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PROBLEMS FOR LINEAR FUNCTIONAL DIFFERENTIAL

EQUATIONS
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The following standard notation will be used:

W is the Banah spae of absolutely ontinuous funtions x : [a; b℄ ! R

1

with the

norm

kxk

W

= jx(a)j+

b

Z

a

j _x(s)j ds;

C is the Banah spae of ontinuous funtions x : [a; b℄ ! R

1

with the norm

kxk

C

= max

t2[a;b℄

jx(t)j;

L is the Banah spae of summable funtions z : [a; b℄ ! R

1

with the norm

kzk

L

=

b

Z

a

jz(t)j dx;

I is the idential operator in an appropriate spae.

1. Consider the general boundary value problem in the spae W

(Lx)(t)

def

= _x(t) � (Tx)(t) = f(t); t 2 [a; b℄;

`x = �;

(1)

where T : W ! L is a linear bounded operator, ` : W ! R

1

is a linear bounded

funtional.

We say that the boundary value problem (1) has the Fredholm property if the operator

�

L

`

�

: W ! L� R

1

has the Fredholm property, that is, it is a Noether operator with zero index.

In his paper [5℄ V. P. Maksimov proved that the problem (1) has Fredholm property

if T is an U-bounded operator [6, p. 157℄ ating from C into L. In this ase, by de�nition

there exists a funtion u 2 L suh that

j(Tx)(t)j � u(t); t 2 [a; b℄;

for every x 2 C with kxk

C

� 1. Suh an operator T ats from W into L ompletely

ontinuously.
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As we will show, the problem (1) has Fredholm property for T : C ! L without any

additional assumptions.

Theorem 1. Let T be bounded as an operator from C into L . Then boundary value

problem (1) has Fredholm property.

To prove Theorem 1 we need two lemmas.

Leema 1. Let T be a linear bounded operator from C to L. Then the operator T is

weakly ompletely ontinuous.

Proof. A linear bounded operator, ating fromC into any weakly omplete Banah spae,

is a weakly ompletely ontinuous operator [2, VI.7.6℄. The spae L is weakly omplete

[2, IV.8.6℄. Thus, the operator T is weakly ompletely ontinuous.

Leema 2. Let T : C ! L, S : L! C be linear bounded operators. Then the operators

I � ST : C ! C and I � TS : L! L both have Fredholm property.

Proof. By Lemma 1, it follows that T is weakly ompletely ontinuous. A produt of a

weakly ompletely ontinuous linear operator and a bounded linear operator is a weakly

ompletely ontinuous operator [2, VI.4.5℄. So we see that the operators ST : C ! C and

TS : L! L are weakly ompletely ontinuous. Therefore, the operators (ST )

2

: C ! C

(TS)

2

: L! L both are ompletely ontinuous. Indeed, a produt of weakly ompletely

ontinuous operators in the spae C or in the spae L is a ompletely ontinuous operator

[2, VI.7.5, VI.8.13℄.

By Nikol'ski��s theorem (see [3, p. 504℄), sine the squares of the operators ST and

TS are, sine the squares of the operators ST and TS are ompletely ontinuous, the

operators I � ST : C ! C and I � TS : L! L have Fredholm property.

Proof of Theorem 1. The boundary value problem (1) has Fredholm property if and only

if the operator Qdef  L� : L ! L, where (�z)(t) =

R

t

a

z(s) ds, t 2 [a; b℄; has Fredholm

property. This is shown in [1℄.

We have Q = I � T�.

The operator � : L ! C is bounded. By Lemma 2 for S = �, it follows that Q has

Fredholm property. �

2. Let us obtain riteria of Fredholm property for the singular boundary value problem

( L

1

x)(t) def(t � a)(b � t)�x(t) � (Tx)(t) = f(t); t 2 [a; b℄;

`

1

x = �;

(2)

where T : W ! L is a linear bounded operator and `

1

: W ! R

2

is a linear bounded

funtional.

Consider the problem (2) in the spae D of all funtions x : [a; b℄ ! R

1

suh that

1) x is absolutely ontinuous on [a; b℄;

2) _x is loally absolutely ontinuous on (a; b);

3)

R

b

a

(t � a)(b � t)j�x(t)j dt < +1.

We say that boundary value problem (2) has the Fredholm property if the operator

�

L

1

`

�

: D ! L�R

2

has the Fredholm property.

Theorem 2. Let T be bounded as an operator from C into L. Then the boundary

value problem (2) has Fredholm property.
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Proof. In the artile [4℄ it was proved that the spae D with the norm

kxk

D

= jx(a)j+ jx(b)j+

b

Z

a

(t � a)(b � t)j�x(t)j dt

is ontinuously embedded into the spae W . Moreover, the spae D is isomorphi to the

diret produt L� R

2

. The isomorphism J : L�R

2

! D is de�ned by the equality:

Jfz; �g = �

1

z + Y �;

where �

1

: L! D, Y : R

2

! D,

(�

1

z)(t) = �

t

Z

a

b� t

b� s

z(s) ds�

b

Z

t

t � a

s� a

z(s) ds; t 2 [a; b℄;

Y � = (t � a)�

1

+ (b� t)�

2

; t 2 [a; b℄:

The Fredholm property of the boundary value problem (2) is equivalent to the Fred-

holm property of the operator Q

1

def  L�

1

: L! L.

We have Q

1

= I � T�

1

.

Sine the operator �

1

: L! C is bounded, the assertion of the theorem follows from

Lemma 2 for S = �

1

.
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