
Mem. Di�erential Equations Math. Phys. 20(2000), 136{140

T. Tadumadze and K. Gelashvili

AN EXISTENCE THEOREM FOR A CLASS OF OPTIMAL PROBLEMS

WITH DELAYED ARGUMENT

(Reported on Otober 25, 1999)

1. Statement of the Problem. An Existene Theorem
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Further, let the funtions �(t), �(t), t 2 J, be absolutely ontinuous and satisfy the

onditions: �(t) � t; _�(t) > 0, �(t) � t,

_

�(t) > 0; 
 = 
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where the numbers m and L do not depend on v 2 
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([�(a); b℄;K
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elements of this set will be denoted by '(�); 


1

= 
([�(a); b℄; U;m

1

; L

1

), its elements

being denoted by u(�); let q

i
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, i = 0; : : : ; l, be ontinuous funtions.

Consider the problem:
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De�nition 1. The funtion x(t) = x(t; z) 2 O, t 2 [�(t

0

); t

1

℄ , is said to be a solution

orresponding to the element z = (t
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, if on

[�(t

0

); t

0

℄ it satis�es the ondition (2), while on the interval [t

0

; t

1

℄ it is absolutely ontin-

uous and the pair (u(�); x(�)) almost everywhere (a.e.) on [t

0

; t

1

℄ satis�es the equation (1).

De�nition 2. The element z 2 A is said to be admissible if the orresponding solution

x(t) satis�es the ondition (3).

The set of admissible elements will be denoted by �.
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De�nition 3. The element ~z = (
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Theorem 1. Let the following onditions be valid:
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2. Auxiliary Lemmas
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The proof of this lemma an be arried out in the standard way (for example, see

Theorem 2 in [1℄), sine (5) is an ordinary di�erential eqation for t < t
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, and is a

di�erential equation with delayed argument for t > t
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.
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The sequene f!
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3. Proof of the Theorem
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Further,
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Finally, note that the proved theorem is also valid in the ase where the right-hand

side of the equation (1) has the form

f(t; x(�

1

(t)); : : : ; x(�

s
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1

(t)); : : : ; u(�

�

(t)));

where the funtions �

i

(t), i = 1; : : : ; s, �

i

(t), i = 1; : : : ; �, are absolutely ontinuous and
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i

(t) � t, _�

i

(t) > 0; �
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If K

0

, U are onvex sets and the points of disontinuity of the funtions from the set




i

, i = 0; 1, are �xed be forehand, then for the problem (1){(4) neessary onditions of

optimality are valid in the form given in [2℄. In the lass of measurable funtions the

problem of existene is studied in [3,4℄.
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