Mem. Differential Equations Math. Phys. 20(2000), 154-158

N. PARTSVANIA

ON A BOUNDARY VALUE PROBLEM FOR THE TWO-DIMENSIONAL SYSTEM OF EVOLUTION FUNCTIONAL DIFFERENTIAL EQUATIONS

(Reported on December 20, 1999)

Suppose $C([a, b]; \mathbb{R}^2)$ is the space of two-dimensional continuous vector functions $(x_1, x_2) : [a, b] \to \mathbb{R}^2$ with the norm

$$||(x_1, x_2)||_C = \max \left\{ |x_1(t)| + |x_2(t)| : a \le t \le b \right\};$$

 $M([a,b]; \mathbb{R}^2_+) = \left\{ (x_1, x_2) \in C([a,b]; \mathbb{R}^2) : x_1 \text{ and } x_2 \text{ are nonnegative nondecreasing functions } \right\};$

 $L([a, b]; \mathbb{R})$ is the space of summable functions $y: [a, b] \to \mathbb{R}$ with the norm

$$\left\|y\right\|_{L} = \int_{a}^{b} \left|y(t)\right| dt.$$

Consider the two-dimensional evolution differential system

$$\frac{du_i(t)}{dt} = f_i(u_1, u_2)(t) \quad (i = 1, 2)$$
(1)

with the boundary conditions

$$u_1(a) = \varphi_1(u_2(a)), \quad \varphi_2(u_1(b), u_2(b)) = 0,$$
 (2)

where $f_i : M([a, b]; \mathbb{R}^2_+) \to L([a, b]; \mathbb{R})$ (i = 1, 2) are continuous operators, while $\varphi_1 : \mathbb{R}_+ \to \mathbb{R}$ and $\varphi_2 : \mathbb{R}^2_+ \to \mathbb{R}$ are continuous functions. We are interested in the case where

$$\sup\left\{\left\|f_{i}(x_{1},x_{2})(\cdot)\right\|: \|(x_{1},x_{2})\|_{C} \le \rho\right\} \in L([a,b];\mathbb{R}) \quad \text{for} \quad 0 < \rho < +\infty,$$

and the function φ_2 satisfies one of the following three conditions:

$$\varphi_2(0,0) < 0, \quad \varphi_2(x,y) > 0 \quad \text{for} \quad x \ge 0, \quad y \ge 0, \quad x+y > r;$$
(3)

$$\varphi_2(0,0) < 0, \quad \varphi_2(x,y) > 0 \quad \text{for} \quad x \ge 0, \quad y > r;$$
(4)

$$\varphi_2(0,0) < 0, \quad \varphi_2(x,y) > 0 \quad \text{for} \quad x > r, \quad y \ge 0,$$
 (5)

where r is a positive number.

For the case $f_i(u_1, u_2)(t) \equiv f_{0i}(t, u_1(t), u_2(t))$ (i = 1, 2), where $f_{0i} : [a, b] \times \mathbb{R}^2 \to \mathbb{R}$ (i = 1, 2) are functions satisfying the local Carathéodory conditions, boundary value problems of the type (1), (2) are investigated in full detail (see [1], [2], [4], [9]–[14], and the references therein). In the general case this problem have not been studied enough. The results below fill to some extent the existing gap.

²⁰⁰⁰ Mathematics Subject Classification. 34K10.

Key words and phrases. Boundary value problem, two-dimensional system of evolution functional differential equations, nonnegative nondecreasing solution, Volterra operator.

Let $\delta_i : [a, b] \to \mathbb{R}$ (i = 1, 2) be continuous functions such that

$$0 \le \delta_i(t) \le t - a$$
 for $a \le t \le b$ $(i = 1, 2)$.

 $f: M([a,b]; \mathbb{R}^2_+) \to L([a,b]; \mathbb{R})$ is called the (δ_1, δ_2) -Volterra operator if for any $t \in]a, b]$ and for any vector functions (x_1, x_2) and $(y_1, y_2) \in M([a, b]; \mathbb{R}^2_+)$ satisfying the equalities

$$x_1(s) = y_1(s)$$
 for $0 \le s \le t - \delta_1(t)$, $x_2(s) = y_2(s)$ for $0 \le s \le t - \delta_2(t)$,

we have

$$f(x_1, x_2)(s) = f(y_1, y_2)(s)$$
 for almost all $s \in [0, t]$

f is called the *Volterra operator* if it is the (0,0)-Volterra operator.

Unless the contrary is specified, throughout the paper we will assume that f_1 and f_2 are the Volterra operators.

Definition. A vector function (u_1, u_2) with the absolutely continuous components $u_i:[a,b] \to \mathbb{R} \ (i=1,2)$ is said to be a nonnegative nondecreasing solution of the problem (1), (2) if:

(i) $(u_1,u_2) \in M([a,b];\mathbb{R}^2_+)$ and almost everywhere on [a,b] the equalities (1) are fulfilled;

(ii) (u_1, u_2) satisfies the boundary conditions (2).

Theorem 1. Let

$$f_i(0,0)(t) = 0, \quad f_i(x_1, x_2)(t) \ge 0 \quad (i = 1, 2)$$
 (6)

$$for \ a \le t \le b, \ (x_1, x_2) \in M([a, b]; \mathbb{R}^2_+),$$

$$(a, b) = 0, \ (a, b) = 0, \ ($$

$$\varphi_1(0) = 0, \quad \varphi_1(x) \ge 0 \quad \text{for } x \ge 0,$$
(7)

and the condition (3) be fulfilled. Then the problem (1), (2) has at least one nonnegative nondecreasing solution.

Theorem 2. Let the conditions (4), (6), and (7) hold. Let, moreover, there exist a summable function $h:[a,b] \to \mathbb{R}_+$ and a positive constant ℓ such that

$$f_1(x_1, x_2)(t) \le \left[h(t) + \ell f_2(x_1, x_2)(t)\right] \left(1 + x_1(t)\right)$$

$$for \ a < t < b, \quad (x_1, x_2) \in M([a, b]; \mathbb{R}^2_+), \quad ||x_2||_C < r.$$
(8)

Then the problem (1), (2) has at least one nonnegative nondecreasing solution.

Remark 1. The condition (8) in Theorem 2 cannot be replaced by the condition

$$f_1(x_1, x_2)(t) \le \left[h(t) + \ell f_2(x_1, x_2)(t)\right] \left(1 + x_1(t)\right)^{1+\varepsilon}$$

for $a \le t \le b$, $(x_1, x_2) \in M([a, b]; \mathbb{R}^2_+)$, $||x_2||_C \le r$

no matter how small $\varepsilon > 0$ would be. However, the condition (8) can be replaced by somewhat different type of condition. More precisely, the following theorem is valid.

Theorem 3. Let the conditions (4), (6), and (7) hold. Let, moreover, there exist a continuous function $\delta : [a,b] \to \mathbb{R}$ such that

$$0 < \delta(t) \le t - a \quad for \quad a < t \le b, \tag{9}$$

and f_1 be the $(\delta, 0)$ -Volterra operator. Then the problem (1), (2) has at least one nonnegative nondecreasing solution.

155

Theorem 4. Let the conditions (5)–(7) be fulfilled. Let, moreover, there exist a summable in the first argument function $g : [a,b] \times \mathbb{R}^2_+ \to \mathbb{R}_+$, a summable function $h : [a,b] \to \mathbb{R}_+$ and a positive constant ℓ such that

$$\limsup_{\rho \to +\infty} \left[\varphi_1(\rho) + \int_a^b g(t, \varphi_1(\rho), \rho) \, dt \right] > r, \tag{10}$$

$$f_1(x_1, x_2)(t) \ge g(t, x_1(a), x_2(a)) \quad \text{for } a \le t \le b,$$

$$(x_1, x_2) \in M([a, b]; \mathbb{R}^2_+), \quad ||x_1||_C \le r,$$
(11)

and

$$f_2(x_1, x_2)(t) \le \left[h(t) + \ell f_2(x_1, x_2)(t)\right] \left(1 + x_2(t)\right) \text{ for } a \le t \le b,$$

$$(x_1, x_2) \in M([a, b]; \mathbb{R}^2_+), \quad ||x_1||_C \le r.$$

Then the problem (1), (2) has at least one nonnegative nondecreasing solution.

Remark 2. The condition (10) in Theorem 4 cannot be replaced by the condition

$$\limsup_{\rho \to +\infty} \left[\varphi_1(\rho) + \int_a^b g\left(t, \varphi_1(\rho), \rho\right) dt \right] \ge r.$$
(10')

Indeed, it is clear that the problem

$$u'_1(t) = 0, \quad u'_2(t) = 0;$$

 $u_1(a) = r \frac{u_2(a)}{1 + u_2(a)}, \quad u_1(b) = r$

has no solution, although all the conditions of Theorem 4, except of (10), are fulfilled. Instead of (10) the condition (10') holds.

Theorem 5. Let the conditions (5)-(7) be fulfilled. Let, moreover, there exist a summable in the first argument function $g:[a,b] \times \mathbb{R}^2_+ \to \mathbb{R}_+$ and a continuous function $\delta:[a,b] \to \mathbb{R}_+$ such that the conditions (9)-(11) are fulfilled, and f_2 be the $(0,\delta)$ -Volterra operator. Then the problem (1), (2) has at least one nonnegative nondecreasing solution.

As an example, consider the boundary value problem

$$\frac{du_i(t)}{dt} = f_{0i}\left(t, u_1(\tau_1(t)), u_2(\tau_2(t))\right) \quad (i = 1, 2);$$
(12)

$$u_1(a) = \alpha u_2(a), \quad \beta_1 u_1(b) + \beta_2 u_2(b) = \gamma,$$
(13)

where $f_{0i} : [a, b] \times \mathbb{R}^2_+ \to \mathbb{R}$ (i = 1, 2) are functions satisfying the local Carathéodory conditions, $\tau_i : [a, b] \to [a, b]$ (i = 1, 2) are measurable functions satisfying the inequalities

$$au_i(t) \le t$$
 for $a \le t \le b$ $(i = 1, 2)$

$$\beta_1 + \beta_2 > 0$$
 and $\gamma > 0$.

From Theorem 1–5 we have

Corollary. Let

 $\alpha\geq 0,\,\beta_1\geq 0,\,\beta_2\geq 0,$

$$f_{0i}(t,0,0) = 0, \quad f_i(t,x,y) \ge 0 \quad (i = 1,2) \quad for \quad a \le t \le b, \quad x \ge 0, \quad y \ge 0.$$

Then for the existence of at least one nonnegative nondecreasing solution of the problem (12), (13) it is sufficient one of the following five conditions to be fulfilled:

(i) $\beta_1 > 0, \beta_2 > 0;$

(ii) $\beta_1 = 0$, $\beta_2 = 1$, and there exist a summable function $h : [a, b] \to \mathbb{R}_+$ and a positive constant ℓ such that

$$f_{01}(t, x, y) \le |h(t) + \ell f_{02}(t, x, y)| (1+x) \text{ for } a \le t \le b, \ x \ge 0, \ 0 \le y \le \gamma;$$

(iii) $\beta_1 = 0, \ \beta_2 = 1, \ and$

ess inf
$$\{s - \tau_1(s) : t \le s \le b\} > 0$$
 for $a < t \le b$

(iv) $\alpha > 0$, $\beta_1 = 1$, $\beta_2 = 0$, and there exist a summable function $h : [a, b] \to \mathbb{R}_+$ and a positive constant ℓ such that

$$f_{02}(t, x, y) \leq [h(t) + \ell f_{01}(t, x, y)](1+y) \text{ for } a \leq t \leq b, \ 0 \leq x \leq \gamma, \ y \geq 0;$$

(v)
$$\alpha > 0$$
, $\beta_1 = 1$, $\beta_2 = 0$, and

ess inf
$$\{s - \tau_2(s) : t \le s \le b\} > 0$$
 for $a < t \le b$

The above-formulated theorems and their corollaries generalize some previous results from [3] and make the results from [5]-[8] more complete.

References

1. I. Kiguradze, Boundary value problems for systems of ordinary differential equations. J. Soviet Math. 43(1988), No. 2, 2259-2339.

2. I. Kiguradze and N. R. Lezhava, On some nonlinear two-point boundary value problems. (Russian) *Differentsial'nye Uravneniya* **10**(1974), No. 12, 2147–2161.

3. I. Kiguradze and N. Partsvania, On nonnegative solutions of nonlinear two-point boundary value problems for two-dimensional differential systems with advanced arguments. E. J. Qualitative Theory of Diff. Equ., 1999, No. 5, 1-22.

4. I. Kiguradze and B. Půža, On some boundary value problems for a system of ordinary differential equations. (Russian) *Differentsial'nye Uravneniya* **12**(1976), No. 12, 2139–2148.

5. I. Kiguradze and B. Půža, On boundary value problems for systems of linear functional differential equations. *Czechoslovak Math. J.* **47**(1997), No. 2, 341–373.

6. I. Kiguradze and B. Půža, Conti-Opial type theorems for systems of functional differential equations. (Russian) *Differentsial'nye Uravneniya* **33**(1997), No. 2, 185-194.

7. I. Kiguradze and B. Půža, On boundary value problems for functional differential equations. *Mem. Differential Equations Math. Phys.* **12**(1997), 106-113.

8. I. Kiguradze and B. Půža, On the solvability of nonlinear boundary value problems for functional differential equations. *Georgian Math. J.* **5**(1998), No. 3, 251–262.

9. G. N. Milshtein, On a boundary value problem for a system of two differential equations. (Russian) *Differentsial'nye Uravneniya* 1(1965), No. 12, 1628–1639.

10. A. I. Perov, On a boundary value problem for a system of two differential equations. (Russian) Dokl. Akad. Nauk SSSR 144(1962), No. 3, 493-496.

11. B. L. Shekhter, On singular boundary value problems for two-dimensional differential systems. Arch. Math. 19(1983), No. 1, 19-41.

12. N. I. Vasil'ev, Some boundary value problems for a system of two differential equations of first order, I. (Russian) Latv. Mat. Ezhegodnik 5(1969), 11-24.

13. N. I. Vasil'ev, Some boundary value problems for a system of two differential equations of first order, II. (Russian) Latv. Mat. Ezhegodnik 6(1969), 31-39.

14. P. Waltman, Existence and uniqueness of solutions of boundary value problem for two dimensional systems of nonlinear differential equations. *Trans. Amer. Math. Soc.* **153**(1971), No. 1, 223-234.

Author's address: A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, M. Aleksidze St., Tbilisi 380093 Georgia

158