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ON A BOUNDARY VALUE PROBLEM

FOR THE TWO-DIMENSIONAL SYSTEM

OF EVOLUTION FUNCTIONAL DIFFERENTIAL EQUATIONS

(Reported on Deember 20, 1999)
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(i = 1; 2) are funtions satisfying the loal Carath�eodory onditions, boundary value

problems of the type (1), (2) are investigated in full detail (see [1℄, [2℄, [4℄, [9℄{[14℄, and

the referenes therein). In the general ase this problem have not been studied enough.

The results below �ll to some extent the existing gap.
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Then the problem (1), (2) has at least one nonnegative nondereasing solution.
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no matter how small " > 0 would be. However, the ondition (8) an be replaed by

somewhat di�erent type of ondition. More preisely, the following theorem is valid.

Theorem 3. Let the onditions (4), (6), and (7) hold. Let, moreover, there exist a

ontinuous funtion Æ : [a; b℄! R suh that
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and f

1

be the (Æ; 0)-Volterra operator. Then the problem (1), (2) has at least one non-

negative nondereasing solution.
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Then the problem (1), (2) has at least one nonnegative nondereasing solution.
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Indeed, it is lear that the problem

u

0

1

(t) = 0; u

0

2

(t) = 0;

u

1

(a) = r

u

2

(a)

1 + u

2

(a)

; u

1

(b) = r
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As an example, onsider the boundary value problem
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The above-formulated theorems and their orollaries generalize some previous results

from [3℄ and make the results from [5℄{[8℄ more omplete.
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