T. Tadumadze and K. Gelashvili

AN EXISTENCE THEOREM FOR A CLASS OF OPTIMAL PROBLEMS WITH DELAYED ARGUMENT

(Reported on October 25, 1999)

1. Statement of the Problem. An Existence Theorem

Let $J=[a, b]$ be a finite closed interval; $O \subset \mathbb{R}^{n}$-be an open set; $K_{i}, i=0,1, U \subset \mathbb{R}^{r}$, $V \subset \mathbb{R}^{p}$ be compact sets; for each fixed $\left(x_{1}, x_{2}, u_{1}, u_{2}\right) \in O^{2} \times U^{2}$ let the function $f: J \times O^{2} \times U^{2} \rightarrow \mathbb{R}^{n}$ be measurable with respect to $t \in J$; for an arbitrary compact $K \subset O$ there exist measurable functions $m_{K}(t), L_{K}(t), t \in J$, such that

$$
\begin{gathered}
\left|f\left(t, x_{1}, x_{2}, u_{1}, u_{2}\right)\right| \leq m_{K}(t), \quad \forall\left(t, x_{1}, x_{2}, u_{1}, u_{2}\right) \in J \times K^{2} \times U^{2} \\
\left|f\left(t, x_{1}^{\prime}, x_{2}^{\prime}, u_{1}, u_{2}\right)-f\left(t, x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, u_{1}, u_{2}\right)\right|\left|\leq L_{K}(t) \sum_{i=1}^{2}\right| x_{i}^{\prime \prime}-x_{i}^{\prime} \mid \\
\forall\left(t, x_{1}^{\prime}, x_{2}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, u_{1}, u_{2}\right) \in J \times K^{4} \times U^{4}
\end{gathered}
$$

Further, let the functions $\tau(t), \theta(t), t \in J$, be absolutely continuous and satisfy the conditions: $\tau(t) \leq t, \dot{\tau}(t)>0, \theta(t) \leq t, \dot{\theta}(t)>0 ; \Omega=\Omega\left(J_{0}, V, m, L\right)$ be the set of piecewise continuous functions $v: J_{0}=\left[a_{0}, b_{0}\right] \rightarrow V$ satisfying the condition: for each function $v(\cdot) \in \Omega$ there exists a partition $a_{0}=\xi_{0}<\cdots<\xi_{n}=b_{0}$ such that the restriction of the function $v(t)$ satisfies the Lipschitz condition on the open interval $\left(\xi_{i}, \xi_{i+1}\right), i=0, \ldots, m$, i.e., $\left|v\left(t^{\prime}\right)-v\left(t^{\prime \prime}\right)\right| \leq L\left|t^{\prime}-t^{\prime \prime}\right|, \forall t^{\prime}, t^{\prime \prime} \in\left(\xi_{i}, \xi_{i+1}\right), i=0, \ldots, m$, where the numbers m and L do not depend on $v \in \Omega$; let $\Omega_{0}=\Omega\left([\tau(a), b], K_{0}, m_{0}, L_{0}\right)$, elements of this set will be denoted by $\varphi(\cdot) ; \Omega_{1}=\Omega\left([\theta(a), b], U, m_{1}, L_{1}\right)$, its elements being denoted by $u(\cdot)$; let $q^{i}: j \times O^{2} \rightarrow \mathbb{R}^{1}, i=0, \ldots, l$, be continuous functions.

Consider the problem:

$$
\begin{gather*}
\dot{x}(t)=f(t, x(t), x(\tau(t)), u(t), u(\theta(t))), \quad t \in\left[t_{0}, t_{1}\right] \subset J, \quad u(\cdot) \in \Omega_{1} \tag{1}\\
x(t)=\varphi(t), \quad t \in\left[\tau\left(t_{0}\right), t_{0}\right), \quad x\left(t_{0}\right)=x_{0}, \quad \varphi(\cdot) \in \Omega_{0}, \quad x_{0} \in K_{1} \tag{2}\\
q^{i}\left(t_{0}, t_{1}, x_{0}, x\left(t_{1}\right)\right)=0, \quad i=0, \ldots, l \tag{3}\\
q^{0}\left(t_{0}, t_{1}, x_{0}, x\left(t_{1}\right)\right) \rightarrow \min \tag{4}
\end{gather*}
$$

Definition 1. The function $x(t)=x(t, z) \in O, t \in\left[\tau\left(t_{0}\right), t_{1}\right]$, is said to be a solution corresponding to the element $z=\left(t_{0}, t_{1}, x_{0}, \varphi(\cdot), u(\cdot)\right) \in A=J^{2} \times K_{1} \times \Omega_{0} \times \Omega_{1}$, if on $\left[\tau\left(t_{0}\right), t_{0}\right]$ it satisfies the condition (2), while on the interval $\left[t_{0}, t_{1}\right]$ it is absolutely continuous and the pair $(u(\cdot), x(\cdot))$ almost everywhere (a.e.) on $\left[t_{0}, t_{1}\right]$ satisfies the equation (1).

Definition 2. The element $z \in A$ is said to be admissible if the corresponding solution $x(t)$ satisfies the condition (3).

The set of admissible elements will be denoted by Δ.

2000 Mathematics Subject Classification. 49J25.
Key words and phrases. Delay, existence of optimal control.

Definition 3. The element $\tilde{z}=\left(\tilde{t}_{0}, \tilde{t}_{1}, \tilde{x}_{0}, \tilde{\varphi}(\cdot), \tilde{u}(\cdot)\right) \in \Delta$ is said to be optimal if

$$
\tilde{I}=I(\tilde{z})=\inf _{z \in \Delta} I(z)
$$

where

$$
I(z)=q^{0}\left(t_{0}, t_{1}, x_{0}, x\left(t_{1}\right)\right), \quad x(t)=x(t, z)
$$

Theorem 1. Let the following conditions be valid:

1) $\Delta \neq \emptyset$;
2) there exists a compact set $K_{2} \subset O$ such that

$$
x(t, z) \in K_{2}, \quad \forall z \in \Delta
$$

Then there exists an optimal element.

2. Auxiliary Lemmas

Lemma 1. Let $x_{k}(t)=x\left(t, z_{k}\right), t \in\left[\tau\left(t_{0}^{k}\right), t_{1}^{k}\right]$, be the solution corresponding to the element $z_{k} \in A ; t_{0}^{k} \rightarrow t_{0}, t_{1}^{k} \rightarrow t_{1}$ as $k \rightarrow \infty, t_{0}^{k} \geq t_{0}, t_{1}^{k} \leq t_{1} ; K_{i} \subset O, i=3$, 4 , be compact sets with $K_{3} \subset$ int K_{4} and $x_{k}(t) \in K_{3}, t \in\left[t_{1}^{k}, t_{2}^{k}\right]$. Then for sufficiently large k the functional differential equation

$$
\begin{gather*}
\dot{y}(t)=f\left(t, y(t), h\left(t_{0}^{k}, \varphi_{k}(\cdot), y_{k}(\cdot)\right)(\tau(t)), u_{k}(t), u_{k}(\theta(t))\right) \tag{5}\\
y\left(t_{0}^{k}\right)=x_{0}^{k}
\end{gather*}
$$

where

$$
h\left(t_{0}, \varphi(\cdot), y(\cdot)\right)(t)= \begin{cases}\varphi(t), & t \in\left[\tau(a), t_{0}\right) \\ y(t), & t \in\left[t_{o}, b\right]\end{cases}
$$

has a solution $y_{k}(t)=y\left(t, z_{k}\right) \in K_{4}$ defined on $\left[t_{0}, t_{1}\right]$, and $y_{k}(t)=x_{k}(t), \quad t \in\left[t_{0}^{k}, t_{1}^{k}\right]$.
The proof of this lemma can be carried out in the standard way (for example, see Theorem 2 in [1]), since (5) is an ordinary differential eqation for $t<t_{0}^{k}$, and is a differential equation with delayed argument for $t>t_{0}^{k}$.

Lemma 2. Let $v_{k}(\cdot) \in \Omega, k=1,2, \ldots$ Then there exists a subsequence of the sequence $\left\{v_{k}(\cdot)\right\}_{k=1}^{\infty}$ such that it converges to some function $v_{o}(\cdot) \in \Omega$ for each $t \in J$, except for not more than $(m+1)$ points.

Proof. By assumption the function $v_{k}(t), t \in\left(\xi_{i}^{k}, \xi_{i+1}^{k}\right)$, satisfies Lipschitz condition. From this it imediately follows the existence of one-sided limits

$$
\lim _{t \rightarrow \xi_{i}^{k}-} v_{k}(t)=v_{k_{i}}^{-}, \quad i=0, \ldots, q-1, \quad \lim _{t \rightarrow \xi_{i}^{k}+} v_{k}(t)=v_{k_{i}}^{+}, \quad i=1, \ldots, q
$$

We set the function

$$
\begin{gathered}
\omega_{k_{i}}(t)= \begin{cases}v_{k_{i}}^{-}, & t \leq \xi_{i}^{k} \\
v_{k}(t), & t \in\left(\xi_{i}^{k}, \xi_{i+1}^{k}\right) \\
v_{k_{i}}^{+}, & t \geq \xi_{i+1}^{k}\end{cases} \\
\omega_{k}(t)=\sum_{i=0}^{m} \chi_{k_{i}}(t) \omega_{k_{i}}(t), \quad t \in J_{0}, \quad \omega_{k}\left(b_{0}\right)=\omega_{k}\left(b_{0}-\right),
\end{gathered}
$$

where $\chi_{k_{i}}(t)$ is the characteristic function of the semi-open interval $E_{k_{i}}=\left[\xi_{i}^{k}, \xi_{i+1}^{k}\right)$.
Obviously, $\omega_{k}(\cdot) \in \Omega$ and

$$
\begin{equation*}
\omega_{k}(t)=v_{k}(t), \quad t \in\left(\xi_{i}^{k}, \xi_{i+1}^{k}\right) \tag{6}
\end{equation*}
$$

The sequence $\left\{\omega_{k_{i}}(t)\right\}_{k=1}^{\infty}$ is uniformly bounded and equicontinuous for each $i=$ $0, \ldots, m$. Therefore, by virtue of Arzela-Ascoli's lemma, from $\left\{\omega_{k_{i}}(t)\right\}_{k=1}^{\infty}$ it can be picked out a uniformly convergent subsequence which again is denoted by $\left\{\omega_{k_{i}}(t)\right\}_{k=1}^{\infty}$. Thus

$$
\lim _{k \rightarrow \infty} \omega_{k_{i}}(t)=\omega_{i}(t) \text { uniformly for } t \in J_{0}
$$

Without loss of generality we will assume that

$$
\lim _{k \rightarrow \infty} \xi_{i}^{k}=\xi_{i}, \quad i=1, \ldots, q-1
$$

Conseqently we have

$$
\lim _{k \rightarrow \infty} E_{k_{i}}=E_{i}, \quad \lim _{k \rightarrow \infty} \chi_{k_{i}}(t)=\chi_{i}(t), \quad t \in \mathbb{R}
$$

where E_{i} is an interval and $\chi_{i}(t)$ is the charasteristic function of the interval E_{i}.
Therefore for each $t \in J_{0}$

$$
\lim _{k \rightarrow \infty} \omega_{k}(t)=\omega(t)=\sum_{i=0}^{m} \chi_{i}(t) \omega_{i}(t)
$$

besides $\omega(\cdot) \in \Omega$.
Taking into account (6), we can conclude that

$$
\lim _{k \rightarrow \infty} v_{k}(t)=\omega(t)=v_{0}(t), \quad t \in\left(\xi_{i}, \xi_{i+1}\right), \quad i=0,1, \ldots, m
$$

3. Proof of the Theorem

There exists a sequence $z_{k}=\left(t_{0}^{k}, t_{1}^{k}, x_{0}^{k}, \varphi_{k}(\cdot), u_{k}(\cdot)\right) \in \Delta, k=1,2, \ldots$, such that

$$
\begin{aligned}
I\left(z_{k}\right) \rightarrow \tilde{I}, t_{0}^{k} & \rightarrow \tilde{t}_{0}, t_{1}^{k} \rightarrow \tilde{t}_{1}, x_{0}^{k} \rightarrow \tilde{x}_{0} \quad \text { as } k \rightarrow \infty ; \\
\lim _{k \rightarrow \infty} \varphi_{k}(t) & =\tilde{\varphi}(t), \text { a.e. on }[\tau(a), b], \tilde{\varphi}(\cdot) \in \Omega_{0} ; \\
\lim _{k \rightarrow \infty} u_{k}(t) & =\tilde{u}(t), \text { a.e. on }[\theta(a), b], \tilde{u}(\cdot) \in \Omega_{1}
\end{aligned}
$$

(see Lemma 2).
Consider the case where $t_{0}^{k} \geq \tilde{t}_{0}, t_{1}^{k} \leq \tilde{t}_{1}$. The remaining cases can be considered analogously.

Let $K_{5} \in O$ be a compact set, $K_{2} \in \operatorname{int} K_{5}$. For sufficiently large $k \geq k_{0}$ there exists the solution $y_{k}(t) \in K_{5}$ of the equation (5) defined on $\left[\tilde{t}_{0}, \tilde{t}_{1}\right]$ and $y_{k}(t)=x_{k}(t), \quad t \in$ $\left[t_{0}^{k}, t_{1}^{k}\right]$, (see Lemma 1).

Obviously

$$
h\left(t_{0}^{k}, \varphi_{k}(\cdot), y_{k}(\cdot)\right)(t) \in K_{6}, \quad k \geq k_{0}, \quad t \in\left[\tau\left(\tilde{t}_{0}\right), \tilde{t}_{1}\right], \quad K_{6}=K_{5} \cup K_{0}
$$

therefore

$$
|\dot{y}(t)| \leq m_{K_{6}}(t), \quad t \in\left[\tilde{t}_{0}, \tilde{t}_{1}\right] .
$$

Thus the sequence $\left\{y_{k}(\cdot)\right\}_{k=1}^{\infty}$ is uniformly bounded and equicontinouos. Without loss of generality we can assume that

$$
\lim _{k \rightarrow \infty} y_{k}(t)=\tilde{y}(t) \quad \text { uniformly with } t \in\left[\tilde{t}_{0}, \tilde{t}_{1}\right] .
$$

Consequently,

$$
\lim _{k \rightarrow \infty} f_{k}[t]=\tilde{f}[t], \quad \text { a.e. } t \in\left[\tilde{t}_{0}, \tilde{t}_{1}\right]
$$

where

$$
\begin{gathered}
f_{k}[t]=f\left(t, y_{k}(t), h\left(t_{0}^{k}, \varphi_{k}(\cdot), y_{k}(\cdot)\right)(\tau(t)), u_{k}(t), u_{k}(\theta(t))\right), \\
\tilde{f}[t]=f\left(t, y(t), h\left(\tilde{t_{0}}, \tilde{\varphi}(\cdot), \tilde{y}(\cdot)\right)(\tau(t)), \tilde{u}(t), \tilde{u}(\theta(t))\right) .
\end{gathered}
$$

Further,

$$
\begin{equation*}
y_{k}(t)=x_{0}^{k}+\int_{t_{0}^{k}}^{t} \tilde{f}[s] d s+\alpha_{k}+\beta_{k}(t) \tag{7}
\end{equation*}
$$

where

$$
\alpha_{k}=\int_{\tilde{t}_{0}}^{t_{0}^{k}} f_{k}(t] d t, \quad \beta_{k}(t)=\int_{\tilde{t}_{0}}^{t}\left[f_{k}[s]-\tilde{f}[s]\right] d s
$$

Evidently

$$
\lim _{k \rightarrow \infty} \alpha_{k}=0, \quad\left|\beta_{k}(t)\right| \leq \int_{\tilde{t}_{0}}^{\tilde{t}_{1}}\left|f_{k}[s]-\tilde{f}[s]\right| d s
$$

By virtue of Lebesgue's theorem on passage to limit under the integral sign we have

$$
\lim _{k \rightarrow \infty} \beta_{k}(t)=0 \quad \text { uniformly with } t \in\left[\tilde{t}_{0}, \tilde{t}_{1}\right]
$$

From (7) as $k \rightarrow \infty$ we get

$$
\tilde{y}(t)=\tilde{x}_{0}+\int_{\tilde{t}_{0}}^{t} \tilde{f}[s] d s
$$

It is easy to see that

$$
\lim _{k \rightarrow \infty} y_{k}\left(t_{1}^{k}\right)=\tilde{y}\left(\tilde{t}_{1}\right)
$$

therefore

$$
q^{i}\left(\tilde{t}_{0}, \tilde{t}_{1}, \tilde{x}_{0}, \tilde{y}\left(\tilde{t}_{1}\right)\right)=0, \quad i=1, \ldots, l, \quad \tilde{I}=q^{0}\left(\tilde{t}_{0}, \tilde{t}_{1}, \tilde{x}_{0}, \tilde{y}\left(\tilde{t}_{1}\right)\right)
$$

Introduce the function

$$
\tilde{x}(t)= \begin{cases}\tilde{\varphi}(t), & t \in\left[\tau\left(\tilde{t}_{0}\right), \tilde{t}_{0}\right) \\ \tilde{y}(t), & t \in\left[\tilde{t}_{0}, \tilde{t}_{1}\right)\end{cases}
$$

Obviously $\tilde{z}=\left(\tilde{t}_{0}, \tilde{t}_{1}, \tilde{x}_{0}, \tilde{x}(\cdot)\right) \in \Delta$ and $I(\tilde{z})=\tilde{I}$.
Finally, note that the proved theorem is also valid in the case where the right-hand side of the equation (1) has the form

$$
f\left(t, x\left(\tau_{1}(t)\right), \ldots, x\left(\tau_{s}(t)\right), u\left(\theta_{1}(t)\right), \ldots, u\left(\theta_{\nu}(t)\right)\right)
$$

where the functions $\tau_{i}(t), i=1, \ldots, s, \theta_{i}(t), i=1, \ldots, \nu$, are absolutely continuous and satisfy the conditions $\tau_{i}(t) \leq t, \dot{\tau}_{i}(t)>0 ; \theta_{i}(t) \leq t, \dot{\theta}_{i}(t)>0$.

If K_{0}, U are convex sets and the points of discontinuity of the functions from the set $\Omega_{i}, i=0,1$, are fixed be forehand, then for the problem (1)-(4) necessary conditions of optimality are valid in the form given in [2]. In the class of measurable functions the problem of existence is studied in $[3,4]$.

References

1. G. Kharatishvili, T Tadumadze, and N. Gorgodze, Continuous dependence and differentiability of solution with respect to initial data and right-hand side for differential equations with deviating argument. Mem. Differential Equations Math. Phys. 19(2000), 3-105.
2. G. Kharatishvili and T Tadumadze, The maximum principle in optimal control problems with concentrated and distributed delays in controls. Georgian Math. J. 12(1995), No. 6, 577-591.
3. T TADumadze, Existence theorem for solution of optimal problems with variable delays. Control and cybernetics. 10(1981), Nos. 3-4, 125-134.
4. T Tadumadze, The maximum principle and existence theorem in the optimal problems with delay and non-fixed initial function. Seminar of I. Vekua Institute of Applied Mathematics. Reports 22(1993), 102-107.

Authors' addresess:
T. Tadumadze
I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 380043
Georgia
K. Gelashvili

Department of Applied Mathematics and Computer Sciences
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 380043
Georgia

