N. Partsvania

ON A BOUNDARY VALUE PROBLEM
 FOR THE TWO-DIMENSIONAL SYSTEM OF EVOLUTION FUNCTIONAL DIFFERENTIAL EQUATIONS

(Reported on December 20, 1999)

Suppose $C\left([a, b] ; \mathbb{R}^{2}\right)$ is the space of two-dimensional continuous vector functions $\left(x_{1}, x_{2}\right):[a, b] \rightarrow \mathbb{R}^{2}$ with the norm

$$
\left\|\left(x_{1}, x_{2}\right)\right\|_{C}=\max \left\{\left|x_{1}(t)\right|+\left|x_{2}(t)\right|: a \leq t \leq b\right\}
$$

$M\left([a, b] ; \mathbb{R}_{+}^{2}\right)=\left\{\left(x_{1}, x_{2}\right) \in C\left([a, b] ; \mathbb{R}^{2}\right): \quad x_{1}\right.$ and x_{2} are nonnegative nondecreasing functions $\}$;
$L([a, b] ; \mathbb{R})$ is the space of summable functions $y:[a, b] \rightarrow \mathbb{R}$ with the norm

$$
\|y\|_{L}=\int_{a}^{b}|y(t)| d t
$$

Consider the two-dimensional evolution differential system

$$
\begin{equation*}
\frac{d u_{i}(t)}{d t}=f_{i}\left(u_{1}, u_{2}\right)(t) \quad(i=1,2) \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
u_{1}(a)=\varphi_{1}\left(u_{2}(a)\right), \quad \varphi_{2}\left(u_{1}(b), u_{2}(b)\right)=0 \tag{2}
\end{equation*}
$$

where $f_{i}: M\left([a, b] ; \mathbb{R}_{+}^{2}\right) \rightarrow L([a, b] ; \mathbb{R})(i=1,2)$ are continuous operators, while φ_{1} : $\mathbb{R}_{+} \rightarrow \mathbb{R}$ and $\varphi_{2}: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ are continuous functions. We are interested in the case where

$$
\sup \left\{\left|f_{i}\left(x_{1}, x_{2}\right)(\cdot)\right|:\left\|\left(x_{1}, x_{2}\right)\right\|_{C} \leq \rho\right\} \in L([a, b] ; \mathbb{R}) \quad \text { for } \quad 0<\rho<+\infty
$$

and the function φ_{2} satisfies one of the following three conditions:

$$
\begin{gather*}
\varphi_{2}(0,0)<0, \quad \varphi_{2}(x, y)>0 \text { for } x \geq 0, y \geq 0, x+y>r \tag{3}\\
\varphi_{2}(0,0)<0, \quad \varphi_{2}(x, y)>0 \text { for } x \geq 0, y>r \tag{4}\\
\varphi_{2}(0,0)<0, \quad \varphi_{2}(x, y)>0 \text { for } x>r, y \geq 0 \tag{5}
\end{gather*}
$$

where r is a positive number.
For the case $f_{i}\left(u_{1}, u_{2}\right)(t) \equiv f_{0 i}\left(t, u_{1}(t), u_{2}(t)\right)(i=1,2)$, where $f_{0 i}:[a, b] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ $(i=1,2)$ are functions satisfying the local Carathéodory conditions, boundary value problems of the type (1), (2) are investigated in full detail (see [1], [2], [4], [9]-[14], and the references therein). In the general case this problem have not been studied enough. The results below fill to some extent the existing gap.

2000 Mathematics Subject Classification. 34K10.

Key words and phrases. Boundary value problem, two-dimensional system of evolution functional differential equations, nonnegative nondecreasing solution, Volterra operator.

Let $\delta_{i}:[a, b] \rightarrow \mathbb{R}(i=1,2)$ be continuous functions such that

$$
0 \leq \delta_{i}(t) \leq t-a \quad \text { for } a \leq t \leq b \quad(i=1,2)
$$

$f: M\left([a, b] ; \mathbb{R}_{+}^{2}\right) \rightarrow L([a, b] ; \mathbb{R})$ is called the $\left(\delta_{1}, \delta_{2}\right)$-Volterra operator if for any $\left.\left.t \in\right] a, b\right]$ and for any vector functions $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right) \in M\left([a, b] ; \mathbb{R}_{+}^{2}\right)$ satisfying the equalities

$$
x_{1}(s)=y_{1}(s) \text { for } 0 \leq s \leq t-\delta_{1}(t), \quad x_{2}(s)=y_{2}(s) \text { for } 0 \leq s \leq t-\delta_{2}(t),
$$

we have

$$
f\left(x_{1}, x_{2}\right)(s)=f\left(y_{1}, y_{2}\right)(s) \text { for almost all } s \in[0, t] .
$$

f is called the Volterra operator if it is the $(0,0)$-Volterra operator.
Unless the contrary is specified, throughout the paper we will assume that f_{1} and f_{2} are the Volterra operators.

Definition. A vector function $\left(u_{1}, u_{2}\right)$ with the absolutely continuous components $u_{i}:[a, b] \rightarrow \mathbb{R}(i=1,2)$ is said to be a nonnegative nondecreasing solution of the problem (1), (2) if:
(i) $\left(u_{1}, u_{2}\right) \in M\left([a, b] ; \mathbb{R}_{+}^{2}\right)$ and almost everywhere on $[a, b]$ the equalities (1) are fulfilled;
(ii) (u_{1}, u_{2}) satisfies the boundary conditions (2).

Theorem 1. Let

$$
\begin{align*}
f_{i}(0,0)(t)= & 0, \quad f_{i}\left(x_{1}, x_{2}\right)(t) \geq 0 \quad(i=1,2) \tag{6}\\
& \text { for } a \leq t \leq b, \quad\left(x_{1}, x_{2}\right) \in M\left([a, b] ; \mathbb{R}_{+}^{2}\right) \\
\varphi_{1}(0)= & 0, \quad \varphi_{1}(x) \geq 0 \quad \text { for } x \geq 0 \tag{7}
\end{align*}
$$

and the condition (3) be fulfilled. Then the problem (1), (2) has at least one nonnegative nondecreasing solution.

Theorem 2. Let the conditions (4), (6), and (7) hold. Let, moreover, there exist a summable function $h:[a, b] \rightarrow \mathbb{R}_{+}$and a positive constant ℓ such that

$$
\begin{align*}
& f_{1}\left(x_{1}, x_{2}\right)(t) \leq\left[h(t)+\ell f_{2}\left(x_{1}, x_{2}\right)(t)\right]\left(1+x_{1}(t)\right) \tag{8}\\
& \quad \text { for } a \leq t \leq b, \quad\left(x_{1}, x_{2}\right) \in M\left([a, b] ; \mathbb{R}_{+}^{2}\right),\left\|x_{2}\right\|_{C} \leq r .
\end{align*}
$$

Then the problem (1), (2) has at least one nonnegative nondecreasing solution.
Remark 1. The condition (8) in Theorem 2 cannot be replaced by the condition

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)(t) \leq\left[h(t)+\ell f_{2}\left(x_{1}, x_{2}\right)(t)\right]\left(1+x_{1}(t)\right)^{1+\varepsilon} \\
& \text { for } a \leq t \leq b, \quad\left(x_{1}, x_{2}\right) \in M\left([a, b] ; \mathbb{R}_{+}^{2}\right), \quad\left\|x_{2}\right\|_{C} \leq r
\end{aligned}
$$

no matter how small $\varepsilon>0$ would be. However, the condition (8) can be replaced by somewhat different type of condition. More precisely, the following theorem is valid.

Theorem 3. Let the conditions (4), (6), and (7) hold. Let, moreover, there exist a continuous function $\delta:[a, b] \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
0<\delta(t) \leq t-a \quad \text { for } \quad a<t \leq b \tag{9}
\end{equation*}
$$

and f_{1} be the $(\delta, 0)$-Volterra operator. Then the problem (1), (2) has at least one nonnegative nondecreasing solution.

Theorem 4. Let the conditions (5)-(7) be fulfilled. Let, moreover, there exist a summable in the first argument function $g:[a, b] \times \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$, a summable function $h:[a, b] \rightarrow \mathbb{R}_{+}$and a positive constant ℓ such that

$$
\begin{gather*}
\limsup _{\rho \rightarrow+\infty}\left[\varphi_{1}(\rho)+\int_{a}^{b} g\left(t, \varphi_{1}(\rho), \rho\right) d t\right]>r \tag{10}\\
f_{1}\left(x_{1}, x_{2}\right)(t) \geq g\left(t, x_{1}(a), x_{2}(a)\right) \quad \text { for } a \leq t \leq b, \tag{11}\\
\quad\left(x_{1}, x_{2}\right) \in M\left([a, b] ; \mathbb{R}_{+}^{2}\right), \quad\left\|x_{1}\right\|_{C} \leq r,
\end{gather*}
$$

and

$$
\begin{array}{r}
f_{2}\left(x_{1}, x_{2}\right)(t) \leq\left[h(t)+\ell f_{2}\left(x_{1}, x_{2}\right)(t)\right]\left(1+x_{2}(t)\right) \text { for } a \leq t \leq b \\
\left(x_{1}, x_{2}\right) \in M\left([a, b] ; \mathbb{R}_{+}^{2}\right), \quad\left\|x_{1}\right\|_{C} \leq r
\end{array}
$$

Then the problem (1), (2) has at least one nonnegative nondecreasing solution.
Remark 2. The condition (10) in Theorem 4 cannot be replaced by the condition

$$
\limsup _{\rho \rightarrow+\infty}\left[\varphi_{1}(\rho)+\int_{a}^{b} g\left(t, \varphi_{1}(\rho), \rho\right) d t\right] \geq r
$$

Indeed, it is clear that the problem

$$
\begin{gathered}
u_{1}^{\prime}(t)=0, \quad u_{2}^{\prime}(t)=0 \\
u_{1}(a)=r \frac{u_{2}(a)}{1+u_{2}(a)}, \quad u_{1}(b)=r
\end{gathered}
$$

has no solution, although all the conditions of Theorem 4, except of (10), are fulfilled. Instead of (10) the condition (10^{\prime}) holds.

Theorem 5. Let the conditions (5)-(7) be fulfilled. Let, moreover, there exist a summable in the first argument function $g:[a, b] \times \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$and a continuous function $\delta:[a, b] \rightarrow \mathbb{R}_{+}$such that the conditions (9)-(11) are fulfilled, and f_{2} be the $(0, \delta)$-Volterra operator. Then the problem (1), (2) has at least one nonnegative nondecreasing solution.

As an example, consider the boundary value problem

$$
\begin{gather*}
\frac{d u_{i}(t)}{d t}=f_{0 i}\left(t, u_{1}\left(\tau_{1}(t)\right), u_{2}\left(\tau_{2}(t)\right)\right) \quad(i=1,2) \tag{12}\\
u_{1}(a)=\alpha u_{2}(a), \quad \beta_{1} u_{1}(b)+\beta_{2} u_{2}(b)=\gamma \tag{13}
\end{gather*}
$$

where $f_{0 i}:[a, b] \times \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}(i=1,2)$ are functions satisfying the local Carathéodory conditions, $\tau_{i}:[a, b] \rightarrow[a, b](i=1,2)$ are measurable functions satisfying the inequalities

$$
\tau_{i}(t) \leq t \quad \text { for } \quad a \leq t \leq b \quad(i=1,2)
$$

$\alpha \geq 0, \beta_{1} \geq 0, \beta_{2} \geq 0, \beta_{1}+\beta_{2}>0$ and $\gamma>0$.
From Theorem 1-5 we have

Corollary. Let

$$
f_{0 i}(t, 0,0)=0, \quad f_{i}(t, x, y) \geq 0 \quad(i=1,2) \quad \text { for } \quad a \leq t \leq b, \quad x \geq 0, \quad y \geq 0
$$

Then for the existence of at least one nonnegative nondecreasing solution of the problem (12), (13) it is sufficient one of the following five conditions to be fulfilled:
(i) $\beta_{1}>0, \beta_{2}>0$;
(ii) $\beta_{1}=0, \beta_{2}=1$, and there exist a summable function $h:[a, b] \rightarrow \mathbb{R}_{+}$and a positive constant ℓ such that

$$
f_{01}(t, x, y) \leq\left[h(t)+\ell f_{02}(t, x, y)\right](1+x) \quad \text { for } a \leq t \leq b, \quad x \geq 0, \quad 0 \leq y \leq \gamma
$$

(iii) $\beta_{1}=0, \beta_{2}=1$, and

$$
\operatorname{essinf}\left\{s-\tau_{1}(s): \quad t \leq s \leq b\right\}>0 \quad \text { for } a<t \leq b
$$

(iv) $\alpha>0, \beta_{1}=1, \beta_{2}=0$, and there exist a summable function $h:[a, b] \rightarrow \mathbb{R}_{+}$and a positive constant ℓ such that

$$
f_{02}(t, x, y) \leq\left[h(t)+\ell f_{01}(t, x, y)\right](1+y) \quad \text { for } a \leq t \leq b, \quad 0 \leq x \leq \gamma, \quad y \geq 0
$$

(v) $\alpha>0, \beta_{1}=1, \beta_{2}=0$, and

$$
\operatorname{ess} \inf \left\{s-\tau_{2}(s): \quad t \leq s \leq b\right\}>0 \quad \text { for } a<t \leq b
$$

The above-formulated theorems and their corollaries generalize some previous results from [3] and make the results from [5]-[8] more complete.

References

1. I. Kiguradze, Boundary value problems for systems of ordinary differential equations. J. Soviet Math. 43(1988), No. 2, 2259-2339.
2. I. Kiguradze and N. R. Lezhava, On some nonlinear two-point boundary value problems. (Russian) Differentsial'nye Uravneniya 10(1974), No. 12, 2147-2161.
3. I. Kiguradze and N. Partsvania, On nonnegative solutions of nonlinear two-point boundary value problems for two-dimensional differential systems with advanced arguments. E. J. Qualitative Theory of Diff. Equ., 1999, No. 5, 1-22.
4. I. Kiguradze and B. Půža, On some boundary value problems for a system of ordinary differential equations. (Russian) Differentsial'nye Uravneniya 12(1976), No. 12, 2139-2148.
5. I. Kiguradze and B. Půža, On boundary value problems for systems of linear functional differential equations. Czechoslovak Math. J. 47(1997), No. 2, 341-373.
6. I. Kiguradze and B. Půža, Conti-Opial type theorems for systems of functional differential equations. (Russian) Differentsial'nye Uravneniya 33(1997), No. 2, 185-194.
7. I. Kiguradze and B. Půža, On boundary value problems for functional differential equations. Mem. Differential Equations Math. Phys. 12(1997), 106-113.
8. I. Kiguradze and B. Půža, On the solvability of nonlinear boundary value problems for functional differential equations. Georgian Math. J. 5(1998), No. 3, 251-262.
9. G. N. Milshtein, On a boundary value problem for a system of two differential equations. (Russian) Differentsial'nye Uravneniya 1(1965), No. 12, 1628-1639.
10. A. I. Perov, On a boundary value problem for a system of two differential equations. (Russian) Dokl. Akad. Nauk SSSR 144(1962), No. 3, 493-496.
11. B. L. Shekhter, On singular boundary value problems for two-dimensional differential systems. Arch. Math. 19(1983), No. 1, 19-41.
12. N. I. Vasil'ev, Some boundary value problems for a system of two differential equations of first order, I. (Russian) Latv. Mat. Ezhegodnik 5(1969), 11-24.
13. N. I. Vasil'ev, Some boundary value problems for a system of two differential equations of first order, II. (Russian) Latv. Mat. Ezhegodnik 6(1969), 31-39.
14. P. Waltman, Existence and uniqueness of solutions of boundary value problem for two dimensional systems of nonlinear differential equations. Trans. Amer. Math. Soc. 153(1971), No. 1, 223-234.

Author's address:

A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia

