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Consider the nonlinear ordinary di�erential equation
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. Consider the problem on the existene of a solution of the

equation (1) satisfying the boundary onditions

u

(i)

(a) = '

i

(u(a); u

0

(a); : : : ; u

(n�1)

(a)) (i = 0; : : : ; n

0

� 1);

+1

Z

a

t

�

ju

(j)

(t)j

2

dt < +1 (j = 0; : : : n

0

);

(2)

where the funtions '

i

: R

n

! R (i = 0; : : : ; n

0

� 1) are ontinuous and satisfy the

ondition

n

0

�1

X

i=0

�

�

'

i

(x

0

; x

1

; : : : ; x

n�1

)

�

�

� 

1

�

1 +

n

0

�1

X

i=0

jx

i

j

�

�#

(3)

on R

n

, where  > 0 and # 2 [0; 1℄.

In the ase where p

k

(t) � 0, problems of suh type were investigated by I. Kiguradze

[1℄. The author has reently studied the ase where � = 0 (see [5℄). Our interest to the

problem (1), (2) is two-fold. First, to supplement the results of [1℄ and generalize those

of [5℄ whih orrespond to the ase of an even n. Seond, to supplement in ertain ases

some results appearing in the qualitative theory.

Below the use will be made of the following notation:

R is the set of real numbers;

R

n

the n-dimensional Eulidean spae;

�

k

i

(i = 1; 2; : : : ; k = 2i; 2i+1; : : : ) are real onstants de�ned by the reurrene relation
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Everywhere below it will be assumed that the funtion f satis�es the ondition
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Theorem 1. Let the inequality
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hold on [a;+1[, where p

n

(t) � 0. Then the problem (1), (2) is solvable.
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hold on [a;+1[, where p

n

(t) � 1. Then the problem (1), (2) is solvable.

From these results and also from the existene of a so-alled proper solution of (1)

(i.e., a nontrivial solution of (1) de�ned in some neighbourhood at in�nity) we obtain its

asymptoti behaviour.

Theorem 2. Assume that all the hypotheses of Theorem 1 (Corollary 1) hold. Then

for arbitrary ontinuous funtions '
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n

, where  > 0

and # 2 [0; 1℄, there exists at least one proper solution of the equation (1) satisfying the

initial onditions
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and possessing the following asymptoti property:
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Corollary 2. Assume that all the hypotheses of Corollary 1, exept that of the re-

strition (5), are satis�ed. Then the equation (1) has an n

0

-parametri family of proper

solutions possessing the asymptoti property (7).

These results generalize those obtained in [5℄ and omplement the results of [1℄ on-

erning the ase of even n.

On the other hand, Theorem 2 provides us with suÆient onditions on the existene

of proper osillatory (i.e., having a sequene of zeros onverging at in�nity) solutions of
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whih appear from qualitative theory (see Corollary 1:1[2℄, p. 208). Therefore, the result

below �lls in a ertain way the gap in [4℄ (see Theorem 2, p. 39).
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Moreover, in the ase n
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is even, every proper solution is osillatory.

The last result is new even for the Emden-Fowler type equation
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is neessary and suÆient for every proper solution of (1

2

) to be osillatory. However, the

question on the existene of at least one proper solution of (1
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) remained open. Clearly,

Corollary 3 implies
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be even, and let the inequality p(t) � �t

2�n

on

[a;+1[, where  > 0. Then the equation (1
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Finally, we onsider the generalized Emden-Fowler equation
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where n � 2, � > 1 and Æ : [a;+1[! [0;+1[ is measurable. From the above reasoning

we answer the question on the existene of proper solutions of (8). Moreover, using a
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