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In the present paper optimal, in a ertain sense, suÆient onditions for uniqueness

of solution of the weighted initial value problem
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(t) = f(u)(t); (1)
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A partiular ase of the equation (1) is the vetor di�erential equation with delay
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Throughout the paper the use will be made of the following notation.
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If x :℄a; b℄! R

m

is a bounded funtion and a � s < t � b, then

�(x)(s; t) = supfkx(�)k : s < � < tg:

L

lo
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m

) is the spae of loally summable vetor funtions x :℄a; b℄! R

m
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the topology of onvergene in the mean on eah segment from ℄a; b℄.

De�nition 1. f : C
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De�nition 2. We will say that the operator f : C

n�1

([a; b℄;R

m

) ! L

lo

(℄a; b℄;R

m

)

satis�es the loal Carath�eodory onditions if it is ontinuous and there exists a nonde-
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De�nition 3. A funtion u : [a; b℄ ! R

m

is alled a solution of the problem (1), (2)

if:
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The following theorem is valid.
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be ful�lled almost everywhere on ℄a; b[. Then the problem (1), (2) has at least one solu-

tion.

From the above theorem and Theorem 2 from [3℄ follows

Theorem 2. Let the onditions of Theorem 1 hold and
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= 0: (6)

Then the problem (1), (2) has one and only one solution.

Theorems 1 and 2 for the problem (3), (2) take the following form.
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Then the problem (3), (2) has at most one solution.

Corollary 2. Let the onditions of Corollary 1 hold and
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(s; 0; : : : ; 0)k ds

�

= 0:

Then the problem (3), (2) has one and only one solution.

The above-formulated Theorems 1 and 2 and their orollaries generalize the results of

[1℄ and make the results of x5 from monograph [2℄ more omplete.

As an example, in the interval ℄0; 1=2℄ we onsider the boundary value problem
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The problem (8), (9) is a partiular ase of the problem (1), (2), where a = 0, b = 1=2,
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Aording to Corollary 1, if

n�1

X

k=0

`

k

< 1;

then the problem (8), (9) has a unique solution.
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The above-onstruted example shows that the ondition (4) (the ondition 7) in

Theorems 1 and 2 (in Corollaries 1 and 2) annot be replaed by the ondition
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