m

�

�m

+

= { +N +

N

X

m=1

�

s

n

�Re�=2a

n

+Re �

m

� 1=p

�

� l:

The obtained contradiction proves the lemma. �

The necessity of the condition (1.95) for the operator U

!

to be invertible

and for system (1.111), (1.112) to be uniquely solvable for any right-hand

sides can be proved similarly.

Analogously to Lemma 1.20 one can prove that the Noetherity of the

operator U is equivalent to that of the operators U

!

, 8! 2 S

n�2

a

. If the

condition (1.95) is ful�lled, we can easily see that the operator U

!

has

in�nite dimensional kernel or cokernel when the matrix kZ

jk

(!)k is non-

invertible. Hence when the condition (1.95) is ful�lled the Noetherity of

U

!

is equivalent to its invertibility. As in the proof of Lemma 1.22 one can

show that when (1.95) is not ful�lled, the operator U

!

is non-Noetherian.

The Noetherity of the operator U (U

!

, ! 2 S

n�2

a

) is equiv-

alent to its invertibility.

Introduce the following notation:

Z(A) =

�

Re�=2a

n

�Re �

m

+ ` j ` 2 Z; m = 1; : : : ; N

	

; (1.113)

s

+

= min

�

Re�=a

n

�Re 


1k

� 1; t j t 2 Z(A);

t � s

n

�

1

p

; k = 1; : : : ;m

�

	

; (1.114)

s

�

= max

�

Re�

1j

=a

n

; t j t 2 Z(A);

t � s

n

�

1

p

; j = 1; : : : ;m

+

	

(1.115)

(see (1.63){(1.66)). Clearly if (1.95) is ful�lled, then s

�

< s

n

�

1

p

< s

+

:

From the proof of Lemma 1.21 we easily get that the invertibility of

the operator U

!

: H

1

(s; p) ! H

2

(s; p) is equivalent to that of the operator

U

!

: B

1

(s; p; q)! B

2

(s; p; q), 8q 2 [1;+1]. Similarly, the unique solvability

of system (1.111), (1.112) for any right-hand sides in the case of H

�

p

scale
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is equivalent to that in the case of B

�

p;q

scale. Moreover, let 1 < p

�

< 1,

s

�

2 R and

s

�

< s

�

n

�

1

p

�

< s

+

(1.116)

(see (1.2)). Then the invertibility of the operator U

!

: H

1

(s; p)!H

2

(s; p)

(B

1

(s; p; q)!B

2

(s; p; q)) is equivalent to that of the operator U

!

:H

1

(s

�

; p

�

)

! H

2

(s

�

; p

�

) (B

1

(s

�

; p

�

; q

�

)! B

2

(s

�

; p

�

; q

�

)). Indeed, from (1.96), (1.113){

(1.116) we have

d

m

(!) =

�

s

n

� 1=p�Re�=2a

n

+ {

m

(!) + Re �

m

+ 1

�

=

=

�

s

�

n

� 1=p

�

�Re�=2a

n

+ {

m

(!) + Re �

m

+ 1

�

:

Let us summarize the results obtained in this section.

The following statements are equivalent:

a) the operator U : H

1

(s; p)! H

2

(s; p) is Noetherian;

b) the operator U : H

1

(s; p)! H

2

(s; p) is invertible;

c) operators U

!

: H

1

(s; p)! H

2

(s; p) are Noetherian for any ! 2 S

n�2

a

;

d) operators U

!

: H

1

(s; p)! H

2

(s; p) are invertible for any ! 2 S

n�2

a

;

e) boundary value problem (1:111), (1:112) is uniquely solvable for any

right-hand sides and any ! 2 S

n�2

a

;

f) the matrix kZ

jk

(!)k is invertible for any ! 2 S

n�2

a

.

In any of the points a){d) we can substitute H

i

(s; p) by B

i

(s; p; q),

H

i

(s

�

; p

�

) or B

i

(s

�

; p

�

; q), i = 1; 2, if (1:116) is ful�lled. Analogous is also

valid for the point e).

For the points a){f) to be ful�lled, it is necessary that the relations (1:95)

and (1:110) take place.

Remark. The above proven theorem allows one to reduce the in-

vestigation of boundary value problems for a-elliptic 	DOs in Besov and

Bessel-potential spaces to their investigation in the H

�

2

spaces. To this end

it su�ces to replace p by 2 and s by s � a

n

=p + a

n

=2 in the exponents of

the corresponding spaces (see (1.116)).

Remark. In the scalar case we can do without the localization with

respect to

�

�

1

j�

0

j

a

1

a

; : : : ;

�

n�1

j�

0

j

a

n�1

a

�

2 S

n�2

a

(1.117)

(see Lemma 1.20) and hence without the restriction (1.59) which was nec-

essary only in proving Lemma 1.20.

Indeed, using the factorization (1.50), it is not di�cult to reduce a

boundary value problem of type (1.61), (1.62) for one scalar a-elliptic pseu-

dodi�erential equation to the equivalent system of type (1.103){(1.107)

b

Z(D

0

)w

0

= g

0

. The unique solvability of this system for any right-hand sides

is equivalent to the invertibility of the corresponding 	DO with the symbol
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Z

0

being an a-homogeneous matrix function of zero order (see (1.107) and

Theorem 1.3) whose components satisfy the conditions of Theorem 1.4 (with

�

0

and n� 1 instead of � and n). Note that in the case under consideration

the matrix function Z

0

, unlike (1.107), is not, in general, constant and can

depend on the variable (1.117).

For the pseudodi�erential operator Z

0

(D) to be invertible, it is necessary

and su�cient that the matrix function Z

0

have its inverse Z

�1

0

2 L

1

(R

n�1

).

Really, if this condition is ful�lled, then by means of Theorem 1.4 we can

see that the pseudodi�erential operator Z

�1

0

(D

0

) is inverse to Z

0

(D

0

). Let

now the pseudodi�erential operator Z

0

(D

0

) be invertible. Then it is easy to

see that the inverse operator (Z

0

(D

0

))

�1

is translation invariant and hence

can be represented as a pseudodi�erential operator: (Z

0

(D

0

))

�1

= Z

�

0

(D

0

)

(see [48] or the proof of [101, Ch. I, Theorem 3.16]). It follows from the

boundedness of the pseudodi�erential operator Z

�

0

(D

0

) that Z

�

0

2 L

1

(R

n�1

)

(see, e.g., [110, Theorem 2.6.3]) and from the equalities Z

�

0

(D

0

)Z

0

(D

0

) = I ,

Z

0

(D

0

)Z

�

0

(D

0

) = I there follow the equalities Z

�

0

Z

0

= I , Z

0

Z

�

0

= I (almost

everywhere in R

n�1

). Hence Z

�1

0

= Z

�

0

2 L

1

(R

n�1

).

Thus the unique solvability of a boundary value problem of type (1.61),

(1.62) for any right-hand sides in the scalar case is equivalent to the invert-

ibility of the matrix function Z

0

in L

1

(R

n�1

). As above, this condition is

likewise necessary and su�cient for the unique solvability for any right-hand

sides and any ! 2 S

n�2

a

of a boundary value problem on semi-axis of type

(1.111), (1.112).

Remark. If p = 2, we can determine a su�cient condition for the

operator U to be invertible (see (1.72)) in the case when the condition

(1.59) is not ful�lled. Indeed, using instead of the functions of type (1.77)

the functions �

!

, �

!

(�) = �

!

(�

0

) = �

!

(

�

1

j�

0

j

a

1

a

; : : : ;

�

n�1

j�

0

j

a

n�1

a

), where �

!

:

S

n�2

a

! R is a characteristic function of su�ciently small neighbourhood

W � S

n�2

a

of the point ! 2 S

n�2

a

, and repeating the arguments from the

proof of Lemma 1.20, show us that the invertibility of the operators U

!

,

8! 2 S

n�2

a

(see (1.74)) is su�cient for the operator

U : H

1

(s; 2)! H

2

(s; 2)

�

B

1

(s; 2; q)! B

2

(s; 2; q)

�

(1.118)

to be invertible. Here the fact that the pseudodi�erential operator �

!

(D)

(�

!

(D

0

)) is bounded in L

2

(R

n

) (L

2

(R

n�1

)), and hence (see Theorem 1.3 as

well as point e) of Theorem 1.2) in the spacesH

�

2

(R

n

), B

�

2;q

(R

n

) (H

�

2

(R

n�1

),

B

�

2;q

(R

n�1

)) plays an essential role.

Note that in the case under consideration the second part of the proof of

Lemma 1.20, i.e. the proof that the invertibility of operatorsU

!

, 8! 2 S

n�2

a

,

is necessary for the invertibility of U , fails since we cannot use the rotation

when (1.59) is not ful�lled.

In investigating the operator U

!

, i.e. in proving Lemma 1.21 we do not

use (1.59). Thus we obtain that for operator (1.118) to be invertible, it is

su�cient that the matrix kZ

jk

(!)k, 8! 2 S

n�2

a

, be invertible.
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Introduce the notation

L(�) =

�

�

n

� ij�

0

j

a

n

a

�

(s��)=a

n

�1=p+1=2

A(�)�

�

�

�

n

+ ij�

0

j

a

n

a

�

�(s=a

n

�1=p+1=2)

; (1.119)

�

0

l

, l = 1; : : : ; N , are eigenvalues of the matrix

�

L(0; : : : ; 0;�1)

�

�1

�

L(0; : : : ; 0;+1):

It is not di�cult to see that (1.95) is equivalent to

1

2�

arg�

0

l

�

1

2

62 Z; l = 1; : : : ; N: (1.120)

Use Remark 1.25 and the results from [37, x16] to obtain the following

statement.

Let (1:95) hold. For the symbols B

j

, C

k

, E

jk

ensuring

unique solvability of the boundary value problem (1:61), (1:62) for any right-

hand sides to exist for su�ciently large m

+

and m

�

, it is necessary and

su�cient that for su�ciently large m 2 N the matrix function













L(�

0

; �

n

) 0

0 I

m













(where I

m

is the unit m�m-matrix) be homotopic to the matrix function
















�

�

n

�ij�

0

j

a

n

a

�

n

+ij�

0

j

a

n

a

�

m

�

�m

+

0

0 I

m+N�1
















in the class of a-elliptic matrix functions satisfying (1:120).

x

a 	

An intersection of a �nite number of half-spaces will be called a poly-

hedron. A polyhedron is said to be conic if boundaries of all half-spaces

taking part in its de�nition pass through the origin.

Let 


1

; : : : ;


l

� R

n�1

be open polyhedra such that

R

n�1

=

l

[

m=1




m

; 


m

\ 


k

= ? for m 6= k: (1.121)

Assume that the condition (1.59) is ful�lled and U

1

; : : : ; U

l

are operators

of type (1.72). Consider the operator (see proof of Lemma 1.20)

U =

l

X

m=1

K

2

�

m

U

m

=

l

X

m=1

U

m

K

1

�

m

; (1.122)

where �

m

is a characteristic function of the polyhedron 


m

.
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For the operator U : H

1

(s; p) ! H

2

(s; p) (B

1

(s; p; q) !

B

2

(s; p; q)) of type (1:122) to be invertible, it is su�cient, and if 


1

; : : : ;


l

are conic polyhedra, it is also necessary that the operators

U

m!

: H

1

(s; p)! H

2

(s; p)

�

B

1

(s; p; q)! B

2

(s; p; q)

�

;

8! 2 


�

m

\ S

n�2

a

; 8m = 1; : : : ; l;

(1.123)

where 


�

= f(t

a

1

�

1

; : : : ; t

a

n�1

�

n�1

) j (�

1

; : : : ; �

n�1

) 2 
, t > 0g for any


 � R

n�1

, be invertible (see (1:74)).

Proof. Let the operators (1.123) be invertible. They depend continuously

on ! (see the proof of Lemma 1.20). Therefore inverse operators also depend

continuously on !. Since the set 


�

m

\ S

n�2

a

is compact, we obtain

max

m=1;:::;l

sup

!2


�

m

\S

n�2

a

kU

�1

m!

k =M < +1: (1.124)

Introduce the notation (�

h

0

g)(�

0

) = g(�

0

� h

0

), 8�

0

; h

0

2 R

n�1

. We eas-

ily see that (see (1.28)) (�

h

0

g)(D

0

) = e

�h

0

g(D

0

)e

h

0

I , 8h

0

2 R

n�1

, where

e

�h

0

(x) = exp(�ih

0

x

0

), 8x

0

2 R

n�1

. Hence if g is a Fourier L

p

(R

n�1

)-

multiplier, then �

h

0

g is likewise a Fourier L

p

(R

n�1

)-multiplier. Moreover,

their norms coincide. The same is true for the operators g(D) and (�

h

0

g)(D)

in the space L

p

(R

n

). From this and from the �rst part of the proof of Lemma

1.20 (see (1.76), (1.78)) it follows that for any polyhedron 
 � R

n�1

the

norm of the operators �(
; D

0

), �(
; D) in the corresponding Besov and

Bessel-potential spaces has a majorant which depends only on the number

of half-spaces taking part in the de�nition of 
. (Throughout the rest of

the paper �(
) = �(
; �) is the characteristic function of 
).

It is not di�cult to see now that we can break up R

n�1

into conic poly-

hedra �

1

; : : : ;�

k

such that

R

n�1

=

k

[

j=1

�

j

; �

j

\ �

m

= ? for j 6= m;

kK

2

�(


m

\�

j

)

(U � U

m!

)k < M

�1

; 8! 2 


�

m

\ �

j

\ S

n�2

a

:

Then the operator U

m!

+K

2

�(


m

\�

j

)

(U �U

m!

) has an inverse operator R

!

(see (1.124)).

Choose arbitrary !

mj

2 


�

m

\ �

j

\ S

n�2

a

and consider the operator

R =

X

m;j

K

1

�(


m

\�

j

)

R

!

mj

K

2

�(


m

\�

j

)

:

As in proving Lemma 1.20 we obtain

RU =

X

m;j

K

1

�(


m

\�

j

)

= I

H

1

(s;p)

�

I

B

1

(s;p;q)

�

:

The second equality holds since

P

m;j

�(


m

\ �

j

; �) = 1 almost everywhere.

Analogously we obtain UR = I

H

2

(s;p)

(I

B

2

(s;p;q)

).
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Thus the operator U is invertible, and the su�ciency is proved.

The necessity can be proved modifying analogously the reasonings from

the proof of Lemma 1.20. �

Remark. In the same way as Lemma 1.23 we can prove that if




1

; : : : ;


l

are conic polyhedra, then the invertibility of the operator U :

H

1

(s; p) ! H

2

(s; p) (B

1

(s; p; q) ! B

2

(s; p; q)) of type (1.122) is equivalent

to its Noetherity.

Remark. The invertibility of operators (1.123) for p = 2 is su�cient

for the operator U : H

1

(s; 2) ! H

2

(s; 2) (B

1

(s; 2; q) ! B

2

(s; 2; q)) to be

invertible even in the case when (1.59) is not ful�lled and 


1

; : : : ;


l

are

arbitrary measurable sets (see Remark 1.27 and the proof of Theorem 1.29).

x

a 	

1

0

. Suppose A 2 C

1

(R

n�1

� Rnf0g � R) is an a-homogeneous function

of order � 2 C (see (1.47)). Introduce the notation

� = j�

0

j

a

; ! =

�

�

1

j�

0

j

a

1

a

; : : : ;

�

n�1

j�

0

j

a

n�1

a

�

2 S

n�2

a

; (1.125)

A

0

(!; �; �

n

) = A(�

0

; �

n

); (1.126)

A

�

(!; �; �

n

) = A

0

(!; �

1=a

n

; �

n

): (1.127)

We shall say that A belongs to the class D

a;�

if

A

�

2 C

1

(S

n�2

a

� [0;+1[�RnS

n�2

a

� f0g � f0g) and

@

k

A

�

(!; 0;�1)

@�

k

= e

i�(k��=a

n

)

@

k

A

�

(!; 0;+1)

@�

k

; 8k 2 Z

+

: (1.128)

The condition (1.128) is called the transmission condition.

Note that we can di�erentiate the equality (1.128) with respect to ! 2

S

n�2

a

.

It is not di�cult to see that (�

n

� ij�

0

j

a

n

a

)

�=a

n

2 D

a;�

, 8� 2 C , (�

n

+

ij�

0

j

a

n

a

)

�=a

n

2 D

a;�

if �=a

n

2 Z. It is also evident that if A

j

2 D

a;�

j

,

j = 1; 2, then A

1

A

2

2 D

a;�

where � = �

1

+ �

2

.

As usual, D

N�N

a;�

denotes a class of N � N -matrices with components

from D

a;�

.

Let A 2 D

a;0

. In A

�

let us make change of variables

� =

�

n

� i�

�

n

+ i�

; � > 0: (1.129)

This transformation maps (for �xed �) the upper complex half-plane im �

n

�

0 onto the unit circle j�j � 1. When �

n

runs through the real axis, � = e

i'

,
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' 2]0; 2�[, runs through the unit circumference S

1

. Moreover,

�

n

= i�

1 + �

1� �

= i�

1 + e

i'

1� e

i'

= �� ctg

'

2

:

Hence

A

�

(!; �; �

n

)=A

�

�

!; �; i�

1+�

1��

�

=A

�

�

!; 1;�ctg

'

2

�

; '2]0; 2�[: (1.130)

Consider the function

A

�

(!; �) = A

�

(!; e

i'

) = A

�

�

!; 1;� ctg

'

2

�

: (1.131)

Since the function A is a-homogeneous, we obtain

A

�

(!; e

i'

) = A

�

�

!; tg

'

2

;�1

�

for 0 < ' < �;

A

�

(!; e

i'

) = A

�

�

!;� tg

'

2

; 1

�

for � < ' < 2�:

From (1.128) for � = 0 it follows that

@

k

@'

k

A

�

�

!; tg

'

2

;�1

�

�

�

'=+0

=

@

k

@'

k

A

�

�

!;�tg

'

2

; 1

�

�

�

'=2��0

; 8k 2 Z

+

:(1.132)

We can di�erentiate these equalities with respect to ! 2 S

n�2

a

. Thus A

�

2

C

1

(S

n�2

a

�S

1

). Conversely if A

�

2 C

1

(S

n�2

a

�S

1

), then the corresponding

symbol A belongs to D

a;0

(see (1.125){(1.127), (1.131)).

For any m 2 Z

+

a symbol A 2 D

a;�

admits the representation

A(�) = A

�

m

(�) +R

m

(�) (1.133)

with

A

�

m

(�

0

; �

n

) =

�

�

n

� ij�

0

j

a

n

a

�

�=a

n

A

�

m;0

(�

0

; �

n

);

R

m

(�

0

; �

n

) = j�

0

j

(m+1)a

n

a

�

�

n

� ij�

0

j

a

n

a

�

�=a

n

�m�1

R

m;0

(�

0

; �

n

);

A

�

m;0

, R

m;0

2 D

a;0

and A

�

m;0

admits bounded analytic with respect to �

n

continuation into the lower complex half-plane.

Proof.

A(�

0

; �

n

) =

�

�

n

� ij�

0

j

a

n

a

�

�=a

n

�

�

n

� ij�

0

j

a

n

a

�

��=a

n

A(�

0

; �

n

);

�

�

n

� ij�

0

j

a

n

a

�

��=a

n

A(�

0

; �

n

) 2 D

a;0

:

Therefore it su�ces to prove the theorem for the class D

a;0

. Thus we

assume that A 2 D

a;0

. Then A

�

2 C

1

(S

n�2

a

� S

1

).
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Consider the function

b(!; e

i'

) � A

�

(!; e

i'

)�

m

X

k=0

1

k!

h�

� ie

i'

@

@'

�

k

A

�

(!; e

i'

)

i

'=0

(1� e

�i'

)

k

:

It has a zero of order (m+1) at the point e

i'

= 1. Hence 9c 2 C

1

(S

n�2

a

�

S

1

): b(!; e

i'

) = (1� e

�i'

)

m+1

c(!; e

i'

):

Thus

A

�

(!; e

i'

) =

m

X

k=0

c

k

(!)

k!

(1� e

�i'

)

k

+ (1� e

�i'

)

m+1

c(!; e

i'

);

where

c

k

=

h�

� ie

i'

@

@'

�

k

A

�

(�; e

i'

)

i

'=0

2 C

1

(S

n�2

a

):

For the symbol A we obtain the representation

A(�

0

; �

n

) =

m

X

k=0

(�2i)

k

k!

c

k

(!)

j�

0

j

ka

n

a

(�

n

� ij�

0

j

a

n

a

)

k

+

+ (�2i)

m+1

j�

0

j

(m+1)a

n

a

(�

n

� ij�

0

j

a

n

a

)

m+1

R

0

m

(�

0

; �

n

);

where R

0

m

2 D

a;0

(see (1.125){(1.127), (1.131)). �

2

0

. Thorough examination of the proof of the results given in x1.3 (see

[37, x6 and Lemma 17.1], [92], [31]) shows that they are also true for the

symbols from D

N�N

a;�

. For such symbols we have more exact results. The

following two theorems are devoted to them.

Let A 2 D

a;�

be an a-elliptic symbol.

Then in the representation (1:50) A

�

0

2 D

a;0

and

�=2a

n

� � 2 Z: (1.134)

Proof. (1.134) follows from (1.128) for k = 0. This means that the factor

(�

n

+ ij�

0

j

a

n

a

) contained in (1.50) has an integer power.

Show that A

�

0

2 D

a;0

. As in proving Theorem 1.32 we can restrict

ourselves to case A 2 D

a;0

.

Introduce the notation

m = indA

�

(!; �) =

1

2�

�argA

�

(!; e

i'

)

�

�

2�

'=0

2 Z:

(This is an integer, since A

�

2 C

1

(S

n�2

a

� S

1

) � C(S

n�2

a

� S

1

)).

Consider the function b, b(!; �) = �

�m

A

�

(!; �). Obviously log b 2

C

1

(S

n�2

a

� S

1

). Therefore

A

�

(!; �) = c

�

(!; �)�

m

c

+

(!; �); (1.135)
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where c

�

(!; �) = exp

�

(P

�

log b)(!; �)

�

, P

�

are analytic projectors: P

�

=

1

2

(I � S), I is the unit operator,

(Sf)(�) =

1

�i

Z

jzj=1

f(z)

z � �

dz; j�j = 1; (1.136)

the integral in (1.136) is understood in the sense of the Cauchy principal

value.

From log b 2 C

1

(S

n�2

a

� S

1

) it follows that P

�

log b 2 C

1

(S

n�2

a

� S

1

)

(see, e.g., [40, 4.4]). Thus, c

�

2 C

1

(S

n�2

a

� S

1

).

Returning to the symbol A (see (1.125){(1.127), (1.131)), we obtain from

(1.135)

A(�

0

; �

n

) = (�

n

� ij�

0

j

a

n

a

)

m

A

�

1

(�

0

; �

n

)A

+

1

(�

0

; �

n

)(�

n

+ ij�

0

j

a

n

a

)

�m

;

where A

�

1

, (A

�

1

)

�1

2 D

a;0

admit bounded analytic with respect to �

n

con-

tinuation to the corresponding complex half-plane (upper for the sign \+"

and lower for the sign \�").

It remains for us to note that by virtue of the uniqueness of the factor-

ization (see [37], the proof of Theorem 6.1), A

�

0

= A

�

1

. �

Let A 2 D

N�N

a;�

be an a-elliptic symbol. Then for any

! 2 S

n�2

a

the symbol A

!

(�) = A(j�

0

j

a

1

a

!

1

; : : : ; j�

0

j

a

n�1

a

!

n�1

; �

n

) admits the

factorization

A

!

(�) = (�

n

� ij�

0

j

a

n

a

)

�=a

n

A

�

!

(�)�

� diag

"

�

�

n

� ij�

0

j

a

n

a

�

n

+ ij�

0

j

a

n

a

�

{

k

(!)

#

N

k=1

A

+

!

(�); (1.137)

where (A

�

!

)

�1

2 D

N�N

a;0

((A

+

!

)

�1

2 D

N�N

a;0

) admits bounded analytic with

respect to �

n

continuation into the lower (upper) complex half-plane;

{

1

(!) � � � � � {

N

(!); {

k

(!) 2 Z;

{(!) �

N

X

k=1

{

k

(!) =

1

2�

�argdet

�

(�

n

� ij�

0

j

a

n

a

)

��=a

n

A

!

(�

0

; �

n

)

�

�

�

+1

�

n

=�1

:

Proof. Denote byW

m

the set of all functions f 2 C(S

1

) whose Fourier series

f(�) =

P

j2Z

f

j

�

j

satisfy the condition

P

j2Z

j

m

jf

j

j < 1, m 2 Z

+

. Clearly,

W

m

� C

m

(S

1

), W

l

�W

m

for l > m and C

1

(S

1

) = \

m2Z

+

W

m

:

It is not di�cult to see that W

m

is a decomposing R-algebra (see [42,

Ch. I, x5]).

As above we can restrict ourselves to the case � = 0. It follows from

A

!

2 D

N�N

a;0

that b 2 (C

1

(S

1

))

N�N

, where b(�) = A

�

(!; �).
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Consider the matrix function b as an element of W

N�N

0

and apply [42,

Ch. VIII, Theorem 2.1]:

b(�) = b

�

(�) diag[�

{

k

]

N

k=1

b

+

(�); (1.138)

where b

�

; b

�1

�

2 (W

�

0

)

N�N

, W

�

m

=

(

f 2W

m

jf(�) =

1

P

�j=0

f

j

�

j

)

, {

k

=

{

k

(!) 2 Z.

Take an arbitrary m 2 N. Regarding b as an element of W

N�N

m

, we

obtain, in general, the other factorization: b(�) =

e

b

�

(�) diag[�

e{

k

]

N

k=1

e

b

+

(�)

where

e

b

�

;

e

b

�1

�

2 (W

�

m

)

N�N

, e{

k

2 Z (see [42, Ch. VIII, Theorem 2.1]). It

is clear that the above equality can be treated as a factorization in W

N�N

0

.

Therefore from [42, Ch. VIII, Theorem 1.1] it follows that e{

k

= {

k

, k =

1; : : : ; N , while from [42, Ch. VIII, Theorem 1.2] it follows that b

�

; b

�1

�

2

(W

�

m

)

N�N

. Since m 2 N is arbitrary, we have b

�

, b

�1

�

2

�

C

1

(S

1

)

�

N�N

:

Return now to the symbol A (see (1.125){(1.127), (1.131)) and obtain

(1.137) from (1.138). �

3

0

. Suppose u 2 H

s

p

(R

n

+

) (B

s

p;q

(R

n

+

)), 1 < p < 1, 1 � q � 1, s 2 R,

s

n

> 1=p� 1 (see (1.2)). Denote by `

0

u the extension of the function u by

zero into the lower half-space. It is not di�cult to deduce from Theorem

1.7 that `

0

u 2 H

t

p

(R

n

) (B

t

p;q

(R

n

)), where t = minfs; 0g.

For an arbitrary A 2 D

a;�

let us de�ne the 	DO

b

A(D) (see (1.60)) on a

space H

s

p

(R

n

+

) (B

s

p;q

(R

n

+

)) as follows:

b

A(D)u =

b

A(D)`

0

u; 8u 2 H

s

p

(R

n

+

)

�

B

s

p;q

(R

n

+

)

�

: (1.139)

Let s 2 R, 1 < p < 1, 1 � q � 1, s

n

> 1=p � 1,

A 2 D

a;�

. Then the operator

�

+

b

A(D) : H

s

p

(R

n

+

)! H

r

p

(R

n

+

)

�

B

s

p;q

(R

n

+

)! B

r

p;q

(R

n

+

)

�

;

where r = s�Re�, is bounded.

Proof. In the case 1=p� 1 < s

n

< 1=p we can easily get the assertion from

Theorems 1.3, 1.4 and 1.7. Therefore we shall assume that s � 0.

Make the use of Theorem 1.32:

�

+

b

A(D)u = �

+

b

A

�

m

(D)`

0

u+ �

+

b

R

m

(D)`

0

u:

Let `u 2 H

s

p

(R

n

) (B

s

p;q

(R

n

)) be an extension of the function u. Then

`

0

u� `u = 0 for x

n

> 0. Hence �

+

b

A

�

m

(D)`

0

u = �

+

b

A

�

m

(D)`u (see Theorem

1.9). Therefore

k�

+

b

A

�

m

(D)`

0

ujH

r

p

(R

n

+

)k = k�

+

b

A

�

m

(D)`ujH

r

p

(R

n

+

)k �

� constk`ujH

s

p

(R

n

)k � constkujH

s

p

(R

n

+

)k:
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Similarly

k�

+

b

A

�

m

(D)`

0

ujB

r

p;q

(R

n

+

)k � constkujB

s

p;q

(R

n

+

)k:

It remains for us to estimate �

+

b

R

m

(D)`

0

u. Let (m+1)a

n

� s. Represent

b

R

m

as follows (see Theorem 1.32)

b

R

m

(�

0

; �

n

) =

b

R

m1

(�

0

; �

n

)h�

0

i

s

a

, where

b

R

m1

(�

0

; �

n

) = h�

0

i

(m+1)a

n

�s

a

(�

n

� ih�

0

i

a

n

a

)

�=a

n

�m�1

b

R

m0

(�

0

; �

n

):

For any � 2 R the operator

b

R

m1

(D) : H

�

p

(R

n

)! H

�+r

p

(R

n

)

�

B

�

p;q

(R

n

)! B

�+r

p;q

(R

n

)

�

is bounded, since (m+ 1)a

n

� s � 0 (see Theorems 1.3 and 1.4).

It is easy to see that I

s

0

`

0

u = �

+

I

s

0

`u where

I

s

0

= F

�1

h�

0

i

s

a

F (1.140)

(cf. the proof of equality (1.44)).

By Theorems 1.3 and 1.4, I

s

0

`u 2 L

p

(R

n

) (B

0

p;q

(R

n

)). Therefore (see

Theorem 1.7) �

+

I

s

0

`u 2 L

p

(R

n

) (B

0

p;q

(R

n

)) and

k�

+

b

R

m

(D)`

0

ujH

r

p

(R

n

+

)k � constkI

s

0

`

0

ujL

p

(R

n

)k =

= constk�

+

I

s

0

`ujL

p

(R

n

)k � k`ujH

s

p

(R

n

)k � constkujH

s

p

(R

n

+

)k:

Analogously

k�

+

b

R

m

(D)`

0

ujB

r

p;q

(R

n

+

)k � constkujB

s

p;q

(R

n

+

)k: �

Let s 2 R, 1 < p < 1, 1 � q � 1, A 2 D

a;�

. Then

the operator v 7�! �

+

b

A(D)

�

v(x

0

) � �(x

n

)

�

is bounded from (see (1:32))

B

�

1

s

p;p

(R

n�1

) (B

�

1

s

p;q

(R

n�1

)) to H

r

p

(R

n

+

) (B

r

p;q

(R

n

+

)), where r = s�Re�.

Proof. By Theorem 1.32

�

+

b

A(D)(v � �) = �

+

b

A

�

m

(D)(v � �) + �

+

b

R

m

(D)(v � �):

It follows from Theorem 1.13 that v � � 2

e

H

t

p

(R

n

�

) (

e

B

t

p;q

(R

n

�

)), where t =

minfs;�a

n

g. Therefore �

+

b

A

�

m

(D)(v � �) = 0 (see Theorem 1.9).

Let ma

n

� s. Represent

b

R

m

as follows (see Theorem 1.32)

b

R

m

(�

0

; �

n

) =

b

R

m2

(�

0

; �

n

)h�

0

i

s+a

n

a

;

where

b

R

m2

= h�

0

i

ma

n

�s

a

�

�

n

� ih�

0

i

a

n

a

�

�=a

n

�m�1

b

R

m0

(�

0

; �

n

):

For any � 2 R the operator

b

R

m2

(D) : H

�

p

(R

n

)! H

�+r+a

n

p

(R

n

)

�

B

�

p;q

(R

n

)! B

�+r+a

n

p;q

(R

n

)

�

is bounded since ma

n

� s � 0 (see Theorems 1.3 and 1.4).

It is easily seen that (see (1.140))

I

s+a

n

0

(v � �) = (I

s+a

n

0

v)� �; I

s+a

n

0

v 2 B

�

p;p

(R

n�1

)

�

B

�

p;q

(R

n�1

)

�

;
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where � = �a

n

=p (see Theorem 1.3). Hence by virtue of Theorem 1.13

I

s+a

n

0

(v � �) 2 H

�a

n

p

(R

n

)

�

B

�a

n

p;q

(R

n

)

�

:

The subsequent is obvious:

k�

+

b

R

m

(D)(v � �)jH

r

p

(R

n

+

)k � constkI

s+a

n

0

(v � �)jH

�a

n

p

(R

n

)k �

� constkvjB

�

1

s

p;p

(R

n�1

)k:

Similarly

k�

+

b

R

m

(D)(v � �)jB

r

p;q

(R

n

+

)k � constkvjB

�

1

s

p;q

(R

n�1

)k: �

4

0

. We say that the symbol B belongs to the class D

�

a;�

if

B(�

0

; �

n

) =

m

0

X

m=1

B

(m)

0

(�

0

)B

(m)

1

(�

0

; �

n

); m

0

2 N; (1.141)

where B

(m)

1

2 D

a;�

(m)

, Re�

(m)

� �, B

(m)

0

(�

0

) = j�

0

j

���

(m)

a

B

(m)

00

(�

0

), B

(m)

00

is an a-homogeneous of zero order function such that

b

B

(m)

00

satis�es the

conditions which are obtained from those of Theorem 1.4 by substituting n

and � by (n�1) and �

0

, respectively. Introduce also the set D

1

a;�

= [

�2R

D

�

a;�

.

Consider now a boundary value problem of type (1.61), (1.62), where A 2

D

N�N

a;�

is an a-elliptic symbol, B

j

; C

k

are N -dimensional vector functions

whose components belong to the sets D

�

j

a;�

j

and D

1

a;


k

, respectively, E

jk

and f; g

j

; w

k

are the same functions as in (1.67){(1.68) and (1.69){(1.71),

respectively,

u

+

2 H

s

p

(R

n

+

; C

N

)

�

B

s

p;q

(R

n

+

; C

N

)

�

; 1 < p <1; 1 � q �1; s 2 R;

s > max

1�j�m

+

�

j

+

a

n

p

; s > a

n

�

1

p

� 1

�

:

(1.142)

Use Theorems 1.35 and 1.36 (see also Theorems 1.3-1.5) to obtain that in

the case under consideration the left-hand sides of equations (1.61), (1.62)

de�ne the continuous operator (see (1.72))

U

0

: H

0

1

(s; p) = H

s

p

(R

n

+

; C

N

)�

m

�

�

k=1

B

s

(k)

p;p

(R

n�1

)! H

2

(s; p) (1.143)

�

U

0

: B

0

1

(s; p; q) = B

s

p;q

(R

n

+

; C

N

)�

m

�

�

k=1

B

s

(k)

p;q

(R

n�1

)! B

2

(s; p; q)

�

:

By analogy with (1.73), (1.74) let us introduce the operators

U

0

!

: H

0

1

(s; p)! H

2

(s; p)

�

B

0

1

(s; p; q)! B

2

(s; p; q)

�

: (1.144)

Quite similarly to Lemma 1.20 we can prove that if the condition (1.59)

is ful�lled, then the operator (1.143) is invertible (Noetherian) if and only if

the operators (1.144) are invertible (Noetherian) for any ! 2 S

n�2

a

= S

n�2

.
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Thus all the above is reduced to the investigation of a boundary value

problem of type (1.82), (1.83), where (u

+

; w) 2 H

0

1

(s; p) (B

0

1

(s; p; q)).

Let us consider an auxiliary space

e

H

t;s

p

(R

n

+

)=

�

u

+

2

e

H

t

p

(R

n

+

)j�

+

u

+

2H

s

p

(R

n

+

); 9��0 : I

�

0

u

+

2

e

H

s��

p

(R

n

+

)

	

;

t � s (see (1.140)). The space

e

B

t;s

p;q

(R

n

+

) is de�ned analogously.

Suppose that u

+

2

e

H

t

p

(R

n

+

) (

e

B

t

p;q

(R

n

+

)), t > a

n

(1=p � 1), and �

+

u

+

2

H

s

p

(R

n

+

) (B

s

p;q

(R

n

+

)). Then u

+

2

e

H

t;s

p

(R

n

+

) (

e

B

t;s

p;q

(R

n

+

)). Indeed, u

+

= �

+

u,

where u 2 H

s

p

(R

n

) (B

s

p;q

(R

n

)) is an extension of �

+

u

+

to R

n

(see the proof

of point a) of Theorem 1.18). Letting � = maxfs; 0g, we can easily get

I

�

0

u

+

2

e

H

s��

p

(R

n

+

)

�

e

B

s��

p;q

(R

n

+

)

�

(see the proof of Theorem 1.35).

Let u

+

and u be as in the previous section with the only di�erence that

now m+

1

p

� 1 <

t

a

n

< m+

1

p

, m < 0, m 2 Z:

According to point c) of Theorem 1.18 we have

u

+

= I

�a

n

m

+

�

+

I

a

n

m

+

u+

jmj

X

j=1

v

j

(x

0

)� �

(j�1)

(x

n

): (1.145)

Use the arguments from the proof of Theorem 1.35 to see that

I

�

0

I

�a

n

m

+

�

+

I

a

n

m

+

u 2

e

H

s��

p

(R

n

+

)

�

e

B

s��

p;q

(R

n

+

)

�

if � � s� t. Therefore the condition

9� � 0 : I

�

0

u

+

2

e

H

s��

p

(R

n

+

)

�

e

B

s��

p;q

(R

n

+

)

�

is equivalent to

9� � 0 : u

�

=I

�

0

�

jmj

X

j=1

v

j

� �

(j�1)

�

=

jmj

X

j=1

(I

�

0

v

j

)� �

(j�1)

2

2

e

H

s��

p

(R

n

+

)

�

e

B

s��

p;q

(R

n

+

)

�

:

By virtue of Theorem 1.3 and Lemma 1.17 the last condition is ful�lled

if and only if

v

j

2 B

�

j

s

p;p

(R

n�1

)

�

B

�

j

s

p;q

(R

n�1

)

�

(1.146)

(see (1.32)) for, suppu

�

� R

n

+

\ R

n

�

. Thus in the case under consideration

u

+

2

e

H

t;s

p

(R

n

+

) (

e

B

t;s

p;q

(R

n

+

)) if and only if the condition (1.146) is ful�lled

(see (1.145)).

Clearly, u

+

= u � u

�

where u

�

2

e

H

t

p

(R

n

�

) (

e

B

t

p;q

(R

n

�

)), u

+

and u are

the same as above, t; s 2 R are arbitrary numbers satisfying the inequality

t � s. Therefore it follows from the proof of Theorem 1.35 that for any

� 2 D

a;�

the operator

�

+

b

�(D) :

e

H

t;s

p

(R

n

+

)! H

s�Re�

p

(R

n

+

)

�

e

B

t;s

p;q

(R

n

+

)! B

s�Re�

p;q

(R

n

+

)

�
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is continuous (see (1.60)). In addition, if

b

� satis�es the conditions of The-

orem 1.9 in the case of sign \+", then the operator

b

�(D) :

e

H

t;s

p

(R

n

+

)!

e

H

t�Re�;s�Re�

p

(R

n

+

)

�

e

B

t;s

p;q

(R

n

+

)!

e

B

t�Re�;s�Re�

p;q

(R

n

+

)

�

is likewise continuous. (Nothing have been said above on the topology in the

space

e

H

t;s

p

(R

n

+

). We assume that the topology in that space is introduced

by means of the following notion of convergence: a sequence u

(k)

+

, k 2 N,

converges to u

+

if

ku

+

� u

(k)

+

j

e

H

t

p

(R

n

+

)k ! 0 for k !1;

k�

+

u

+

� �

+

u

(k)

+

j

e

H

s

p

(R

n

+

)k ! 0 for k !1;

9� � 0 : kI

�

0

u

+

� I

�

0

u

(k)

+

j

e

H

s��

p

(R

n

+

)k ! 0 for k !1:

The topology in the space

e

B

t;s

p;q

(R

n

+

) is de�ned similarly).

Return now to the operators (1.143), (1.144). Put t = minfs; 0g. From

the second inequality in (1.142) it follows that (see (1.2))

t

n

2

�

1

p

� 1; 0

�

�

�

1

p

� 1;

1

p

�

: (1.147)

Therefore by virtue of Theorem 1.7 we can identify the operators (1.143),

(1.144) with

U :H

00

1

(s; p) =

e

H

t;s

p

(R

n

+

; C

N

)�

m

�

�

k=1

B

s

(k)

p;p

(R

n�1

)! H

2

(s; p)

�

B

00

1

(s; p; q) =

e

B

t;s

p;q

(R

n

+

; C

N

)�

m

�

�

k=1

B

s

(k)

p;q

(R

n�1

)! B

2

(s; p; q)

�

;

U

!

:H

00

1

(s; p)! H

2

(s; p)

�

B

00

1

(s; p; q)! B

2

(s; p; q)

�

(see (1.139)). As it have been said above, it su�ces to consider boundary

value problem (1.82), (1.83), where now (u

+

; w) 2 H

00

1

(s; p) (B

00

1

(s; p; q)).

With the help of Theorem 1.34 equation (1.82) is reduced equivalently

to that of type (1.86) in which G

!

is the unit matrix,

v

+

2

N

Y

k=1

e

H

t+a

n

{

k

(!);s+a

n

{

k

(!)

p

(R

n

+

) �

N

Y

k=1

e

H

t+a

n

{

k

(!)

p

(R

n

+

)

�

N

Y

k=1

e

B

t+a

n

{

k

(!);s+a

n

{

k

(!)

p;q

(R

n

+

) �

N

Y

k=1

e

B

t+a

n

{

k

(!)

p;q

(R

n

+

)

�

:

For the obtained equation the condition (1.95) is of the form

t

n

�

1

p

62 Z: (1.148)

According to (1.147) this condition is ful�lled. Use Theorem 1.18 and the

above given properties of spaces

e

H

t;s

p

(R

n

+

)

e

B

t;s

p;q

(R

n

+

) and repeat without
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principal changes the reasonings from the proof of Lemma 1.21 (see also

Theorems 1.32 and 1.34{1.36).

As a result we obtain that boundary value problem (1.82), (1.83), where

(u

+

; w) 2 H

00

1

(s; p) (B

00

1

(s; p; q)), is uniquely solvable for any (f; g) 2 H

2

(s; p)

(B

2

(s; p; q)) if and only if the corresponding matrix kZ

jk

(!)k is invert-

ible (see (1.103){(1.107)). In other words, the invertibility of the operator

(1.144) is equivalent to that of the matrix kZ

jk

(!)k which is independent

of s. To construct it we have, roughly speaking, to pretend as if we were

searching for a solution of boundary value problem (1.82), (1.83) in the

space H

1

(t; p) (B

1

(t; p; q)).

Note that when calculating the matrix kZ

jk

(!)k we have to calculate

integrals with respect to �

n

. For these integrals to be absolutely convergent,

the use should be made of the decomposition of type (1.133). Integrals

corresponding to the �rst summands in (1.133) will be equal to 0, while

integrals corresponding to the second summands in (1.133) will absolutely

converge for su�ciently large m (in this connection see [37, xx11, 12]).

We shall say that for the operator (1.143) the Shapiro{Lopatinski�� con-

dition is ful�lled if the corresponding matrix kZ

jk

(!)k is invertible for any

! 2 S

n�2

a

. For the Shapiro{Lopatinski�� condition to be ful�lled, it is neces-

sary that the equality

m

�

�m

+

= { (1.149)

take place, which is obtained from (1.110) by substituting s by t = minfs; 0g

and taking into account Theorem 1.34 (see likewise (1.147)).

Further investigation of the operator (1.143) is similar to that of the

operator (1.72). The analogue of Theorem 1.24 completes the investigation.

Let the above-stated conditions as well as the condition

(1:59) be ful�lled. Then the following statements are equivalent:

(a) the operator U

0

: H

0

1

(s; p)! H

2

(s; p) is Noetherian;

(b) the operator U

0

: H

0

1

(s; p)! H

2

(s; p) is invertible;

(c) operators U

0

!

: H

0

1

(s; p)! H

2

(s; p) are Noetherian for any ! 2 S

n�2

a

;

(d) operators U

0

!

: H

0

1

(s; p)! H

2

(s; p) are invertible for any ! 2 S

n�2

a

;

(e) the boundary value problem (1:111), (1:112), where

(u

+

; w) 2 H

s=a

n

p

(R

1

+

; C

N

)� C

m

�

�

B

s=a

n

p;q

(R

1

+

; C

N

)� C

m

�

�

;

is uniquely solvable for any right-hand sides and any ! 2 S

n�2

a

;

(f) the Shapiro{Lopatinski�� condition is ful�lled.

In any of points (a){(d) we can replace fH

0

1

(s; p); H

2

(s; p)g by fB

0

1

(s; p; q);

B

2

(s; p; q)g, fH

0

1

(s

�

; p

�

); H

2

(s

�

; p

�

)g or fB

0

1

(s

�

; p

�

; q

�

); B

2

(s

�

; p

�

; q

�

)g if for

s

�

and p

�

the condition of type (1:142) is ful�lled. The same is true for

point (e).

For points (a){(f) to be ful�lled, it is necessary that the equality (1:149)

take place.
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Remark. In the case under consideration the analogues of Remarks

1.26 and 1.27 are valid.

Remark. As it was noted above, the Shapiro{Lopatinski�� condition

does not depend on the fact in what pair of spaces of type (1.143) we

consider the operator U

0

. We need only that the inequalities (1.142) be

ful�lled. At the same time the invertibility conditions for the operator (1.72)

are the same only for those pairs (s

�

; p

�

) 2 R�]1;1[ for which s

�

n

� 1=p

�

belongs to the interval ]s

�

; s

+

[ of the length not exceeding 1 (see (1.113){

(1.116)). Such a distinction is caused by the following fact. Assuming in

x1.4 that u

+

2

e

H

s

p

(R

n

+

; C

N

) (

e

B

p;q

(R

n

+

; C

N

)) we actually add to boundary

value problem (1.61), (1.62) the boundary conditions

@

m

u

+

@x

m

n

(x

0

; 0) = 0, m =

0; : : : ; [s

n

�1=p]

�

(see (1.17), Theorem 1.5 and Lemma 1.15) the number of

which increases with the increase of s. In this section we assume that u

+

2

H

s

p

(R

n

+

; C

N

) (B

s

p;q

(R

n

+

; C

N

)) and there do not appear additional boundary

conditions.

Remark. Theorem 1.37 admits evident generalization to the opera-

tors with discontinuous symbols as in x1.5 (see also Remarks 1.31 and 1.38).

Remark. In the given chapter we have considered matrix a-elliptic

	DOs whose all elements are of the same order. By the use of order reduc-

tion operators (see (1.31) and Theorem 1.12), we can easily transfer all the

results to a-elliptic in the Douglis-Nirenberg sense 	DOs (the elements of

such 	DOs are, in general, of di�erent orders).

The class of a-elliptic 	DOs considered in the present chapter covers

besides usual (isotropic) elliptic operators (corresponding to the case a =

(1; : : : ; 1)) parabolic operators. We complete this chapter by an example

from the theory of parabolic partial di�erential equations (see also [80]).

The symbol of the operator

@

@x

n

�

�

n�1

P

m=1

@

2

@x

2

m

� 1

�

is equal

to �i(�

n

�ih�

0

i

2

). It follows from the results obtained in the present chapter

that the Cauchy problem

u

�

�

x

n

=0

= '; ' 2 B

��2=p

p;p

(R

n�1

)

�

B

��2=p

p;q

(R

n�1

)

�

(1.150)

for the heat equation

@u

@x

n

�

�

n�1

X

m=1

@

2

u

@x

2

m

� u

�

= f;

f 2 H

��2;(��2)=2

p

(R

n

+

)

�

B

��2;(��2)=2

p;q

(R

n

+

)

�

;

(1.151)

has a unique solution

u 2 H

�;�=2

p

(R

n

+

)

�

B

�;�=2

p;q

(R

n

+

)

�

(1.152)
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for � > 2=p while for the backward heat equation

@u

@x

n

+

�

n�1

X

m=1

@

2

u

@x

2

m

� u

�

= f (1.153)

the initial conditions are super
uous. For any f such as in (1.151), equation

(1.153) has a unique solution (1.152) for � > 2(1=p�1). (In (1.151), (1.152)

in notation of functional spaces we write �; �=2 instead of (�; : : : ; �; �=2)).

It is clear that we can obtain analogous results for equations (and sys-

tems) which are signi�cantly more general than (1.151), (1.153).
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Chapter II

	

x

For an arbitrary m 2 R we denote by S

m

(R

n

� R

n

) the

set of all functions A 2 C

1

(R

n

�R

n

) such that for any multiindices �; � 2

Z

n

+

= (Z

+

)

n

the estimate

j@

�

x

@

�

�

A(x; �)j � C

�;�

h�i

m�j�j

; 8(x; �) 2 R

n

� R

n

; (2.1)

holds.

The class O

1

�

, � 2 C , consists of functions A 2 C

1

(R

n

�

R

n

nR

n

� f0g) homogeneous of order � in the second argument:

A(x; t�) = t

�

A(x; �); 8t > 0; 8x 2 R

n

; 8� 2 R

n

nf0g: (2.2)

We shall say that A belongs to the class

b

O

1

�

, � 2 C , if

A 2 C

1

(R

n

� R

n

) and there is a function A

0

2 O

1

�

such that

A(x; �) �A

0

(x; �)(1 � �(�)) 2 S

Re��"

(R

n

� R

n

);

where " > 0, � 2 D(R

n

) and �(�) = 1 for j�j � 1.

We shall say that an operator A : D(R

n

) ! D

0

(R

n

) be-

longs to the class OP

0

(

b

O

1

�

) if there are A 2

b

O

1

�

and ';  2 D(R

n

) such

that A = 'A(x;D) I where A(x;D) is the 	DO with the symbol A(x; �):

�

A(x;D)u

�

(x) =

1

(2�)

n=2

Z

R

n

e

�ix�

A(x; �)(Fu)(�) d�; (2.3)

8x 2 R

n

; 8u 2 S(R

n

):

It is well known that an operator of the class OP

0

(

b

O

1

�

) can be extended

to a continuous one fromH

s

p

(R

n

) (B

s

p;q

(R

n

)) toH

s�Re�

p

(R

n

) (B

s�Re�

p;q

(R

n

)),

8s 2 R, 8p 2]1;1[, 8q 2 [1;1] (see [58] or [107, Ch. XI], [98]).

An operator K : D(R

n�1

) ! D

0

(R

n

) belongs to the class

OPI(
; r) if

(Kv)(x)=

m

0

X

m=1

C

m

(x;D)

�

(E

m

(x

0

; D

0

)v)(x

0

)��(x

n

)

�

; 8v2D(R

n�1

); (2.4)

where C

m

(x;D) 2 OP

0

(

b

O

1




m

), E

m

(x

0

; D

0

) 2 OP

0

(

b

O

1


�


m

), 
; 


m

2 C , r 2

R, Re 


m

� r, m

0

2 N.
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An operator T : D(R

n

) ! D

0

(R

n�1

) belongs to the class

OPII(
; r) if

(Tu)(x

0

) =

m

0

X

m=1

E

m

(x

0

; D

0

)�

0

�

B

m

(x;D)u

�

; 8u 2 D(R

n

); (2.5)

where B

m

(x;D) 2 OP

0

(

b

O

1




m

), E

m

(x

0

; D

0

) 2 OP

0

(

b

O

1


�


m

), 
; 


m

2 C , r 2

R, Re 


m

� r, m

0

2 N, �

0

= �

0

0

is the operator of restriction to the

hyperplane x

n

= 0 (see (1.21)).

Using Theorem 1.13, we can easily prove that an operator of the class

OPI(
; r) admits extension to the bounded operator from B

s

p;p

(R

n�1

)

(B

s

p;q

(R

n�1

)) to H

s�Re 
�1+1=p

p

(R

n

) (B

s�Re 
�1+1=p

p;q

(R

n

)) for r < Re 
 � s.

Similarly, using Theorem 1.5, it is not di�cult to prove that an operator of

the classOPII(
; r) admits extension to the bounded operator fromH

s

p

(R

n

)

(B

s

p;q

(R

n

)) to B

s�Re 
�1=p

p;p

(R

n�1

) (B

s�Re 
�1=p

p;q

(R

n�1

)) for r < s� 1=p.

We shall say that an operator

U : D(R

n

+

)�D(R

n�1

)! D

0

(R

n

+

)�D

0

(R

n�1

)

belongs to the class

OP

�

� 


1

; r

1




2

; r

2

�

�

;

if

U =

�

�

+

A �

+

K

T Q

�

:

D(R

n

+

) D

0

(R

n

+

)

� ! �

D(R

n�1

) D

0

(R

n�1

)

; (2.6)

where A 2 OP

0

(

b

O

1

�

), K 2 OPI(


1

; r

1

), T 2 OPII(


2

; r

2

), Q 2 OP

0

(

b

O

1

�

),

� = 


1

+ 


2

� �+ 1.

From the above-said it follows that an operator of the class

OP

�

� 


1

; r

1




2

; r

2

�

�

admits extension to the bounded operator from

e

H

s

p

(R

n

+

)�B

s�Re�+Re 


1

+1�1=p

p;p

(R

n�1

)

�

e

B

s

p;q

(R

n

+

)�B

s�Re�+Re 


1

+1�1=p

p;q

(R

n�1

)

�

to

H

s�Re�

p

(R

n

+

)�B

s�Re 


2

�1=p

p;p

(R

n�1

)

�

B

s�Re�

p;q

(R

n

+

)�B

s�Re 


2

�1=p

p;q

(R

n�1

)

�

if r

1

< Re�� s� 1 + 1=p, r

2

< s� 1=p, (1 < p <1, 1 � q � 1).
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We can transfer word by word all the above de�nitions and results to

the matrix case. Below we shall make no distinctions between scalar and

matrix 	DOs (symbols).

x

	

Let X be a smooth compact n-dimensional (n � 2) manifold with a

boundary Y embedded in a compact closed smooth n-dimensional manifold

M . (Throughout this chapter under the smoothness of a manifold or vector

bundle will be meant, if not otherwise stated, its C

1

-smoothness). For

instance, we may assume that M = 2X is a duplicate of the manifold X

obtained by pasting two copies of X along Y (see, e.g., [65, x8]).

Any smooth vector bundle E over X is regarded to be a restriction on

X of a smooth vector bundle E

0

overM (see, e.g., [75, Ch. X, x4, Theorem

5]).

Spaces H

s

p

(E

0

) and B

s

p;q

(E

0

) of sections of bundle E

0

are de�ned in a

standard way using partition of unity.

Introduce the notation:


 = IntX = XnY; H

s

p

(E) =

�

u

�

�




: u 2 H

s

p

(E

0

)

	

;

e

H

s

p

(E) =

�

u 2 H

s

p

(E

0

) : suppu � X

	

:

The notation B

s

p;q

(E),

e

B

s

p;q

(E) is treated analogously.

The restriction operator from M to 
 will be denoted by �

+

(cf. (1.30)).

Let E;F be smooth vector bundles over X and I; G over Y = @X .

Consider an operator (cf. (2.6))

U =

�

�

+

A �

+

K

T Q

�

:

D(Ej




) D

0

(F j




)

� ! �

D(I) D

0

(G)

: (2.7)

Assume W to be an open (generally speaking, nonconnected) subset of

X , W

0

= W \ Y (W

0

may be empty), and bundles Ej

W

, F j

W

, Ij

W

0

,

Gj

W

0

to be trivial. We shall also assume any connected component W

0

of W intersecting the boundary to be di�eomorphic to W

0

0

� [0; 1[, where

W

0

0

=W

0

\ Y .

Denote by

�

E

: E

�

�

W

! V � C

k

; �

F

: F

�

�

W

! V � C

k

0

;

�

I

: I

�

�

W

0

! V

0

� C

j

; �

G

: G

�

�

W

0

! V

0

� C

j

0

trivialization of the corresponding bundles (V is a set open in R

n

+

, V

0

=

V \ R

n�1

, k; k

0

; j; j

0

are the �bre dimensions of the bundles).
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The operator U

W

de�ned by the commutative diagram

D(Ej




)�D(I)

U

����! D

0

(F j




)�D

0

(G)

x

?

?

�

�

E

��

�

I

?

?

y

(�

F

)

�

�(�

G

)

�

D(V \ R

n

+

; C

k

)�D(V

0

; C

j

)

U

W

����! D

0

(V \ R

n

+

; C

k

0

)�D

0

(V

0

; C

j

0

)

(2.8)

is called a local representation of U over W (with respect to the given

trivialization).

Let ';  2 D(V ). The operator U

W

induces the operator 'U

W

 I :

D(R

n

+

; C

k

)�D(R

n�1

; C

j

)! D

0

(R

n

+

; C

k

0

)�D

0

(R

n�1

; C

j

0

) (here the operator

'I denotes multiplication of all components by ' or 'j

R

n�1
respectively).

We shall say that an operator U of type (2.7) belongs to

the class

OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G)

if for any open set W � X possessing the above described properties and

any functions ';  2 D(V ) the induced operator 'U

W

 I belongs to the

class OP

�

� 


1

; r

1




2

; r

2

�

�

(see De�nition 2.7).

We shall give here another description of the class

OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G):

Let �

0

be the bundle of densities overM , and �

1

over Y (see, e.g., [49, v.

1, xx6.3, 6.4 and v.3, x18.1], [108, v. 2, x2.5]). Denote by � the restriction

of �

0

to X . We can easily see that �

0

:= �

�

�

Y

= �

0

�

�

Y

�

=

�

1

. This follows,

for example, from the \collar" theorem (see [67, Theorem 5.9]). Therefore

we shall identify �

0

and �

1

.

Denote by F

0

an extension of bundle F onM and by F

�

0

the bundle dual

to F

0

. Thus the transition matrices g

ij

corresponding to F

0

are replaced by

t

g

�1

ij

in the case of F

�

0

.

Let v 2 D

0

(F

0

), where F

0

= F j

Y

. Denote by v � �

Y

distribution from

D

0

(F

0

) acting as follows:

hv � �

Y

; ui = hv; �

0

ui; 8u 2 D(F

�

0


�

0

); (2.9)

where �

0

is a restriction operator from M (or from X) to Y . Such a de�ni-

tion is correct. Indeed, M;Y are compact manifolds (without a boundary)

and the restriction operator transforms D(F

�

0


�

0

) to D((F

0

)

�


�

0

).

Similarly to Theorem 1.13 we can prove that if v 2 B

s+1�1=p

p;p

(F

0

)

�

B

s+1�1=p

p;q

(F

0

)

�

, then v � �

Y

2 H

s

p

(F

0

)

�

B

s

p;q

(F

0

)

�

, provided s < 1=p � 1,

1 < p <1, 1 � q � 1.
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Assume

H

l

2 OP (

b

O

1

�

l

)(F

0

; F

0

); Z

l

2 OP (

b

O

1




1

��

l

)(I; F

0

);

R

m

2 OP (

b

O

1




2

��

m

)(E

0

; G); L

m

2 OP (

b

O

1

�

m

)(E

0

; E

0

);

A 2 OP (

b

O

1

�

)(E

0

; F

0

); Q 2 OP (

b

O

1

�

)(I; G);

i.e., all they are 	DOs acting in the section spaces of appropriate vector

bundles which, in local coordinates, are written in terms of 	DOs with

symbols from the corresponding classes (see De�nition 2.3). Here E

0

is an

extension of the bundle E from X to M and E

0

is a restriction of E from

X to Y ; �

l

; �

m

2 C , Re �

l

� r

1

, Re�

m

� r

2

, �; 


1

; 


2

2 C , r

1

; r

2

2 R,

� = 


1

+ 


2

� �+ 1, l = 1; : : : ; l

0

, m = 1; : : : ;m

0

, l

0

;m

0

2 N.

Consider an operator

U

0

=

 

�

+

A �

+

�

P

l

0

l=1

H

l

(Z

l

(�)� �

Y

)

�

P

m

0

m=1

R

m

�

0

L

m

Q

!

:

:

D(Ej




) D

0

(F j




)

� ! �

D(I) D

0

(G)

: (2.10)

The space D(Ej




) is considered to be embedded in D(E

0

).

The set of operators of type (2.10) we denote by

OP

0

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G):

It is not di�cult to see that

OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G)=OP

0

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G): (2.11)

In fact, to verify the embedding OP

0

� OP let us take a su�ciently �ne

partition of unity

P

i

0

i=1

 

2

i

= 1 and insert it between operators H

l

and

Z

l

, R

m

and L

m

. Upon localization the operators corresponding to a �xed

value i = 1; : : : ; i

0

(i

0

2 N), induce operators of the classes OPI(


1

; r

1

) and

OPII(


2

; r

2

). Hence the operator U

0

induces that of the class

OP

�

� 


1

; r

1




2

; r

2

�

�

:

To verify the embedding OP � OP

0

we shall again need su�ciently �ne

partition of unity

P

i

0

i=1

'

i

= 1. An operator of type (2.7) we represent as

follows: U =

i

0

P

i;e=1

'

i

U'

e

I . An operator '

i

U'

e

I can be localized and then

\removed" back on the manifoldX in such a way that we obtain an operator

of type (2.10). \Removing" is performed by means of the diagram of type

(2.8). Thus we can represent the operator '

i

U'

e

I in the form (2.10). Hence

the operator U itself belongs to the class OP

0

.
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In a standard way we prove the following statement.

An operator U 2 OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G) ad-

mits extension to the bounded operator

U : H

1

(s; p) =

e

H

s

p

(E)�B

s�Re�+Re 


1

+1�1=p

p;p

(I)!

! H

2

(s; p) = H

s�Re�

p

(F )�B

s�Re 


2

�1=p

p;p

(G) (2.12)

�

B

1

(s; p; q)=

e

B

s

p;q

(E)�B

s�Re�+Re 


1

+1�1=p

p;q

(I)!

! B

2

(s; p; q) = B

s�Re�

p;q

(F )�B

s�Re 


2

�1=p

p;q

(G)

�

if r

1

< Re�� s� 1 + 1=p, r

2

< s� 1=p, 1 < p <1, 1 � q � 1.

The left upper corner of an operator U of type (2.7) contains a pseudod-

i�erential operator A. The principal homogeneous symbol of A (to which in

local coordinates there corresponds A

0

from De�nition 2.3) is a bundle mor-

phism �

A

: �r

�

E ! �r

�

F (see, e.g., [82, 1.2.4.1]). Here �r : T

�

Xnf0g ! X

is a canonic projection.

The morphism �

A

is said to be the principal interior

symbol of the operator U and is denoted by �




(U).

The operator U is said to be elliptic if the operator A is

elliptic, i.e. �




(U) = �

A

is an isomorphism.

It is clear that for the operator U to be elliptic, it is necessary that the

�bre dimensions of E and F be the same. We shall use the notations as in

Chapter I: k = k

0

= N , j = m

�

, j

0

= m

+

:

Return now to the localization of the operator U of type (2.7). Let us

take an open in W subset W

1

such that W

1

� W . It maps on a set V

1

.

We shall assume the functions ' and  (see De�nition 2.8) to be equal

to identity in a neighbourhood of closure V

1

� V . The operator 'U

W

 I

belongs to the class OP

�

� 


1

; r

1




2

; r

2

�

�

:

Take an arbitrary point (x

0

(0)

; 0) 2 V

0

1

= V

1

\ R

n�1

. From the symbols

of all 	DOs composing the operator 'U

W

 I (see De�nitions 2.4{2.7) we

choose homogeneous principal parts (see De�nitions 2.2{2.3). In these ho-

mogeneous symbols instead of arbitrary x and � (x

0

and �

0

) we substitute

(x

0

(0)

; 0) and (!; �

n

), where ! 2 S

n�2

� R

n�1

(x

0

(0)

and !). For �xed x

0

(0)

and ! we compose from the obtained symbols the operator on a semi-axis

corresponding to the operator 'U

W

 I (see De�nition 2.7 and also (1.111),

(1.112)). Denote it by

�

W

1

(U)(x

0

(0)

; !) :

D(R

+

)
 C

k

D

0

(R

+

)
 C

k

0

� ! �

C

j

C

j

0

: (2.13)
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Let S

�

Y be a cospherical bundle realized in cotangential bundle T

�

Y by

choosing a Riemannian metric on Y . The projection pr : S

�

Y ! Y induces

on S

�

Y the bundles pr

�

E

0

, pr

�

F

0

, pr

�

I, pr

�

G.

An easy checking shows (cf. [82, 2.3.3.1, Theorem 3]) that �

W

1

(U) is a

local representation of a bundle morphism

�

Y

(U) :

pr

�

E

0


D(R

+

) pr

�

F

0


D

0

(R

+

)

� ! �

pr

�

I pr

�

G

: (2.14)

The morphism �

Y

(U) will be called a principal boundary

symbol of the operator U .

Clearly the morphism �

Y

(U) can be extended to the (continuous) mor-

phism of bundles whose �bers are the corresponding Besov and Bessel-

potential spaces (cf. Theorem 2.9 and (1.111), (1.112)).

We shall say that for an operator U : H

1

(s; p)! H

2

(s; p)

(B

1

(s; p; q) ! B

2

(s; p; q)) of the class OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G)

(see Theorem 2.9) the Shapiro{Lopatinski�� condition is ful�lled if

�

Y

(U) :

pr

�

E

0




e

H

s

p

(R

1

+

) pr

�

F

0




e

H

s�Re�

p

(R

1

+

)

� ! �

pr

�

I pr

�

G

(2.15)

0

@

�

Y

(U) :

pr

�

E

0




e

B

s

p;q

(R

1

+

) pr

�

F

0




e

B

s�Re�

p;q

(R

1

+

)

� ! �

pr

�

I pr

�

G

1

A

is an isomorphism.

Note that the operator �

W

1

(see (2.13)) looks like the operator de�ned by

the left parts of (1.111), (1.112). Hence due to the arguments following after

Lemma 1.23, in De�nition 2.13 we can restrict ourselves by consideration of

the morphism �

Y

(U) only in the scale of the Bessel-potential spaces.

x

Let A(x;D) 2 OP (S

m

(R

n

� R

n

)), m 2 R (see De�nition

2:1 and (2:3)). Then for any x

0

2 R

n

and " > 0 there is a neighbourhood

W

0

of the point x

0

such that for any ' 2 D(W

0

) the equality

'A(x;D) = '

�

A(x

0

; D) +A

m�1

(x;D) +A

"

�

is valid, where A

m�1

(x;D) 2 OP (S

m�1

(R

n

�R

n

)), A

"

is an operator which

in a corresponding pair of (Besov or Bessel-potential) spaces has a norm not

exceeding ".
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Proof. Let us take  2 D(R

n

) such that  (x) = 1 for jxj � 1 and put

 

R

(x) =  (x=R); R > 0;

 

x

0

�

(x) =  

�

(x� x

0

) =  ((x � x

0

)=�); � > 0:

Consider operators

c(x;D) =  

x

0

�

�

A(x;D) �A(x

0

; D)

�

; c

1

(x;D) = c(x;D)I

�m

(2.16)

(see (1.10) for a = (1; : : : ; 1)). We have

c

1

(x;D) = c

1

(x;D)(I �  

R

(D)) + c

1

(x;D) 

R

(D) �

� c

2

(x;D) + c

3

(x;D): (2.17)

It is easily seen (see (2.1)) that

c

3

(x;D) 2 OP

�

S

�

(R

n

� R

n

)

�

; 8� 2 R; (2.18)

sup

(x;�)2R

n

�R

n

jc

2

(x; �)j � const � � (2.19)

(here and up to the end of the proof \const" denotes values not depending

on �). Moreover, c

2

(x; �) = 0 if j�j � R. Choose R large enough to attain

the ful�llment of the inequality

kc

2

(x;D)jL

2

(R

n

)! L

2

(R

n

)k � const � � (2.20)

(see [49], v. 3, Theorem 18.1.15).

On the other hand

kc

2

(x;D)jL

r

(R

n

)! L

r

(R

n

)k � k 

x

0

�

I jL

r

(R

n

)! L

r

(R

n

)k �

�k(A(x;D)�A(x

0

; D))I

�m

(I �  

R

(D))jL

r

(R

n

)! L

r

(R

n

)k �

� const; 8r 2]1;1[; (2.21)

(see (2.16),(2.17)).

Apply Riesz{Torin convexity theorem (see, e.g., [109, Theorem 1.1.2.1])

or more general interpolation theorem 1.2 -c) (or -d)) to obtain

kc

2

(x;D)jL

p

(R

n

)! L

p

(R

n

)k � const � �

2

maxfp;p

0

g

��

; p

0

=

p

p� 1

; (2.22)

where � > 0 is an arbitrarily small number (and the constant depends on

�). Below we shall take � = 1=maxfp; p

0

g.

According to [49, v. 3, Theorem 18.1.8],

c(x;D)=I

m�s

c

2

(x;D)I

s

+A

m�1

(x;D); A

m�1

2S

m�1

(R

n

�R

n

) (2.23)

(see (2.16){(2.18)). For the operator

A

"

= I

m�s

c

2

(x;D)I

s

(2.24)
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we have

kA

"

jH

s

p

(R

n

)! H

s�m

p

(R

n

)k =

= kc

2

(x;D)jL

p

(R

n

)! L

p

(R

n

)k � const � �

1=maxfp;p

0

g

(2.25)

(see (1.11)).

Making � > 0 su�ciently small and taking asW

0

a neighbourhood whose

diameter does not exceed �, we can see that the statement of the lemma

is valid for Bessel-potential spaces since ' 

x

0

�

= ', 8' 2 D(W

0

) (see also

(2.16), (2.23){(2.25)). It remains for us to consider the case of the Besov

spaces.

Take � 2]0;

1

2maxfp;p

0

g

[ and represent the operator c(x;D) as follows:

c(x;D) = c

4

(x;D) +A

m�1

(x;D); (2.26)

where

c

4

(x;D) = I

m�s+�

c

2

(x;D)I

s��

; A

m�1

2 S

m�1

(R

n

� R

n

) (2.27)

(see [49, v. 3, Theorem 18.1.8] and (2.23)). Note that in (2.23) and (2.26)

A

m�1

(x;D) denotes di�erent operators.

Due to (2.22) and (1.11)

kc

4

(x;D)jH

s��

p

(R

n

)! H

s���m

p

(R

n

)k � const � �

1=maxfp;p

0

g

: (2.28)

It is easily seen that

k 

x

0

�

I jL

p

(R

n

)! L

p

(R

n

)k � const;

k 

x

0

�

I jW

1

p

(R

n

)!W

1

p

(R

n

)k � const � �

�1

:

Using the interpolation (see (1.13) and Theorem 1.2-c)) we obtain

k 

x

0

�

I jH

2�

p

(R

n

)! H

2�

p

(R

n

)k � const � �

�2�

:

Therefore

kc

2

(x;D)jH

2�

p

(R

n

)! H

2�

p

(R

n

)k � const � �

�2�

(cf. (2.21)). Hence

kc

4

(x;D)jH

s+�

p

(R

n

)! H

s+��m

p

(R

n

)k =

= kc

2

(x;D)jH

2�

p

(R

n

)! H

2�

p

(R

n

)k � const � �

2�

(2.29)

(cf. (2.27) and (1.11)).

Let us use interpolation once more (see Theorem 1.2-e)):

kc

4

(x;D)jB

s

p;q

(R

n

)! B

s�m

p;q

(R

n

)k �

� constkc

4

(x;D)jH

s��

p

(R

n

)! H

s���m

p

(R

n

)k

1=2

�

�kc

4

(x;D)jH

s+�

p

(R

n

)! H

s+�

p

(R

n

)k

1=2

�
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� const � �

1

2maxfp;p

0

g

� �

��

= const � �

�

;

where � > 0 since � < 1=(2maxfp; p

0

g) (see (2.28), (2.29)).

Letting A

"

= c

4

(x;D), we can accomplish the proof in exactly the same

way as in the case of Besel-potential spaces. �

Basing on the proven lemma we can use partition of unity, \freezing of

coe�cients", straightening of the boundary (see [37, x22] and [31, part II])

and then Theorem 1.24 to prove the following result.

Let for an elliptic operator (see De�nition 2:11)

U 2 OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G)

the conditions of Theorem 2:9 and the Shapiro{Lopatinski�� condition (see

De�nition 2:13) be ful�lled. Then the operator U : H

1

(s; p) ! H

2

(s; p)

(B

1

(s; p; q)! B

2

(s; p; q)) is Noetherian.

The proof is similar to that of [37, Theorem 22.1]. (Instead of [37, The-

orem 19.4] we have to use Lemma 2.14 and instead of [37, Lemma 21.1 and

Remark 21.1] we need [110, Remark 4.3.2.1]).

In the sequel we shall need some facts from the functional analysis.

Suppose that the Banach spaces Z

0

; Z

1

are embedded continuously into

a Hausdor� topological vector space Z. In this case a pair fZ

0

; Z

1

g is called

compatible.

It is not di�cult to prove that for any compatible pair fZ

0

; Z

1

g the spaces

Z

0

\Z

1

and Z

0

+Z

1

=

�

f 2 Z : f = f

0

+ f

1

; f

j

2 Z

j

; j = 0; 1

	

are Banach

ones with respect to the norms

kf jZ

0

\ Z

1

k = max

�

kf jZ

0

k; kf jZ

1

k

	

;

kf jZ

0

+ Z

1

k = inf

�

kf

0

jZ

0

k+ kf

1

jZ

1

k

�

�

f = f

0

+ f

1

; f

j

2 Z

j

; j = 0; 1

	

and continuous embeddings

Z

0

\ Z

1

� Z

j

� Z

0

+ Z

1

; j = 0; 1; (2.30)

hold (see, e.g., [109, Lemma 1.21]).

For brevity the use will be made of the following notation:

Z

min

= Z

0

\ Z

1

; Z

max

= Z

0

+ Z

1

: (2.31)

For any Banach spaces Z

0

; Q

0

we shall denote by L(Z

0

; Q

0

) (Com(Z

0

; Q

0

))

the set of all linear continuous (compact) operators acting from Z

0

to Q

0

.

For any compatible pairs fZ

0

; Z

1

g, fQ

0

; Q

1

g the embeddings

L(Z

0

; Q

0

) \ L(Z

1

; Q

1

) � L(Z

min

; Q

min

) \ L(Z

max

; Q

max

);

Com(Z

0

; Q

0

) \ Com(Z

1

; Q

1

) � Com(Z

min

; Q

min

) \ Com(Z

max

; Q

max

):

hold.
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Proof. The �rst embedding follows directly from the de�nition of norms in

spaces Z

min

and Q

min

, Z

max

and Q

max

. Let us prove the second embedding.

Take an arbitrary T 2 Com(Z

0

; Q

0

) \ Com(Z

1

; Q

1

) and an arbitrary

bounded sequence fx

n

g

n2N

in Z

min

. From the compactness of T : Z

0

! Q

0

follows the existence of a subsequence (we denote it again by fx

n

g

n2N

)

such that fTx

n

g

n2N

� Q

0

\Q

1

converges in Q

0

. Using the compactness of

T : Z

1

! Q

1

, we can choose from that subsequence a subsequence (which

we again denote by fx

n

g

n2N

) such that fTx

n

g

n2N

� Q

0

\ Q

1

converges

in Q

1

. Then the sequence fTx

n

g

n2N

converges in Q

min

. Therefore T 2

Com(Z

min

; Q

min

).

Denote by S

0

; S

1

and S

max

unit balls in spaces Z

0

; Z

1

and Z

max

, re-

spectively. Clearly, S

max

� S

0

+ S

1

. Take an arbitrary " > 0. From the

compactness of T : Z

j

! Q

j

, j = 0; 1, it follows that for the set T (S

j

) in

the space Q

j

there exists an "=2-net fy

(j)

1

; : : : ; y

(j)

m

g:

8y

(j)

2 T (S

j

) 9k 2 1;m : ky

(j)

� y

(j)

k

jQ

j

k <

"

2

(j = 0; 1):

It is evident that the set fy

(0

k

+y

(1)

l

g

k;l21;m

is an "-net in the space Q

max

for

T (S

0

)+T (S

1

) = T (S

0

+S

1

), and hence for T (S

max

), since S

max

� S

0

+S

1

.

Thus T 2 Com(Z

max

; Q

max

). �

For any Banach spaces Z

0

; Q

0

we denote by �(Z

0

; Q

0

) the set of all

Noetherian operators acting from Z

0

to Q

0

.

3

Let fZ

0

; Z

1

g, fQ

0

; Q

1

g be compatible pairs and the embed-

ding Z

min

� Z

max

, Q

min

� Q

max

be dense. If the operator A 2 �(Z

0

; Q

0

)

\ �(Z

1

; Q

1

) has a common regularizer R 2 L(Q

0

; Z

0

) \ L(Q

1

; Z

1

):

RA� I 2 Com(Z

0

; Z

0

) \ Com(Z

1

; Z

1

);

AR� I 2 Com(Q

0

; Q

0

) \Com(Q

1

; Q

1

);

(2.32)

then

Ind

Z

min

!Q

min

A = Ind

Z

j

!Q

j

A = Ind

Z

max

!Q

max

A; j = 0; 1; (2.33)

any solution f 2 Z

max

of equation Af = g, g 2 Q

j

, belongs to the space Z

j

and, in particular,

Ker

Z

min

A = Ker

Z

j

A = Ker

Z

max

A; j = 0; 1: (2.34)

Proof. From Lemma 2.16 and the conditions of the statement it follows

that R 2 L(Q

min

; Z

min

) \ L(Q

max

; Z

max

), RA � I 2 Com(Z

min

; Z

min

)

\Com(Z

max

; Z

max

), AR�I 2 Com(Q

min

; Q

min

)\Com(Q

max

; Q

max

). There-

foreA 2 �(Z

min

; Q

min

)\�(Z

max

; Q

max

) (see, e.g., [79, Ch. I, Theorem 4.3]),

and the equality (2.33) makes sense. Note that each of relations (2.32) is a

3

Similar statement can be found in [53]. The idea of the proof given here is borrowed

from [76, 6:4].
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consequence of the other since A 2 �(Z

0

; Q

0

) \ �(Z

1

; Q

1

) (see [79, Ch. I,

Corollary 4.3]).

Let us show now that from density of the embeddingQ

min

� Q

max

follows

that of Q

min

� Q

j

, j = 0; 1. For the sake of de�niteness we take j = 0.

According to the condition for any " > 0 and g 2 Q

0

there exists h 2 Q

min

such that kg � hjQ

max

k < ", i.e. 9g

0

2 Q

0

, g

1

2 Q

1

: g � h = g

0

+ g

1

,

kg

0

jQ

0

k+ kg

1

jQ

1

k < ";

g 2 Q

0

; h 2 Q

min

� Q

0

) g � h 2 Q

0

) g

1

= (g � h)� g

0

2 Q

0

)

) g

1

2 Q

0

\Q

1

= Q

min

) g

1

+ h 2 Q

min

:

Moreover, kg�(g

1

+h)jQ

0

k = kg

0

jQ

0

k < ". Thus the embedding Q

min

� Q

0

is dense.

Density of embeddings Q

min

� Q

j

� Q

max

, j = 0; 1, implies embeddings

of conjugate spaces Q

�

max

� Q

�

j

� Q

�

min

, j = 0; 1. This and embeddings

Z

min

� Z

j

� Z

max

, j = 0; 1, yield

Ker

Z

min

A � Ker

Z

j

A � Ker

Z

max

A; (2.35)

Ker

Q

�

max

A

�

� Ker

Q

�

j

A

�

� Ker

Q

�

min

A

�

: (2.36)

We shall denote by n

min

, n

j

, n

max

kernel dimensions dimKerA in the cor-

responding spaces and bym

min

, m

j

, m

max

cokernel dimensions dimCokerA

= dimKerA

�

(see, e.g., [79, Ch.I, (3.1)]). Then from (2.35), (2.36) it follows

that

n

min

� n

j

� n

max

; m

min

� m

j

� m

max

; j = 0; 1: (2.37)

By the de�nition of the index we have

Ind

Z

min

!Q

min

A � Ind

Z

j

!Q

j

A � Ind

Z

max

!Q

max

A: (2.38)

Analogous inequalities for the regularizer R can be proved similarly. But

IndR = � IndA (see, e.g., [79, Ch. I, Theorems 3.6, 3.7]). Therefore the

equalities take place in (2.38), hence we have proved (2.33).

In virtue of (2.37) the equalities in (2.38) may be achieved if and only

if n

min

= n

j

= n

max

; m

min

= m

j

= m

max

. Taking into account (2.35),

we obtain (2.34). It is also obvious that the equalities take place in (2.36).

Hence if the equation Af = g, g 2 Q

j

, has a solution f 2 Z

max

, then it is

solvable in the space Z

j

too (see [79, 1.2.4]). It remains to note that any

two solutions of that equation in the space Z

max

di�er by an element from

Ker

Z

max

A = Ker

Z

j

A � Z

j

: �

Return now to the operator U (see (2.7)). Its principal interior symbol

�




(U) = �

A

in local coordinates de�nes the matrix �

(l)

A

(x

(l)

; �

(l)

) (l is a

number of local coordinate system). Assume that we have to do with the

boundary coordinate neighbourhood. Consider the matrix

�

(l)

(x

0

(l)

) =

�

�

(l)

A

(x

0

(l)

; 0; 0;�1)

�

�1

�

(l)

A

(x

0

(l)

; 0; 0;+1):
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When we study boundary value problems in a half-space (see [37], [31]

and Ch. I) eigenvalues �

(l)

1

(x

0

(l)

); : : : ; �

(l)

N

(x

0

(l)

) of the matrix �

(l)

(x

0

(l)

) play

an essential role. It is not di�cult to see (cf. [37, x22] and [82, Theorem

2.3.3.1-3]) that these eigenvalues in fact do not depend on the choice of local

coordinate system. Thus functions �

1

(x

0

); : : : ; �

N

(x

0

) are de�ned on Y .

From the arguments following after Lemma 1.22 it follows that for the

Shapiro{Lopatinski�� condition (see De�nition 2.13) to be ful�lled, it is nec-

essary the ful�llment of the condition

s�

Re�

2

+

1

2�

arg�

m

(x

0

)�

1

p

62Z; m=1; : : : ; N; 8x

0

2Y: (2.39)

Remark. Consider, for example, the case of a scalar elliptic 	DO.

Then the continuous function �

1

(x

0

) is de�ned uniquely. If

�

1

(x

0

)

j�

1

(x

0

)j

�lls the

entire unit circumference when x

0

2 Y varies, then (2.39) obviously fails to

be ful�lled for any s and p.

If for given elliptic 	DO condition (2.39) is ful�lled for no s, then it is

natural to consider for it boundary value problems in function spaces of

piecewise-constant order of smoothness. This can be done as in [37, x25].

Consider the set

Z(A)=

n

Re�

2

�

1

2�

arg�

m

(x

0

)+`

�

�

`2Z; m=1; : : : ; N; x

0

2Y

o

: (2.40)

This set is closed. Really, by virtue of the compactness of Y we can see

that the set f�

m

(x

0

)jm = 1; : : : ; N; x

0

2 Y g of zeros of a polynomial whose

coe�cients depend continuously on x

0

2 Y is compact. It remains to note

that the function

1

2�

arg has an integer jump at a point of discontinuity.

We can rewrite (2.39) as follows:

s� 1=p 62 Z(A): (2.41)

Suppose (2.41) is ful�lled and introduce the notation (cf. (1.113){(1.115))

s

+

= min

�

Re�� r

1

� 1; tjt 2 Z(A); t > s� 1=p

	

; (2.42)

s

�

= max

�

r

2

; tjt 2 Z(A); t < s� 1=p

	

(2.43)

(minf� � � g and maxf� � � g do exist since Z(A) is closed). Clearly s

�

< s �

1=p < s

+

if the conditions of Theorem 2.9 are ful�lled.

For arbitrary t

�

; t

+

2 R, t

�

< t

+

, denote by

P

(t

�

; t

+

) the union of all

spaces H

1

(s; p), s 2 R, p 2]1;1[, t

�

< s� 1=p < t

+

. From the embedding

theorem (see, for example, [109, Theorem 4.6.1] or Theorem 1.6) it follows

that

P

(t

�

; t

+

) is equal to the union of all spacesB

1

(s; p; q), s 2 R, p 2]1;1[,

q 2 [1;1], t

�

< s� 1=p < t

+

.

Let for an elliptic operator U : H

1

(s; p) ! H

2

(s; p)

(B

1

(s; p; q) ! B

2

(s; p; q)) of the class OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G)
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the conditions of Theorem 2:9 and the Shapiro{Lopatinski�� condition be ful-

�lled. Then for any s

�

2 R, p

�

2]1;1[, satisfying

s

�

< s

�

� 1=p

�

< s

+

; (2.44)

and any q; q

�

2 [1;1] the equalities

IndU

�

H

1

(s; p)! H

2

(s; p)

�

= IndU

�

B

1

(s; p; q)! B

2

(s; p; q)

�

=

= IndU

�

H

1

(s

�

; p

�

)! H

2

(s

�

; p

�

)

�

=

= IndU

�

B

1

(s

�

; p

�

; q

�

)! B

2

(s

�

; p

�

; q

�

)

�

(2.45)

are valid. Moreover, if g 2 H

2

(s

�

; p

�

) (B

2

(s

�

; p

�

; q

�

)), then any solution

f 2

P

(s

�

; s

+

) of the equation

Uf = g (2.46)

(if it exists) belongs to H

1

(s

�

; p

�

) (B

1

(s

�

; p

�

; q

�

)). If however

g 2 B

t�Re�

1;1

(F )�B

t�Re 


2

1;1

(G); t 2]s

�

; s

+

[;

then

f 2 \

�<t

�

e

B

�

1;1

(E)�B

��Re�+Re 


1

+1

1;1

(I)

�

:

Proof. Let us begin with the equality (2.45). By Theorems 2.15 and 1.24, all

the operators contained in it are Noetherian. Analyzing the proofs of these

theorems, we can see that the above-mentioned operators have a common

regularizer (in the sense of (2.32)). It su�ces for us to prove the equality

IndU

�

H

1

(s; p)!H

2

(s; p)

�

=IndU

�

B

1

(s

�

; p

�

; q

�

)!B

2

(s

�

; p

�

; q

�

)

�

(2.47)

since s

�

; p

�

and q

�

may in particular coincide with s; p and q, respectively.

If q

�

<1, then the conditions of Lemma 2.17 are ful�lled (see, e.g., [109,

Theorem 2.3.2] and [109, Remark 2.10.3.-1] or Lemma 1.8), and (2.47) fol-

lows from (2.33). If however q

�

=1, then we have to apply Lemma 2.17 �rst

to the pairs fH

1

(s; p); B

1

(s

�

�"; p

�

; 1)g, fH

2

(s; p); B

2

(s

�

�"; p

�

; 1)g and then

to the pairs fB

1

(s

�

�"; p

�

; 1); B

1

(s

�

; p

�

;1)g, fB

2

(s

�

�"; p

�

; 1); B

2

(s

�

; p

�

;1)g,

where " > 0 is a su�ciently small number (see [109, Theorem 2.3.2-(c)] or

Theorem 1.6-a)).

The �rst assertion of the theorem concerning equation (2.46) is proved

analogously since by the de�nition of

P

(s

�

; s

+

) there are numbers s

0

2 R

and p

0

2]1;1[ for f 2

P

(s

�

; s

+

) such that f 2 H

1

(s

0

; p

0

) and s

�

<

s

0

� 1=p

0

< s

+

.

Let us prove now the last statement of the theorem. Fix an arbitrary

� 2]s

�

; t[ and take s

�

2]�; t[, p

�

2]1;1[ such that s

�

� n=p

�

� � . Then

g 2 B

2

(s

�

; p

�

;1) (see [110, Theorem 3.3.1]) and according to already proven

and embedding theorem (see [110, 3.3.1])

f 2 B

1

(s

�

; p

�

;1) �

e

B

�

1;1

(E) �B

��Re�+Re 


1

+1

1;1

(I): �
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Remark. The above proven theorem enables us to reduce the in-

vestigation of the problem on the index of boundary value problems for

elliptic 	DOs in Besov and Bessel-potential spaces to its investigation in

the case of spaces H

�

2

. For this it su�ces to replace p by 2 and s by

s

�

2]s

�

+ 1=2; s

+

+ 1=2[ in the indices of the corresponding spaces.

Note that the index L

2

-theory for a wide algebra of elliptic boundary

value problems (without transmission property) has been constructed in

[83] (see also [84]).

Remark. The second part of Theorem 2.19 is an assertion typical

for the theory of elliptic boundary value problems that the increase of data

smoothness implies that of the solution smoothness. (Recall incidentally

that for s > 0 the space B

s

1;1

is a H�older{Zygmund space by (1.18),

(1.19)). In the case under consideration this however takes place within

rather narrow interval ]s

�

; s

+

[ (see (2.44)). In particular the solution of

equation (2.46) may not belong to [

�>s

+

�

e

B

�

1;1

(E) � B

��Re�+Re 


1

+1

1;1

(I)

�

even for in�nitely smooth g. This follows from asymptotic properties of so-

lutions of boundary value problems for elliptic 	DOs in the neighbourhood

of the boundary (see [37, x9], [85], [102], [103], [104]).

x

	

Consider an (elliptic) operator

U 2 OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G): (2.48)

For the Shapiro{Lopatinski�� conditions to be ful�lled, it is necessary that

the mapping

�

Y

(A)=P

1

�

Y

(U)I

1

: pr

�

E

0




e

H

s

p

(R

1

+

)!pr

�

F

0


H

s�Re�

p

(R

1

+

) (2.49)

generated by the morphism (2.15) be a family of Noetherian operators. Here

I

1

: pr

�

E

0




e

H

s

p

(R

1

+

)! pr

�

E

0




e

H

s

p

(R

1

+

)� pr

�

I (2.50)

is an embedding and

P

1

: pr

�

F

0


H

s�Re�

p

(R

1

+

)� pr

�

G! pr

�

F

0


H

s�Re�

p

(R

1

+

) (2.51)

is a canonic projection. The expression \family of Noetherian operators"

means that �

Y

(A) de�nes a Noetherian operator for each �bre.

Noetherity of the family �

Y

(A) is equivalent to the condition (2.39) (see

[29], [30, x12]). We shall assume this condition to be ful�lled. Then the

family �

Y

(A) de�nes the index element ind

S

�

Y

�

Y

(A) 2 K(S

�

Y ) (see [82,

3.1.1.1], [37, x16]).



104

For an elliptic operator (2:48) let the conditions of Theo-

rem 2:9 and the Shapiro{Lopatinski�� condition be ful�lled. Then

ind

S

�

Y

�

Y

(A) = [pr

�

G]� [pr

�

I] (2.52)

and hence

ind

S

�

Y

�

Y

(A) 2 pr

�

K(Y ) (2.53)

(pr

�

K(Y ) is an inverse image of the group K(Y ) with respect to the canonic

projection pr : S

�

Y ! Y ).

Proof. The proof is analogous to that of [82, Theorem 3.1.1.1{11]. The

di�erence is that we cannot take the family of operators de�ned by �

�1

A

as

a regularizer of �

Y

(A). We should act as follows: consider the morphism

(�

Y

(U))

�1

inverse to �

Y

(U). The family P

1

(�

Y

(U))

�1

I

1

(see (2.50), (2.51))

will be the family of regularizers of �

Y

(A). �

Let A 2 OP (

b

O

1

�

)(E

0

; F

0

) (where E

0

and F

0

are exten-

sions of bundles E and F from X to M) be an elliptic 	DO satisfying the

condition (2:39), and for the morphism (2:49) the condition (2:53) be ful-

�lled. Then there exist bundles I; G over Y and the operator (2:48) with

�

+

A (see (2:7)) in the left upper corner for which the Shapiro{Lopatinski��

condition is ful�lled. Moreover, r

1

; r

2

2 R, 


1

; 


2

2 C are arbitrary numbers

satisfying the conditions r

1

< Re�� s� 1 + 1=p, r

2

< s� 1=p.

Proof. It is not di�cult to see that there exists a �nite-dimensional subspace

L of the space S(R

1

) such that

�

im�

Y

(A)

�

(x

0

;�

0

)

+ (pr

�

F

0

)

(x

0

;�

0

)


 �

+

L =

= (pr

�

F

0

)

(x

0

;�

0

)


H

s�Re�

p

(R

1

+

); 8(x

0

; �

0

) 2 S

�

Y (2.54)

(see [82, 3.1.1.1], [37, x16]).

Denote l = dim�

+

L. Then the isomorphism pr

�

F

0


 C

l

�

=

pr

�

F

0


 �

+

L

can be realized in terms of

I 
 �

+

�

Y

(K)[��] : pr

�

F

0


 C

l

! pr

�

F

0


 �

+

L

(see [37, x16]). Explain the notation: �

Y

(K) is a matrix 	DO on R

1

acting

with respect to the variable in the argument of �-function. Components of

this 	DO have in�nitely smooth rapidly decreasing symbols (\with constant

coe�cients").

We can easily verify that

ind

S

�

Y

�

Y

(A)=

�

ker

S

�

Y

�

�

Y

(A); I 
 �

+

�

Y

(K)�

��

�[pr

�

F

0


 C

l

] (2.55)

(see [82, 1.1.3.4]).

Note that the assertion of [82, Lemma 3.1.1.2-1] will hold if instead of

C

N

we take p

�

I

0

(in notations of [82]) for a bundle I

0

2 Vect(Y ). Therefore

it follows from (2.53), (2.55) that there exist smooth vector bundles I

1

; G

0
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over Y for which G

1

� pr

�

I

1

�

=

pr

�

G

0

, where G

1

= ker

S

�

Y

(�

Y

(A); I 


�

+

�

Y

(K)�).

Let us take a zero morphism O : pr

�

I

1

! pr

�

F

0


 H

s�Re�

p

(R

1

+

) and

consider an epimorphism

Epi :=

�

�

Y

(A); I 
 �

+

�

Y

(K)�; O

�

:

�

pr

�

E

0




e

H

s

p

(R

1

+

)

�

�

�(pr

�

F

0


 C

l

)� pr

�

I

1

! pr

�

F

0


H

s�Re�

p

(R

1

+

): (2.56)

Clearly

e

G

0

:= ker

S

�

Y

Epi = G

1

� pr

�

I

1

�

=

pr

�

G

0

: (2.57)

As usual, we denote by (E

0

)

�

, (F

0

)

�

, I

�

1

the bundles dual respectively to

E

0

; F

0

; I

1

and by Epi

�

the morphism dual to Epi.

We can prove (see [37, x16], [82, 3.1.1.1]) that there exist f

j

2 S(R

1

), j =

1; : : : ;m, and smooth sections b

k

; c

k

; d

k

, k = 1; : : : r, of bundles pr

�

(E

0

)

�

,

pr

�

(F

0

)

�


 C

l

, pr

�

I

�

1

, respectively, such that

(imEpi

�

)

(x

0

;�

0

)

+ Lfb

k


 �

+

f

j

g

(x

0

;�

0

)

�Lfc

k

g

(x

0

;�

0

)

�Lfd

k

g

(x

0

;�

0

)

=

=

�

pr

�

(E

0

)

�


H

�s

p

0

(R

1

+

)

�

(x

0

;�

0

)

�

�

pr

�

(F

0

)

�


 C

l

�

(x

0

;�

0

)

�

�(pr

�

I

�

1

)

(x

0

;�

0

)

; 8(x

0

; �

0

) 2 S

�

Y (p

0

= p=(p� 1)); (2.58)

where Lf� � � g denotes a linear span of the corresponding vector system.

It is clear that b

k

1


�

+

f

j

= (b

k

1


�

+

f

j

)�O�O, c

k

2

= O� c

k

2

�O and

d

k

3

= O � O � d

k

3

(j = 1; : : : ;m, k

1

; k

2

; k

3

= 1; : : : ; r) are sections of the

bundle dual to Z :=

�

pr

�

E

0




e

H

s

p

(R

1

+

)

�

�

�

pr

�

F

0


 C

l

�

� pr

�

I

1

. For these

sections let us introduce a common notation '

e

, e = 1; : : : ;mr + r + r =

r(m + 2), and consider a bundle morphism

�

1

=

�

h�; '

e

i

�

: Z ! C

r(m+2)

;

where C

r(m+2)

denotes a trivial bundle S

�

Y � C

r(m+2)

.

Taking into account that (imEpi

�

)

(x

0

;�

0

)

is an annihilator of the corre-

sponding �bre of the bundle ker

S

�

Y

Epi, we obtain from (2.58) that �

1

is

a monomorphism on

e

G

0

= ker

S

�

Y

Epi. Therefore im(�

1

j

e

G

0

) is a smooth

vector bundle (see, e.g., [66, Ch. I, x4, Theorem 1]) which is isomorphic to

the bundle

e

G

0

, and hence to pr

�

G

0

(see (2.57)). There exists subbundle I

2

of a trivial bundle C

r(m+2)

such that I

2

� im(�

1

j

e

G

0

) = C

r(m+2)

(see [66,

Ch. I, x4, Theorem 1]). Denote by

�

2

:= C

r(m+2)

! pr

�

G

0

the bundle morphism equal to zero on I

2

and realizing an isomorphism

�

2

: im

�

�

1

�

�

e

G

0

�

! pr

�

G

0

:
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Thus we have obtained the isomorphism

0

@

(�

Y

(A); I 
 �

+

�

Y

(K)�; O)

�

2

�

1

1

A

pr

�

E

0




e

H

s

p

(R

1

+

)

�

pr

�

F

0


 C

l

�

pr

�

I

1

�!

�!

pr

�

F

0


H

s�Re�

p

(R

1

+

)

�

pr

�

G

0

: (2.59)

Note that we can consider the operator

e

H

s

p

(R

1

+

) 3 f 7�! hf; �

+

f

j

i = hf; f

j

i 2 C

as an operator �

0

B

j

:

e

H

s

p

(R

1

+

) ! C , �

0

being the value at the point 0,

and B

j

is a 	DO with in�nitely smooth rapidly decreasing symbol \with

constant coe�cients" (see [37, x16]).

Denote I = (F

0


 C

l

)� I

1

, G = G

0

. It is easily seen that the morphism

(2.59) looks like the isomorphism (2.15) and possesses the same properties.

Now the assertion of the theorem follows from the following general con-

sideration. Let c 2 C

1

(S

n�2

), b 2 S(R

1

). Then the symbol A,

A(�

0

; �

n

) = j�

0

j




c

�

�

0

j�

0

j

�

b

�

�

n

j�

0

j

�

; 
 2 C ;

belongs to O

1




. �

Performing order reduction (see Theorem 1.12), we can reduce the inves-

tigation of �

Y

(A) to that of a family

�

Y

(A

0

) : pr

�

E

0


 L

p

(R

1

+

)! pr

�

F

0


 L

p

(R

1

+

)

for which the condition (2.39) takes the form

1

2�

arg�

0

m

(x

0

)�

1

p

62 Z; m = 1; : : : ; N; 8x

0

2 Y: (2.60)

Comparing the proofs of [37, Theorem 16.3] and [82, Theorem 3.2.1.2-1],

we can easily get the result given below (see also Theorem 1.28).

Let A

0

2 OP (

b

O

1

0

)(E

0

; F

0

) be an elliptic pseudodifferen-

tial operator satisfying condition (2:60). Then the following statements are

equivalent:

a) there exist smooth vector bundles I and G over Y for which

ind

S

�

Y

�

Y

(A

0

) = [pr

�

G]� [pr

�

I];
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b) there exist smooth vector bundles I

0

; G

0

; L and P over Y such that

in the class of homogeneous zero order elliptic symbols satisfying condition

(2:60) there is a homotopy (over a tubular neighbourhood of @X = Y ):

�

�

A

0

(x

0

; 0; �

0

; �

n

) 0

0 1

pr

�

L

�

' c

0

B

@

�

n

+ij�

0

j

�

n

�ij�

0

j

1

pr

�

G

0

0 0

0

�

n

�ij�

0

j

�

n

+ij�

0

j

1

pr

�

I

0

0

0 0 1

pr

�

P

1

C

A

;

where [pr

�

G

0

] � [pr

�

I

0

] = [pr

�

G] � [pr

�

I], c : E

0

� L ! F

0

� L is an

isomorphism, pr

�

(E

0

� L)

�

=

pr

�

(G

0

� I

0

� P ).

Remark. In Theorems 2.22 - 2.24 the talk was, in general, about

non-trivial bundles. If we restrict ourselves to the consideration only of

trivial bundles, then we can get the results analogous to Theorems 16.2

0

and 16.3

0

from [37, x22]. These results do not follow from Theorems 2.22-

2.24. Indeed, the bundles whose existence is established in Theorems 2.23

and 2.24 are not a priori trivial even if E and F are trivial and

ind

S

�

Y

�

Y

(A) = sgnm[S

�

Y � C

jmj

]; m 2 Z:

Remark. In this section we could restrict ourselves to the consider-

ation of spaces H

�

2

(see [83]). To this end it su�ces to replace p by 2 and s

by s

�

2]s

�

+ 1=2; s

+

+ 1=2[ (see Remark 2.20).

x

For an elliptic operator (2.48) let the conditions of Theorem 2.9 and

the Shapiro{Lopatinski�� condition be ful�lled for some s 2 R and p 2]1;1[.

Then Theorem 2.19 permits to obtain automatically the results on regularity

of solutions of boundary value problem (2.46). In particular these results

can be obtained directly from the L

2

-theorems on the Noetherity.

Usually we act as follows. First we establish the ful�llment of Shapiro{

Lopatinski�� conditions for a pair (s; p) 2 R�]1;1[. This is not an easy

procedure because we have to factorize matrices. In practice the following

argument is very helpful. We may know that the boundary value problem is

Noetherian for some s and p and as a rule, p = 2. In some cases we can spec-

ify this by the methods of the theory of Hilbert spaces (variational methods,

Lax{Milgram theorem, coercive estimates, G

�

arding inequality, etc.). On

the other hand, it is established in [31] that Shapiro{Lopatinski�� condition

is not only su�cient but also necessary for singular integral operators to be

Noetherian in spaces H

�

p

. This result can be easily transferred to 	DOs

of non-zero order on manifolds with boundary. The necessity of Shapiro{

Lopatinski�� condition is proved in [83] for a wide algebra of elliptic boundary

value problems in H

�

2

spaces.

After the Shapiro{Lopatinski�� condition is established for some s and p,

we have to cover s� 1=p by an interval which is supplementary to a closed

set Z(A) (see (2.40)). Intersection of this interval with ]r

2

;Re� � r

1

� 1[
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is, in fact, the interval ]s

�

; s

+

[ from Theorem 2.19. Note only that in order

to construct the set Z(A) we must �nd eigenvalues of some matrix. This

procedure is more easy than factorization of a matrix function.

The results of the present chapter can be transferred to elliptic in the

Douglis{Nirenberg sense pseudodi�erential operators. Boundary value prob-

lems for such 	DOs are reduced to those considered in the present chapter

with the help of order reduction operators (see [45], and [21, x2.7]). One

can act in a more simple way �rst passing to the boundary value problem

for elliptic in the Douglis-Nirenberg sense 	DO (with \frozen coe�cients")

in a half-space and then performing order reduction (see Theorem 1.12 and

Remark 1.41).

We have considered above the case of in�nitely smooth manifolds and

symbols. In practice �nite smoothness is frequently quite enough. It must

only ensure straightening of the boundary and \freezing of coe�cients" (cf.

[31] and x3.5).

In the case when pseudodi�erential operators possess the transmission

property, the L.Boutet de Monvel method (see [20]) allows us to obtain

results about boundary value problems in Besov-Triebel-Lizorkin spaces

and, in particular, in H�older spaces (see , [38], [45], [82, 3.1.1.4] and also

J. Johnsen's papers indicated in the footnote on page 43). Using the re-

sults of section 1.6 and applying the methods of this chapter, enable us

investigate boundary value problems on manifolds for elliptic 	DOs with

the transmission property in Besov and Bessel-potential spaces. Such an

approach apparently has the right to exist since in its realization the re-

striction � 2 Z which is necessary for the Boutet de Monvel method to be

applicable can be neglected.
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Chapter III

	

x

The case of two-dimensional manifolds (n = 2) which will be considered

in the present chapter is a particular one from the viewpoint of the theory

of boundary value problems for elliptic (pseudo-)di�erential operators. In-

deed, if n � 3, then, as it has been noted at the end of x1.3, the index {(!),

! 2 S

n�2

, of an elliptic symbol (scalar or matrix) is constant. If however

n = 2, then the sphere S

n�2

= S

0

= f�1; 1g is disconnected, and it may

happen that {(�1) 6= {(1). Note that this is not a pathology. For example,

for a classical operator such as @ =

1

2

�

@

@x

1

+ i

@

@x

2

�

we have {(�1) = �1,

{(1) = 0. If {(�1) 6= {(1), then no boundary value problem of type (1.61),

(1.62) is uniquely solvable since condition (1.110) is necessarily violated (see

Theorem 1.24). Indeed, this condition expresses the di�erence between the

number of coboundary (potential) and boundary operators in a uniquely

solvable boundary value problem in a half-space, i.e. the value not depend-

ing on ! = �1, by {(!) and values also independent of ! = �1.

If for an elliptic di�erential operator {(�1) 6= {(1), then this operator

is not proper elliptic. In the theory of boundary value problems for partial

di�erential operators di�culties connected with improper elliptic operators

are well known (see, e.g., [2, Part I, Ch. I, x1]).

In the present chapter we consider boundary value problems for elliptic

	DOs in the case when {(�1) does not, in general, equal {(1). Frequently

we do not formulate �nal results on the problems but only show how they

can be reduced to the boundary value problems investigated in the previous

chapters. When formulating boundary value problems we try to modify

problems of type (2.46) ((1.61), (1.62)) as little as possible, achieving nev-

ertheless Noetherity (the unique solvability). Hereat only the boundary

conditions rather than the equation involving an elliptic pseudodi�erential

operator are subjected to the modi�cation.

We consider two types of boundary value problems. The problems with

complex conjugation ((3.7){(3.9), (3.29)) belong to the �rst type. These

problems are analogues of the Hilbert problem for analytic functions (see

[40], [70]). Boundary value problems containing analytic projectors P

�

=

1

2

�

I � S

�

where S is a singular integral operator with the Cauchy kernel

((3.18){(3.21), (3.33)), belong to the second type. In a sense they are similar

to the problem of linear conjugation for analytic functions. Really, the

problem of linear conjugation of the type G�

+

+�

�

= g (see [40], [70]) can

be easily reduced to the problem P

+

(G�

+

) = P

+

g. The connection here is

the same as between paired operators and the Wiener{Hopf operators (see,

e.g., [42, Ch. V, Theorem 1.1]).
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x

Let L;L

0

be linear spaces over the �eld C . A mapping V

0

: L ! L

0

is

said to be antilinear if V

0

(�' + � ) = �V

0

'+ �V

0

 , 8�; � 2 C , 8';  2 L.

A mapping V : L! L is said to be involution if V

2

= I .

Suppose that L;L

j

; L

0

j

, j = 1; 2, are linear spaces over the �eld C , V :

L ! L is an antilinear involution, V

j

: L

j

! L

0

j

, V

�1

j

: L

0

j

! L

j

, j = 1; 2,

are reciprocal antilinear operators, A : L

1

! L

2

, B : L

0

1

! L

2

and C :

L

1

! L are linear operators. Introduce the notation

A

�

=V

2

AV

�1

1

; B

�

=V

2

BV

1

; C

�

=V CV

�1

1

; (I�V )L=

�

(I�V ) j 2L

	

:

It is clear that (I � V )L is a linear space over R (not over C ).

Consider the operators

U

�

=

�

A�BV

1

(I � V )C

�

: L

1

�!

L

2

�

(I � V )L

; (3.1)

U

�

=

0

@

A B

B

�

A

�

C C

�

1

A

:

L

1

�

L

0

1

�!

L

2

�

L

0

2

�

L

: (3.2)

Obviously the operators U

�

are R-linear and the operator U

�

is C -linear.

dim

R

KerU

�

= dim

C

KerU

�

; dim

R

CokerU

�

= dim

C

CokerU

�

(in�nite values being admitted).

Proof. Multiplication by i is an automorphism of spaces L

j

; L

0

j

as well as

an isomorphism (I + V )L! (I � V )L. It is easily seen that U

�

= iU

+

i

�1

.

Therefore

dim

R

KerU

�

= dim

R

KerU

+

; dim

R

CokerU

�

= dim

R

CokerU

+

: (3.3)

Let us introduce the following subspaces (with respect to the �eld R) of

the space L

j

� L

0

j

: L

�

j

=

�

( 

j

;�V

j

 

j

)j 

j

2 L

j

	

. It is not di�cult to see

that

L

+

j

� L

�

j

= L

j

� L

0

j

: (3.4)

Indeed,

L

+

j

\ L

�

j

= f0g;

( 

j

;  

0

j

) =

1

2

( 

j

+ V

�1

j

 

0

j

; V

j

 

j

+  

0

j

) +

1

2

( 

j

� V

�1

j

 

0

j

;�V

j

 

j

+  

0

j

) =

=

1

2

�

 

j

+V

�1

j

 

0

j

; V

j

( 

j

+V

�1

j

 

0

j

)

�

+

1

2

( 

j

�V

�1

j

 

0

j

;�V

j

( 

j

�V

�1

j

 

0

j

)

�

2
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2 L

+

j

� L

�

j

; 8( 

j

;  

0

j

) 2 L

j

� L

0

j

(j = 1; 2):

Moreover,

(I + V )L� (I � V )L = L: (3.5)

Only the fact that (I + V )L \ (I � V )L = f0g needs to be proved. Let

(I + V )�

1

= (I � V )�

2

for some �

1

; �

2

2 L. When both sides of the

equality are a�ected by the operator V , we obtain (I+V )�

1

= �(I�V )�

2

.

Hence (I + V )�

1

= �(I � V )�

2

= 0.

It is evident that the mappings

I

�

1

=

�

I

�V

1

�

: L

1

�! L

�

1

;

I

�

2

=

0

@

I 0

�V

2

0

0 I

1

A

:

L

2

�

(I � V )L

�!

L

�

2

�

(I � V )L

are the isomorphisms and U

�

I

�

1

= I

�

2

U

�

. Therefore

dim

R

Ker

�

U

�

: L

�

1

! L

�

2

� (I � V )L

�

= dim

R

KerU

�

;

dim

R

Coker

�

U

�

: L

�

1

! L

�

2

� (I � V )L

�

= dim

R

CokerU

�

:

Taking into account (3.3){(3.5), we get

2 dim

C

KerU

�

= dim

R

KerU

�

= dim

R

Ker

�

U

�

: L

+

1

! L

+

2

� (I + V )L

�

+

+ dim

R

Ker

�

U

�

: L

�

1

! L

�

2

� (I � V )L

�

= dim

R

KerU

+

+

+ dim

R

KerU

�

= 2dim

R

KerU

�

and analogously dim

C

CokerU

�

= dim

R

CokerU

�

: �

Let V be the operator of complex conjugation and A(x;D) be a pseudo-

di�erential operator with a symbol A(x; �) (see (1.28) and (2.3)). It is easily

seen that the equality

A

�

(x;D) := V A(x;D)V = A(x;�D) = F

�1

A(x;��)F

holds.

Suppose A 2 (O

a;�

b;[n=2]+3

)

N�N

to be an a-elliptic symbol (see x1.3). As-

sume A

�

(�) = A(��). By virtue of Lemma 1.19 (see (1.57)) we have for A

�

A

�!

(�) = const(�

n

� ij�

0

j

a

n

a

)

�=2a

n

A

�

�!

(��)�

�D(�!;��)A

+

�!

(��)(�

n

+ ij�

0

j

a

n

a

)

�=2a

n

:

(Here � denotes a number complex conjugate to � 2 C not the vector of

type (1.2). The notation �

k

is understood analogously). On the diagonal of

D(�!;��) there are elements

�

�

n

� ij�

0

j

a

n

a

�

n

+ ij�

0

j

a

n

a

�

{

k

(�!)+�

k

:
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Note that A

�

�!

(��) (A

+

�!

(��)) and its inverse matrix admit bounded

analytic continuation with respect to �

n

the lower (upper) complex half-

plane.

For the order of a-homogeneity of A

�

to be equal to the order of a-

homogeneity of A, it is necessary and su�cient that � 2 R. Below when

studying boundary value problems with complex conjugation on a half-plane

(see x3.3), we shall always assume this condition to be ful�lled. This does

not restrict the generality since the general case can be easily reduced to

the case � 2 R by means of order reduction operators (see Theorem 1.12

and Remark 1.41).

Thus let � 2 R. It is easy to see that an a-elliptic symbol

�

A(�) 0

0 A

�

(�)

�

(3.6)

has constant index e{(!) = const, ! = �1, even in two-dimensional case

(n = 2). Indeed, e{(!) =

N

P

k=1

{

k

(!) +

N

P

k=1

{

k

(�!) = {(�1) + {(1) where

{(!) is an index of A (see lemma 1.19). Hence for the pseudodi�erential

operator with the symbol (3.6) the results of Chapter I are valid irrespective

of the fact whether condition (1.58) is ful�lled for A or not. (The same is

true for the scalar symbols A 2 O

a;�

b;[n=2]+2

).

x

a 	

1

0

. Let A 2 (O

a;�

b;4

)

N�N

be an a-elliptic symbol, � 2 R. In our case

n = 2, b = b

1

> 0, [n=2] + 3 = 4.

Consider a boundary value problem

�

+

b

A(D)u

+

+

m

�

X

k=1

�

+

b

C

k

(D)

�

w

k

(x

1

)� �(x

2

)

�

= f(x); (3.7)

�

0

b

B

j

(D)u

+

+ �

0

b

B

0

j

(D)u

+

+

m

�

X

k=1

�

b

E

jk

(D

1

)w

k

(x

1

) +

+

b

E

0

jk

(D

1

)w

k

(x

1

)

�

= g

j

(x

1

); 1 � j � m

0

; (3.8)

Re

�

�

0

b

B

j

(D)u

+

+

m

�

X

k=1

b

E

jk

(D

1

)w

k

(x

1

)

�

= g

j

(x

1

); m

0

+1�j�m

1

; (3.9)

where

b

B

j

;

b

B

0

j

;

b

C

k

;

b

E

jk

;

b

E

0

jk

; f; g

j

; u

+

; w

k

satisfy the same conditions as in

x1.4 with the only exception that g

j

are real-valued functions for m

0

+ 1 �

j � m

1

. To the system (3.7){(3.9) there corresponds a boundary value

problem

�

+

b

A(D)u

(1)

+

+

m

�

X

k=1

�

+

b

C

k

(D)

�

w

(1)

k

(x

1

)� �(x

2

)

�

= f

(1)

(x); (3.10)
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�

+

b

A

�

(D)u

(2)

+

+

m

�

X

k=1

�

+

b

C

k�

(D)

�

w

(2)

k

(x

1

)� �(x

2

)

�

= f

(2)

(x); (3.11)

�

0

b

B

j

(D)u

(1)

+

+ �

0

b

B

0

j

(D)u

(2)

+

+

m

�

X

k=1

�

b

E

jk

(D

1

)w

(1)

k

(x

1

) +

+

b

E

0

jk

(D

1

)w

(2)

k

(x

1

)

�

= g

(1)

j

(x

1

); 1 � j � m

0

; (3.12)

�

0

b

B

0

j�

(D)u

(1)

+

+ �

0

b

B

j�

(D)u

(2)

+

+

m

�

X

k=1

�

b

E

0

jk�

(D

1

)w

(1)

k

(x

1

) +

+

b

E

jk�

(D

1

)w

(2)

k

(x

1

)

�

= g

(2)

j

(x

1

); 1 � j � m

0

; (3.13)

�

0

b

B

j

(D)u

(1)

+

+ �

0

b

B

j�

(D)u

(2)

+

+

m

�

X

k=1

�

b

E

jk

(D

1

)w

(1)

k

(x

1

) +

+

b

E

jk�

(D

1

)w

(2)

k

(x

1

)

�

= g

(0)

j

(x

1

); m

0

+ 1 � j � m

1

: (3.14)

The relation between the boundary value problems (3.7){(3.9) and (3.10){

(3.14) is the same as between the operators (3.1) and (3.2). Note that the

system (3.10){(3.14) belongs to the class of boundary value problems (1.61),

(1.62) (see the end of the previous section), and hence Theorem 1.24 is valid

for it.

From Lemma 3.1 we have the following statement.

The unique solvability (in the corresponding function spa-

ces) for any right-hand sides of the system (3:7){(3:9) is equivalent to that

of the system (3:10){(3:14) for any right-hand sides.

For an a-elliptic symbol A 2 (O

a;�

b;4

)

N�N

let the condition

(1:95) be ful�lled. Then there exists a boundary value problem of type (3:7){

(3:9) which is uniquely solvable (in the corresponding function spaces) for

any right-hand sides. Moreover, equations (3:8) can be assumed to be absent

in it.

Proof. First we construct symbols C

k

such that the system

�

+

A(!;D

2

)u

(1)

+

(x

2

)+

m

�

X

k=1

w

(1)

k

�

+

C

k

(!;D

2

)�(x

2

)=f

(1)

(x

2

) (3.15)

has a solution

�

u

(1)

+

; w

(1)

1

; : : : ; w

(1)

m

�

�

2

e

H

s=a

2

p

(R

1

+

; C

N

)� C

m

�

for any f

(1)

2

H

(s��)=a

2

p

(R

1

+

; C

N

) (see [37, x16, point 2], as well as the proof of Theorem

2.23). It is clear that the system

�

+

A

�

(!;D

2

)u

(2)

+

(x

2

) +

m

�

X

k=1

w

(2)

k

�

+

C

k�

(!;D

2

)�(x

2

) = f

(2)

(x

2

) (3.16)

has a solution for any right-hand sides.
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For ! = �1 the left-hand sides of (3.15), (3.16) determine a surjective

Noetherian operator (see [37, xx12, 16] and xx1.4, 3.2). Its kernel is a direct

sum of kernels of the operators de�ned separately by the left-hand sides of

(3.15) and (3.16).

It follows from the arguments at the end of x3.2 that the kernel of the

operator which corresponds to (3.16) for ! = �1 consists of functions which

are complex conjugate to the functions composing the kernel of the operator

corresponding to (3.15) for ! = �1.

Let '

1

; : : : ; '

n

+

, ('

1

; : : : ; '

n

+

) be a kernel basis of the operator corre-

sponding to (3.15) (to (3.16)) for ! = +1 (for ! = �1) and  

1

; : : : ;  

n

�

,

( 

1

; : : : ;  

n

�

) for ! = �1 (for ! = +1). We construct on

e

H

s=a

2

p

(R

1

+

; C

N

)�

C

m

�

linear functionals �

1

; : : : ; �

n

+

and �

1

; : : : ; �

n

�

satisfying the conditions

h�

j

; '

l

i = h�

j

; '

l

i = �

l

j

; h�

j

;  

l

i = h�

j

;  

l

i = �

l

j

;

where �

l

j

is the Kronecker symbol: �

l

j

= 0 for l 6= j, �

l

l

= 1.

Due to the duality theorem (see, e.g., [109, 2.6.1, 2.10.5]), �

1

; : : : ; �

n

+

,

�

1

: : : ; �

n

�

can be assumed to be the elements of H

�s=a

2

p

0

(R

1

; C

N

) � C

m

�

,

p

0

= p=(p� 1):

Add to (3.15), (3.16) the following boundary conditions:

1 + sgn!

2

h�

j

; (u

(1)

+

; w

(1)

1

; : : : ; w

(1)

m

�

)i+

+

1 + sgn(�!)

2

h�

j

; (u

(2)

+

; w

(2)

1

; : : : ; w

(2)

m

�

)i = g

(0)

j

; j = 1; : : : ; n

+

;

1� sgn!

2

h�

j�n

+

; (u

(1)

+

; w

(1)

1

; : : : ; w

(1)

m

�

)i+

+

1� sgn(�!)

2

h�

j�n

+

; (u

(2)

+

; w

(2)

1

; : : : ; w

(2)

m

�

)i = g

(0)

j

;

j = n

+

+ 1; : : : ; n

+

+ n

�

:

(3.17)

From the above-said it follows that the boundary value problem (3.15){

(3.17) is uniquely solvable for any right-hand sides when ! = �1.

Further reasonings are rather standard. Elements of H

�s=a

2

p

0

(R

1

) are

approximated by functions from S(R

1

). We obtain a uniquely solvable

for any right-hand sides boundary value problem of type (3.15){(3.17) in

which instead of �

j

; �

j

there appear elements from S(R

1

; C

N

)� C

m

�

. The

functionals corresponding to the latter ones are interpreted by means of

	DOs with symbols from appropriate classes (see [37, x16, point 2] as well

as the end of the proof of Theorem 2.23). The proof is accomplished by

applying Theorems 1.24 and 3.2. �

2

0

. Let A 2 (O

a;�

b;4

)

N�N

be an a-elliptic symbol, � 2 C .
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Consider a boundary value problem

�

+

b

A(D)u

+

+

m

�

X

k=1

�

+

b

C

k

(D)

�

w

k

(x

1

)� �(x

2

)

�

= f(x); (3.18)

�

0

b

B

j

(D)u

+

+

m

�

X

k=1

b

E

jk

(D

1

)w

k

(x

1

) = g

j

(x

1

); 1 � j � m

+

; (3.19)

P

�

�

�

0

b

B

j

(D)u

+

+

m

�

X

k=1

b

E

jk

(D

1

)w

k

(x

1

)

�

= g

j

(x

1

); (3.20)

m

+

+ 1 � j � m

+

+m

1

;

P

+

�

�

0

b

B

j

(D)u

+

+

m

�

X

k=1

b

E

jk

(D

1

)w

k

(x

1

)

�

= g

j

(x

1

); (3.21)

m

+

+m

1

+ 1 � j � m

+

+m

1

+m

2

;

where P

�

=

1

2

(I � S

R

) are analytic projectors,

(S

R

')(t) =

1

�i

Z

R

'(�)

� � t

d�; t 2 R; (3.22)

and the integral is understood in the sense of Cauchy principal value (see

also [37, x5]);

b

B

j

;

b

C

k

;

b

E

jk

; f; g

j

; u

+

; w

k

satisfy the same conditions as in x1.4

with the only exception that

g

j

2 P

�

B

r

(j)

p;p

(R

1

)

�

P

�

B

r

(j)

p;q

(R

1

)

�

for m

+

+ 1 � j � m

+

+m

1

;

g

j

2 P

+

B

r

(j)

p;p

(R

1

)

�

P

+

B

r

(j)

p;q

(R

1

)

�

for m

+

+m

1

+1�j�m

+

+m

1

+m

2

;

r

(j)

=

1

a

1

(s�Re�

j

� a

2

=p) (cf. (1.70)).

To the system (3.18){(3.21) there correspond two boundary value prob-

lems

�

+

b

A

+1

(D)u

(1)

+

+

m

�

X

k=1

�

+

b

C

k;+1

(D)

�

w

(1)

k

(x

1

)� �(x

2

)

�

= f

(1)

(x); (3.23)

�

0

b

B

j;+1

(D)u

(1)

+

+

m

�

X

k=1

b

E

jk;+1

(D

1

)w

(1)

k

(x

1

) = g

(1)

j

(x

1

); (3.24)

1 � j � m

+

+m

1

;

and

�

+

b

A

�1

(D)u

(2)

+

+

m

�

X

k=1

�

+

b

C

k;�1

(D)

�

w

(2)

k

(x

1

)� �(x

2

)

�

= f

(2)

(x); (3.25)
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�

0

b

B

j;�1

(D)u

(2)

+

+

m

�

X

k=1

b

E

jk;�1

(D

1

)w

(2)

k

(x

1

) = g

(2)

j

(x

1

); (3.26)

1 � j � m

+

or m

+

+m

1

+ 1 � j � m

+

+m

1

+m

2

;

where as usual

b

A

!

(�) =

b

A(!j�

1

j; �

2

) = A(!h�

1

i; �

2

); ! = �1; (3.27)

(see (1.60), (1.73) as well as (1.7), (1.8)), and the notations

b

C

k;!

,

b

B

j;!

,

b

E

jk;!

have analogous meaning.

Note that the left-hand sides of systems (3.23), (3.24) and (3.25), (3.26)

de�ne operators of type (1.74) and for them the corresponding assertions

from Theorem 1.24 are valid.

Similarly to Theorem 1.29 we obtain the following result.

The unique solvability (in the corresponding function spa-

ces) of the system (3:18){(3:21) for any right-hand sides is equivalent to

that of the boundary value problems (3:23), (3:24) and (3:25), (3:26) for any

right-hand sides.

For an a-elliptic symbol A 2 (O

a;�

b;4

)

N�N

let the condition

(1:95) be ful�lled. Then there exists a boundary value problem (3:18){(3:21)

which is uniquely solvable for any right-hand sides (in the corresponding

function spaces). Moreover, equations (3:19) can be assumed to be absent

in it.

Proof. It follows from the above theorem that it su�ces to construct bound-

ary value problems of type (3.23), (3.24) and (3.25), (3.26) which are uniquely

solvable for any right-hand sides. This is not di�cult to perform taking m

�

su�ciently large and choosing m

1

;m

2

since

b

A

�1

(�) does not depend on

sgn �

1

(cf. [37, x16, point 2]). �

In the scalar case we can slightly weaken the restriction imposed on the

smoothness of the symbol A. All the results of this section are valid for the

symbols A 2 O

a;�

b;3

(seex1.3).

x

	

1

0

. Let X be a C

1

-smooth compact two-dimensional manifold with

a boundary Y embedded in C

1

-smooth compact closed two-dimensional

manifold M and let E;F be C

1

-smooth complex vector bundles over X

and I; G

1

over Y = @X . Consider also a real C

1

-smooth vector bundle G

2

over Y . Denote by G

3

= cG

2

its complexi�cation (see, e.g., [66, Ch.I, x4])

and by Re : G

3

! G

2

the corresponding projection.

Let E (F ) be the bundle complex conjugate to E (F ). Thus transition

matrices g

ij

corresponding to the bundle E (F ) are replaced by complex

conjugate matrices g

ij

in the case of E (F ) (see [66, Ch. I, x4]). We shall
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denote the antilinear morphism of complex conjugation E ! E (F ! F ) by

V (for all bundles). The same letter will denote the corresponding mapping

ofK-groups (see [8, x2.1]) and an antilinear operator of complex conjugation

acting on sections of the corresponding bundles.

Note that the bundle H admits an antilinear involution V : H ! H (i.e.

H

�

=

H) if and only if it is a complexi�cation of a real bundle (see [66, Ch. I,

x4, Proposition 2]). In particular, for the above-introduced bundle G

3

we

can assume that Re =

1

2

(I + V ).

Consider an operator

U =

0

@

�

+

A �

+

K

T

1

Q

1

T

2

Q

2

1

A

:

D(Ej




)

�

D(I)

!

D

0

(F j




)

�

D

0

(G

1

)

�

D

0

(G

3

)

; (3.28)

(
 = IntX = XnY ) belonging to the class

OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G

1

�G

3

)

(see De�nition 2.8). Assume T

0

1

and Q

0

1

to be operators of the same type

as T

1

and Q

1

, respectively, with the only di�erence that we have to replace

bundles E and I by their complex conjugates E and I .

Using the operators U; T

0

1

; Q

0

1

we construct the following operators

U

Re

=

0

@

�

+

A �

+

K

T

1

+ T

0

1

� V Q

1

+Q

0

1

� V

Re �T

2

Re �Q

2

1

A

:

D(Ej




)

�

D(I)

!

D

0

(F j




)

�

D

0

(G

1

)

�

D

0

(G

2

)

; (3.29)

U

�

=

0

B

B

B

B

@

�

+

A �

+

K 0 0

0 0 �

+

A

�

�

+

K

�

T

1

Q

1

T

0

1

Q

0

1

T

0

1�

Q

0

1�

T

1�

Q

1�

T

2

Q

2

T

2�

Q

2�

1

C

C

C

C

A

:

D(Ej




)

�

D(I)

�

D(Ej




)

�

D(I)

�!

D

0

(F j




)

�

D

0

(F j




)

�

D

0

(G

1

)

�

D

0

(G

1

)

�

D

0

(G

3

)

; (3.30)

(A

�

= VAV , etc.) with the same correspondence as between (3.1) and (3.2)

((3.7){(3.9) and (3.10){(3.14)).

Operator (3.30) is almost of the same type as operator (2.7), (2.48). The

di�erence is that the order of homogeneity of A

�

is equal to � rather than

to � (and similarly for K

�

, T

0

1�

, Q

0

1�

, T

1�

, Q

1�

, T

2�

, Q

2�

). But this however

is not of principal importance. Indeed, after reducing the investigation of
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U

�

to that of an operator on a half-space, the latter can be reduced to an

operator of type (1.72) as it has been noted in x3.2 (see Theorem 1.12 and

Remark 1.41). As it was noted in x2.5, we can also apply order reduction

operators directly to U

�

(see [45] as well as [21, x2.7]). Thus, the problem

on the Noetherity of the operator U

�

in the corresponding function spaces

can be solved by the methods from previous chapters.

From Lemma 3.1 we obtain the following result.

Operators U

Re

and U

�

(of type (3:29) and (3:30)) are simul-

taneously either Noetherian or not (in the corresponding function spaces),

and the following equality

Ind

R

U

Re

= Ind

C

U

�

: (3.31)

holds.

Remark. The above theorem allows us to reduce the problem on the

existence of the Noetherian boundary value problem of type (3.29) for a

given elliptic pseudodi�erential operator A to the problem on the exis-

tence of the Noetherian boundary value problem of type (3.30) (in the

corresponding Besov and Bessel-potential spaces) for B =

�

A 0

0 A

�

�

.

Combining the methods of the proof of Theorems 2.22, 2.23 and 3.3 (and

taking into account the special type of the boundary value problem (3.30))

enables us to obtain for B the analogues of Theorems 2.22 and 2.23. In

our case S

n�2

= f�1g, pr

�

G for any bundle G over Y is in fact two

copies of G. From the proof of Theorem 3.3 it follows that the condition

ind

S

�

Y

�

Y

(B) 2 pr

�

K(Y ) is equivalent to

ind

Y

�

Y

(B)(!) = V

�

ind

Y

�

Y

(B)(!)

�

; ! = �1: (3.32)

2

0

. Let E;F be C

1

-smooth complex vector bundles over a C

1

-smooth

compact two-dimensional manifold X and I, G

1

, G

2

, G

3

over Y = @X .

The boundary Y = @X is a C

1

-smooth compact closed (i.e. @Y =

?) one-dimensional manifold (generally speaking, disconnected). We can

choose a positive direction on Y . As boundary local coordinate di�eomor-

phisms of the manifold X we shall consider only those mappings into the

upper half-plane which transfer the positive direction chosen on Y in a posi-

tive direction of the axis of abscissae. Clearly, these di�eomorphisms induce

an atlas on Y .

Denote by

e

P

�

a pseudodi�erential operator acting on the manifold Y

whose principal homogeneous symbol in local coordinates is equal to

1�sgn �

1

2

(cf. [108, v. I, Ch. I, Theorem 5.3]). Introduce the notation G = G

1

�G

2

�

G

3

and take an operator U 2 OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G) for which
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the conditions of Theorem 2.9 are assumed to be ful�lled. Then the linear

operator

U

c

= (I � I �

e

P

�

�

e

P

+

)U : H

c

1

(s; p) = H

1

(s; p) =

=

e

H

s

p

(E)�B

s�Re�+Re 


1

+1�1=p

p;p

(I)! H

c

2

(s; p) =

= H

s�Re�

p

(F )�B

s�Re 


2

�1=p

p;p

(G

1

)�

e

P

�

B

s�Re 


2

�1=p

p;p

(G

2

)�

�

e

P

+

B

s�Re 


2

�1=p

p;p

(G

3

) � H

2

(s; p) (3.33)

�

B

c

1

(s; p; q) = B

1

(s; p; q) =

e

B

s

p;q

(E)�B

s�Re�+Re 


1

+1�1=p

p;q

(I)!

! B

c

2

(s; p; q) = B

s�Re�

p;q

(F )�B

s�Re 


2

�1=p

p;q

(G

1

)�

�

e

P

�

B

s�Re 


2

�1=p

p;q

(G

2

)�

e

P

+

B

s�Re 


2

�1=p

p;q

(G

3

) � B

2

(s; p; q)

�

is bounded.

The principal boundary symbol

�

Y

(U) :

�

pr

�

E

0


D(R

+

)

�

�pr

�

I!

�

pr

�

F

0


D

0

(R

+

)

�

�pr

�

G

1

�pr

�

G

2

�pr

�

G

3

of the operator U (see (2.14)) de�nes two morphisms

�

Y;+1

(U) = (E

0


D(R

+

)

�

� I !

�

F

0


D

0

(R

+

)

�

�G

1

�G

2

;

�

Y;�1

(U) = (E

0


D(R

+

)

�

� I !

�

F

0


D

0

(R

+

)

�

�G

1

�G

3

(3.34)

which correspond to the values ! = �1. (Recall that in the case

under consideration S

n�2

= f�1g and for any bundle H over Y the bundle

pr

�

H represents, in fact, two copies of H).

We shall say that the Shapiro{Lopatinski�� condition is ful-

�lled for operator (3.33) if

�

Y;+1

(U)=(E

0




e

H

s

p

(R

1

+

)

�

� I!

�

F

0


H

s�Re�

p

(R

1

+

)

�

�G

1

�G

2

;

�

Y;�1

(U)=(E

0




e

H

s

p

(R

1

+

)

�

� I!

�

F

0


H

s�Re�

p

(R

1

+

)

�

�G

1

�G

3

(3.35)

are isomorphisms.

Note that we can investigate �

Y;�1

(U) by the methods of Chapter I.

Operators

e

P

�

may not be normally solvable, i.e. their images may be

unclosed. In this case the normed spaces

e

P

�

B

s�Re 


2

�1=p

p;p

(G

2

);

e

P

+

B

s�Re 


2

�1=p

p;p

(G

3

)

�

e

P

�

B

s�Re 


2

�1=p

p;q

(G

2

);

e

P

+

B

s�Re 


2

�1=p

p;q

(G

3

)

�

are incomplete and it is more convenient for us to consider U

c

as an operator

acting fromH

c

1

(s; p) = H

1

(s; p) toH

2

(s; p) and from B

c

1

(s; p; q) = B

1

(s; p; q)

to B

2

(s; p; q) (see (2.12) where we take G = G

1

� G

2

� G

3

). In the case

when operators

e

P

�

are normally solvable, the space H

c

2

(s; p) (B

c

2

(s; p; q)) is

a Banach one, and there is no need for (3.33) to be changed.
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Analogously to Theorem 2.15 we can prove the following statement (see

also Theorems 3.4 and 1.24).

Let U 2 OP

�

� 


1

; r

1




2

; r

2

�

�

(E;F; I; G) be an elliptic

operator, r

1

< Re� � s � 1 + 1=p, r

2

< s � 1=p, 1 < p < 1, 1 � q � 1,

and the Shapiro{Lopatinski�� condition be ful�lled for U

c

. Then there exists

an operator

R : H

2

(s; p)! H

c

1

(s; p)

�

B

2

(s; p; q)! B

c

1

(s; p; q)

�

such that the operators

RU

c

� I : H

c

1

(s; p)! H

c

1

(s; p)

�

B

c

1

(s; p; q)! B

c

1

(s; p; q)

�

;

U

c

R�(I � I �

e

P

�

�

e

P

+

) : H

2

(s; p)!H

2

(s; p)

�

B

2

(s; p; q)!B

2

(s; p; q)

�

are compact. If moreover the operators

e

P

�

are normally solvable, then the

operator (3:33) is Noetherian.

Note one circumstance which is important for applications. In the next

subsection we shall show that if X is embedded in R

2

, then under certain

conditions we may take as operators

e

P

�

the analytic projectors P

�

(see

(3.36), (3.37)). The equality S

2

Y

= I is ful�lled for the operator S

Y

(see

[40, 7.3] or [70, x32]), therefore the operators P

�

are projectors, i.e. they

satisfy the condition P

2

�

= P

�

. On the other hand, projectors are normally

solvable operators (see, e.g., [43, Ch. II, x4] or [79, 1.2]), hence in the case

under consideration the use can be made of the last assertion of Theorem

3.9. In x3.5 we shall do this without additional comments.

From the proof of Theorem 2.23, using Theorem 3.9, we can easily obtain

that for any elliptic operator A 2 OP (

b

O

1

�

)(E

0

; F

0

) (where E

0

and F

0

are

extensions of bundles E and F from X toM) satisfying the condition (2.39),

there exists a boundary value problem of type (3.33) for which the Shapiro{

Lopatisnki�� condition is ful�lled.

We can easily check that the analogues of Theorems 2.19 are valid for

boundary value problems of type (3.29) and (3.33). These problems can be

considered in the function spaces of piecewise-constant order of smoothness

analogously to x25, [37]. Note �nally that by the above methods we can

consider boundary value problems containing complex conjugation and the

operators

e

P

�

simultaneously.

3

0

. Let 
 be a bounded open �nitely connected domain in C with a

boundary Y = @
, X = 
 [ Y . On the components of the curve Y we

choose the orientation such that when moving in positive direction the do-

main 
 remains on the left. Our aim is to show that when studying the

Noetherity of boundary value problems for elliptic 	DOs we can under cer-

tain restrictions on the smoothness of Y consider instead of operators

e

P

�



121

the analytic projectors

P

�

=

1

2

(I � S

Y

); (3.36)

where

(S

Y

')(t) =

1

�i

Z

Y

'(�)

� � t

d�; t 2 Y (3.37)

(cf. (1.136), (3.22)).

Introduce the following notation

l[s] =

8

>

>

>

<

>

>

>

:

s if s 2 N,

maxf1; s+ "g if s > 0, s 62 N,

jsj+ 1 if s 2 ZnN,

jsj+ 1 + " if s < 0, s 62 Z,

(3.38)

l(s) =

(

maxf1; s+ "g if s > 0,

jsj+ 1 + " if s � 0,

(3.39)

where " > 0 is an arbitrarily small number.

It is well known that di�eomorphisms of the class C

l[s]

(C

l(s)

) preserve

spaces H

s

p

(B

s

p;q

), s 2 R, 1 < p <1, 1 � q � 1 (see, e.g., [52, Theorem 3],

and [12, Lemma 21.2]). Indeed, for the spaces H

s

p

= W

s

p

, s 2 N, this can

be proved by direct calculation of derivatives (see [12, Lemma 21.9]) and

for H

0

p

= L

p

(see (1.11)) this is obvious. For the spaces H

s

p

, s 2]0; 1[, the

statement can be obtained by interpolation (see [109, 2.4.2] or Theorem

1.2-c)). Using for the space H

s

p

, s = k + �, k 2 N, � 2]0; 1[, the equivalent

norm

kf jH

s

p

k

�

=

X

j�j�k

k@

�

f jH

�

p

k (3.40)

(see [110, 2.3.8]), by theorems on pointwise multipliers (see [110, Corollary

2.8.2]) and the already proven facts we can see that for the spaces H

s

p

,

s > 0, the assertion is valid. For the spaces H

s

p

, s < 0, the assertion follows

from the already proven, from the duality theorem (see [109, 2.6.1] or The-

orem 1.1) and theorems on pointwise multipliers. In the case of B

s

p;q

spaces

it su�ces to apply interpolation (see [109, 2.4.2] or Theorem 1.2-e)). (Note

that more precise results are valid for the Nikol'ski�� spaces B

s

p;1

, s > 0.

Due to [12, Lemma 21.2], the di�eomorphism of the class C

l

preserves these

spaces if l � maxf1; sg for noninteger s and l > s for integer s).

Thus to de�ne correctly the spaces H

s

p

(Y ) and B

s

p;q

(Y ), it su�ces to

assume that Y belongs to the class C

l

, where l � l[s] in the case of Bessel-

potential spaces and l � l(s) in the case of Besov spaces. Below in consid-

ering function spaces on Y we shall always assume these conditions to be

ful�lled.
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Let the curve Y belong to the class C

1

. Then the operator S

Y

(see (3.37))

is bounded in L

p

, 1 < p <1 (see [22], [25], [27], [68], [69], [36]). Using the

equality for the derivatives

(S

Y

')

(m)

= S

Y

'

(m)

; m 2 N (3.41)

(see [40, 4.4]), we can easily get that the operator S

Y

is bounded in the space

W

1

p

(Y ) = H

1

p

(Y ). By means of interpolation (see [109, 2.4.2] or Theorem

1.2-c)) we see that S

Y

is bounded in H

s

p

(Y ), 0 � s � 1. Using equivalent

norm (3.40) for the spaces H

s

p

(Y ), s = k + �, k 2 N, � 2 [0; 1], due to

equality (3.41) and the already proven we obtain that the operator S

Y

is

bounded in H

s

p

(Y ) for s � 0. Using now the transposition formula

Z

Y

'S

Y

 = �

Z

Y

 S

Y

'

(see, e.g., [40, 7.1]) and the duality theorem (see [109, 2.6.1] or Theorem

1.1), it is not di�cult to prove that S

Y

is bounded in H

s

p

(Y ) for s < 0. The

boundedness of S

Y

in B

s

p;q

(Y ) follows from the already proven and from the

interpolation theorem (see [109, 2.4.2] or Theorem 1.2-e)).

Taking into account that l[s]; l(s) � 1, 8s 2 R, we obtain from the above-

said that the operator S

Y

is bounded in the space H

s

p

(Y ) (B

s

p;q

(Y )), s 2 R,

1 < p <1, 1 � q � 1, if the curve Y belongs to the class C

l[s]

(C

l(s)

).

Let W � X be a coordinate neighbourhood (generally speaking, discon-

nected), W \ Y 6= ?. It is di�eomorphic to an open in R

2

+

set V . Denote

by z : V ! W the corresponding di�eomorphism of the class C

l[s]

(C

l(s)

).

Take arbitrary functions ';  2 D(W ) and consider the operator 'S

Y

 I .

�

('S

Y

 I)f)(z(t)

�

=

'(z(t))

�i

Z

Y

 (z)f(z)

z � z(t)

dz =

=

'(z(t))

�i

Z

R

 (z(�))f(z(�))

z(�)� z(t)

dz(�) =

=

'(z(t))

�i

Z

R

z

0

(�)

z(�)� z(t)

 (z(�))f(z(�)) dz =

=

��

(' � z)S

R

( � z)I

�

(f � z)

�

(t) +

'(z(t))

�i

Z

R

�

z

0

(�)

z(�)� z(t)

�

�

1

� � t

�

 (z(�))f(z(�)) dz; t 2 R \ V: (3.42)

The last operator in (3.42) is compact in L

p

(R), 1 < p < 1, since

l[s]; l(s) � 1 (see [46]). Using the interpolation theorems (see [109, 2.4.2]

or Theorem 1.2) and the boundedness of the operators S

Y

and S

R

in the

corresponding function spaces, by the well-known method (see [57, Ch.I,

Theorem 4.1]), it is not di�cult to prove that this operator is compact in

the spaces H

s

p

(R), s 2 RnZ, 1 < p < 1, and B

s

p;q

(R), s 2 R, 1 < p < 1,

1 � q � 1. Indeed, in the spaces H

s

p

(R

n

), B

s

p;q

(R

n

), s 2 R, 1 < p < 1,
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1 � q < 1, there exists a common Schauder basis (see [28, Ch. IV, x3]).

Such a basis is composed, for example, by wavelets (see [60], [99], [39],

[11]). To prove that the operator under consideration is compact in H

s

p

(R),

s 2 Znf0g, we shall have to raise the smoothness of the curve Y and assume

it to belong to the class C

l[s]+"

0

= C

l(s)

(see (3.38), (3.39)). In this case

there takes place the previous proof based on the interpolation.

Thus if the curve Y belongs to the class C

l(s)

, then the operator S

Y

in

local coordinates di�ers from S

R

by an operator compact in H

s

p

and B

s

p;q

,

s 2 R, 1 < p < 1, 1 � q � 1, and what is more, in the case of the space

H

0

p

= L

p

it su�ces to require of the curve Y to be C

1

-smooth. Note that in

proving this fact, the use is made of the boundedness of the multiplication

operator by ' � z ( � z) in the corresponding function space (see [110,

Corollary 2.8.2]).

4

0

. We have considered above the boundary value problems for elliptic

	DOs not possessing, in general, the transmission property. Using x1.6, we

can transfer the results of this chapter to the boundary value problems for

	DOs with the transmission property. We shall not formulate the corre-

sponding theorems but in the next section we consider instead the examples

of the boundary value problems for elliptic di�erential equations.

x

Let 
 be a bounded open �nitely connected domain in C with a boundary

Y = @
 of the class C

1

, X = 
[Y . Components of the curve Y are oriented

so that in moving in positive direction the domain 
 remains on the left.

(Components of Y are simple closed curves).

We shall use the following standard notation:

@

@z

=

1

2

�

@

@x

+i

@

@y

�

;

@

@z

=

1

2

�

@

@x

�i

@

@y

�

; z=z+iy2C ; P

�

=

1

2

(I � S

Y

)

(see (3.36), (3.37)).

1

0

. Consider the system of the theory of generalized analytic vectors (see

[19]):

@u

@z

+Q(z)

@u

@z

+A(z)u+B(z)u = f(z); z 2 
; (3.43)

where Q is a triangular N �N -matrix whose diagonal elements satisfy the

condition

jq

jj

(z)j � q

0

< 1; j = 1; : : : ; N; 8z 2 X = 
 [ Y; (3.44)

which ensures ellipticity; f 2 H

s�1

p

(X; C

N

) (B

s�1

p;q

(X; C

N

)) is a given vector

function and u 2 H

s

p

(X; C

N

) (B

s

p;q

(X; C

N

)) is an unknown vector function,

1 < p <1, 1 � q � 1.
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For the system (3.43) let us pose two boundary value problems:

Re

�

m

X

k=0

A

k

(t)

@

m

u

@z

k

@z

m�k

�

�

�

Y

+ P

m�1

u

�

�

Y

�

= '(t); t 2 Y; (3.45)

or

P

+

�

m

X

k=0

A

k

(t)

@

m

u

@z

k

@z

m�k

�

�

�

Y

+ P

m�1

u

�

�

Y

�

=  (t); t 2 Y; (3.46)

where P

m�1

is a di�erential operator of order not higher than m� 1,

' 2 B

s�m�1=p

p;p

(Y;R

N

)

�

B

s�m�1=p

p;q

(Y;R

N

)

�

;

 2 P

+

B

s�m�1=p

p;p

(Y; C

N

)

�

P

+

B

s�m�1=p

p;q

(Y; C

N

)

�

are given vector functions.

Remark. The spaces P

+

B

�

p;q

(Y; C

N

) are the analogues of Smirnov

classes E

p

(
) (see, e.g., [78]). Indeed, if the curve Y belongs to the class

C

1

, then boundary values of the functions from E

p

(
), 1 < p < 1, form

the space P

+

L

p

(Y ) (see [47], [36]).

For the boundary conditions (3.45), (3.46) to have sense, we assume

m < s� 1=p. In particular s > 1=p.

The conditions which the coe�cients Q;A;B;A

k

and the curve Y should

satisfy will be formulated below. We shall start with the curve Y .

Smoothness of the curve Y must ensure the possibility to straighten the

boundary. From the arguments given in point 3

0

, x3.4, it follows that the

coordinate di�eomorphism of the class C

l

preserves the spaces taking part

in formulation of boundary value problems (3.43), (3.45) and (3.43), (3.46)

if l � l[s] and l � l(s) in the case of the spaces H

s

p

(X; C

N

) and B

s

p;q

(X; C

N

),

respectively. To work with the operator P

+

it su�ces for the curve Y to

belong to the class C

l

, l � l[s] (l � l(s)). Indeed, according to (3.38), (3.39),

l(s�m� 1=p) � l(s), l(s�m� 1=p) � l[s] (see point 3

0

, x3.4).

Thus, we shall assume the curve Y to belong to the class C

l

, where

l � l[s] in the case of Bessel-potential spaces and l � l(s) in the case of

Besov spaces.

In investigating the Noetherity of boundary value problems the restric-

tions imposed on the coe�cients Q;A;B;A

k

and those of the operator P

m�1

must ensure the possibility to \freeze" the coe�cients in leading terms and

to discard lowest terms (i.e. lowest terms must generate compact operators

in the corresponding function spaces). Many such possibilities are available

(see [63, 2.2.9, 2.3.1, 2.3.3], [18, Ch. I, x6], [110, Remark 4.3.2-1] and x3.6

below). We shall restrict ourselves to the cases which allow us to investi-

gate boundary value problems (3.43), (3.45) and (3.43), (3.46) under the

restrictions on the coe�cients as in the classical monograph [113] as well as

in the works [18], [1], [6], [50].
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It follows from [63, Theorem 2.2.9] and [110, Remark 4.3.2-1] that if

a 2 H

s�1

p

(X); 1 < p <1; s � 1; s > 2=p; (3.47)

then multiplication by a is a compact operator from H

s

p

(X) to H

s�1

p

(X).

Analogously, using the results from [18, Ch. I, x6], we can prove that if

either

a 2 B

s�1

p;q

(X); 1 < p <1; s > 1; s > 2=p; 1 � q �1; (3.48)

or

a 2 B

s�1

p;q

(X); 1 < p < 2; s = 2=p > 1; q = 1; (3.49)

then multiplication by a is a compact operator from B

s

p;q

(X) to B

s�1

p;q

(X).

(In the case (3.49) we have �rst to approximate a by smooth functions and

then to apply [110, Remark 4.3.2-1]).

As above we can prove that if coe�cients of the operator P

m�1

belong

to the space B

s�m�1=p

p;p

(Y; C

N�N

) (B

s�m�1=p

p;q

(Y; C

N�N

)) and m < s� 1=p,

then in investigating the Noetherity of boundary value problems (3.43),

(3.45) and (3.43), (3.46) this operator can be neglected.

Let one of the conditions

A

k

2 B

s�m�1=p

p;q

(Y; C

N�N

);

1 < p <1; 1 � q �1; s�m� 1=p > 1=p;

(3.50)

A

k

2 B

s�m�1=p

p;q

(Y; C

N�N

);

1 < p <1; q = 1; s�m� 1=p = 1=p

(3.51)

be ful�lled. Then multiplication by A

k

is a bounded operator in

B

s�m�1=p

p;q

(Y; C

N

) (see [18, Ch. I, x6]). From the embedding theorems

(see, e.g., [109, 4.6.1]) it follows that A

k

2 C(Y; C

N�N

). Therefore we can

\freeze" the coe�cients. If q <1, then to prove this it su�ces to approx-

imate A

k

by a smooth matrix function (see [109, 2.3.2]) and then to use

Lemma 2.14. In general case the possibility of \freezing" the coe�cients

follows from the results of x3.6.

In the case of Bessel-potential spaces we shall assume that either

Q2H

s�1

p

1

(X; C

N�N

); 1<p�p

1

<1; p

1

>2=(s� 1); s>1; (3.52)

or

Q 2 C(X; C

N�N

); if s = 1; (3.53)

while in the case of Besov spaces either

Q 2 B

s�1

p

1

;q

(X; C

N�N

); 1 < p � p

1

<1;

p

1

> 2=(s� 1); 1 � q � 1; s > 1;

(3.54)
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or

Q 2 B

s�1

p

1

;1

(X; C

N�N

); 1 < p < p

1

<1;

s = 1 + 2=p

1

; 1 � q �

2p

2� p(s� 1)

;

(3.55)

or

Q 2 B

s�1

p;q

(X; C

N�N

); 1 < p <1; q = 1; s = 1 + 2=p: (3.56)

As above we can prove that if one of the conditions (3.52), (3.53) or, respec-

tively, one of the conditions (3.54){(3.56) is ful�lled, then we can \freeze"

the coe�cients.

Suppose u to be a solution of equation (3.43). Di�erentiating (3.43)

(m�1) times with respect to z and then di�erentiatingm obtained equalities

(including (3.43)) with respect to z as many times as required enable us to

express all the derivatives of type

@

m

u

@z

k

@z

m�k

, k = 1; : : : ;m� 1, by

@

m

u

@z

m

and

by derivatives of the lowest order. Substitute the obtained expressions in

(3.45), (3.46) to get

Re

�

C(t)

@

m

u

@z

m

�

�

�

Y

+

e

P

m�1

u

�

�

Y

�

= e'(t); t 2 Y; (3.57)

P

+

�

C(t)

@

m

u

@z

m

�

�

�

Y

+

e

P

m�1

u

�

�

Y

�

=

e

 (t); t 2 Y; (3.58)

where

C =

m

X

k=0

(�1)

m�k

A

k

Q

m�k

(3.59)

and

e

P

m�1

, e',

e

 possess the same properties as P

m�1

, ',  in (3.45), (3.46).

(We suppose that one of conditions (3.52), (3.53) or (3.54){(3.56) as well as

corresponding condition (3.50), (3.51) are ful�lled and the elements of the

matrices A and B satisfy (3.47) or (3.48), (3.49)).

Thus the boundary value problems (3.43), (3.45) and (3.43), (3.46) are

equivalent to the problems (3.43), (3.57) and (3.43), (3.58), respectively.

It is not di�cult to investigate Noetherity of boundary value problems

(3.43), (3.57) and (3.43), (3.58). Indeed, the symbol of the operator @=@z+

Q(z) @=@z in local coordinates is a triangular matrix which, together with its

inverse, extends analytically with respect to �

2

into upper or lower half-plane

depending on sgn �

1

. Therefore there is no need to look for factorization.

Using the above obtained results (see xx1.6, 2.3, 3.4), we can prove (see also

[37, x11]) that for boundary value problems (3.43), (3.57) and (3.43), (3.58)

to be Noetherian, it is su�cient that the condition

detC(t) 6= 0; 8t 2 Y; (3.60)

be full�lled. Moreover, we do not use the equality (3.59). We need it to

return to boundary value problems (3.43), (3.45) and (3.43), (3.46).
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Our task now is to calculate the indices of boundary value problems

(3.43), (3.57) and (3.43), (3.58). Neglecting in (3.43) the lowest terms we

perform homotopy of the matrix Q(z) to zero one: Q

�

(z) = (1 � �)Q(z),

� 2 [0; 1], not changing the matrix C(t). The Noetherity and the index of the

corresponding boundary value problems here will be invariant. Therefore

when calculating the index of boundary value problems (3.43), (3.57) and

(3.43), (3.58), we may assume Q � 0, A � 0, B � 0.

Let � : R

2

! R

2

be a di�eomorphism of the class C

l[s]

(C

l(s)

) which is

close to the identical one in C

l[s]

-norm (C

l(s)

-norm) and maps 
 onto the

domain 


1

with a C

1

-smooth boundary Y

1

. It is not di�cult to prove the

existence of such a di�eomorphism by means of \collar" theorem (see, e.g.,

[67, Theorem 5.9]) and of smoothing theorems (see the proof of [67, Theorem

4.8]). Using �, we can reduce boundary value problems under consideration

to those of type (3.43), (3.45) and (3.43), (3.46) in the domain 


1

(see [110,

Corollary 2.8.2] as well as point 3

0

, x3.4). In their turn they are reduced to

the boundary value problems of type (3.43), (3.57) and (3.43), (3.58), the

determinant indices on the components of Y

1

for the corresponding matrix

C

1

(see (3.59)) being equal to those of the matrix C on the components of

Y (if � is close enough to the identical di�eomorphism). Neglect the lowest

terms and perform the homotopy as above to arrive at the boundary value

problems

@u

@z

= f

1

(z); z 2 


1

; (3.61)

Re

�

C

1

(t)

@

m

u

@z

m

�

�

�

Y

1

�

= '

1

(t); t 2 Y

1

; (3.62)

P

+

�

C

1

(t)

@

m

u

@z

m

�

�

�

Y

1

�

=  

1

(t); t 2 Y

1

; (3.63)

where f

1

; '

1

;  

1

; C

1

have the same properties as in (3.43), (3.57), (3.58),

(3.60).

Let the curve Y (Y

1

) consist of simple closed contours Y

(0)

; Y

(1)

; : : : ; Y

(n)

(Y

(0)

1

; Y

(1)

1

; : : : ; Y

(n)

1

) and moreover, let the contours Y

(1)

; : : : ; Y

(n)

(Y

(1)

1

; : : : ;

Y

(n)

1

) be interior to Y

(0)

(Y

(0)

1

). Introduce the notation (see (3.59))

{

j

=

1

2�

�

arg detC

1

(t)

�

Y

(j)

1

=

=

1

2�

h

arg det

�

m

X

k=0

(�1)

m�k

A

k

(t)Q

m�k

(t)

�i

Y

(j)

; (3.64)

{ =

n

X

j=0

{

j

: (3.65)

In the class of non-degenerate matrices we perform homotopy of the

matrix C

1

(t) to D(t) = diag[d

e

(t)]

N

e=1

, where d

e

= 1 for e > 1, d

1

(t) =
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(t � t

0

)

{

(t � t

1

)

�{

1

� � � (t � t

n

)

�{

n

, the points t

j

, j � 1, being interior to

Y

(j)

1

, t

0

2 


1

(see [70, Appendix VI]).

Thus we have obtained the boundary conditions

Re

�

D(t)

@

m

u

@z

m

�

�

�

Y

1

�

= '

1

(t); t 2 Y

1

; (3.66)

P

+

�

D(t)

@

m

u

@z

m

�

�

�

Y

1

�

=  

1

(t); t 2 Y

1

: (3.67)

Since D and Y

1

are C

1

-smooth, the index of the boundary value problem

(3.61), (3.66), ((3.61), (3.67)) is the same in all the above considered spaces

(see Lemma 2.17, the proof of Theorem 2.19 as well as [82, Theorems 3.1.1.1-

5, 3.1.1.4-3]). Take, for example, the spaces H

s

2

(X

1

; C

N

) = B

s

2;2

(X

1

; C

N

),

s = m+ 2 (X

1

= 


1

[ Y

1

) (see [109, 2.3.2]).

The equation (3.61) is solvable for any right-hand side f

1

2 H

s�1

2

(X

1

; C

N

).

Indeed, let us take an extension F

1

2 H

s�1

2

(R

2

; C

N

) of the function f

1

onto

R

2

(see [109, 4.2.2, 4.2.3]). We may assume F

1

to have a compact support.

Consider the function

u

0

(z) = TF

1

(z) = �

1

�

ZZ

R

2

F

1

(�) d� d�

� � z

; � = � + i�:

From the boundedness of Calderon{Zygmund{Mikhlin singular integral op-

erators in Sobolev spaces (see, e.g., [64, Ch. XI, Theorem 9.1]) and the

properties of weakly singular operators (see, e.g., [56, Theorem 8.1]) it fol-

lows that the function u = u

0

j




1

belongs to H

s

2

(X

1

; C

N

) (see also [64, Ch.

X, Theorem 7.1 and Ch. XI, Theorem 11.1]). Moreover,

@u

@z

= f

1

(see [113,

Ch. I, (5.8)]).

Thus, it su�ces to calculate the index of the following problem: �nd a

holomorphic vector of the class H

s

2

(X

1

; C

N

) satisfying boundary condition

(3.66) (respectively (3.67)). This problem is divided into N boundary value

problems for analytic functions and the unknown index is equal to the sum

of indices of scalar problems.

Consider boundary value problems for the analytic function v 2 H

s

2

(X

1

):

Re

�

d

1

(t)

@

m

v

@z

m

�

�

�

Y

1

�

= �

1

(t); t 2 Y

1

; (3.68)

or

P

+

�

d

1

(t)

@

m

v

@z

m

�

�

�

Y

1

�

= �

1

(t); t 2 Y

1

; (3.69)

where d

1

(t) = (t � t

0

)

{

(t � t

1

)

�{

1

� � � (t � t

n

)

�{

n

, �

1

2 H

s�m�1=2

2

(Y

1

;R),

�

1

2 P

+

H

s�m�1=2

2

(Y

1

).

Introduce the analytic function w =

@

m

v

@z

m

2 H

s�m

2

(X

1

) for which we have

boundary value problems

Re

�

d

1

(t)w(t)

�

= �

1

(t); t 2 Y

1

; (3.70)



129

P

+

�

d

1

(t)w(t)

�

= �

1

(t); t 2 Y

1

: (3.71)

The index of the �rst problem with respect to the �eld R is equal to �2{�

n + 1, while the index of the second problem with respect to the �eld C is

equal to �{ (see [40, xx16, 37], [70, xx34{37] and the proof of [18, Ch. I,

x8, Lemma 1.2]).

It is easily seen that a function holomorphic in 


1

and continuous in

X

1

= 


1

[ Y

1

has its primitive if and only if its integrals along Y

(j)

1

, j =

1; : : : ; n, are equal to zero (see, e.g., [59, Ch. I, x4, point 13]). Moreover,

the primitive is determined to within a constant. Taking into account this

remark and the connection between w and v, we obtain that the R-index of

the boundary value problem (3.68) is equal to �2{ � (2m+ 1)(n� 1) and

the C -index of the problem (3.69) is equal to �{ �m(n� 1).

The remaining scalar boundary value problems are investigated in a more

easy way for, instead of d

1

there we have d

e

= 1, e > 1.

Thus, the R-index of the boundary value problem (3.61), (3.66) is equal

to �2{� (2m+1)N(n�1) and the C -index of the boundary value problem

(3.61), (3.67) is equal to �{ �mN(n� 1).

Summing up all the above-said, we obtain the following assertion. (Simi-

lar results concerning the problem (3.43), (3.45) are contained in the disser-

tation [50]. Boundary conditions more general than (3.46) for generalized

analytic vectors have been considered in [62, Ch. III, x5] and in the works

mentioned in the references therein. See also [41] and references therein).

Let 
 be a bounded open (n + 1)-connected domain in C

with a boundary Y = @
 belonging to the class C

l

, where l � l[s] (l � l(s)),

X = 
 [ Y ; the triangular matrix Q satisfy condition (3:44) as well as one

of conditions (3:52), (3:53) ((3:54){(3:56)); elements of the matrices A and

B satisfy (3:47) (one of conditions (3:48), (3:49)); A

k

satis�es (3:50) with

q = p (one of conditions (3:50), (3:51)); coe�cients of the operator P

m�1

belong to B

s�m�1=p

p;p

(Y; C

N�N

) (B

s�m�1=p

p;q

(Y; C

N�N

). If the condition

det

�

m

X

k=0

(�1)

m�k

A

k

(t)Q

m�k

(t)

�

6= 0; 8t 2 Y; (3.72)

is ful�lled, then the linear with respect to the �eld R operator de�ned by

boundary value problem (3:43), (3:45) is Noetherian from H

s

p

(X; C

N

)

(B

s

p;q

(X; C

N

)) to

H

s�1

p

(X; C

N

)�B

s�m�1=p

p;p

(Y;R

N

)

�

B

s�1

p;q

(X; C

N

)�B

s�m�1=p

p;q

(Y;R

N

)

�

and the R-linear operator de�ned by boundary value problem (3:43), (3:46)

is Noetherian from H

s

p

(X; C

N

) (B

s

p;q

(X; C

N

)) to

H

s�1

p

(X; C

N

)� P

+

B

s�m�1=p

p;p

(Y; C

N

)

�

B

s�1

p;q

(X; C

N

)� P

+

B

s�m�1=p

p;q

(Y; C

N

)

�

:



130

The index of the �rst operator with respect to the �eld R is equal to �2{�

(2m + 1)N(n � 1), while the R-index of the second operator is equal to

�2{ � 2mN(n� 1), where

{ =

1

2�

h

arg det

�

m

X

k=0

(�1)

m�k

A

k

(t)Q

m�k

(t)

�i

Y

: (3.73)

Recall that the numbers l[s] and l(s) in Theorem 3.11 are de�ned by

formulas (3.38) and (3.39), respectively.

2

0

. In the domain 
 consider the equation

@

m+n

z

@z

m

@z

n

= f(z); m; n 2 Z

+

; m � n: (3.74)

In case n = m it turns into a polyharmonic equation

�

m

u = f(z)

for which there exist Noetherian boundary value problems of type

m

r

X

k=0

a

rk

(t)

@

m

r

u

@�

k

@s

m

r

�k

�

�

�

Y

= '

r

(t); t 2 Y; r = 1; : : : ;m; (3.75)

where @=@� is the derivative with respect to the interior normal and @=@s

is the derivative with respect to the tangent directed positively. If how-

ever n 6= m, then for the operator in the left-hand side of (3.74) we have

{(�1) 6= {(1) in any local coordinate system. Hence the Noetherian bound-

ary value problem of type B

r

u

�

�

Y

= '

r

, r = 1; : : : ; N , where B

r

are C -linear

di�erential operators does not exist for it (see x3.1 as well as [82, Theorem

3.1.1.1-7]). In particular, this is true for Bitsadze equation (see [15], [16,

Ch. IV, x9], [17, Ch. II, x1, point 1

0

])

@

2

u

@z

2

= f(z). (Note, by the way,

that solutions of the homogeneous equation (3.74) for m = 0 are called

polyanalytic functions. The survey [10] is devoted to the theory of such

functions).

Thus we add to (3.75) the following boundary conditions:

Re

�

m

r

X

k=0

a

rk

(t)

@

m

r

u

@�

k

@s

m

r

�k

�

�

�

Y

�

='

r

(t); t2Y; r=m+1; : : : ; n; (3.76)

or

P

+

�

m

r

X

k=0

a

rk

(t)

@

m

r

u

@�

k

@s

m

r

�k

�

�

�

Y

�

= 

r

(t); t2Y; r=m+1; : : : ; n; (3.77)

and assume that

f 2H

s�m�n

p

(X)

�

B

s�m�n

p;q

(X)

�

;

u2H

s

p

(X)

�

B

s

p;q

(X)

�

;
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'

r

2B

s�m

r

�1=p

p;p

(Y )

�

B

s�m

r

�1=p

p;q

(Y )

�

for r = 1; : : : ;m;

'

r

2B

s�m

r

�1=p

p;p

(Y;R)

�

B

s�m

r

�1=p

p;q

(Y;R)

�

for r=m+1; : : : ; n;

 

r

2P

+

B

s�m

r

�1=p

p;p

(Y )

�

P

+

B

s�m

r

�1=p

p;q

(Y )

�

for r=m+1; : : : ; n;

a

rk

2B

s�m

r

�1=p

p;q

(Y ); s>m

r

+2=p; 1<p<1; 1�q�1; (3.78)

or

a

rk

2 B

s�m

r

�1=p

p;q

(Y ); s � m

r

+ 2=p; 1 < p <1; q = 1: (3.79)

Remark. The lowest terms in equation (3.74) and in boundary con-

ditions (3.75){(3.77) are absent. Under appropriate restrictions these terms

generate compact operators which can be neglected as in point 1

0

(this ex-

actly has been done). If however we consider boundary value problems with

the loss of smoothness, then the corresponding operators are unbounded,

and the lowest terms cease to be subordinate and may essentially in
uence

the character of solvability of the boundary value problems (see, e.g., [88],

[16, Ch. IV, x10]).

Assume the boundary Y = @
 to belong to the class C

l

, where l �

maxfl[s]; l[s � m � n]g in the case of Bessel-potential spaces and l �

maxfl(s), l(s�m � n)g in the case of Besov spaces. At every point t 2 Y

let us introduce the local coordinate system with the abscissae axis directed

positively along the tangent and with the ordinate axis directed along the

inner normal. The operator from (3.74) in this system has the symbol

(�1)

m

2

�m�n

e

i(n�m)�

(�

2

+ i�

1

)

m

(�

2

� i�

1

)

n

where � = �(t) is the angle be-

tween positive directions of the tangent to the curve Y at the point t and

of the axis Ox.

Introduce the following notation:

A

r

(t; �

1

; �

2

) =

m

r

X

k=0

a

rk

(t)�

k

2

�

m

r

�k

1

;

A

r

(t; �

1

; �

2

) =

m

r

X

k=0

a

rk

(t)�

k

2

�

m

r

�k

1

; r = 1; : : : ; n:

(3.80)

By Taylor formula we have

�

j

2

A

r

(t; 1; �

2

)

(�

2

+ i)

m

=

Q

m�2

r;j

(t; �

2

)

(�

2

+ i)

m

+

@

m�1

(�

j

2

A

r

)

@�

m�1

2

(t; 1;�i)

�

2

+ i

+

+Q

m

r

+j�m

r;j;1

(t; �

2

);

�

j

2

A

r

(t;�1; �

2

)

(�

2

+ i)

n

=

Q

n�2

r;j

(t; �

2

)

(�

2

+ i)

n

+

@

n�1

(�

j

2

A

r

)

@�

n�1

2

(t;�1;�i)

�

2

+ i

+

+Q

m

r

+j�n

r;j;�1

(t; �

2

);
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�

j

2

A

r

(t; 1; �

2

)

(�

2

+ i)

n

=

G

n�2

r;j

(t; �

2

)

(�

2

+ i)

n

+

@

n�1

(�

j

2

A

r

)

@�

n�1

2

(t; 1;�i)

�

2

+ i

+

+G

m

r

+j�n

r;j;1

(t; �

2

);

�

j

2

A

r

(t;�1; �

2

)

(�

2

+ i)

m

=

G

m�2

r;j

(t; �

2

)

(�

2

+ i)

m

+

@

m�1

(�

j

2

A

r

)

@�

m�1

2

(t;�1;�i)

�

2

+ i

+

+G

m

r

+j�m

r;j;�1

(t; �

2

); j 2 Z

+

;

where

Q

m�2

r;j

(t; �

2

); Q

m

r

+j�m

r;j;1

(t; �

2

); Q

n�2

r;j

(t; �

2

); Q

m

r

+j�n

r;j;�1

(t; �

2

);

G

n�2

r;j

(t; �

2

); G

m

r

+j�n

r;j;1

(t; �

2

); G

m�2

r;j

(t; �

2

); G

m

r

+j�m

r;j;�1

(t; �

2

)

are polynomials with respect to �

2

with superscripts indicating polynomial

degrees.

Using the results from xx1.6, 3.3, 3.4 (see also [37, Examples 11.1 and

11.2]) we can prove that for boundary value problem (3.74){(3.76) to be

Noetherian, it is su�cient the invertibility of the matrix

kZ

��

(t; !)k

m+n

�;�=1

; ; ! = �1; t 2 Y;

where

Z

��

(t; 1) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

@

m�1

(�

��1

2

A

r

)

@�

m�1

2

(t; 1;�i); �=1; : : : ;m; r=�=1; : : : ;m

or r=��m; �=2m+1; : : : ;m+n;

@

n�1

(�

j�1

2

A

r

)

@�

n�1

2

(t; 1;�i); j=��m; �=m+1; : : : ;m+n;

r=��m; �=m+1; : : : ;m+n;

0; �=1; : : : ;m; �=m+1; : : : ;m+n

or �=m+1; : : : ; 2m; �=1; : : : ;m;

Z

��

(t;�1) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

@

n�1

(�

��1

2

A

r

)

@�

n�1

2

(t;�1;�i); � = 1; : : : ; n; r = � = 1; : : : ;m

or r=��m; �=2m+1; : : : ;m+n;

@

m�1

(�

j�1

2

A

r

)

@�

m�1

2

(t;�1;�i); j = � � n; � = n+ 1; : : : ;m+ n;

r=��m; �=m+1; : : : ;m+n;

0; �=1; : : : ;m; �=n+1; : : : ;m+n

or � = m+ 1; : : : ; 2m; � = 1; : : : ; n:

The matrix kZ

��

(t; 1)k is non-degenerate if and only if the matrices










@

m�1

(�

j�1

2

A

r

)

@�

m�1

2

(t; 1;�i)










m

r;j=1

; (3.81)
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@

n�1

(�

j�1

2

A

r

)

@�

n�1

2

(t; 1;�i)










n

r;j=1

(3.82)

are non-degenerate. Analogously, the matrix kZ

��

(t;�1)k is non-degenerate

if and only if the matrices










@

n�1

(�

j�1

2

A

r

)

@�

n�1

2

(t;�1;�i)










n

r;j=1

; (3.83)










@

m�1

(�

j�1

2

A

r

)

@�

m�1

2

(t;�1;�i)










m

r;j=1

(3.84)

are non-degenerate. From (3.80) it follows that invertibility of matrix (3.81)

((3.82)) is equivalent to that of matrix (3.84) ((3.83)).

Thus for boundary value problem (3.74){(3.76) to be Noetherian, it is

su�cient that matrices (3.81), (3.83) be non-degenerate for any t 2 Y .

In a similar way, owing to the results from xx1.6, 3.3, 3.4 (see also [37,

Examples 11.1 and 11.2]), we can prove that the invertibility of matrices

(3.81), (3.83) for any t 2 Y is also su�cient for boundary value problem

(3.74), (3.75), (3.77) to be Noetherian. Investigation of this problem is

easier than that of the previous problem for, this time there do not appear

matrices (3.82), (3.84).

Direct calculation shows that the condition

det










@

m�1

(�

j�1

2

A

r

)

@�

m�1

2

(t; 1;�i)










m

r;j=1

6= 0; 8t 2 Y;

det










@

n�1

(�

j�1

2

A

r

)

@�

n�1

2

(t;�1;�i)










n

r;j=1

6= 0; 8t 2 Y;

(3.85)

is equivalent to

det










m

r

X

k=m�j

a

rk

(t)

(k + j � 1)!

(k + j �m)!

(�i)

k










m

r;j=1

6= 0; 8t 2 Y;

det










m

r

X

k=n�j

a

rk

(t)

(k + j � 1)!

(k + j � n)!

i

k










n

r;j=1

6= 0; 8t 2 Y:

(3.86)

We can slightly simplify (3.85). Really, due to the Leibniz formula

@

m�1

@�

m�1

2

(�

j�1

2

A

r

) =

m�1

X

e=0

�

m� 1

e

�

@

e

�

j�1

2

@�

e

2

@

m�1�e

A

r

@�

m�1�e

2

=

=

j�1

X

e=0

�

m� 1

e

�

(j � 1)!

(j � 1� e)!

�

j�1�e

2

@

m�1�e

A

r

@�

m�1�e

2

: (3.87)

Use (3.87) and perform n� 1 steps to transform the matrix (3.81). At the

j-th step in the matrix resulting from the previous step we subtract from



134

the columns with numbers � = j + 1; : : : ;m the column with the number j

multiplied by

�

��1

j�1

�

�

��j

2

(�

2

= �i). Finally we shall get the matrix










(m� 1)!

(m� j)!

@

m�j

A

r

@�

m�j

2

(t; 1;�i)










m

r;j=1

:

The matrix (3.83) may be treated analogously. It is clear that upon transfor-

mations the determinants remain unchanged. Therefore (3.85) is equivalent

to the condition

det










@

m�j

A

r

@�

m�j

2

(t; 1;�i)










m

r;j=1

6= 0; 8t 2 Y;

det










@

n�j

A

r

@�

n�j

2

(t;�1;�i)










n

r;j=1

6= 0; 8t 2 Y;

(3.88)

that is to the condition

det










m

r

X

k=m�j

a

rk

(t)

k!

(k + j �m)!

(�i)

k










m

r;j=1

6= 0; 8t 2 Y;

det










m

r

X

k=n�j

a

rk

(t)

k!

(k + j � n)!

i

k










n

r;j=1

6= 0; 8t 2 Y:

(3.89)

Let 
 be a bounded open �nitely connected domain in C

with a boundary Y = @
 belonging to the class C

l

, where l � l[s] (l � l(s)),

X = 
 [ Y ; let a

rk

satisfy (3:78) with q = p (one of conditions (3:78),

(3:79)) and equivalent conditions (3:85), (3:86), (3:88), (3:89) be ful�lled.

Then boundary value problem (3:74){(3:76) de�nes a Noetherian operator

from H

s

p

(X) (B

s

p;q

(X)) to

H

s�m�n

p

(X)�

m

�

r=1

B

s�m

r

�1=p

p;p

(Y )�

n

�

r=m+1

B

s�m

r

�1=p

p;p

(Y;R)

�

B

s�m�n

p;q

(X)�

m

�

r=1

B

s�m

r

�1=p

p;q

(Y )�

n

�

r=m+1

B

s�m

r

�1=p

p;q

(Y;R)

�

while boundary value problem (3:74), (3:75), (3:77) de�nes that from H

s

p

(X)

(B

s

p;q

(X)) to

H

s�m�n

p

(X)�

m

�

r=1

B

s�m

r

�1=p

p;p

(Y )�

n

�

r=m+1

P

+

B

s�m

r

�1=p

p;p

(Y )

�

B

s�m�n

p;q

(X)�

m

�

r=1

B

s�m

r

�1=p

p;q

(Y )�

n

�

r=m+1

P

+

B

s�m

r

�1=p

p;q

(Y )

�

:

Remark. Particular cases of the problem (3.74){(3.76) have been

considered in detail by N. E. Tovmasyan's pupils (see [122], [123] and [5]).

They determined the indices of the corresponding boundary value problems.

In many cases the number of linearly independent solutions of homogeneous

problems has been found, and what is more, sometimes even explicit for-

mulas for solutions have been obtained.



135

The results of this section can be generalized to the case of equations on

the Riemann surfaces. When investigating the problem of the Noetherity

there appear no additional di�culties, although calculation of the index

requires special consideration (see [13], [14]).

x

Let us take arbitrary Banach spaces E

1

; E

2

and a continuous linear op-

erator A : E

1

! E

2

. The value

jjjAjjj = inf

�

kA+Kk : K is compact from E

1

to E

2

	

is called an essential norm of the operator A.

Essential norms of pointwise multipliers are of great importance when we

\freeze" coe�cients in partial di�erential equations. In x3.5 the coe�cients

were \frozen" as follows: �rst we approximated the coe�cients by smooth

functions and then applied Lemma 2.14. This method does not do for q =1

since C

1

is not dense in B

�

p;1

. The estimates of essential norms of pointwise

multipliers in Besov spaces ensure the possibility of \freezing" coe�cients in

this case. These estimates have been obtained for any q 2 [1;1], although

we need them only for q =1. The proof of the above-mentioned estimates is

based on the idea of using Kuratovski measure of noncompactness borrowed

by us from the paper [77] in which operators in H�older spaces have been

considered.

Let E be a Banach space. By de�nition the Kuratovski measure of non-

compactness �(
) of the set 
 � E is an in�num of d > 0 such that 


admits a �nite covering by the sets whose diameters are less than d.

For a continuous linear operator A : E

1

! E

2

the Kuratovski measure

of noncompactness is de�ned by the equality kAk

(�)

=

1

2

�(AS) where S is

the unit sphere in E

1

.

It is not di�cult to see that kAk

(�)

� jjjAjjj:

For a wide class of Banach spaces the values jjj � jjj and k � k

(�)

turn out

to be equivalent.

We shall say that the Banach space E possesses the property of bounded

approximation if for any given elements x

1

; : : : ; x

n

2 E and any given " >

0 there exists a �nite-dimensional linear operator T : E ! E such that

kx

j

� Tx

j

k � " for j = 1; : : : ; n, kTk � M < 1, where M depends on E

only.

It is easy to see that if E

2

possesses the property of bounded approxima-

tion, then for any continuous linear operator A : E

1

! E

2

the inequality

jjjAjjj � CkAk

(�)

(3.90)

is valid, where C = 2(M +1) depends on E

2

only. Indeed, let us divide AS

into a �nite number of sets of diameter less than �(AS) + " = 2kAk

(�)

+ ",
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" > 0. In every set let us choose one point y

j

, j = 1; : : : ;m, and take a �nite-

dimensional operator T : E

2

! E

2

such that kTk � M , ky

j

� Ty

j

k � ",

j = 1; : : : ;m:

We have

jjjAjjj � kA � TAk = sup

x2S

k(I � T )Axk �

� sup

x2S

�

k(I � T )(Ax� y

j

(x))k + k(I � T )y

j

(x)k

�

;

where y

j

(x) denote one of the points y

j

whose distance from Ax is less than

�(AS) + ".

Thus jjjAjjj � (M +1)(2kAk

(�)

+ ") + ". Since " > 0 is arbitrary, we get

(3.90).

It is well known that

jjjA

�

jjj � jjjAjjj; kAk

(�)

� 2kA

�

k

(�)

(3.91)

(see [4, 2.5.1, 2.5.7]). Therefore if E

2

possesses the property of bounded

approximation, then from (3.90), (3.91) we obtain

jjjA

�

jjj � C

1

kA

�

k

(�)

; (3.92)

where C

1

= 4(M + 1) depends on E

2

only. (According to [7] the following

improvement of (3.91) is valid: kA

�

k

(�)

= kAk

(�)

. Hence in (3.92) we may

take C

1

= C = 2(M + 1).)

Let 1 � p; q � 1, s > n=p, ' 2 B

s

p;q

(R

n

) have a compact

support. Then for 'I, the operator of multiplication by the function ',

acting in the space B

s

p;q

(R

n

), the inequality

k'Ik

(�)

� constk'jC(R)k = const sup

x2R

n

j'(x)j < +1 (3.93)

is valid with a constant independent of '.

Proof. By induction we can easily prove the equality

�

�

N

h

(gf)

�

(x) =

N

X

k=0

�

N

k

�

(�

N�k

h

g)(x+ kh)(�

k

h

f)(x); 8x; h 2 R

n

(3.94)

(multiple di�erences �

l

h

have been de�ned in x1.1 before the formula (1.14)).

For N = 2l, l 2 N, from (3.94) it follows that

�

�

�

�

2l

h

(gh)

�

(x)

�

�

�

l

X

k=0

2

k

�

2l

k

�

kf jC(R

n

)k � j(�

2l�k

h

g)(x+ kh)j+

+

2l

X

k=l+1

2

2l�k

�

2l

k

�

kgjC(R

n

)k � j(�

k

h

f)(x)j; 8x; h 2 R

n

: (3.95)
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Take N = 2l, where l > s. By (3.95) and the equivalent norm (1.15)

(where m = 0) we get

kgf jB

s

p;q

(R

n

)k � const

�

kgjB

s

p;q

(R

n

)k � kf jC(R

n

)k+

+ kgjC(R

n

)k � kf jB

s

p;q

(R

n

)k

�

(3.96)

with a constant not depending on g and f .

Due to the condition s > n=p the space B

s

p;q

(R

n

) is continuously em-

bedded in the H�older space C

�

(R

n

), where � < s � n=p (see, e.g., [109,

Theorems 2.8.1 and 2.3.2-(c)]).

Let us �x an arbitrary function  2 D(R

n

) equal to unity in some neigh-

bourhood of supp' . The norm of the operator  I in the space B

s

p;q

(R

n

)

is majorized by the C

�

-norm of function  for � > jsj (see [110, Corollary

2.8.2]). Therefore we can majorize it by the value not depending on '.

From the above arguments and Arzela{Ascoli theorem (see, e.g., [87,

Appendix A5]) it follows that the set

S

 

=

�

 f jf 2 B

s

p;q

(R

n

); kf jB

s

p;q

(R

n

)k = 1

	

is precompact in C(R). Hence for any " > 0 there is a partition S

 

=

r

[

j=1

S

j

such that diam

C(R

n

)

S

j

< ", j = 1; : : : ; r:

If f

1

; f

2

belong to the unit sphere of the space B

s

p;q

(R

n

) and  f

1

,  f

2

2

S

j

, then according to (3.96) we have

k'(f

1

� f

2

)jB

s

p;q

(R

n

)k = k'( f

1

�  f

2

)jB

s

p;q

(R

n

)k �

� const

�

k'jC(R

n

)k+ "k'jB

s

p;q

(R

n

)k

�

(3.97)

with a constant depending on n; p; q and s only.

From (3.97) we can easily get that

k'Ik

(�)

� const

�

k'jC(R

n

)k+ "k'jB

s

p;q

(R

n

)k

�

:

Since " > 0 is arbitrary, (3.93) holds. �

Using the Banach{Steinhaus theorem (see, e.g., [87, 2.6]), we can easily

see that a Banach space in which there exists a sequence of continuous

�nite-dimensional linear operators strongly convergent to the unit operator,

possesses the property of bounded approximation. In particular any Banach

space in which there exists Shauder basis possesses the property of bounded

approximation (see [28, Ch. IV, x3]). The wavelets mentioned in point 3

0

,

x3.4, form Shauder basis in the space B

s

p;q

(R

n

), 1 < p < 1, 1 � q < 1,

s 2 R (the other Shauder bases are referred in [110, 2.5.5]). Therefore the

above-mentioned space possesses the property of bounded approximation.

We shall take advantage of this fact in proving the following statement.
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Let 1 < p < 1, 1 � q � 1, s > n=p, ' 2 B

s

p;q

(R

n

) have

a compact support. Then for the operator 'I acting in the space B

s

p;q

(R

n

)

the inequality

jjj'I jjj � constk'jC(R

n

)k < +1 (3.98)

is valid, where the constant does not depend on '.

Proof. In case q < 1, (3.98) follows from (3.90) and (3.93). Suppose q =

1. The space B

s

p;1

(R

n

) is conjugate to the space B

�s

p

0

;1

(R

n

), p

0

= p=(p �

1), (see [109, 2.6.1] or Theorem 1.1) possessing the property of bounded

approximation.

Operator of multiplication by ' is de�ned on the set D(R

n

) (which is

dense in B

�s

p

0

;1

(R

n

)) since s � n=p > 0 > �s � n=p

0

(see [109, 4.6.2]). Let

us prove that this operator can be extended to the operator continuous in

B

�s

p

0

;1

(R

n

). Really, due to Hahn{Banach theorem and duality theorem (see

[109, 2.6.1] or Theorem 1.1) for any  2 D(R

n

) there exists g 2 B

s

p;1

(R

n

)

such that

kgjB

s

p;1

(R

n

)k = 1; hg; ' i = k' jB

�s

p

0

;1

(R

n

)k:

Thus

k' jB

�s

p

0

;1

(R

n

)k = hg; ' i = h'g;  i � k'gjB

s

p;1

(R

n

)k �

�k jB

�s

p

0

;1

(R

n

)k � constk'jB

s

p;1

(R

n

)k � k jB

�s

p

0

;1

(R

n

)k < +1

with a constant depending on n; p and s only (see (3.96)). Therefore we can

extend 'I by continuity to the operator bounded in B

�s

p

0

;1

(R

n

). The operator

of multiplication by ' in the space B

s

p;1

(R

n

) is its conjugate. For the latter

the inequality (3.98) is a consequence of inequalities (3.92), (3.93). �

Note that if q < 1, then the requirement for supp' to be compact in

Lemma 3.15 and Theorem 3.16 is super
uous. Indeed, we can approximate

' by the functions with compact supports. In the case q =1 we lose this

possibility. But in the present section this case is exactly one which is basic.

If ' 2 D(R

n

), then the inequality (3.98) holds for any s 2 R, p 2]1;+1[,

q 2 [1;+1]. The proof of this fact is reduced to Theorem 3.16 by means of

the order reduction operators

I

�

= F

�1

h�i

�

F (3.99)

(cf. (1.10)). Indeed, let us take r > 0 and  2 D(R

n

) such that s+r > n=p,

 ' = '. The pseudodi�erential operator ('I� I

r

'I

�r

) is of order �1 (see,

e.g., [49, v. 3, Theorem 18.1.8]). Consequently, the operator  ('I�I

r

'I

�r

)

is compact in B

s

p;q

(R

n

) (see [110, Remark 4.3.2-1] as well as [58] or [107,

Ch. XI], [98]). Taking into account that I

�r

realize isomorphisms of the

corresponding spaces (see Theorem 1.3), from Theorem 3.16 we obtain

jjj'I jB

s

p;q

(R

n

)jjj = jjj 'I jB

s

p;q

(R

n

)jjj =
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= jjj I

r

'I

�r

+  ('I � I

r

'I

�r

)jB

s

p;q

(R

n

)jjj =

= jjj I

r

'I

�r

jB

s

p;q

(R

n

)jjj � constjjjI

r

'I

�r

jB

s

p;q

(R

n

)jjj �

� constjjj'I jB

s+r

p;q

(R

n

)jjj � constk'jC(R

n

)k = const sup

x2R

n

j'(x)j:

If ' 2 D(R

n

), then for the operator 'I acting in the space H

s

p

(R

n

), we

can easily reduce the proof of the inequality (3.98) with the help of operators

(3.99) to the case of space L

p

(R

n

) in which this inequality is obvious (see

[31, p. 204]). Then (3.98) is transferred to those pointwise multipliers '

which can be approximated by the functions from D(R

n

).

Combining the methods of the proof of Lemma 3.15, Theorem 3.16 and

reasoning from [18, Ch. I, x6], we easily get the following result.

Let 
 � R

n

be a bounded domain satisfying the cone con-

dition (see, e.g., [109, 4:2:3]), 1 < p

1

; p

2

< 1, 1 � q

1

; q

2

;� 1, 0 <

s

1

� s

2

< 1, q = maxfq

1

; q

2

g, s

2

> n=p

2

; p = p

1

if s

1

� n=p

1

and

p = minfp

1

; p

3

g if s

1

> n=p

1

, where p

3

is determined by the equality

s

1

= s

2

� n=p

2

+ n=p

3

. If ' 2 B

s

2

p

2

;q

2

(
), then for the operator 'I act-

ing from B

s

1

p

1

;q

1

(
) in B

s

1

p;q

(
) the inequality

jjj'I jjj � constk'jC(
)k

is valid, where the constant does not depend on '.

Note that more precise results on essential norms of pointwise multipliers

in Sobolev{Slobodecki�� spaces W

s

p

(R

n

), s > 0, have been obtained in [63,

Chapter IV].
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