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Main Notation

R= ]�1;+1[ , R

+

= ]0;+1[ .

Let � 2 R.

[�] is the integral part of the number �,

[�]

+

=

j�j+ �

2

; [�]

�

=

j�j � �

2

:

C( ]a; b[) is the space of continuous and bounded functions u : ]a; b[!R

with the norm

kuk

C

= supfju(t)j : a < t < bg:

e

C

loc

(]a; b[) is the set of the functions u :]a; b[! R absolutely continuous

on each subsegment of ]a; b[ .

e

C

0

loc

( ]a; b[) is the set of the functions u : ]a; b[!Rabsolutely continuous

on each subsegment of ]a; b[ along with their �rst order derivatives.

L([a; b]) is the space of summable functions u : [a; b]! Rwith the norm

kuk

L

=

b

Z

a

ju(s)jds:

L

1

(]a; b]) is the space of essentially bounded functions u : ]a; b[!Rwith

the norm

kuk = ess sup

t2[a;b]

ju(t)j:

L

loc

(]a; b[) (L

loc

(]a; b[)) is the set of the measurable functions u : ]a; b[!R

(u : ]a; b]! R), summable on each subsegment of ]a; b[ (]a; b]).

Let x; y : ]a; b[! ]0;+1[ be continuous functions.

C

x

(]a; b[) is the space of functions u 2 C(]a; b[) such that

kuk

C;x

= sup

n

ju(t)j

x(t)

: a < t < b

o

< +1:

L

y

([a; b]) is the space of the functions u 2 L(]a; b[) such that

kuk

L;y

=

b

Z

a

y(s)ju(s)jds < +1:

L(C

x

;L

y

) is the set of the linear operators h : C

x

(]a; b[)!L

y

([a; b]) such

that

sup

�

jh(u)(�)j : kuk

C;x

� 1

	

2 L

y

([a; b]):

� : L

loc

(]a; b[)!

e

C

loc

(]a; b[) is the operator de�ned by

�(p)(t) = exp

�

t

Z

a+b

2

p(s)ds

�

for a � t � b;
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where p 2 L

loc

(]a; b[).

If �(p) 2 L([a; b]), then we de�ne the operators �

1

and �

2

by

�

1

(p)(t) =

1

�(p)(t)

t

Z

a

�(p)(s)ds

b

Z

t

�(p)(s)ds;

�

2

(p)(t) =

1

�(p)(t)

t

Z

a

�(p)(s)ds for a � t � b:

Let f , g 2 C(]a; b[) and c 2 [a; b]. Then we write

f(t) = O(g(t))

�

f(t) = O

�

(g(t))

�

as t! c;

if

lim

t!c

sup

jf(t)j

jg(t)j

< +1

�

0 < lim

t!c

inf

jf(t)j

jg(t)j

and lim

t!c

sup

jf(t)j

jg(t)j

< +1

�

:

Let A and B be normed spaces and let U: A ! B be a linear operator.

Then we denote the norm of the operator Uas follows:

kUk

A!B

:
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Introduction

During the last two decades the boundary value problems for functional

di�erential equations attract the attention of many mathematicians and are

intensively studied. At present the foundations of the general theory of

such kind of problems are already laid and many of them are investigated

in detail (see [1], [2], [19]{[23], [44] and references therein). Despite this fact,

there remains a wide class of boundary value problems on the solvability of

which not much is known. Among them are the two-point boundary value

problems for linear singular functional di�erential equations of second order,

and we devote our work to the investigation of these problems.

It should be noted that the present monograph is tightly connection with

the works of I. T. Kiguradze [17], L. B. Shekhter [23] and A. G. Lomtatidze

[27] in which for singular ordinary di�erential equations we developed the

method of upper and lower Nagumo's functions in the case of boundary value

problems and found the conditions under which Fredholm's alternative is

valid in the case of linear equations. We introduced and described the set

V

0;i

(see De�nition 1.1.2).

In the present work we consider the equation

u

00

(t) = p

0

(t)u(t) + p

1

(t)u

0

(t) + g(u)(t) + p

2

(t) (0:0:1)

under the boundary conditions

u(a) = c

1

; u(b) = c

2

(0:0:2

1

)

or

u(a) = c

1

; u

0

(b�) = c

2

; (0:0:2

2

)

and separately for the case of homogeneous conditions

u(a) = 0; u(b) = 0;

u(a) = 0; u

0

(b�) = 0;

where c

1

, c

2

2 R, p

j

2 L

loc

(]a; b[) (j = 0; 1; 2) and g : C(]a; b[)! L

loc

(]a; b[)

is a continuous linear operator. In studying these problems the use is made

of the auxiliary equation

u

00

(t) = p

0

(t)u(t) + p

1

(t)u

0

(t)� h(u)(t);

where h : C(]a; b[)! L

loc

(]a; b[) is the nonnegative linear operator.

The question of the unique solvability of problems (0.0.1), (0:0:2

i

) is

studied in Chapter I. We introduced sets of two-dimensional vector functions

(p

0

; p

1

) :]a; b[!R

2

,V

i;�

(]a; b[;h), � 2 [0; 1] (see De�nitions 1.1.3 and 1.1.4),

which were found to be useful for our investigation. In Section 1.1, in terms

of the sets V

i;�

(]a; b[;h) we established theorems for the unique solvability

of problems (0.0.1), (0:0:23

i

). The question on the unique solvability of

problems (0.0.1), (0:0:2

i0

) in the space with weight C

�

(]a; b[) is studied

separately. In the same chapter we can �nd corollaries of basic theorems
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and and also the e�ective su�cient conditions for the unique solvability

of the above-mentioned problems. Among them there occur unimprovable

conditions and those which generalize the well-known results for ordinary

di�erential equations.

In Chapter II we consider the question dealing with the correctness of

problems (0.0.1), (0:0:2

i

) under the assumption that (p

0

; p

1

) 2V

i;�

(]a; b[;h).

The e�ective su�cient conditions guaranteeing the correctness of the above-

mentioned problems are presented.

Everywhere in our work, special attention is given to the case, when the

operator g in equation (0.0.1) is de�ned by the equality

g(u)(t) =

n

X

k=1

g

k

(t)u(�

k

(t));

where g

k

2 L

loc

(]a; b[), �

k

: [a; b] ! [a; b] (k = 1; : : : ; n) are measurable

functions.
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CHAPTER I

UNIQUE SOLVABILITY OF TWO-POINT BOUNDARY

VALUE PROBLEMS FOR LINEAR SINGULAR

FUNCTIONAL DIFFERENTIAL EQUATIONS

x

1.1. Statement of the Problem and Formulation of Basic

Results

In this chapter we consider the linear equation

u

00

(t) = p

0

(t)u(t) + p

1

(t)u

0

(t) + g(u)(t) + p

2

(t) (1.1.1)

under the boundary conditions

u(a) = c

1

; u(b) = c

2

(1:1:2

1

)

or

u(a) = c

1

; u

0

(b�) = c

2

; (1:1:2

2

)

where p

0

, p

j

2 L

loc

(]a; b[), c

j

2 R (j = 1; 2) and g : C(]a; b[)! L

loc

(]a; b[)

is a continuous linear operator.

The equation (1.1.1) will also be studied separately in the weighted space

C

x

� (]a; b[) under the homogeneous boundary conditions

u(a) = 0; u(b) = 0 (1:1:2

10

)

or

u(a) = 0; u

0

(b�) = 0; (1:1:2

20

)

where � 2 ]0; 1] and

x(t) =

t

Z

a

�(p

1

)(s) ds

�

b

Z

t

�(p

1

)(s) ds

�

2�i

for a � t � b:

When considering the problems (1.1.1), (1.1.2

1

) and (1.1.1), (1.1.2

10

), it

will always be assumed that

p

j

2 L

loc

(]a; b[) (j = 0; 1; 2);

�(p

1

) 2 L([a; b]); p

0

2 L

�

1

(p

1

)

([a; b]);

(1:1:3

1

)

and when considering the problems (1.1.1), (1.1.2

2

) and (1.1.1), (1.1.2

20

)

we will assume that

p

j

2 L

loc

(]a; b]) (j = 0; 1; 2);

�(p

1

) 2 L([a; b]); p

0

2 L

�

2

(p

1

)

([a; b]):

(1:1:3

2

)

Introduce the following de�nitions.
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De�nition 1.1.1. Let i 2 f1; 2g. We will say that w 2 C(]a; b[) is the lower

(upper) function of the problem (1:1:1), (1:1:2

i

) if:

(a) w

0

is of the form w

0

(t) = w

0

(t) + w

1

(t), where w

0

: ]a; b[! R is

absolutely continuous on each segment from ]a; b[ , the function w

1

: ]a; b[!

R is nondecreasing (nonincreasing) and its derivative is almost everywhere

equal to zero;

(b) almost everywhere on ]a; b[ the inequality

w

00

(t) � p

0

(t)w(t) + p

1

(t)w

0

(t) + g(w)(t) + p

2

(t)

�

w

00

(t) � p

0

(t)w(t) + p

1

(t)w

0

(t) + g(w)(t) + p

2

(t)

�

is satis�ed:

(c) there exists the limit w

0

(b�) and

w(a) � c

1

; w

(i�1)

(b�) � c

2

�

w(a) � c

1

; w

(i�1)

(b�) � c

2

�

:

De�nition 1.1.2. Let i 2 f1; 2g. We will say that a two-dimensional vector

function (p

0

; p

1

) : ]a; b[!R

2

belongs to the set V

i;0

(]a; b[) if the conditions

(1:1:3

i

) are ful�lled, the solution of the problem

u

00

(t) = p

0

(t)u(t) + p

1

(t)u

0

(t); (1.1.4)

u(a) = 0; lim

t!a

u

0

(t)

�(p

1

)(t)

= 1

has no zeros in the interval ]a; b[ and u

(i�1)

(b�) > 0.

Note that this de�nition is in a full agreement with that of the set

V

i;0

(]a; b[) given in [23] as the set of three-dimensional vector functions

(p

0

; p

11

; p

12

) : ]a; b[! R

3

if p

11

(t) = p

12

(t) = p

1

(t) almost everywhere on

]a; b[ .

De�nition 1.1.3. Let i 2 f1; 2g and h : C(]a; b[) ! L

loc

(]a; b[) be a con-

tinuous linear operator. We will say that a two-dimensional vector function

(p

0

; p

1

) : ]a; b[!R

2

belongs to the setV

i;0

( ]a; b[ ;h) if the conditions (1.1.3

i

)

are satis�ed and the problem

u

00

(t) = p

0

(t)u(t) + p

1

(t)u

0

(t) � h(u)(t)

u(a) = 0; u

(i�1)

(b�) = 0

has a positive upper function w on the segment [a; b].

De�nition 1.1.4. Let i 2 f1; 2g, � 2 ]0; 1] and h : C(]a; b[) ! L

loc

(]a; b[)

be a continuous linear operator. We will say that a two-dimensional vector

function (p

0

; p

1

) : ]a; b[!R

2

belongs to the set V

i;�

( ]a; b[ ;h) if

(p

0

; p

1

) 2V

i;0

(]a; b[);
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there exists a measurable function q

�

: ]a; b[! [0;+1[ such that

b

Z

a

jG(t; s)jq

�

(s) ds = O

�

(x

�

(t))

as t! a, t! b if i = 1, and as t! b if i = 2, where G is Green's function

of the problem (1.1.4), (1.1.2

i0

) and

x(t) =

t

Z

a

�(p

1

)(s) ds

�

b

Z

t

�(p

1

)(s) ds

�

2�i

for a � t � b;

and the problem

u

00

(t) = p

0

(t)u(t) + p

1

(t)u

0

(t)� h(u)(t)� q

�

(t);

u(a) = 0; u

(i�1)

(b�) = 0

on the interval ]a; b[ has a positive upper function w such that

w(t) = O

�

(x

�

(t))

as t! a, t! b if i = 1 and as t! a if i = 2.

1.1.1. Theorems on the Unique Solvability of the Problems (1.1.1), (1:1:2

i

)

(i = 1; 2).

Theorem 1:1:1

i

. Let i 2 f1; 2g,

p

2

2 L

�

i

(p

1

)

([a; b]) (1:1:5

i

)

and let the constants �, � 2 [0; 1] connected by the inequality

�+ � � 1 (1.1.6)

be such that

(p

0

; p

1

) 2V

i;�

(]a; b[ ;h); (1:1:7

i

)

where

h 2 L

�

C

x

�
;L

x

�

�(p

1

)

�

\ L

�

C;L

�

i

(p

1

)

�

(1:1:8

i

)

is a nonnegative operator and

x(t) =

t

Z

a

�(p

1

)(s) ds

�

b

Z

t

�(p

1

)(s) ds

�

2�i

for a � t � b: (1:1:9

i

)
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Let, moreover, a continuous linear operator g :C(]a; b[)!L

�

i

(p

1

)

([a; b]) be

such that for any function u 2 C(]a; b[) almost everywhere in the interval

]a; b[ the inequality

jg(u)(t)j � h(juj)(t) (1.1.10)

is satis�ed. Then the problem (1:1:1), (1:1:2

i

) has one and only one solu-

tion.

Theorem 1:1:1

i0

. Let i 2 f1; 2g and let the constants � 2 [0; 1[, � 2 ]0; 1]

connected by the inequality (1:1:6) be such that

p

2

2 L

x

1��

�(p

1

)

�

[a; b]

�

(1.1.11)

and the functions p

0

; p

1

: ]a; b[!R satisfy the inclusion (1:1:7

i

), where

h 2 L

�

C

x

� ;L
x

�

�(p

1

)

�

(1.1.12)

is a nonnegative operator and the function x : ]a; b[!R

+

is de�ned by the

equality (1:1:9

i

). Let, moreover, a continuous linear operator g :C

x

� (]a; b[)!

L
x

�

�(p

1

)

([a; b]) be such that for any function u 2 C

x

� (]a; b[) almost everywhere

in the interval ]a; b[ the inequality (1:1:10) is satis�ed. Then the problem

(1:1:1), (1:1:2

i0

) has one and only one solution in the space C

x

� (]a; b[).

Remark 1:1:1

i

. Let i 2 f1; 2g and all the requirements of Theorem 1.1.1

i

be satis�ed. Then for any function v

0

2 C(]a; b[) there exists a unique

sequence v

n

: [a; b]! R, n 2 N, such that for every n 2 N, v

n

is a solution

of the problem

v

00

(t) = p

0

(t)v

1

(t) + p

1

(t)v

0

(t) + g(v

n�1

)(t) + p

2

(t);

v(a) = c

1

; v

i�1

(b�) = c

2

;

(1:1:13

i

)

and uniformly on ]a; b[

lim

n!1

(v

n

(t)� u(t)) = 0; lim

n!1

�

i

(p

1

)(t)(v

0

n

(t)� u

0

(t)) = 0; (1.1.14)

where u is a solution of the problem (1.1.1), (1.1.2

i

).

Remark 1:1:1

i0

. Let i 2 f1; 2g and all the requirements of Theorem 1.1.1

i0

be satis�ed. Then for any function v

0

2 C

x

� (]a; b[) there exists a unique

sequence v

n

: [a; b]! R, n 2 N, such that for every n 2 N, v

n

is a solution

of the problem

v

00

(t) = p

0

(t)v(t) + p

1

(t)v

0

(t) + g(v

n�1

)(t) + p

2

(t);

v(a) = 0; v

i�1

(b�) = 0;

(1:1:13

i0

)

and uniformly on ]a; b[

lim

n!1

v

n

(t) � u(t)

x

�

(t)

= 0; lim

n!1

x

�

(t)

�(p

1

)(t)

(v

0

n

(t)� u

0

(t)) = 0; (1.1.15)
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where u is a solution of the problem (1.1.1), (1.1.2

i0

).

We can easily give examples of the operator h and the function p

1

such

that h 2 L(C

x

� ;L
x

�

�(p

1

)

) and h =2 L(C;L

�

i

(p

1

)

).

Example 1.1.1. Let " > 0, p

1

(t) � 0, h(u)(t) = [(b � t)(t � a)]

�2�"

for

a � t � b and let � : [a; b]! fa; bg be a measurable function.

Example 1.1.2. Let a = �1, b = 1, � = � =

1

5

, p

1

(t) � 0 and h(u)(t) =

(1 � t

2

)

�3

u(� (t)), � (t) =

p

1� (1� t

2

)

10

for �1 � t � 1. Then it is clear

that

�(p

1

)(t) = 1; x(t) = 1� t

2

; x

1=5

(� (t)) = (1� t

2

)

2

for � 1 � t � 1

and

�+ � <

1

2

:

In such a case if u

1

2 C

x

1

5

([�1; 1]) it follows from the inequality

ju

1

(� (t))j � �x

1=5

(� (t)) for � 1 � t � 1;

where

� = sup

n

�

�

�

u

1

(� (t))

x

1=5

(� (t))

�

�

�

: �1 < t < 1

o

;

that

1

Z

�1

x

�

(s)h(u

1

)(s) ds � �

1

Z

�1

(1 � s

2

)

�4=5

ds < +1;

i.e., the condition (1.1.11

i

) is satis�ed.

Let now u

2

(t) � 1. Then u

2

2 C( ]� 1; 1[ ) and

1

Z

�1

x(s)h(u

2

)(s) ds =

1

Z

�1

(1 � s

2

)

�2

ds;

i.e., owing to the fact that the last integral does not exist, the condition

(1.1.8

1

) is violated.

Consider the case where p

0

(t) � 0, p

1

(t) � 0, i.e., when the equation

(1.1.1) has the form

u

00

(t) = g(u)(t) + p

2

(t): (1.1.16)

Then the following theorem is valid.

Theorem 1:1:2

1

. Let  2 [0; 1[,

p

2

2 L

x

([a; b]) (1.1.17)

and

g 2 L(C;L

x



) (1.1.18)
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be a nonnegative operator, where

x(t) = (t � a)(t � b) for a � t � b: (1:1:19

1

)

Let, moreover, there exist constants �, � 2 [0;

1

2

] such that

0 � � < 1� ; (1.1.20)

�+ � �

1

2

(1.1.21)

and

b

Z

a

x

�

(s)g(x

�

)(s) ds < 2

�

16

b� a

�

b� a

4

�

2(�+�)

: (1.1.22)

Then the problem (1:1:16), (1:1:2

1

) has one and only one solution.

Remark 1.1.2. Theorem 1.2.2

1

will remain valid if we replace the condi-

tions (1.1.20) and (1.1.22) respectively by

0 < � < 1� ; (1.1.23)

and

b

Z

a

x

�

(s)g(x

�

)(s) ds � 2

�

16

b� a

�

b� a

4

�

2(�+�)

: (1:1:24

1

)

Theorem 1:1:2

2

. Let  2 [0; 1[ and let a function p

2

and a nonnegative

operator g satisfy respectively the inclusions (1:1:17) and (1:1:18), where

x(t) = t � a for a � t � b: (1:1:19

2

)

Let, moreover, there exist constants �, � 2 [0;

1

2

] such that the conditions

(1:1:20), (1:1:21) are ful�lled and

b

Z

a

x

�

(s)g(x

�

)(s) ds �

8

b� a

�

b� a

4

�

�+�

: (1:1:24

2

)

Then the problem (1:1:16), (1:1:2

2

) has one and only one solution.

Theorem 1:1:2

i0

. Let i 2 f1; 2g,  2 [0; 1[, � 2]0; 1� [,

p

2

2 L

x



([a; b]) (1.1.25)

and let

g 2 L(C

x

�;L

x



) (1.1.26)
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be a nonnegative operator, where the function x is de�ned by the equality

(1:1:19

i

). Let, moreover, there exist constants � 2 [0;

1

2

], � 2]0;

1

2

], such

that

� � � < 1�  (1.1.27)

and the conditions (1:1:21), (1:1:24

i

) are satis�ed. Then the problem

(1:1:16), (1:1:2

i0

) has in the space C

x

�(]a; b[) one and only one solution.

Remark 1.1.3. The condition (1.1.22) is unimprovable in the sense that

it cannot be replaced by the condition

b

Z

a

x

�

(s)g(x

�

)(s) ds < 2

�

16

b� a

�

b� a

4

�

2(�+�)

+ " (1.1.28)

with no matter how small " > 0.

Indeed, let

� = 0; � = 0; a = �

1

2

; b =

1

2

;

� =

"

4(16 + ")

; � = 16�

s

1 +

1

(16 + ")

2

;

g

0

(t) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

64�

2

(16�

2

� (1 + 4t)

2

)

�

3

2

for t 2

i

�

1

4

� �; �

1

4

+ �

h

64�

2

(16�

2

� (1� 4t)

2

)

�

3

2

for t 2

i

1

4

� �;

1

4

+ �

h

0 for

h

�

1

2

;�

1

4

� �

i

[

h

�

1

4

+ �;

1

4

� �

i

[

h

1

4

+ �;

1

2

i

;

p

2

(t) = 0; � (t) = �

4

16 + "

sign t for �

1

2

� t �

1

2

;

and

g(u)(t) = g

0

(t)u(� (t)):

Then the problem (1:1:16), (1:1:2

10

) can be rewritten as

u

00

(t) = g

0

(t)u(� (t)); (1.1.29)

u

�

�

1

2

�

= 0; u

�

1

2

�

= 0: (1.1.30)

Note that for the operator g de�ned in such a way the condition (1:1:18) is

satis�ed for  = 0 and

1

2

Z

�

1

2

g(1)(s) ds =

1

2

Z

�

1

2

g

0

(s) ds = 16 + ";
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i.e., instead of (1:1:22) the condition (1:1:28) is satis�ed. In spite of this

fact we can check directly that the function

u(t) = c

�

t

Z

�

1

2

s

Z

�

1

2

g

0

(�) sign(��)d� ds�

�

4 +

"

4

��

t +

1

2

�

�

is for any c 2 R a solution of the problem (1:1:29), (1:1:30), i.e., the unique

solvability is violated.

1.1.2. E�ective Su�cient Conditions for the Unique Solvability of the Prob-

lem (1.1.1), (1:1:2

i

) (i = 1; 2):

Corollary 1:1:1

1

. Let the function x be de�ned by (1:1:9

1

), the constants

�, � 2 [0; 1] be connected by (1:1:6), the functions p

j

: ]a; b[!R (j = 0; 1; 2)

satisfy (1:1:3

1

), (1:1:5

1

),

[p

0

]

�

2 L
x

�

�(p

1

)

([a; b]) (1.1.31)

and for every function u 2 C(]a; b[) almost everywhere on interval ]a; b[ the

inequality (1:1:10) is satis�ed, where a nonnegative operator h satis�es the

inclusion (1:1:8

1

). Let, moreover,

��

b

Z

t

�(p

1

)(�)d�

�

�

t

Z

a

([p

0

(s)]

�

x

�

(s) + h(x

�

)(s))

�(p

1

)(s)

�

s

Z

a

�(p

1

)(�)d�

�

�

ds+

+

�

t

Z

a

�(p

1

)(�)d�

�

�

b

Z

t

([p

0

(s)]

�

x

�

(s) + h(x

�

)(s))

�(p

1

)(s)

�

b

Z

s

�(p

1

)(�)d�

�

�

ds

�

<

<

4

b

R

a

�(p

1

)(�)d�

�

b

R

a

�(p

1

)(�)d�

2

�

2(�+�)

for a � t � b (1:1:32

1

)

Then the problem (1:1:1), (1:1:2

1

) has one and only one solution.

Corollary 1:1:1

2

. Let the function x be de�ned by (1:1:9

2

), the constants

�, � 2 [0; 1] be connected by (1:1:6), the functions p

j

: ]a; b[!R (j = 0; 1; 2)

satisfy (1:1:3

2

), (1:1:5

2

), (1:1:31) and for every function u 2 C(]a; b[) almost

everywhere in the interval ]a; b[ the inequality (1:1:10) be satis�ed, where a
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nonnegative operator h satis�es (1:1:8

2

). Let, moreover,

t

Z

a

([p

0

(s)]

�

x

�

(s) + h(x

�

)(s))

�(p

1

)(s)

�

s

Z

a

�(p

1

)(�)d�

�

�

ds+

+

�

t

Z

a

�(p

1

)(�)d�

�

�

b

Z

t

([p

0

(s)]

�

x

�

(s) + h(x

�

)(s))

�(p

1

)(s)

ds <

<

�

b

Z

a

�(p

1

)(�)d�

�

�+��1

for a � t � b: (1:1:32

2

)

Then the problem (1:1:1), (1:1:2

2

) has one and only one solution.

Corollary 1:1:1

i0

. Let i 2 f1; 2g, the function x be de�ned by (1:1:9

i

),

the constants � 2 [0; 1[, � 2]0; 1] be connected by (1:1:6), the functions

p

j

: ]a; b[! R (j = 0; 1; 2) satisfy (1:1:3

i

), (1:1:11), (1:1:31) and for any

function u 2 C

x

� (]a; b[) almost everywhere in the interval ]a; b[ the inequality

(1:1:10) be satis�ed, where the nonnegative operator h satis�es the inclusion

(1:1:12). Let, moreover, (1:1:32

i

) be satis�ed. Then the problem (1:1:1),

(1:1:2

i0

) has in the space C

x

� (]a; b[) one and only one solution.

Remark 1.1.4. Corollary 1.1.1

i

remains valid if we replace the conditions

(1.1.8

i

) and (1:1:32

i

) respectively by the conditions

h 2 L(C;L

�

i

(p

1

)

); (1.1.33)

and

b

Z

a

([p

0

(s)]

�

x

�+�

(s) + x

�

(s)h(x

�

)(s))

�(p

1

)(s)

ds <

<

4

b

R

a

�(p

1

)(�)d�

0

B

B

B

@

b

R

a

�(p

1

)(�)d�

2

1

C

C

C

A

2(�+�)

(1:1:34

1

)

for i = 1 or by

b

Z

a

([p

0

(s)]

�

x

�+�

(s)+x

�

(s)h(x

�

)(s))

�(p

1

)(s)

ds<

�

b

Z

a

�(p

1

)(�)d�

�

�+��1

(1:1:34

2

)

for i = 2, where the function x is de�ned by (1:1:9

i

).

Remark 1:1:4

0

. Corollary 1.1.1

i0

remains valid if we replace (1.1.32

i

) by

(1.1.34

i

) and reject the condition (1:1:12) at all.
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Consider the case where the equation (1.1.1) has the form

u

00

(t) = p

0

(t)u(t) + p

1

(t)u

0

(t) +

n

X

k=1

g

k

(t)u(�

k

(t)) + p

2

(t): (1.1.35)

Corollary 1:1:2

1

. Let the function x be de�ned by (1:1:9

1

), the constants

�, � 2 [0; 1] be de�ned by the inequality (1:1:6), the functions p

j

: ]a; b[!R

(j = 0; 1; 2) satisfy the conditions (1:1:3

1

), (1:1:5

1

), (1:1:31), �

k

: [a; b] !

[a; b] (k = 1; : : : ; n) be measurable functions and

g

k

x

�

(�

k

) 2 L
x

�

�(p

1

)

([a; b]); g

k

2 L

�

1

(p

1

)

([a; b]) (k = 1; : : : ; n): (1:1:36

1

)

Let, moreover,

�

b

Z

t

�(p

1

)(�)d�

�

�

t

Z

a

([p

0

(s)]

�

x

�

(s) +

n

P

k=1

jg

k

(s)jx

�

(�

k

(s)))

�(p

1

)(s)

�

�

�

s

Z

a

�(p

1

)(�)d�

�

�

ds +

�

t

Z

a

�(p

1

)(�)d�

�

�

�

�

b

Z

t

([p

0

(s)]

�

x

�

(s) +

n

P

k=1

jg

k

(s)jx

�

(�

k

(s)))

�(p

1

)(s)

�

b

Z

s

�(p

1

)(�)d�

�

�

ds <

<

4

b

R

a

�(p

1

)(�)d�

�

b

R

a

�(p

1

)(�)d�

2

�

2(�+�)

for a � t � b: (1:1:37

1

)

Then the problem (1:1:35), (1:1:2

1

) has one and only one solution.

Corollary 1:1:2

2

. Let the function x be de�ned by (1:1:9

2

), the constants

�, � 2 [0; 1] be connected by (1:1:6), the functions p

j

: ]a; b[! R (j =

0; 1; 2) satisfy (1:13

2

), (1:1:5

2

), (1:1:31), �

k

: [a; b]! [a; b] (k = 1; : : : ; n) be

measurable functions and

g

k

x

�

(�

k

) 2 L
x

�

�(p

1

)

([0; b]); g

k

2 L

�

2

(p

1

)

([a; b]) (k = 1; : : : ; n): (1:1:36

2

)

Let, moreover,

t

Z

0

[p

0

(s)]

�

x

�

(s) +

n

P

k=1

jg

k

(s)jx

�

(�

k

(s))

�(p

1

)(s)

�

s

Z

a

�(p

1

)(�)d�

�

�

ds +
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+

�

t

Z

a

�(p

1

)(�)d�

�

�

b

Z

t

[p

0

(s)]

�

x

�

(s) +

n

P

k=1

jg

k

(s)jx

�

(�

k

(s))

�(p

1

)(s)

ds <

<

�

b

Z

a

�(p

1

)(�)d�

�

�+��1

for a � t � b: (1:1:37

2

)

Then the problem (1:1:35), (1:1:2

2

) has one and only one solution.

Corollary 1:1:2

i0

. Let i 2 f1; 2g, the function x be de�ned by (1:1:9

i

),

the constants � 2 [0; 1[, � 2]0; 1] be connected by the inequality (1:1:6), the

functions p

j

: ]a; b[!R (j = 0; 1; 2) satisfy the conditions (1:1:3

i

), (1:1:11),

(1:1:31), �

k

: [a; b]! [a; b] (k = 1; : : : ; n) be measurable functions and

g

k

x

�

(�

k

) 2 L
x

�

�(p

1

)

([a; b]) (k = 1; : : : ; n): (1.1.38)

Let, moreover, the conditions (1:1:37

i

) be satis�ed. Then the problem

(1:1:35), (1:1:2

i0

) has in the space C

x

� (]a; b[) one and only one solution.

Remark 1.1.5. Corollary 1.1.2

i

remains valid if we replace the conditions

(1.1.36

i

) and (1.1.37

i

) respectively by the conditions

g

k

2 L

�

i

(p

1

)

([a; b]) (k = 1; : : : ; n) (1.1.39)

and

b

Z

a

[p

0

(s)]

�

x

�+�

(s) + x

�

n

P

k=1

jg

k

(s)jx

�

(�

k

(s))

�(p

1

)(s)

ds <

<

4

b

R

a

�(p

1

)(�)d�

0

B

B

B

@

b

R

a

�(p

1

)(�)d�

2

1

C

C

C

A

2(�+�)

(1:1:40

1

)

for i = 1 or by

b

Z

a

[p

0

(s)]

�

x

�+�

(s) + x

�

(s)

n

P

k=1

jg

k

(s)jx

�

(�

k

(s))

�(p

1

)(s)

ds <

<

�

b

Z

a

�(p

1

)(�)d�

�

�+��1

(1:1:40

2

)

for i = 2, where the function x is de�ned by (1.1.9

i

).
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Remark 1:1:5

0

. Corollary 1.1.2

i0

remains valid if we replace (1:1:37

i

) by

(1:1:40

i

) and reject the condition (1.1.38) at all.

Corollary 1:1:3

1

. Let the function x be de�ned by (1:1:9

1

), the constants

�, � 2 [0; 1] be connected by (1:1:6), the functions g

k

, p

j

: ]a; b[! R (k =

1; : : : ; n; j = 0; 1; 2) satisfy (1:1:3

1

), (1:1:5

1

), (1:1:36

1

), where �

k

: [a; b]!

[a; b] (k = 1; : : : ; n) are measurable functions and

p

0

(t) � 0 for a < t < b: (1.1.41)

Let, moreover, for any m 2 f1; : : : ; ng the condition

n

X

k=1

�

m

(t)

Z

a

jg

k

(s)j

�(p

1

)(s)

�

�

k

(s)

Z

a

�(p

1

)(�)d�

b

Z

�

k

(s)

�(p

1

)(�)d�

�

�

�

�

�

s

Z

a

�(p

1

)(�)d�

�

�

ds

�

b

Z

�

m

(t)

�(p

1

)(�)d�

�

�

+

+

n

X

k=1

b

Z

�

m

(t)

jg

k

(s)j

�(p

1

)(s)

�

�

k

(s)

Z

a

�(p

1

)(�)d�

b

Z

�

k

(s)

�(p

1

)(�)d�

�

�

�

�

�

b

Z

s

�(p

1

)(�)d�

�

�

ds

�

�

m

(t)

Z

a

�(p

1

)(�)d�

�

�

<

<

4

b

R

a

�(p

1

)(�)d�

0

B

B

B

@

b

R

a

�(p

1

)(�)d�

2

1

C

C

C

A

2(�+�)

; a � t � b; (1:1:42

1

)

be valid. Then the problem (1:1:35), (1:1:2

1

) has one and only one solution.

Corollary 1:1:3

2

. Let the function x be de�ned by the equality (1:1:9

2

),

the constants �, � 2 [0; 1] be connected by (1:1:6), the functions g

k

; p

j

:

]a; b[!R (k = 1; : : : ; n; j = 0; 1; 2) satisfy the conditions (1:1:3

2

), (1:1:5

2

),

(1:1:36

2

), (1:1:41), where �

k

: [a; b] ! [a; b] (k = 1; : : : ; n) are measurable

functions. Let, moreover, for any m 2 f1; : : : ; ng the condition

n

X

k=1

�

m

(t)

Z

a

jg

k

(s)j

�(p

1

)(s)

�

�

k

(s)

Z

a

�(p

1

)(�)d�

�

�

�

s

Z

a

�(p

1

)(�)d�

�

�

ds+

+

n

X

k=1

b

Z

�

m

(t)

jg

k

(s)j

�(p

1

)(s)

�

�

k

(s)

Z

a

�(p

1

)(�)d�

�

b

ds

�

�

m

(t)

Z

a

�(p

1

)(s) ds

�

�

<



19

<

�

b

Z

a

�(p

1

)(�)d�

�

�+��1

; a � t � b; (1:1:42

2

)

be valid. Then the problem (1:1:35), (1:1:2

2

) has one and only one solution.

Corollary 1:1:3

i0

. Let i 2 f1; 2g, the function x be de�ned by (1:1:9

i

),

the constants � 2 [0; 1[, � 2]0; 1] be connected by (1:1:6), the functions g

k

,

p

j

: ]a; b[! R (k = 1; : : : ; n; j = 0; 1; 2) satisfy (1:1:3

i

), (1:1:11), (1:1:38),

(1:1:41), where �

k

: [a; b] ! [a; b] (k = 1; : : : ; n) are measurable functions.

Let, moreover, for any m 2 f1; : : : ; ng the condition (1:1:42

i

) be valid. Then

the problem (1:1:35), (1:1:2

i0

) has in the space C

x

�
(]a; b[) one and only one

solution.

Remark 1.1.6. The condition (1.1.42

i

) consisting of n separate inequali-

ties can be replaced by one inequality

n

X

k=1

t

Z

a

jg

k

(s)j

�(p

1

)(s)

�

�

k

(s)

Z

a

�(p

1

)(�)d�

b

Z

�

k

(s)

�(p

1

)(�)d�

�

�

�

�

�

s

Z

a

�(p

1

)(�)d�

�

�

ds

�

b

Z

t

�(p

1

)(�)d�

�

�

+

+

n

X

k=1

b

Z

t

jg

k

(s)j

�(p

1

)(s)

�

�

k

(s)

Z

a

�(p

1

)(�)d�

b

Z

�

k

(s)

�(p

1

)(�)d�

�

�

�

�

�

b

Z

s

�(p

1

)(�)d�

�

�

ds

�

t

Z

a

�(p

1

)(�)d�

�

�

<

4

b

R

a

�(p

1

)(�)d�

�

�

0

B

B

B

@

b

R

a

�(p

1

)(�)d�

2

1

C

C

C

A

2(�+�)

for t 2 �

�

1

;:::;�

n

(1:1:43

1

)

if i = 1 and

n

X

k=1

t

Z

a

jg

k

(s)j

�(p

1

)(s)

�

�

k

(s)

Z

a

�(p

1

)(�)d�

�

�

�

s

Z

a

�(p

1

)(�)d�

�

�

ds+

+

n

X

k=1

b

Z

t

jg

k

(s)j

�(p

1

)(s)

�

�

k

(s)

Z

a

�(p

1

)(�)d�

�

�

ds

�

t

Z

a

�(p

1

)(�)d�

�

�

<



20

<

�

b

Z

a

�(p

1

)(�)

�

�+��1

for t 2 �

�

1

;:::;�

n

(1:1:43

2

)

if i = 2, where

�

�

1

;:::;�

n

=

n

[

k=1

�

�

k

(t)j a � t � b

	

:

For clearness we will give one corollary for the equation

u

00

(t) = g

0

(t)u(� (t)) + p

2

(t): (1.1.44)

Corollary 1:1:4

i

. Let i 2 f1; 2g, the constants �, � 2 [0; 1] be connected

by the inequality (1:1:6), � : [a; b]! [a; b] be a measurable function and

p

2

; g

0

2 L

x

([a; b]); (1.1.45)

where

x(t) = (a � t)(b� t)

2�i

for a � t � b: (1.1.46)

Let, moreover,

b

Z

a

jg(s)j

�

(� (s)� a)(b� � (s))

2�i

�

�

�

(s � a)(b� s)

2�i

�

�

ds <

<

�

2

i

�

2(1����)

(b� a)

2

i

(�+�)�1

: (1:1:47

i

)

Then the problem (1:1:44), (1:1:2

i

) has one and only one solution.

Corollary 1:1:4

i0

. Let i 2 f1; 2g, the constants � 2 [0; 1[, � 2]0; 1] be

connected by (1:1:6), � : [a; b]! [a; b] a be measurable function,

p

2

2 L

x

1�� ([a; b]); (1.1.48)

where the function x is de�ned by (1:1:46). Let, moreover, the condition

(1:1:47

i

) be satis�ed. Then the problem (1:1:44), (1:1:2

i0

) has one and only

one solution in the space C

x

� (]a; b[).

Remark 1.1.7. In the case of the equation

u

00

(t) = g

0

(t)u(t) + p

2

(t) (1.1.49)

the conditions (1.32

1

), (1.1.34

1

), (1.1.40

1

), (1.1.42

1

), (1.1.47

1

) will take for

� = � = 0 the form

b

Z

a

jg

0

(s)j ds <

4

b� a

:
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As is known, this condition is unimprovable in the sense that no matter how

small " > 0 is, the inequality

b

Z

a

jg

0

(s)j ds �

4

b� a

+ "

does not guarantee the unique solvability of the problem (1.1.49), (1.1.2

1

).

This implies that the corollaries corresponding to the above conditions are

unimprovable in the above-mentioned sense.

Corollary 1:1:5

1

. Let the function x be de�ned by (1:1:9

1

), the constants

�, � 2 [0; 1] be connected by the inequality (1:1:6), the functions p

j

:]a; b[!R

(j = 0; 1; 2) satisfy the conditions (1:1:3

1

), (1:1:5

1

) and for any function u 2

C(]a; b[) almost everywhere in the interval ]a; b[ (1:1:10) be satis�ed, where

the nonnegative operator h satis�es the inclusion (1:1:8

1

). Let, moreover,

in case � < 1,

x(t)

�

2

(p

1

)(t)

�

h(x

�

)(t)

x

�

(t)

� p

0

(t)

�

� 2�

2

for a < t < b; (1:1:50

1

)

and in case � = 1,

ess sup

t2]a;b[

h

x(t)

�

2

(p

1

)(t)

�

h(x)(t)

x(t)

� p

0

(t)

�i

< 2 (1:1:51

1

)

be satis�ed. Then the problem (1:1:1), (1:1:2

1

) has one and only one solu-

tion.

Remark 1.1.8. The condition (1.1.51) is unimprovable in the sense that

the validity of Corollary 1.1.5

1

is violated if we replace it by the condition

ess sup

t2]a;b[

h

x(t)

�

2

(p

1

)(t)

�

h(x)(t)

x(t)

� p

0

(t)

�i

� 2�

2

: (1.1.52)

Indeed, let h(u) � 0, p

1

� 0, p

2

� 0. Then

�(p

1

)(t) = 1 and x(t) = (b� t)(t� a) for a � t � b

and the condition (1.1.52) will take the form

ess sup

t2]a;b[

�

� (b� t)(t� a)p

0

(t)

�

� 2: (1.1.53)

If

p

0

(t) = �

2

(b � t)(t � a)

;

then the condition (1.1.53) is satis�ed in the form of the equality, and at

the same time, for any c 2 R the function c(b� t)(t� a) is a solution of the

equation

u

00

(t) = �

2

(b � t)(t � a)

u(t); (1.1.54)
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that is, the uniqueness of solution of the problem (1.1.54), (1.1.2

i0

) is vio-

lated although the condition (1.1.52) along with the other requirements of

Corollary 1.1.5

1

is satis�ed.

Corollary 1:1:5

2

. Let the function x be de�ned by (1:1:9

2

), the constants

�, � 2 [0; 1] be connected by (1:1:6), the functions p

j

: ]a; b[! R (j =

0; 1; 2) satisfy (1:1:3

2

), (1:1:5

2

) and for any function u 2 C(]a; b[) almost

everywhere in the interval ]a; b[ the inequality (1:1:10) be satis�ed, where a

nonnegative operator h satis�es the inclusion (1:1:8

2

). Let, moreover,

ess sup

t2]a;b[

�

x

2�[�]

(t)

�

2

(p

1

)(t)

�

h(x

�

)(t)

x

�

(t)

� p

0

(t)

�

�

< �(1 � �); (1:1:50

2

)

x

2��

�

2

(p

1

)

[p

0

]

�

2 L

1

([a; b]) (1.1.55)

if 0 < � � 1 and

0 � p

0

(t)� h(1)(t) for a < t < b (1:1:51

2

)

if � = 0 be satis�ed. Then the problem (1:1:1), (1:1:2

2

) has one and only

one solution.

Remark 1.1.9. In the case � = 1, the condition (1:1:55) follows automat-

ically from the condition (1.1.50

2

).

Corollary 1:1:5

10

. Let the function x be de�ned by (1:1:9

1

), the constants

� 2 [0; 1[, � 2]0; 1] be connected by (1:1:6), the functions p

j

: ]a; b[!R (j =

0; 1; 2) satisfy (1:1:3

1

), (1:1:11) and for any function u 2 C

x

� (]a; b[) almost

everywhere on the interval ]a; b[ the inequality (1:1:10) be satis�ed, where

the nonnegative operator h satis�es the inclusion (1:1:12). Let, moreover,

in case 0 < � < 1 the condition (1:1:50

1

) and in case � = 1 the condition

(1:1:51

1

) be satis�ed. Then the problem (1:1:1), (1:1:2

10

) has in the space

C

x

� (]a; b[) one and only one solution.

Corollary 1:1:5

20

. Let the function x be de�ned by (1:1:9

2

), the constants

� 2 [0; 1[, � 2]0; 1] be connected by (1:1:6), the functions p

j

: ]a; b[!R (j =

0; 1; 2) satisfy (1:1:3

2

), (1:1:11) and for any function u 2 C

x

� (]a; b[) almost

everywhere on the interval ]a; b[ the inequality (1:1:10) be satis�ed, where

the nonnegative operator h satis�es the inclusion (1:1:12). Let, moreover,

the conditions (1:1:50

2

) and (1:1:55) be satis�ed. Then the problem (1:1:1),

(1:1:2

20

) has one and only one solution in the space C

x

� (]a; b[).

Corollary 1:1:6

1

. Let the functions �

k

: [a; b] ! [a; b] (k = 1; : : : ; n) be

measurable and the functions p

j

, p

k

2 L

loc

(]a; b[) (k = 1; : : : ; n; j = 0; 1; 2)

as well as the constants �

l;m

2]0;+1[, �

m

2 [0; 1] (l;m = 1; 2), c 2]a; b[ be

such that the conditions (1:1:3

1

), (1:1:5

1

) are satis�ed,

g

k

2 L

�

1

(p

1

)

([a; b]) (1:1:56

1

)
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and

+1

Z

0

ds

�

11

+ �

12

s+ s

2

>

(c � a)

1��

1

1� �

1

;

+1

Z

0

ds

�

21

+ �

22

s+ s

2

>

(b� c)

1��

2

1� �

2

:

(1:1:57

1

)

Let, moreover,

(t� a)

2�

2

h

p

0

(t) �

n

X

k=1

jg

k

(t)j

i

� ��

11

;

(t� a)

�

1

h

p

1

(t) +

�

1

t� a

�

n

X

k=1

jg

k

(t)j(�

k

(t) � t)

i

� ��

12

for a < t < c;

(b� t)

2�

2

h

p

0

(t) �

n

X

k=1

jg

k

(t)j

i

� ��

12

;

(b� t)

�

2

h

p

1

(t) �

�

2

b� t

�

n

X

k=1

jg

k

(t)j(�

k

(t) � t)

i

� �

22

for c � t < b:

(1:1:58

1

)

Then the problem (1:1:35), (1:1:2

1

) has one and only one solution.

Corollary 1:1:6

2

. Let the functions �

k

: [a; b] ! [a; b] (k = 1; : : : ; n) be

measurable and the functions ep

1

, p

j

, g

k

2 L

loc

(]a; b]) (k = 1; : : : ; n; j =

0; 1; 2) as well as the constants �

l;m

2]0;+1[, (l;m = 1; 2), �

r

2 [0; 1]

(r = 1; 2; 3), c 2 ]max(a; b�1); b], " > 0 and the dependent on them constant

� 2 [0; 1[ be such that the conditions

�( ep

1

) 2 L([a; b]); p

j

�

2

( ep

1

) 2 L([a; b]) (j = 0; 2);

g

k

�

2

( ep

1

) 2 L([a; b]) (k = 1; : : : ; n)

(1:1:56

2

)

and

+1

Z

"

ds

�

11

+ �

12

s+ s

2

>

(c � a)

1��

1

1� �

1

;

+1

Z

0

ds

�

21

+ �

22

s+ s

2

>

(b� c)

1��

2

1� �

2

(1:1:57

2

)
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are satis�ed. Let, moreover,

(t� a)

2�

2

h

p

0

(t) �

n

X

k=1

jg

k

(t)j

i

� ��

11

;

(t� a)

�

1

h

ep

1

(t) +

�

1

t� a

�

n

X

k=1

jg

k

(t)j(�

k

(t) � t)

i

� ��

12

for a < t < c;

(b� t)

�

2

��

3

h

p

0

(t) �

n

X

k=1

jg

k

(t)j

i

� ���

21

;

(b� t)

�

2

h

ep

1

(t) +

�

3

b� t

�

n

X

k=1

jg

k

(t)j(�

k

(t) � t)

i

� �

22

for c � t < b:

(1:1:58

2

)

Then for any function p

1

2 L

loc

(]a; b]) such that

p

1

(t) � ep

1

(t) for a < t < b; (1.1.59)

the problem (1:1:35), (1:1:2

2

) has one and only one solution.

Consider now corollaries of Theorems 1.1.2

i

and 1.1.2

i0

for the equation

u

00

(t) =

n

X

k=1

g

k

(t)u(�

k

(t)) + p

2

(t): (1.1.60)

Corollary 1:1:7

1

. Let  2 [0; 1[, the function p

2

: ]a; b[! R satisfy the

inclusion (1:1:17),

g

k

2 L

x



([a; b]) (k = 1; : : : ; n) (1.1.61)

and

g

k

(t) � 0 (k = 1; : : : ; n) for a < t < b; (1.1.62)

where

x(t) = (b � t)(t � a) a � t � b: (1:1:63

1

)

Let, moreover, there exist constants �, � 2 [0;

1

2

] such that

0 � � < 1� ; �+ � �

1

2

(1.1.64)

and

n

X

k=1

b

Z

a

g

k

(s)(b � �

k

(s))

�

(�

k

(s) � a)

�

(b� s)

�

(s� a)

�

ds <

< 2

�

16

b� a

�

b� a

4

�

2(�+�)

: (1.1.65)
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Then the problem (1:1:60), (1:1:2

1

) has one and only one solution.

Remark 1.1.10. Corollary 1.1.7

1

remains valid if for � 2]0; 1� [ we re-

place the condition (1.1.65) by the following one:

n

X

k=1

b

Z

a

g

k

(s)(b � �

k

(s))

�

(�

k

(s) � a)

�

(b� s)

�

(s� a)

�

ds �

� 2

�

16

b� a

�

b� a

4

�

2(�+�)

: (1:1:66

1

)

Corollary 1:1:7

2

. Let  2 [0; 1[, the functions p

2

, p

k

: ]a; b[! R (k =

1; : : : ; n) satisfy the conditions (1:1:17), (1:1:61), and (1:1:62), where

x(t) = t � a for a � t � b: (1:1:63

2

)

Let, moreover, there exist constants �, � 2 [0;

1

2

] such that the conditions

(1:1:64) and

n

X

k=1

b

Z

a

g

k

(s)(�

k

(s) � a)

�

(s� a)

�

ds �

8

b� a

�

b� a

4

�

�+�

(1:1:66

2

)

are satis�ed. Then the problem (1:1:60), (1:1:2

2

) has one and only one

solution.

Corollary 1:1:7

i0

. Let i 2 f1; 2g,  2 [0; 1[, � 2]0; 1� [,

p

2

2 L

x



([a; b]); g

k

x

�

(�

k

) 2 L

x



([a; b]) (k = 1; : : : ; n);

and the condition (1:1:62) be satis�ed, where the function x is de�ned by

(1:1:63

i

). Let, moreover, there exist constants � 2 [0;

1

2

], � 2]0;

1

2

] such that

the conditions

� � � < 1� ; �+ � �

1

2

and (1:1:66

i

) are satis�ed. Then the problem (1:1:60), (1:1:2

i0

) has in the

space C

x

�(]a; b[) one and only one solution.

x

1.2. Auxiliary Propositions

1.2.1. Statement of Auxiliary Problems and Some of Their Properties. Let

us consider the linear equations

v

00

(t) = p

0

(t)v(t) + p

1

(t)v

0

(t) � h(v)(t) + p

2

(t); (1.2.1)

v

00

(t) = p

0

(t)v(t) + p

1

(t)v

0

(t) � h(v)(t) (1:2:1

0

)

under the boundary conditions

u(a) = c

1

; u(b) = c

2

; (1:2:2

1

)
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or

u(a) = c

1

; u

0

(b�) = c

2

; (1:2:2

2

)

as well as under the conditions

v(a) = 0; v(b) = 0; (1:2:2

10

)

v(a) = 0; v

0

(b�) = 0; (1:2:2

20

)

where c

1

, c

2

2 R and h : C( ]a; b[ ) ! L

loc

(]a; b[) is a continuous linear

operator and

p

j

2L

loc

(]a; b[) (j = 0; 1; 2); �(p

1

)2L([a; b]); p

0

2L

�

1

(p

1

)

([a; b]) (1:2:3

1

)

or

p

j

2L

loc

(]a; b]) (j = 0; 1; 2); �(p

1

)2L([a; b]); p

0

2L

�

2

(p

1

)

([a; b]): (1:2:3

2

)

For this purpose we will need the homogeneous equation

v

00

(t) = p

0

(t)v(t) + p

1

(t)v

0

(t) (1.2.4)

under the initial conditions

v(a) = 0; lim

t!a

v

0

(t)

�(p

1

)(t)

= 1; (1.2.5)

v(b) = 0; lim

t!b

v

0

(t)

�(p

1

)(t)

= �1; (1:2:5

1

)

or

v(b) = 1; v

0

(b�) = 0: (1:2:5

2

)

The facts mentioned in the remarks below or their analogues have been

proved in [23], pp. 110{158.

Remark 1.2.1. Let measurable functions p

0

, p

1

: ]a; b[! R satisfy the

conditions (1.2.3

1

) and the functions v

1

and v

2

be respectively solutions

of the problems (1.2.4), (1.2.5) and (1.2.4), (1.2.5

1

). Then any linearly

independent with v

j

, (j = 1; 2) solution ev of the equation (1.2.4) satis�es

the condition

ev(a) 6= 0 for j = 1

and

ev(b) 6= 0 for j = 2:
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Remark 1.2.2. Let i 2 f1; 2g and

(p

0

; p

1

) 2V

i;0

(]a; b[): (1:2:6

i

)

Then the problem (1.2.4), (1:2:2

i0

) has only the trivial solution and the

unique Green's function G can be represented as:

G(t; s) =

8

>

>

<

>

>

:

�

v

2

(t)v

1

(s)

v

2

(a)�(p

1

)(s)

for a � s < t � b;

�

v

2

(s)v

1

(t)

v

2

(a)�(p

1

)(s)

for a � t < s � b;

(1.2.7)

where v

1

and v

2

are respectively the solutions of the problems (1.2.4), (1.2.5)

and (1.2.4), (1.2.5

i

), and

G(t; s) < 0 for (t; s) 2 ]a; b[� ]a; b[ ; (1.2.8)

G(a; s) = 0; G(b; s) = i� 1 for a � s � b: (1:2:9

i

)

Remark 1.2.3. Let i 2 f1; 2g and the inclusion (1.2.6

i

) be satis�ed. Then

there exist constants c

�

, d

�

2 R

+

such that the estimates

d

�

�

v

1

(t)

t

R

a

�(p

1

)(s) ds

� c

�

; d

�

�

v

2

(t)

(

b

R

t

�(p

1

)(s) ds)

2�i

� c

�

(1:2:10

i

)

for a < t < b;

jv

0

1

(t)j

�(p

1

)(t)

� 1 + c

�

t

Z

a

jp

0

(s)j�

2

(p

1

)(s) ds;

jv

0

2

(t)j

�(p

1

)(t)

� 2� i + c

�

b

Z

t

jp

0

(s)j

�(p

1

)(s)

�

b

Z

s

�(p

1

)(�) d�

�

2�i

ds

for a � t < b

(1:2:11

i

)

are valid, where v

1

and v

2

are respectively the solutions of the problems

(1.2.4), (1.2.5) and (1.2.4), (1.2.5

i

), and

�

�

�

@

j�1

G(t; s)

@t

j�1

�

�

�

�

� c

�

�

i

(p

1

)(s)

[�

i

(p

1

)(t)]

j�1

(j = 1; 2) for (t; s) 2]a; b[� ]a; b[ (t 6= s): (1:2:12

i

)

Remark 1.2.4. Let i 2 f1; 2g, the conditions (1.2.3

i

) be satis�ed and the

problem (1.2.4), (1.2.2

i

) have lower w

1

and upper w

2

functions such that

w

1

(t) � w

2

(t) for a � t � b:

Then the problem (1.2.4), (1.2.2

i

) has at least one solution v such that

w

1

(t) � v(t) � w

2

(t) for a � t � b:
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Remark 1.2.5. Let i 2 f1; 2g and the inclusion (1.2.6

i

) be satis�ed. Then

every upper function w of the problem (1.2.4), (1:2:2

i0

) is nonnegative in

the interval ]a; b[; moreover, if

w(a) +w

(i�1)

(b�) 6= 0;

then w is positive on the interval ]a; b[.

Remark 1.2.6. Let i 2 f1; 2g, the functions p

0

, p

1

: ]a; b[!R satisfy the

conditions (1.2.3

i

) and

p

0

(t) � 0 for a < t < b:

Then the inclusion (1.2.6

i

) is valid.

Lemma 1.2.1. Let i 2 f1; 2g and

h 2 L(C;L

�

i

(p

1

)

) (1:2:13

i

)

where h is a nonnegative operator. Then

V

i;0

(]a; b[;h)�V

i;0

(]a; b[):

Proof. Let (p

0

; p

1

) 2 V

i;0

(]a; b[;h). Then the problem (1.2.1

0

), (1.2.2

i0

)

has a positive upper function w which because of the nonnegativeness of

the operator h will at the same time be an upper function of the problem

(1.2.4), (1.2.2

i0

).

Consider �rst the case i = 1. For the equation (1.2.4) we pose the

problem

v(a) = 0; v(b) = w(b); (1.2.14)

for which �(t) � 0 and w are respectively lower and upper functions. Then

by virtue of Remark 1.2.4, the problem (1.2.4), (1.2.14) has a solution v

0

such that

0 � v

0

(t) � w(t) for a � t � b:

If we assume that v

0

(t

0

) = 0 for some t

0

2 ]a; b[ , then we will get the

contradiction with the unique solvability of the Cauchy problem, i.e.,

v

0

(t) > 0 for a < t � b: (1.2.15)

As is seen from Remark 1.2.1 and the conditions (1.2.14) that v

1

a solution

of the problem (1.2.4), (1.2.5

1

), and v

0

are linearly dependent, hence by

virtue of (1.2.15),

v

1

(t) > 0 for a < t � b;

i.e., as is seen from De�nition 1.1.2, (p

0

; p

1

) 2V

1;0

(]a; b[).

Let now i = 2, and for the equation (1.2.4) we pose the initial problem

v(b) = 0; v

0

(b�) = �1
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which, with regard for the conditions (1.2.3

2

), has a unique solution ev de-

�ned on the whole interval [a; b]. Then we choose " > 0 such that the

inequality

"v(t) < w(t) for a < t < b (1.2.16)

is satis�ed; this is possible because the function w is positive. It is clear

from (1.2.16) that

w

1

(t) = w(t)� "v(t)

is an upper function of the problem (1.2.4), (1.2.2

20

) and

w

0

1

(b�) > 0; w

1

(t) > 0 for a � t � b:

We consider now for the equation (1.2.4) the problem

v(a) = 0; v

0

(b�) = w

0

1

(b�); (1.2.17)

for which �(t) � 0 and w

1

are respectively lower and upper functions. Hence

by virtue of Remark 1.2.4, the problem (1.2.4), (1.2.17) has a solution v

0

such that

0 � v

0

(t) � w

1

(t) for a < t < b

and

v

0

(a) = 0; v

0

(b) > 0; v

0

0

(b�) > 0:

Reasoning in the same way as for i = 1, we see that (p

0

; p

1

) 2V

2;0

(]a; b[).

Along with Lemma 1.2.1 we have proved the following

Lemma 1.2.2. Let i 2 f1; 2g, the functions p

0

, p

1

: ]a; b[! R satisfy the

conditions (1:2:3

i

) and, moreover, let the problem (1:2:4), (1:2:2

i0

) have a

positive upper function. Then the inclusion (1:2:6

i

) is satis�ed.

Lemma 1.2.3. Let i 2 f1; 2g, the functions p

0

, p

1

: ]a; b[! R satisfy

the inclusion (1:2:6

i

) and the nonnegative operator h satisfy the inclusion

(1:2:13

i

). Let, moreover, �

0

2 C(]a; b[) such that

�

0

(t) > 0 for a < t < b (1.2.18)

and

sup

n

1

�

0

(t)

b

Z

a

jG(t; s)jh(�

0

)(s)ds : a < t < b

o

< 1; (1.2.19)

where G is Green's function of the problem (1:2:4), (1:2:2

i0

). Then there

exists a continuous function � : [a; b]! R

+

such that

max

n

1

�(t)

b

Z

a

jG(t; s)jh(�)(s)ds : a � t � b

o

< 1: (1.2.20)
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Proof. First of all we note that the existence of Green's function G of the

problem (1.2.4), (1.2.2

i0

) follows from Remark 1.2.2, and the boundedness

of the integrals in the inequalities (1.2.19) and (1.2.20) for any continuous

function � follows from the estimates (1.2.12

i

) and the inclusion (1.2.13

i

).

Consider now separately the case i = 2. By virtue of the equalities

(1.2.9

2

), the inequality (1.2.19) can be satis�ed only under the conditions

�

0

(a) � 0; �

0

(b) > 0: (1.2.21)

Then (1.2.19) can be rewritten as

b

Z

a

jG(t; s)jh(�

0

)(s)ds < �

0

(t) for a < t � b: (1.2.22)

As is seen from the equalities (1.2.9

2

), there exist positive constants r

1

and

� such that

b

Z

a

jG(t; s)jh(1)(s)ds� 1 < 0 for a � t � a+ � (1.2.23)

and

b

Z

a

jG(t; s)jh(1)(s)ds� 1 < r

1

for a � t � b: (1.2.24)

On the other hand, from (1.2.22) it follows the existence of a constant r

2

> 0

such that

r

2

< �

0

(t) �

b

Z

a

jG(t; s)jh(�

0

)(s) ds for a+ � � t � b: (1.2.25)

Then from (1.2.22){(1.2.25) we obtain

r

2

r

1

�

b

Z

a

jG(t; s)jh(1)(s) ds� 1

�

��

0

(t)�

b

Z

a

jG(t; s)jh(�

0

)(s) ds for a� t�b;

which implies the validity of the inequality (1.2.20) for the function �(t) =

"+ �

0

(t), where " =

r

2

r

1

.

To complete the proof of the lemma we note that for i = 1, unlike the

case i = 2, the inequality (1.2.19) by virtue of (1.2.9

i

) can be satis�ed also

for

�(a) > 0; �(b) � 0

and for

�(a) � 0; �(b) � 0

as well.
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In these cases the above lemma can be proved similarly to the case of the

conditions (1.2.21) with the only di�erence that the inequality (1.2.22) will

be valid for t 2 [a; b[ or t 2]a; b[, the inequality (1.2.23) for t 2 [b� �; b] or

t 2 [a+�; b��], and the inequality (1.2.25) will be considered for t 2 [a; b��[

or t 2]a+ �; b� �[.

Lemma 1.2.4. Let i 2 f1; 2g,

(p

0

; p

1

) 2V

i;0

(]a; b[;h); (1:2:26

i

)

where the nonnegative operator h satis�es the inclusion (1:2:13

i

). Then

there exists a continuous function � : [a; b] ! R

+

such that the inequality

(1:2:20) holds, where G is Green's function of the problem (1:2:4), (1:2:2

i0

).

Proof. As is seen from the de�nition of the set V

i;0

( ]a; b[ ;h), the problem

(1:2:1

0

), (1:2:2

i0

) has on the interval [a; b] a positive upper function w. Then

we introduce a continuous operator � : C(]a; b[)! C(]a; b[) by the equality

�(y)(t) =

1

2

h

jy(x)j � jw(t)� y(t)j+ w(t)

i

for a � t � b (1.2.27)

which for any v 2 C(]a; b[) satis�es

0 � �(v)(t) � w(t) for a � t � b; (1.2.28)

and consider the problem

v

00

(t) = p

0

(t)v(t) + p

1

(t)v

0

(t)� h(�(v))(t); (1.2.29)

v(a) = w(a); v

(i�1)

(b�) = w

(i�1)

(b�): (1:2:30

i

)

Note that from Lemma 1.2.1 and Remark 1.2.2 it follows the existence of

Green's function of the problem (1.2.4), (1.2.2

i

). Introduce the operator

H : C(]a; b[)! C(]a; b[) by the equality

H(g)(t) = v

0

(t) +

b

Z

a

jG(t; s)jh(�(y))(s) ds;

where v

0

is a solution of the problem (1.2.4), (1.2.30

i

), and consider the

equation

v(t) = H(v)(t) (1.2.31)

which is equivalent to the problem (1.2.29), (1.2.30

i

). Let us show that the

operator H is compact. Let c

�

be a constant mentioned in Remark 1.2.3,

r = c

�

b

Z

a

�

i

(p

1

)(s)h(w)(s)ds;

B

r

=

�

z 2 C(]a; b[) : kz � v

0

k

C

� r

	

;
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and (x

n

)

1

n=1

be any sequence from B

r

. Then from the estimate (1.2.12

i

) for

the sequence y

n

(t) = H(x

n

)(t), n 2 N, we have

kv

0

� y

n

k

C

� r; n 2 N: (1.2.32)

Consider separately the case i = 1. By virtue of (1.2.9

1

), (1.2.28) and the

fact that the function v

0

is continuous, for any constant " > 0 there exist

a

1

, b

1

2]a; b[, a

1

< b

1

such that

max

�

jv

0

(t

1

) � v

0

(t

2

)j : a � t

1

� t

2

� a

1

; b

1

� t

1

� t

2

� b

	

�

"

4

and

"

�

� max

�

b

Z

a

jG(t; s)jh(�(x

n

))(s) ds : a � t � a

1

; b

1

� t � b

�

�

"

8

:

Then for any n 2 N the estimate

jy

n

(t

1

) � y

n

(t

2

)j �

"

4

+ 2"

�

�

"

2

;

for a � t

1

� t

2

� a

1

; b

1

� t

1

� t

2

� b;

is valid.

In the same way, by virtue of the estimates (1.2.12

i

), there exists a con-

stant �, 0 < � < min(a

1

� a; b� b

1

), such that for any n 2 N

jy

n

(t

1

)� y

n

(t

2

)j �

� (1 + r)max

�

jv

0

0

(t)j+ �

�1

1

(p

1

)(t) : a

1

� � < t < b+ �

	

jt

2

� t

1

j �

"

2

for jt

1

� t

2

j � �; a

1

� � � t

j

� b

1

+ � (j = 1; 2):

It follows from the last two estimates that if t

j

2 [a; b] (j = 1; 2) and

jt

1

� t

2

j � �;

then

jy

n

(t

1

)� y

n

(t

2

)j � "; n 2 N:

From this and from the inequality (1.2.32) we obtain that the sequence

(y

n

)

1

n=1

is uniformly bounded and equicontinuous. In case i = 2, the same

follows from the possibility to choose for any " > 0, owing to (1.1.9

2

),

(1.2.28), a

1

2]a; b[ and 0 < � < a

1

� a such that

max

�

jv

0

(t

1

)� v

0

(t

2

)j : a � t

1

� t

2

� a

1

	

�

"

4

;

max

�

b

Z

a

jG(t; s)jh(w)(s) ds : a � t � a

1

�

�

"

4

;
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and

jy

n

(t

1

)� y

n

(t

2

)j �

� (1 + r)max

�

jv

0

0

(t)j+ �

�1

2

(p

1

)(t) : a

1

� � � t � b

	

jt

1

� t

2

j �

"

2

for jt

1

� t

2

j � �; a

1

� � � t

j

� b (j = 1; 2):

Then according to the Arzella{Ascoli lemma, the operator H which is, as it

is not di�cult to show, continuous, transforms the ball B

r

into its compact

subset. In this case the equation (1.2.31), i.e., the problem (1.2.29), (1.2.30

i

)

has at least one solution, say v. Show that

0 < v(t) � w(t) for a � t � b:

Let

v

1

(t) = w(t)� v(t):

Then from the nonnegativeness of the operator h and also from the inequal-

ity (1.2.28) we have

v

00

1

(t) � p

0

(t)v

1

(t) + p

1

(t)v

0

1

(t)� h(w � �(v))(t) � p

0

(t)v

1

(t) + p

1

(t)v

0

1

(t)

and

v

1

(a) = 0; v

(i�1)

1

(b�) = 0:

Hence v

1

is an upper function of the problem (1.2.4), (1.2.2

i0

), and due to

Remark 1.2.5,

v

1

(t) � 0 for a < t < b;

i.e.,

v(t) � w(t) for a < t < b: (1.2.33)

On the other hand, taking into account the inequality (1.2.28) and the fact

that the operator h is nonnegative, from (1.2.29) and (1.2.30

i

) we conclude

that v is an upper function of the problem (1.2.4), (1.2.2

i0

), i.e., by virtue

of Remark 1.2.5,

v(t) > 0 for a � t � b: (1.2.34)

It follows from (1.2.33) and (1.2.34) that the inequality 0 < v(t) � w(t) is

valid and hence

�(v)(t) = v(t) for a � t � b;

i.e., v as a solution of the equation (1.2.31) has the form

v(t) = v

0

(t) +

b

Z

a

jG(t; s)jh(v)(s) ds for a � t � b; (1.2.35)

where by Remark 1.2.5,

v

0

(t) > 0 for a � t � b: (1.2.36)
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If we introduce the notation �(t) = v(t) and take into consideration (1.2.36),

then in view of (1.2.35) we can see that our lemma is valid.

Lemma 1.2.5. Let i 2 f1; 2g, the constants � 2 [0; 1[ and � 2]0; 1] be

connected by the inequality

�+ � � 1; (1.2.37)

(p

0

; p

1

) 2V

i;�

(]a; b[; h); (1:2:38

i

)

where

h 2 L

�

C

x

�
;L

x

�

�(p

1

)

�

(1:2:39

i

)

is a nonnegative operator and

x(t) =

t

Z

a

�(p

1

)(s) ds

�

b

Z

t

�(p

1

)(s) ds

�

2�i

for a � t � b: (1:2:40

i

)

Then there exists a positive function � 2 C(]a; b[) such that the inequality

(1:2:20) is satis�ed, where G is Green's function of the problem (1:2:4),

(1:2:2

i

) and

�(t) = O

�

(x

�

(t)) (1.2.41)

as t! a, t! b if i = 1, and as t! a if i = 2.

Proof. As is seen from the de�nition of the set V

i;�

(]a; b[; h), the functions

p

0

, p

1

: ]a; b[! R satisfy the inclusion (1.2.6

i

) from which by virtue of Re-

mark 1.2.2 it follows the existence of Green's function of the problem (1.2.4),

(1.2.2

i0

), and there exists a measurable function q

�

: ]a; b[! [0;+1[ such

that the problem

v

00

(t) = p

0

(t)v(t) + p

1

(t)v

0

(t)� h(v)(t) � q

�

(t); (1.2.42)

v(a) = 0; v

(i�1)

(b�) = 0 (1:2:43

i

)

has in the interval ]a; b[ a positive upper function w, where

w(t) = O

�

(x

�

(t)) and

b

Z

a

jG(t; s)jq

�

(s) ds = O

�

(x

�

(t)) (1.2.44)

as t! a, t! b if i = 1, and as t! a if i = 2.

Introduce the operator � as in the previous proof and let

H(y)(t) =

b

Z

a

jG(t; s)j(q

�

(s) + h(�(y))(s)) ds:
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As we can see from the conditions (1.2.39

i

), (1.2.44), the operator � trans-

forms the space C(]a; b[) into C

x

� (]a; b[). Consider now the equations

v

00

(t) = p

0

(t)v(t) + p

1

(t)v

0

(t)� h(�(v))(t) � q

�

(t); (1.2.45)

v(t) = H(v)(t) (1.2.46)

and note that the problem (1.2.45), (1.2.43

i

) is equivalent to the equation

(1.2.46).

From the equality (1.2.7) by means of which Green's function is ex-

pressed, as well as from the estimates (1.2.10

i

) and the conditions (1.2.44),

for any y 2 C(]a; b[) we have

jH(y)(t)j � r

0

x

1��

(t)

t

Z

a

x

�

(s)

�(p

1

)(s)

h(x

�

)(s) ds +

+

b

Z

a

jG(t; s)jq

�

(s) ds < +1 for a � t � b; (1.2.47)

where

r

0

=

c

2

�

d

�

sup

n

w(t)

x

�

(t)

: a < t < b

o

:

It follows from (1.2.37), (1.2.44) that the operator H transforms the space

C(]a; b[) into C

x

� (]a; b[). Noticing that the right-hand side of the estimate

(1.2.47) is independent of the function y, we make sure that a constant r

exists such that for any y 2 C(]a; b[)

kH(y)k

C;x

�
� r:

It is clear that this estimate is the more so valid if y belongs to the ball

B

r

=

�

z 2 C

x

�
(]a; b[) : kzk

C;x

�
� r

	

:

Repeating now the reasoning of the previous proof, we can see that the

operator H : C

x

� (]a; b[) ! C

x

� (]a; b[) is compact and hence there exists a

solution v of the equation (1.2.46) such that

v 2 C

x

� (]a; b[); (1.2.48)

�(v)(t) = v(t) for a � t � b;

and

v(t) > 0 for a < t < b: (1.2.49)

Then the following representation is valid:

v(t) =

b

Z

a

jG(t; s)j

�

h(v)(s) + q

�

(s)

�

ds; (1.2.50)
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whence with regard for (1.2.49) we obtain the inequality

v(t) �

b

Z

a

jG(t; s)jq

�

(s) ds for a � t � b

which together with the conditions (1.2.44) and (1.2.48) implies that

v(t) = O

�

(x

�

(t)) (1.2.51)

for t ! a, t ! b, if i = 1, and for t ! a if i = 2. If we now take into

consideration that owing to the conditions (1.2.44) and (1.2.51) we have

inf

n

1

v(t)

b

Z

a

jG(t; s)jq

�

(s) ds : a < t < b

o

> 0;

then from (1.2.50) we obtain

sup

n

1

v(t)

b

Z

a

jG(t; s)jh(v)(s) ds : a < t < b

o

< 1: (1.2.52)

Introducing the notation �(t) = v(t), from (1.2.49), (1.2.51) and (1.2.52) we

see that our lemma is valid.

Lemma 1.2.6. Let i 2 f1; 2g, the function x be de�ned by (1:2:40

i

), the

constants � 2 [0; 1[, � 2]0; 1] be connected by (1:2:37) and the functions p

0

,

p

1

: ]a; b[!R satisfy (1:2:38

i

), where

h 2 L

�

C

x

� ; L
x

�

�(p

1

)

�

\ L

�

C; L

�

i

(p

1

)

�

(1:2:53

i

)

is a nonnegative operator. Then there exists a continuous function � :

[a; b]! R

+

such that the inequality (1:2:20) is satis�ed, where G is Green's

function of the problem (1:2:4), (1:2:2

i0

).

Proof. By Lemma 1.2.5, from the fact that h 2 L(C

x

� ; L
x

�

�(p

1

)

) it follows

the existence of the function �

0

2 C(]a; b[) such that

�

0

(t) > 0 for a < t < b

and

sup

n

1

�

0

(t)

b

Z

a

jG(t; s)jh(�

0

)(s) ds : a < t < b

o

< 1:

Then, taking into account that the operator h also belongs to L(C

;

L

�

i

(p

1

)

),

we can see by Lemma 1.2.3 that our lemma is valid.
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Lemma 1.2.7. Let i 2 f1; 2g, the function x : ]a; b[! R

+

be de�ned by

(1:2:40

i

) and the functions p

0

, p

1

: ]a; b[! R satisfy the inclusion (1:2:6

i

).

Then for any � 2]0; 1] we have

b

Z

a

jG(t; s)j

�

2

(p

1

)(s)

x

2���[�]

(s)

ds = O

�

(x

�

(s)) (1.2.54)

as t! a, t! b if i = 1, and as t! a if i = 2, where G is Green's function

of the problem (1:2:4), (1:2:2

i0

).

Proof. By Remark 1.2.2 and the inclusion (1.2.6

i

) there exists Green's func-

tion G of the problem (1.2.4), (1.2.2

i0

) which is expressed by the equality

(1.2.7).

Consider the case i = 1 separately and note that

b

Z

t

�(p

1

)(s) ds �

b

Z

a+b

2

�(p

1

)(s) ds for a � t �

a+ b

2

: (1.2.55)

Then, taking into consideration (1.2.7), (1.2.10

i

) and (1.2.55), for any � 2

]0; 1[ we obtain for t 2 [a;

a+b

2

] the estimates

b

Z

a

jG(t; s)j

�

2

(p

1

)(s)

x

2��

(s)

ds �

c

2

�

v

2

(a)

�

x

�

(t)

�

b

R

a+b

2

�(p

1

)(s) ds

+

+

�

t

R

a

�(p

1

)(s) ds

�

�

�

1� �)(

b

R

a+b

2

�(p

1

)(s) ds

�

1��

+

�

b

R

a

�(p

1

)(s) ds

�

1��

�

�

a+b

2

R

a

�(p

1

)(s) ds

�

2��

x

�

(t)

�

�

�

c

2

�

�v

2

(a)

�

1

1� �

+

�

b

Z

a

�(p

1

)(s) ds

�

1��

�

a+b

2

Z

a

�(p

1

)(s) ds

�

��2

�

x

�

(t)

and

b

Z

a

jG(t; s)j

�

2

(p

1

)(s)

x

2��

(s)

ds �

d

2

�

v

2

(a)

�

b

Z

t

�(p

1

)(s) ds

�

�

�

b

Z

a+b

2

�(p

1

)(s) ds

�

1��

�

�

t

Z

a

�(p

1

)(s) ds

�

s

R

a

�(p

1

)(�) d�

�

1��

�

b

R

s

�(p

1

)(�) d�

�

2��

�
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�

d

2

�

�v

2

(a)

�

b

R

a+b

2

�(p

1

)(s) ds

�

1��

�

b

R

a

�(p

1

)(s) ds

�

2��

x

�

(t):

The last two estimates imply the validity of (1.2.54) as t ! a. Reasoning

analogously for t 2 [

a+b

2

; b], we can see that this equality is also valid as

t! b. Consider the case � = 1. With regard for the equalities (1.2.7) and

the estimates (1:2:10

1

) we obtain

d

2

�

2C

�

�

b

Z

a

jG(t; s)j�

2

(p

1

)(s) ds x

�1

(t) �

C

2

�

2d

�

for a < t < b: (1.2.56)

It follows from (1.2.56) that our lemma is valid in the case � = 1 as well.

Reasoning similarly, we can prove the lemma for i = 2.

1.2.2. Auxiliary Propositions to Theorems (1:1:2

i

), (1:1:2

i0

) (i = 1; 2).

Consider in the interval ]a; b[ the equation

v

00

(t) = g(v)(t); (1.2.57)

where g : C(]a; b[) ! L

loc

(]a; b[) is a continuous linear operator. We will

also need the equation

v

00

(t) = 0 for a � t � b: (1.2.58)

Note that Green's function of the problem (1.2.58), (1.2.2

i0

) has the form

G(t; s) =

8

>

<

>

:

�(s � a)

�

b� t

b� a

�

2�i

for a � s < t � b;

�(t � a)

�

b� s

b� a

�

2�i

for a � t < s � b:

(1:2:59

i

)

Lemma 1:2:8

1

. Let  2 [0; 1[, � 2 [0; 1� [ and

g 2 L(C

x

�
; L

x



) (1.2.60)

be a nonnegative operator, where

x(t) = (b � t)(t � a) for a � t � b: (1:2:61

1

)

Let, moreover, there exist constants �, � 2 [0;

1

2

] such that

� � � < 1� ; (1.2.62)

�+ � �

1

2

; (1.2.63)
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and

b

Z

a

x

�

(s)g(x

�

)(s) ds < 2

�

16

b� a

�

b� a

4

�

2(�+�)

: (1:2:64

1

)

Then the problem (1:2:57), (1:2:2

10

) has only the zero solution in the space

C

x

�(]a; b[).

Proof. Suppose to the contrary that the problem (1.2.57), (1.2.2

i0

) has a

nonzero solution v

0

2 C

x

�(]a; b[).

If v

0

is a function of constant signs, then from the nonnegativeness of the

operator g we obtain

v

00

0

(t) sign v

0

(t) � 0 for a < t < b;

which together with the conditions (1:2:2

i0

) contradicts the assumption

v

0

(t

0

)6� 0, i.e., v

0

is a function of constant signs.

Using Green's function of the problem (1.2.58), (1.2.2

i0

), v

0

can be rep-

resented as follows:

v

0

(t) = �

1

b� a

�

(b� t)

t

Z

a

(s � a)g(v

0

)(s) ds + (t � a)

b

Z

t

(b� s)g(v

0

)(s) ds

�

for a � t � b

and hence for any � the estimate

v

0

(t)

[(b� t)(t� a)]

�

�

�

[(b� t)(t � a)]

1�(+�)

b� a

b

Z

a

[(b� s)(s � a)]



g(x

�

)(s) dskv

0

k

C;x

�

for a < t < b

is valid.

In the above estimate, taking into account the condition (1.2.60), if �

satis�es the inequality (1.2.62), we get

lim

t!a

v

0

(t)

[(b� t)(t � a)]

�

= 0; lim

t!b

v

0

(t)

[(b� t)(t� a)]

�

= 0:

These equalities imply the existence of points t

1

, t

2

2]a; b[ such that

v

0

(t

1

)

(b� t

1

)

�

(t

1

� a)

�

= sup

n

v

0

(t)

(b� t)

�

(t � a)

�

: a < t < b

o

;

v

0

(t

2

)

(b � t

2

)

�

(t

2

� a)

�

= inf

n

v

0

(t)

(b� t)

�

(t� a)

�

: a < t < b

o

:
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Without loss of generality we assume t

1

< t

2

and notice that by (1.2.61

1

)

which de�nes the function x, we have

�g(x

�

)(t)

jv

0

(t

2

)j

(b� t

2

)

�

(t

2

� a)

�

�

� g(v

0

)(t) � g(x

�

)(t)

jv

0

(t

1

)j

(b� t

1

)

�

(t

1

� a)

�

for a < t < b: (1.2.65)

Recall also one simple numerical inequality

A �B �

(A +B)

2

4

; (1.2.66)

where A � 0 and B � 0.

Suppose c 2]t

1

; t

2

[ and v

0

(c) = 0. Then the following representations are

valid:

v

0

(t

1

) =

c� t

1

c� a

t

1

Z

a

(s � a)g(�v

0

)(s) ds +

t

1

� a

c� a

c

Z

t

1

(c� s)g(�v

0

)(s) ds

and

jv

0

(t

2

)j =

b� t

2

b� c

t

2

Z

c

(s � c)g(v

0

)(s) ds +

t

2

� a

b� c

b

Z

t

2

(b� s)g(v

0

)(s) ds:

These representations with regard for the inequality (1.2.65), for any �, �

satisfying the conditions of the lemma, result in

v

0

(t

1

) �

[(c� t

1

)(t

1

� a)]

1��

(c� a)[(b� t

2

)(t

2

� a)]

�

c

Z

a

x

�

(s)g(x

�

)(s) ds � jv

0

(t

2

)j < +1

and

v

0

(t

2

) �

[(b� t

2

)(t

2

� c)]

1��

(b� c)[(b� t

1

)(t

1

� a)]

�

b

Z

c

x

�

(s)g(x

�

)(s) ds � jv

0

(t

1

)j < +1:

Multiplying the above inequalities, by means of (1.2.66) we obtain

�

b

Z

a

x

�

(s)g(x

�

)(s) ds � 1; (1.2.67)

where

� =

1

2

s

[(b� t

2

)(t

2

� c)(c� t

1

)(t

1

� a)]

1�(�+�)

[(t

2

� c)(c � t

1

)]

�

(b� c)(c� a)(b� t

1

)

�

(t

2

� a)

�

:
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Then by (1.2.66) we get the estimate

� �

1

2

s

[(b� c)(c � a)]

1�2(�+�)

(t

2

� t

1

)

2�

4

2�2(�+�)+�

[(b� t

1

)(t

2

� a)]

�

;

whence using once more the inequality (1.2.66) and taking into consideration

the fact that

(t

2

� t

1

)

2�

� [(b� t

1

)(t

2

� a)]

�

; (1.2.68)

we arrive at

� �

b� a

16 � 2

�

�

4

b� a

�

2(�+�)

: (1.2.69)

Substituting the last inequality in (1.2.67), we obtain the contradiction with

the condition (1.2.64

1

), i.e., our assumption is invalid and v

0

(t) � 0.

Lemma 1:2:8

2

. Let  2 [0; 1[, � 2 [0; 1�[ and the nonnegative operator

g satisfy the inclusion (1:2:60), where

x(t) = t � a for a � t � b: (1:2:61

2

)

Let, moreover, there exist constants �, � 2 [0;

1

2

] such that the conditions

(1:2:62), (1:2:63) are satis�ed and

b

Z

a

x

�

(s)g(x

�

)(s) ds �

8

b� a

�

b� a

4

�

�+�

: (1:2:64

2

)

Then the problem (1:2:57), (1:2:2

20

) has only the zero solution in the space

C

x

�(]a; b[).

Proof. Suppose to the contrary that the problem (1.2.57), (1.2.2

20

) has a

nonzero solution v

0

2 C

x

�(]a; b[). Similarly to the previous lemma we make

sure that v

0

is of constant signs and the equality

lim

t!a

v

0

(t)

(t� a)

�

= 0

is valid for any � 2 [�; 1� [. On the other hand, in any su�ciently small

neighborhood of the point b, since v

0

0

(b�) = 0, the equality

sign

�

v

0

(t)

(t� a)

�

�

0

= � sign v

0

(t)

is satis�ed. It follows from the last two equalities that the function

v

0

(t)

(t�a)

�

attains neither its minimum nor its maximum at the points a and b. Let

max

n

v

0

(t)

(t � a)

�

: a � t � b

o

=

v

0

(t

1

)

(t

1

� a)

�
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and

min

n

v

0

(t)

(t � a)

�

: a � t � b

o

=

v

0

(t

2

)

(t

2

� a)

�

:

Then from the above-said it is clear that t

1

, t

2

2]a; b[. Without loss of

generality we assume t

1

< t

2

and let the point c 2]t

1

; t

2

[ be such that

v

0

(c) = 0. Then from the inequality

�g(x

�

)(t)

jv

0

(t

2

)j

(t

2

� a)

�

�g(v

0

)(t) � g(x

�

)(t)

jv

0

(t

1

)j

(t

1

� a)

�

for a < t < b

and from the equalities

v

0

(t

1

) =

c � t

1

c� a

t

1

Z

a

(s � a)g(�v

0

)(s) ds +

t

1

� a

c � a

c

Z

t

1

(c � s)g(�v

0

)(s) ds;

jv

0

(t

2

)j =

t

2

Z

c

(s � c)g(v

0

)(s) ds + (t

2

� c)

b

Z

t

2

g(v

0

)(s) ds

we obtain

v

0

(t

1

) �

(c� t

1

)(t

1

� a)

1��

(c� a)(t

2

� a)

�

c

Z

a

x

�

(s)g(x

�

)(s) ds � jv

0

(t

2

)j

jv

0

(t

2

)j �

(t

2

� c)

1��

(t

1

� a)

�

b

Z

c

x

�

(s)g(x

�

)(s) ds � v

0

(t

1

):

Multiplying these inequalities, with regard for (1.2.66) we get

�

b

Z

a

x

�

(s)g(x

�

)(s) ds � 1; (1.2.70)

where

� =

1

2

s

[(t

1

� a)(c� t

1

)]

1�(�+�)

(t

2

� c)

1��

(c � t

1

)

�+�

(c� a)(t

2

� a)

�

:

Then by (1.2.66) and t

2

� a > t

2

� c we have

� �

1

2

r

(c� a)

1�2(�+�)

(t

2

� c)

1�2(�+�)

[(c� t

1

)(t

2

� c)]

�+�

4

1�(�+�)

:

Applying once more (1.2.66), we can see that

� �

(t

2

� a)

1�2(�+�)

(t

2

� t

1

)

�+�

2 � 4

1�(�+�)

: (1.2.71)
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Notice that from the conditions t

1

, t

2

2]a; b[ as well as from the fact that

for none of �, � 2 [0;

1

2

] the expressions � + � and 1 � 2(� + �) vanish

simultaneously, we obtain the estimate

(t

2

� a)

1�2(�+�)

� (t

2

� t

1

)

�+�

< (b� a)

1�(�+�)

;

with regard for which in (1.2.71) we get

� <

(b� a)

8

�

4

b� a

�

�+�

:

Substituting the latter inequality in (1.2.70), we obtain the contradiction

with the condition (1.2.64

2

), i.e., our assumption is invalid and v

0

(t) � 0.

Remark 1.2.7. Lemma 1.2.8

1

remains valid if for � 6= 0 we replace the

condition (1.2.64

1

) by

b

Z

a

x

�

(s)g(x

�

)(s) ds � 2

�

16

b� a

�

b� a

4

�

2(�+�)

: (1.2.72)

Proof. If � 6= 0, then the inequality (1.2.68) will be strictly satis�ed and

hence the estimate (1.2.69) will take the form

� <

b� a

16 � 2

�

�

4

b� a

�

2(�+�)

:

Taking into consideration the last inequality in (1.2.67), we obtain the con-

tradiction with the condition (1.2.72) which indicates the possibility to re-

place in case � 6= 0 the condition (1.2.64

1

) by (1.2.72).

x

1.3. Proof of Propositions on Existence and Uniqueness

1.3.1. Proof of Basic Theorems on Existence and Uniqueness of Solution of

Two-Point Problems.

Proof of Theorem 1:1:1

i

. From the inclusions (1:1:7

i

) and (1:1:8

i

) and also

from the fact that the operator h is nonnegative, for � = 0 by virtue of

Lemma 1.2.4 and for � > 0 by virtue of Lemma 1.2.6 it follows that there

exists a function � 2 C(]a; b[) such that

�(t) > 0 for a � t � b (1.3.1)

and

sup

�

1

�(t)

b

Z

a

jG(t; s)jh(�)(s) ds : a < t < b

�

< 1; (1.3.2)

where G is Green's function of the problem (1.2.4), (1:2:2

i0

). Note that for

any function y 2 C

�

(]a; b[) the inequality

jy(t)j � �(t)kyk

C;�

for a � t � b (1.3.3)
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is valid and, owing to the estimates (1:2:10

i

), the representation (1.2.7) of

Green's function and the conditions (1.1.5){(1:1:8

i

) and (1.1.10), we have

�

�

�

�

b

Z

a

G(t; s)p

2

(s) ds

�

�

�

�

< +1;

�

�

�

�

b

Z

a

G(t; s)g(y)(s) ds

�

�

�

�

< +1;

�

�

�

�

b

Z

a

G(t; s)h(y)(s) ds

�

�

�

�

< +1:

Introduce the continuous operators U

0

; U: C

�

(]a; b[)! C

�

(]a; b[) by the

equalities

U

0

(y)(t) =

b

Z

a

G(t; s)g(y)(s) ds;

U(g)(t) = u

0

(t) +U

0

(y)(t) +

b

Z

a

G(t; s)p

2

(s) ds;

(1.3.4)

where u

0

is a solution of the problem (1.2.4), (1:2:2

i

). Clearly every solution

of the problem (1.1.1), (1:1:2

i

) is a solution of the equation

u(t) =U(u)(t) (1.3.5)

and vice versa.

From the de�nition of the norm of the operator it follows that

kU

0

k

C

�

!C

�

=

= sup

�







b

Z

a

G(t; s)g(y)(s) ds







C;�

: x 2 C

�

(]a; b[); kyk

C;�

= 1

�

which with regard for (1.1.10), (1.3.1){(1.3.3) implies

kU

0

k

C

�

!C

�

< 1; (1.3.6)

i.e., the operator U contracts the space C

�

(]a; b[) into itself for any p

2

2

L

�

i

(p

1

)

([a; b]) and any operator g satisfying (1.1.10). Then by virtue of the

theorem on contracting map the equation (1.3.5) has in the space C

�

(]a; b[)

and hence in C(]a; b[) a unique solution because, by (1.3.1), any function

from C(]a; b[) belongs to the space C

�

(]a; b[) as well. It remains to notice

that the unique solvability of the problem (1.1.1), (1:1:2

i

) follows from the

equivalence of that problem and the equation (1.3.5).

Proof of Theorem 1:1:1

i0

. The inclusions (1:1:7

i

), (1:1:8

i

) and the nonneg-

ativeness of the operator h imply by virtue of Lemma 1.2.5 the existence of
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a positive function � 2 C(]a; b[) such that

�(t) = O

�

(x

�

(t)) (1.3.7)

as t ! a, t ! b, if i = 1, and as t ! a if i = 2. Moreover, the condi-

tion (1.3.2) is satis�ed, where G is Green's function of the problem (1.2.4),

(1:2:2

i0

). It is also clear that for any y 2 C

�

(]a; b[) the inequality (1.3.3) is

satis�ed, and due to the estimates (1:2:10

i

) and the representation (1.2.7)

of Green's functions we have

�

�

�

�

b

Z

a

G(t; s)h(y)(s) ds

�

�

�

�

� r

1

x

1��

(t)

b

Z

a

x

�

(s)

�(p

1

)(s)

h(x

�

)(s) ds kyk

C;x

� ;

�

�

�

�

b

Z

a

G(t; s)p

2

(s) ds

�

�

�

�

� r

1

x

�

(t)

b

Z

a

x

1��

(s)

�(p

1

)(s)

jp

2

(s)j ds for a � t � b;

(1.3.8)

where

r

1

=

c

2

�

v

2

(a)

;

and the existence of integrals follows from the conditions (1.1.6), (1.1.11),

(1.1.12). From (1.3.8) and (1.1.6), (1.1.10), (1.3.7) we also have that the

operators

U

0

(y)(t) =

b

Z

a

G(t; s)g(y)(s) ds

and

U(y)(t) = U

0

(y)(t) +

b

Z

a

G(t; s)p

2

(s) ds

transform continuously the space C

�

(]a; b[) into itself. Repeating word by

word the previous proof, we can see that the problem (1.1.1) (1:1:2

i0

) has a

unique solution u in the space C

�

(]a; b[). But as is seen from (1.3.7), u will

be a unique solution in the space C

x

�
(]a; b[) as well.

Proof of Remark 1:1:1

i

. Under the conditions of Theorem 1:1:1

i

, as is seen

from its proof, the operatorUcontracts the space C

�

([a; b]) into itself. Then

from the theorem on contracting map it follows that for any function v

0

2

C

�

(]a; b[) the sequence v

n

: [a; b] ! R, where v

n

is the unique solution of

the equation

v

n

(t) = U(v

n�1

)(t) (1.3.9)

tends to the unique solution u of the equation (1.3.5) with respect to the

norm k � k

C;�

. We introduce the notation

kU

0

k

C

�

!C

�

= � and ku� v

1

k

C;�

= !;
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and notice that by virtue of (1.3.6), we have � < 1: Then, as is known, the

estimate

ku� v

n

k

C;�

� !

�

n

1� �

; n 2 N; (1.3.10)

is valid and for any n 2 N with regard for (1.3.3) we obtain

ju(t)� v

n

(t)j � !

�

n

1� �

k�k

C

for a � t � b: (1.3.11)

Di�erentiating the di�erence of the equations (1.3.5) and (1.3.9) and tak-

ing into account the inequalities (1.1.10), (1.3.11) and the estimates (1:2:12

i

)

of Green's function, we obtain

sup

�

�

i

(p

1

)(t)jv

0

n

(t) � u

0

(t)j : a < t < b

	

� !

0

�

n

1� �

; n 2 N; (1.3.12)

where

!

0

= !c

�

k�k

C

b

Z

a

�

i

(p

1

)(s)h(1)(s) ds:

The inequalities (1.3.11), (1.3.12) imply the validity of the estimates

(1.1.14), and after di�erentiating twice the equality (1.3.9) we see that v

n

is a solution of the problem (1:1:13

i

).

Proof of Remark 1:1:1

i0

. Let � be the function appearing in the proof

of Theorem 1:1:1

i0

. Introduce the constants � and ! and the functions

v

n

: [a; b] ! R, n 2 N, as in the previous proof. Reasoning as above, we

make sure that the estimate (1.3.10) is valid, and by virtue of the condition

(1.3.7) for any n 2 N we have

ju(t)� v

n

(t)j

x

�

(t)

� !

�

n

1� �

sup

n

�(t)

x

�

(t)

: a < t < b

o

: (1.3.13)

On the other hand, di�erentiating the di�erence of the equations (1.3.5)

and (1.3.9), with regard for the equality (1.2.7) and the estimates (1:2:10

i

),

(1:2:11

i

), for any n 2 N we obtain

x

�

(t)

�(p

1

)(t)

ju

0

(t)� v

0

n

(t)j � rku� v

n

k

C;�

for a � t � b; (1.3.14)

where

r = (1 + c

�

)

2

b

Z

a

jp

0

(s)j

�(p

1

)(s)

x(s) + �(p

1

)(s) ds

b

Z

a

x

�

(s)

�(p

1

)(s)

h(x

�

)(s) ds:

The inequalities (1.3.10), (1.3.13) and (1.3.14) imply the validity of the

estimates (1.1.15), and having di�erentiated twice the equality (1.3.9) we

see that v

0

is a solution of the problem (1:1:13

i0

).
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Proof of Theorem 1:1:2

i

. Let G be Green's function of the problem (1.2.58),

(1:2:2

i0

). Introduce the operator U

0

and the function q by the equalities

U

0

(y)(t) =

b

Z

a

G(t; s)g(y)(s) ds; q(t) =

b

Z

a

G(t; s)p

2

(s) ds: (1.3.15)

From the representation (1:2:59

i

) of Green's function and from the con-

ditions (1.1.17), (1.1.18) it follows that the operator U

0

transforms contin-

uously the space C(]a; b[) into itself and q 2 C(]a; b[).

Consider now the equation

u(t) = U

0

(u)(t) + u

0

(t) + q(t); (1.3.16)

where u

0

(t) is a solution of the problem (1.2.58), (1:1:2

i

). Every its solution

is a solution of the problem (1.1.16), (1:1:2

i

), and vice versa.

Let r > 0, B

r

=

�

y 2 C(]a; b[) : kyk

C

� r

	

and choose any sequence

(x

n

)

1

n=1

from B

r

. Let, moreover, y

n

(t)=U

0

(x

n

)(t), n 2 N. Then

ky

n

k

C

� r

1

; n 2 N; (1.3.17)

where

r

1

= r

b

Z

a

�

b� s

b � a

�

2�i

(s � a)g(1)(s) ds:

Consider the case i = 1 separately. From the de�nition of Green's func-

tion G, for any " > 0 it follows the existence of a

1

; b

1

2 ]a; b[ , where a

1

< b

1

,

such that

max

�

b

Z

a

jG(t; s)jg(1)(s) ds : a � t � a

1

; b

1

� t � b

�

�

"

4

;

which implies the validity of the estimate

jy

n

(t

1

)� y

n

(t

2

)j �

"

2

; n 2 N; for a � t

1

� t

2

� a

1

; b

1

� t

1

� t

2

� b:

It is also clear that there exists a constant �, 0 < � < min(a

1

� a; b� b

1

) for

which the following inequality is valid:

jy

n

(t

1

)� y

n

(t

2

)j �

� r

1

max

n

1

(b� t)(t � a)

: a

1

� � � t � b

1

+ �

o

jt

1

� t

2

j �

"

2

for jt

1

� t

2

j � �; a

1

� � � t

j

� b

1

+ � (j = 1; 2):

From the last two estimates we obtain that if t

j

2 [a; b] (j = 1; 2) and

jt

1

� t

2

j � �;
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then

jy

n

(t

1

)� y

n

(t

2

)j � "; n 2 N:

This and the inequality (1.3.17) imply that the sequence (y

n

)

1

n=1

is uni-

formly bounded and equicontinuous. In case i = 2 the same follows from

the possibility of choosing for any " > 0, a

1

2 ]a; b[ and 0 < � < a

1

� a such

that

max

�

b

Z

a

jG(t; s)jg(1)(s) ds : a � t � a

1

�

<

"

4

;

jy

n

(t

1

)� y

n

(t

2

)j � r

1

max

n

1 +

1

t� a

: a

1

� � � t � b

o

jt

1

� t

2

j �

"

2

for jt

1

� t

2

j � �; a

1

� � � t

j

� b (j = 1; 2):

Then by the Arzella{Ascoli lemmawe obtain thatU

0

is a compact operator.

Consequently, taking into account Fredholm's alternatives, the equation

(1.3.16) is uniquely solvable if the homogeneous equation

u(t) = U

0

(u)(t) (1:3:16

0

)

has only the trivial solution in the space C(]a; b[).

It remains to note that by virtue of the conditions (1.1.18){(1.1.21)

and (1.1.22) if i = 1 and (1:1:24

2

) if i = 2, all the requirement of Lem-

ma 1:2:8

i

are satis�ed for � = 0, whence it follows that the problem (1.2.57),

(1:2:2

i0

), i.e., the equation (1:3:16

0

) has only the trivial solution in the space

C(]a; b[).

Proof of Remark 1.1.2 follows directly from Remark 1.2.7.

Proof of Theorem 1:1:2

i0

. Let x be a function de�ned by (1:1:19

i

) and let

G be Green's function of the problem (1.1.58), (1:1:2

i0

) which is expressed

by (1:2:59

i

). Introduce the operator U

0

and the function q by the equality

(1.3.15). Then for any y 2 C

x

�(]a; b[) the estimates

jU

0

(y)(t)j �

x

1�

(t)

(b � a)

2�i

b

Z

a

x



(s)g(x

�

)(s) ds kyk

C;x

� ;

jq(t)j � x

1�

(t)

b

Z

a

x



(s)jp

2

(s)j ds for a � t � b

are valid, from which by the conditions � 2 ]0; 1� [ and (1.1.25), (1.1.26)

it follows that U

0

transforms continuously the space C

x

�(]a; b[) into itself

and q 2 C

x

�(]a; b[).

Consider now the equation

u(t) = U

0

(u)(t) + q(t) (1.3.18)
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which is equivalent to the problem (1.1.16), (1:1:2

i0

), and the corresponding

homogeneous equation (1:3:16

0

).

As is seen from Lemma 1:2:8

i

and Remark 1.2.7, by virtue of the con-

ditions � 2 ]0; 1� [ , (1.1.21), (1:1:24

i

) and (1.1.25){(1.1.27) the problem

(1.2.57), (1:1:2

i0

), i.e., the equation (1:3:16

0

), has in the space C

x

� (]a; b[)

only the trivial solution. Then according to Fredholm's alternatives, to

prove the validity of our theorem it remains to show that the operator U

0

is compact. Let r > 0,

B

r

=

�

z 2 C

x

�
(]a; b[) : kzk

C;x

�
� r

	

(x

n

)

1

n=1

be a sequence from B

r

and y

n

(t) = U

0

(x

n

)(t) for n 2 N.

Then as is seen from the de�nition of G, for any n 2 N the estimate

jy

(j)

n

(t)j � r

x

1�j�

(t)

(b� a)

(1�j)(2�i)

b

Z

a

x



(s)g(x

�

)(s) ds (j = 0; 1) (1:3:19

i

)

for a < t < b

is valid, which by virtue of the condition � 2 ]0; 1� [ yields

ky

n

(t)k

C;x

� � r

1

; (1.3.20)

where

r

1

=

r

(b� a)

2�i

b

Z

a

x



(s)g(x

�

)(s) ds max

�

x

1�(�+)

(t) : a � t � b

	

:

Consider now the case i = 1 separately. From (1:3:19

1

) for j = 0 and for

any " > 0 follows the existence of a

1

; b

1

2 ]a; b[, where a

1

< b

1

, such that

jy

n

(t)j �

"

4

; n 2 N; for a � t � a

1

; b

1

� t � b;

which implies the estimate

jy

n

(t

1

) � y

n

(t

2

)j �

"

2

; n 2 N;

for a � t

1

< t

2

� a

1

; b

1

� t

1

< t

2

� b:

Moreover, from (1:3:19

1

) for j = 1 it follows the existence of a constant �

such that

jy

n

(t

1

) � y

n

(t

2

)j � r

2

jt

1

� t

2

j �

"

2

; n 2 N;

for a

1

� � � t

l

� b

1

+ � (l = 1; 2);

where

r

2

= r

b

Z

a

x



(s)g(x

�

)(s) ds max

�

x

�

(t) : a

1

� � � t � b

1

+ �

	

:
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It is clear from the last two estimates that if t

l

2 [a; b] (l = 1; 2) and

jt

1

� t

2

j � �;

then for any n 2 N

jy

n

(t

1

) � y

n

(t

2

)j � ":

This and the estimate (1.3.20) imply that the sequence (y

n

)

1

n=1

is uniformly

bounded and equicontinuous. In case i = 2, by virtue of the estimates

(1:3:19

2

) the same follows from the possibility of choosing, for any " > 0, of

a

1

2 ]a; b[ and 0 < � < a

1

� a such that

jy

n

(t)j �

"

4

; n 2 N for a � t � b;

and

jy

n

(t

1

) � y

n

(t

2

)j � r

2

jt

1

� t

2

j �

"

2

; n 2 N;

for a

1

� � � t

j

� b (j = 1; 2);

where

r

2

= r

b

Z

a

x



(s)g(�)(s) ds max

�

x

�

(t) : a

1

� � � t � b

	

:

Then by the Arzella{Ascoli lemma we have that U

0

is a compact opera-

tor.

1.3.2. Proof of E�ective Su�cient Conditions for Solvability of the Prob-

lems (1:1:1), (1:1:2

i

) and (1:1:1), (1:1:2

i0

) (i = 1; 2). Before we pro-

ceed to proving the corollaries, we note that Green's function of the problem

v

00

(t) = p

1

(t)v

0

(t); (1.3.21)

v(a) = 0; v

(i�1)

(b�) = 0 (1:3:22

i

)

has the form

G

0

(t; s) =

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

1

�(p

1

)(s)

s

Z

a

�(p

1

)(�) d�

�

1

b

R

a

�(p

1

)(�)d�

b

Z

t

�(p

1

)(�)d�

�

2�i

for a � s < t � b;

�

1

�(p

1

)(s)

t

Z

a

�(p

1

)(�) d�

�

1

b

R

a

�(p

1

)(�)d�

b

Z

s

�(p

1

)(�) d�

�

2�i

for a � t < s � b:

(1:3:23

i

)
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Proof of Corollary 1:1:1

1

. It is clear that all the requirements of Theo-

rem 1:1:1

1

, except (1:1:7

1

), follow directly from the conditions of our corol-

lary. It remains only to show that the conditions (1.1.31), (1:1:32

1

) imply

the inclusion (1:1:7

1

) as well.

Indeed, let � > 0 and

z

�

(t) =

��

b

Z

t

�(p

1

)(�)d�

�

�

�

�

t

Z

a

[p

0

(s)]

�

(� + x

�

(s)) + h(x

�

(s))

�(p

1

)(s)

�

s

Z

a

�(p

1

)(�)d�

�

�

ds+

+

�

t

Z

a

�(p

1

)(�)d�

�

�

b

Z

t

[p

0

(s)]

�

(�+ x

�

(s)) + h(x

�

(s))

�(p

1

)(s)

�

b

Z

s

�(p

1

)(�)d�

�

ds�

�

�

b

R

a

�(p

1

)(s) ds

�

1�2(�+�)

2

2�2(�+�)

: (1.3.24)

Then, as is seen from the conditions (1.1.31), (1:1:32

1

), we can choose � > 0

such that

z

�

(t) < 1 for a � t � b (1.3.25)

be satis�ed.

Introduce also the notation

q

�

(t) =

�

2

(p

1

)(t)

x

2���[�]

(t)

; w

"

(t) = "

b

Z

a

jG

0

(t; s)jq

�

(s) ds;

w(t) =

b

Z

a

jG

0

(t; s)j

�

[p

0

(s)]

�

(� + x

�

(s)) + h(x

�

)(s)

�

ds+ w

"

(t);

where " 2 R

+

, G

0

is Green's function of the problem (1.3.21), (1:3:22

1

)

which is de�ned by the equality (1:3:23

1

), and by Lemma 1.2.7,

w

"

(t) = O

�

(x

�

(t)) as t! a; t! b (1.3.26)

for any " > 0. From the conditions (1.3.25), (1.3.26) we have the possibility

of choosing the constant " > 0 such that

z

�

(t) + sup

n

w

"

(t)

x

�

(t)

: a < t < b

o

< 1 for a � t � b: (1.3.27)

By virtue of (1:3:23

1

) we easily get the estimate

0 < w(t) � z

�

(t)x

�

(t) +w

"

(t) for a < t < b
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which with regard for (1.3.27) results in

0 < w(t) � x

�

(t) for a < t < b: (1.3.28)

The last inequality together with (1.3.26) means that

w(t) = O

�

(x

�

(t)) as t! a; t! b: (1.3.29)

On the other hand, it is clear that

w

00

(t) = �[p

0

(t)]

�

(�+ x

�

(t)) + p

1

(t)w

0

(t) � h(x

�

)(s) � q

�

(t):

Taking into account the inequality (1.3.28) and the fact that the operator

h and the constant � are nonnegative, the above equality results in

w(t)

00

� p

0

(t)w(t) + p

1

(t)w

0

(t) � h(w)(t) � q

�

(t): (1.3.30)

If we introduce the notation ew(t) = �+ w(t), then

ew

00

(t) � p

0

(t) ew(t) + p

1

(t) ew

0

(t); (1.3.31)

where

ew(t) > 0 for a � t � b: (1.3.32)

From the inequalities (1.3.31) and (1.3.32), by Lemma 1.2.2 we obtain the

inclusion

(p

0

; p

1

) 2V

1;0

(]a; b[): (1:3:33

1

)

Then, as is seen from Remark 1.2.2, the problem (1.2.4), (1:2:2

i0

) has

Green's function G which is expressed by the equality (1.2.7). Using now

the inequalities (1:2:10

1

), we arrive at

d

2

�

c

�

� "w

�1

"

(t)

b

Z

a

jG(t; s)jq

�

(s) ds �

c

2

�

d

�

for a � t � b

which with regard for the equality (1.3.26) yields

b

Z

a

jG(t; s)jq

�

(s) ds = O

�

(x

�

(s)) as t! a; t! b: (1.3.34)

It remains to note that the conditions (1.2.28), (1.3.29), (1:3:33

1

), (1.3.34)

and the inequality (1.3.30), owing to De�nition 1.1.4, ensure the inclusion

(1:2:7

1

) for � > 0.

Assume now that � = 0 and

w(t) =

b

Z

a

jG

0

(t; s)j

�

[p

0

(s)]

�

+ h(1)(s)

�

ds + "v(t); (1.3.35)
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where v is a solution of the equation (1.3.21) under the boundary conditions

v(a) = 1; v(b) = 1;

and

z

0

(t) =

��

b

Z

t

�(p

1

)(�)d�

�

�

t

Z

a

([p

0

(s)]

�

+ h(1)(s))

�(p

1

)(s)

�

s

Z

a

�(p

1

)(�)d�

�

�

ds+

+

�

t

Z

a

�(p

1

)(�)d�

�

�

b

Z

t

([p

0

(s)]

�

+ h(1)(s))

�(p

1

)(s)

�

b

Z

s

�(p

1

)(�)d�

�

�

ds

�

�

�

(

b

R

a

�(p

1

)(s) ds)

1�2�

4

1��

:

Then, as is seen from the condition (1:1:32

1

),

z

0

(t) < 1 for a � t � b;

and hence we can choose " > 0 small enough for the inequality

z

0

(t) + "v(t) < 1 (1.3.36)

to be ful�lled for a � t � b. Notice that by virtue of the equalities (1:3:23

1

),

we obtain the estimate

0 < w(t) � z

0

(t) + "v(t) for a � t � b

which with regard for (1.3.36) implies

0 < w(t) � 1 for a � t � b: (1.3.37)

On the other hand,

w

00

(t) = �[p

0

(t)] + p

1

(t)w

0

(t) � h(1)(t);

whence, taking into account (1.3.37) and the fact that the operator h is

nonnegative, we obtain

w

00

(t) � p

0

(t)w(t) + p

1

(t)w

0

(t)� h(w)(t):

Consequently, owing to De�nition 1.1.3, the inclusion (p

0

; p

1

)2V

1;0

(]a; b[ ;h)

is valid.

Proof of Corollary 1:1:1

2

. It is clear that all the requirements of Theo-

rem 1:1:1

2

, except (1:1:7

2

) follow directly from the conditions of our corol-

lary. It remains to show that the conditions (1.1.31), (1:1:32

1

) imply the

inclusion (1:1:7

2

) as well.
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To this end, we introduce for � > 0 the functions z

�

and w by the

equalities

z

�

(t) =

�

t

Z

a

([p

0

(s)]

�

(�+ x

�

(s)) + h(x

�

)(s))

�(p

1

)(s)

�

s

Z

a

�(p

1

)(�)d�

�

�

ds+

+

�

t

Z

a

�(p

1

)(�)d�

�

�

b

Z

t

([p

0

(s)]

�

(� + x

�

(s)) + h(x

�

)(s)

�(p

1

)(s)

ds

�

�

�

�

b

Z

a

�(p

1

)(�)d�

�

1�(�+�)

and

w(t) =

b

Z

a

jG

0

(t; s)j([p

0

(s)]

�

(� + x

�

(s)) + h(x

�

)(s)) ds +w

"

(t);

where G

0

is Green's function of the problem (1.3.21), (1:3:22

2

), and w

"

is

de�ned just as in the previous proof. Then reasoning in the same manner

as when proving Corollary 1:1:1

1

, we make sure that the inclusion (1:1:7

2

)

is valid for � > 0.

In the case � = 0, we consider the function z

�

for � = 0 and the function

w de�ned by (1.3.35), where v is a solution of the equation (1.3.21) under

the boundary conditions

v(a) = 1; v

0

(b�) = 1:

Then reasoning just in the same way as in proving Corollary 1:1:1

1

for � = 0,

we can see that the inclusion (p

0

; p

1

) 2V

2;0

(]a; b[ ;h) is valid.

Proof of Corollary 1:1:1

i0

. Coincides completely with that of Corolla-

ry 1:1:1

i

for � > 0.

Proof of Remark 1:1:4. Denote the left-hand side of (1:1:32

i

) by w. Then it

is obvious that

w(t) �

b

Z

a

[p

0

(s)]

�

x

�+�

(s) + x

�

(s)h(x

�

)(s)

�(p

1

)(s)

ds for a � t � b;

i.e., it follows from (1:1:34

i

) that the condition (1:1:32

i

) is valid. On the

other hand, (1:1:34

i

) implies the inclusion

h 2 L

�

C

x

� ;L
x

�

�(p

1

)

�

which together with (1.1.33) means that (1:1:8

i

) is satis�ed.
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Proof of Remark 1:1:4

0

. As is seen from the proof of Remark 1.1.4, the

conditions (1:1:32

i

) and (1.1.12) follow simultaneously from (1:1:34

i

).

Proof of Corollary 1:1:2

i

. Introduce the notation

g(u)(t) =

n

X

k=1

g

k

(t)u(�

k

(t)) (1.3.38)

and

h(u)(t) =

n

X

k=1

jg

k

(t)ju(�

k

(t)): (1.3.39)

Then for any u 2 C(]a; b[) almost everywhere on the interval ]a; b[ the

inequality (1.1.10) is satis�ed, and as is seen from (1:1:36

i

), the inclusion

(1:1:8

i

) is valid. It is also clear that the condition (1:1:37

i

) in our notation

can be rewritten as (1:1:32

i

). Hence all the requirements of Corollary 1:1:1

i

are ful�lled and our corollary is valid.

Proof of Corollary 1:1:2

i0

. De�ne the operators g and h by the equalities

(1.3.38) and (1.3.39) and note that from the condition (1.3.38) it follows the

inclusion (1.1.12). Reasoning similarly as when proving the above corollary,

we can see that our corollary is valid.

Proof of Remark 1:1:5. Denote the left-hand side of (1:1:37

i

) by w. Then it

is evident that

w(t) �

b

Z

a

[p

0

(s)]

�

x

�+�

(s) + x

�

(s)

n

P

k=1

jg

k

(s)jx

�

(�

k

(s))

�(p

1

)(s)

ds for a � t � b;

i.e., (1:1:40

i

) implies the validity of the condition (1:1:37

i

). On the other

hand, (1:1:40

i

) implies the inclusion

g

k

x

�

(�

k

) 2 L
x

�

�(p

1

)

([a; b])

which together with (1.1.39) means that (1:1:36

i

) is satis�ed.

Proof of Remark 1:1:5

0

. As is seen from the proof of Remark 1.1.5, the

conditions (1:1:37

i

) and (1.1.38) follow simultaneously from (1:1:40

i

).

Proof of Corollary 1:1:3

1

. It is clear that all the requirements of Theo-

rem 1:1:1

i

, except (1:1:7

i

), follow directly from the conditions of our corol-

lary. It remains to show that the conditions (1.1.41), (1:1:42

1

) imply the

inclusion (1:1:7

1

) as well, where h(u)(t) =

n

P

k=1

jg

k

(t)ju(�

k

(t)).
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Indeed, let � > 0 and

z(t) =

�

n

X

k=1

t

Z

a

jg

k

(s)j

�(p

1

)(s)

x

�

(�

k

(s))

�

s

Z

a

�(p

1

)(�)d�

�

�

ds

�

b

Z

t

�(p

1

)(�)d�

�

�

+

+

n

X

k=1

b

Z

t

jg

k

(s)j

�(p

1

)(s)

x

�

(�

k

(s))

�

b

Z

s

�(p

1

)(�)d�

�

�

ds

�

t

Z

a

�(p

1

)(�)d�

�

�

�

�

�

�

b

R

a

�(p

1

)(�)d�

�

1�2(�+�)

2

2�2(�+�)

:

Then as is seen from (1:1:42

1

), for every m 2 f1; : : : ; ng

z(�

m

(t)) < 1 for a � t � b: (1.3.40)

Moreover, let

w(t) =

n

X

k=1

b

Z

a

jG

0

(t; s)jg

k

(s)x

�

(�

k

(s)) ds + w

"

(t);

where the function w

"

is de�ned in the same way as in proving Corolla-

ry 1:1:1

1

, " > 0, G

0

is Green's function of the problem (1.3.21), (1:3:22

1

)

de�ned by the equality (1:3:23

1

) and by Lemma 1.2.7,

w

"

(t) = O

�

(x

�

(t)) as t! a; t! b; (1.3.41)

for any " > 0. From the conditions (1.3.40), (1.3.41) it follows that we can

choose a constant " > 0 such that for every m 2 f1; : : : ; ng

z(�

m

(t)) + sup

n

w

"

(�

m

(t))

x

�

(�

m

(t))

: a < t < b

o

< 1 for a � t � b: (1.3.42)

Using the equality (1:3:23

1

) we can easily obtain the estimate

0 � w(t) � z(t)x

�

(t) + w

"

(t) for a � t � b; (1.3.43)

whence by virtue of (1.3.42) for every m 2 f1; : : : ; ng the inequality

0 � w(�

m

(t)) � x

�

(�

m

(t)) for a < t < b (1.3.44)

is valid. Analogously, from (1.3.41) and (1.3.43) it follows the estimate

0 < w(t) � r

0

x

�

(t) for a < t < b; (1.3.45)

where

r

0

= sup

n

z(t) +

w

"

(t)

x

�

(t)

: a < t < b

o

< +1;

and according to (1.3.41) we get

w(t) = O

�

(x

�

(t)) as t! a; t! b: (1.3.46)
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On the other hand, it is clear that

w

00

(t) = p

1

(t)w

0

(t)�

n

X

k=1

jg

k

(t)jx

�

(�

k

(t)) � q

�

(t);

which with regard for the conditions (1.1.41) and (1.3.44) results in

w

00

(t) � p

0

(t)w(t) + p

1

(t)w

0

(t) �

n

X

k=1

jg

k

(t)jw(�

k

(t)) � q

�

(t); (1.3.47)

where, as is seen from Remark 1.2.6,

(p

0

; p

1

) 2V

1;0

(]a; b[): (1.3.48)

Then, as we have shown in proving Corollary 1:1:1

1

,

b

Z

a

jG(t; s)jq

�

(s) ds = O

�

(x

�

(t)) as t! a; t! b; (1.3.49)

where G is Green's function of the problem (1.2.4), (1:2:2

i0

). It remains

to notice that the conditions (1.3.45), (1.3.46), (1.3.48), (1.3.49) and the

inequality (1.3.47) by virtue of De�nition 1.1.4 imply the inclusion (1:1:7

1

)

for � > 1.

Suppose now that � = 0 and

w(t) =

n

X

k=1

b

Z

a

jG

0

(t; s)jjg

k

(s)j ds + "v(t); (1.3.50)

where v is a solution of the equation (1.3.21) under the boundary conditions

v(a) = 1 and v(b) = 1:

Then, as is seen from the condition (1:1:42

1

), for every m 2 f1; : : : ; ng

z(�

m

(t)) < 1 for a � t � b

and hence for every m 2 f1; : : : ; ng we can choose " > 0 small enough for

the inequality

z(�

m

(t)) + "v(�

m

(t)) � 1 for a � t � b: (1.3.51)

to be ful�lled. Note that from the positiveness of v and also from (1:3:23

1

)

we have the estimate

0 < w(t) � z(t) + "v(t) for a � t � b

which by virtue of (1.3.51) for every m 2 f1; : : : ; ng yields

0 < w(�

m

(t)) � 1 for a � t � b: (1.3.52)



58

On the other hand,

w

00

(t) = p

1

(t)w

0

(t)�

n

X

k=1

jg

k

(t)j

which with regard for (1.1.41) and (1.3.52) gives

w

00

(t) � p

0

(t)w(t) + p

1

(t)w

0

(t)�

n

X

k=1

jg

k

(t)jw(�

k

(t)):

Hence, owing to De�nition 1.1.3, the inclusion (p

0

; p

1

) 2 V

1;0

( ]a; b[ ;h), is

valid, where h(u)(t) =

n

P

k=1

jg

k

(t)ju(�

k

(t)).

Proof of Corollary 1:1:3

2

. It is clear that all the requirements of Theo-

rem 1:1:1

2

, except (1:1:7

2

), follow directly from the conditions of our corol-

lary. It remains to show that the inclusion (1:1:7

2

) follows from the condition

(1.1.41), (1:1:42

1

) as well.

To this end, we introduce for � > 0 the functions z andw by the equalities

z(t) =

�

n

X

k=1

t

Z

a

jg

k

(s)j

�(p

1

)(s)

x

�

(�

k

(s))

�

t

Z

a

�(p

1

)(�)d�

�

�

ds+

+

n

X

k=1

b

Z

t

jg

k

(s)j

�(p

1

)(s)

x

�

(�

k

(s)) ds

�

t

Z

a

�(p

1

)(�)d�

�

�

��

b

Z

a

�(p

1

)(�)d�

�

1�(�+�)

and

w(t) =

n

X

k=1

b

Z

a

jG

0

(t; s)j jg

k

(s)jx

�

(�

k

(s)) ds + w

"

(t);

where G

0

is Green's function of the problem (1.3.21), (1:3:22

2

) and w

"

is

de�ned in the same way as in proving Corollary 1:1:1

1

. Reasoning just as

in proving Corollary 1:1:3

1

, we make sure that the inclusion (1:1:7

2

) is valid

for � > 0.

In the case � = 0 we consider the function w de�ned by the equality

(1.3.50), where v is a solution of the equation (1.3.21) for the boundary

conditions

v(a) = 1; v

0

(b�) = 1:

Then, reasoning analogously as in proving Corollary 1:1:3

1

for � = 0, we

can see that the inclusion (p

0

; p

1

) 2V

2;0

(]a; b[ ;h) is valid.

Proof of Corollary 1:1:3

i0

. Coincides completely with that of Corolla-

ry 1:1:3

i

for � > 0.

Proof of Remark 1:1:6. If the inequality (1:1:43

i

) is satis�ed for t 2 �

�

1

;:::;�

n

,

then it will especially be satis�ed on each of the sets �

�

m

, where m 2

f1; : : : ; ng, i.e., each of the n inequalities of (1:1:42

i

) will be satis�ed.
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Proof of Corollary 1:1:4

i

(1:1:4

i0

). It is su�cient to substitute p

0

� 0,

p

1

� 0, k = 1 in Remark 1:1:5

i

(1:1:5

i0

).

Proof of Corollary 1:1:5

1

. It is clear that all the requirements of Theo-

rem 1:1:1

1

, except (1:1:7

1

), follow directly from the conditions of our corol-

lary. It remains to show that the inclusion (1:1:7

1

) follows from the condi-

tions (1:1:50

1

) for 0 � � < 1 and (1:1:51

1

) for � = 1 as well.

Consider �rst the case 0 < � < 1. Let x be a function de�ned by the

equality (1:1:9

1

). Then

(x

�

(t))

00

= p

1

(t)(x

�

(t))

0

� 2�

2

�

2

(p

1

)(t)

x

1��

(t)

�

��(1 � �)

�

2

(p

1

)(t)

x

2��

(t)

�

�

b

Z

a

�(p

1

)(�)d�

�

2

+

�

b

Z

t

�(p

1

)(�)d�

�

2

�

: (1.3.53)

From the condition (1:1:50

1

) and the fact that the operator h is nonnegative

it follows that

�

x

2��

(t)

�

2

(p

1

)(t)

p

0

(t) � 2�

2

�

b

Z

a

�(p

1

)(�)d�

�

2(1��)

for a < t < b:

Moreover,

0 � �p

0

(t) + �(1� �)min

�

�

s

Z

a

�(p

1

)(�)d�

�

2

+

+

�

b

Z

s

�(p

1

)(�)d�

�

2

: a � s � b

�

�

2

(p

1

)(t)

x

2��

(t)

; (1.3.54)

where

� =

1� �

2�

�

b

Z

a

�(p

1

)(�)d�

�

�2(1��)

�

�min

�

�

s

Z

a

�(p

1

)(�)d�

�

2

+

�

b

Z

s

�(p

1

)(�)d�

�

2

: a � s � b

�

:

Let w(t) = x

�

(t) + �, and rewrite the identity (1.3.53) as

w

00

(t) = p

0

(t)w(t) + p

1

(t)w

0

(t) �

�

p

0

(t)x

�

(t) + 2�

2

�

2

(p

1

)(t)

x

1��

(t)

�

�

�

�

�p

0

(t) + �(1 � �)

��

t

Z

a

�(p

1

)(�)d�

�

2

+

�

b

Z

t

�(p

1

)(�)d�

�

2

�

�

2

(p

1

)(t)

x

2��

(t)

�

:
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Then, taking into account the fact that the operator h is nonnegative, from

the condition (1:1:50

1

) and the inequality (1.3.54) we obtain

w

00

(t) � p

0

(t)w(t) + p

1

(t)w

0

(t); (1.3.55)

i.e., owing to Lemma 1.2.2 the inclusion

(p

0

; p

1

) 2V

1;0

(]a; b[) (1.3.56)

is satis�ed. Then, as is seen fromRemark 1.2.2, there exists Green's function

G of the problem (1.2.4), (1:2:2

i0

), and by Lemma 1.2.6,

b

Z

a

jG(t; s)jq

�

(s) ds = O

�

(x

�

(t)) for t! a; t! b; (1.3.57)

where

q

�

(t) =

�

2

(p

1

)(t)

x

2��

(t)

:

Let now

" = �(1 � �)min

�

�

s

Z

a

�(p

1

)(�)d�

�

2

+

+

�

b

Z

s

�(p

1

)(�)d�

�

2

: a � t � b

�

(1.3.58)

and rewrite (1.3.53) in the form

(x

�

(t))

00

= p

0

(t)x

�

(t) + p

1

(t)(x

�

(t))

0

� h(x

�

)(t)� "q

�

(t) �

�

�

p

0

(t)x

�

(t)�h(x

�

)(t)+2�

2

�

2

(p

1

)(t)

x

1��

(t)

�

�

�

�(1��)

��

t

Z

a

�(p

1

)(�)d�

�

2

+

+

�

b

Z

t

�(p

1

)(�)d�

�

2

�

� "

�

�

2

(p

1

)(t)

x

2��

(t)

: (1.3.59)

Taking into account (1:1:50

1

) and (1.3.58), we obtain

(x

�

(t))

00

� p

0

(t)x

�

(t) + p

1

(t)(x

�

(t))

0

� h(x

�

)(t)� "q

�

(t) (1.3.60)

for a < t < b:

From (1.3.56), (1.3.57), and (1.3.60), by virtue of De�nition 1.1.4 we con-

clude that the inclusion (1:1:7

1

) is satis�ed for 0 < � < 1.

Assume now that � = 0. Then the condition (1:1:50

1

) takes the form

0 � p

0

(t)� h(1)(t) for a < t < b;
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from which we can see that the function w(t) � 1 satis�es the inequality

w

00

(t) � p

0

(t)w(t) + p

1

(t)w

0

(t)� h(w)(t);

i.e., owing to De�nition 1.1.3 we can conclude that the inclusion (1:1:7

1

) is

satis�ed for � = 0.

Finally we consider the case � = 1 and note that

x

00

(t) = p

1

(t)x

0

(t) � 2�

2

(p

1

)(t): (1.3.61)

It follows from (1:1:51

1

) that there exist constants ", � 2 ]0; 1[ such that

ess sup

t2 ]a;b[

�

x(t)

�

2

(p

1

)(t)

�

h(x)(t)

x(t)

� p

0

(t)

�

�

< 2�

2

(1.3.62)

and

ess sup

t2 ]a;b[

�

x(t)

�

2

(p

1

)(t)

�

h(x)(t)

x(t)

� p

0

(t)

�

�

< 2� ": (1.3.63)

Taking into account the fact that the operator h is nonnegative, from the

condition (1.3.62) we get

�

x

2��

(t)

�

2

(p

1

)(t)

p

0

(t) � 2�

2

�

b

Z

a

�(p

1

)(�)d�

�

2(1��)

for a < t < b:

Reasoning in the same way as for 0 < � < 1, from the last inequality as

well as from (1.3.62) we can see that the function w(t) = x

�

(t) + �, where

� =

1� �

2�

�

b

Z

a

�(p

1

)(�)d�

�

�2(1��)

�

�min

�

�

s

Z

a

�(p

1

)(�)d�

�

2

+

�

b

Z

s

�(p

1

)(�)d�

�

2

: a � s � b

�

;

satis�es (1.3.55), i.e., the inclusion (1.3.56) is satis�ed and there exists

Green's function G of the problem (1.2.4), (1:2:2

i0

). As is seen from Lem-

ma 1.2.7, if q

1

(t) = �

2

(p

1

)(t), then

b

Z

a

jG(t; s)jq

1

(s) ds = O

�

(x(s)) as t! a; t! b: (1.3.64)

We rewrite now the identity (1.3.61) as follows:

x

00

(t) = p

0

(t)x(t) + p

1

(t)x

0

(t)� h(x)(t)� "q

1

(t) +

+

�

h(x)(t)� p

0

(t)x(t) � (2� ")�

2

(p

1

)(t)

�

:
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The latter with regard for (1.3.63) yields

x

00

(t) � p

0

(t)x(t) + p

1

(t)x

0

(t) � h(x)(t) � "q

1

(t) for a < t < b: (1.3.65)

From (1.3.56), (1.3.64), and (1.3.65), according to De�nition 1.1.4 we con-

clude that the inclusion (1:1:7

1

) is satis�ed for � = 1.

Proof of Corollary 1:1:5

2

. It is clear that all the requirements of Theo-

rem 1:1:1

2

, except (1:1:7

2

), follow directly from the conditions of our corol-

lary. It remains to show that the inclusion (1:1:7

2

) follows from the condi-

tions (1:1:50

2

), (1.1.56) for 0 < � � 1 and from (1:1:51

2

) for � = 1.

First we consider the case 0 < � < 1. Let x be the function de�ned by

(1:1:9

2

). Then

(x

�

(t))

00

= p

1

(t)(x

�

(t))

0

� �(1 � �)

�

2

(p

1

)(t)

x

2��

(t)

: (1.3.66)

From (1:1:50

2

) it follows the existence of a constant " > 0 such that

ess sup

t2 ]a;b[

h

x

2

(t)

�

2

(p

1

)(t)

�

h(x

�

)(t)

x

�

(t)

� p

0

(t)

�i

< �(1 � �) � " (1.3.67)

and likewise from the inclusion (1.1.55) it follows the existence of a constant

� such that

��

x

2��

(t)

�

2

(p

1

)(t)

p

0

(t) < " for a < t < b: (1.3.68)

Let w(t) = x

�

(t) + �, and rewrite the identity (1.3.66) in the form

w

00

(t)=p

0

(t)w(t) + p

1

(t)w

0

(t)�

�

p

0

(t)x

�

(t) + �p

0

(t) + �(1� �)

�

2

(p

1

)(t)

x

2��

(t)

�

;

whence with regard for (1.3.67), (1.3.68) and the fact that the operator h is

nonnegative we can see that the inequality (1.3.55) is valid, i.e., by virtue

of Lemma 1.2.2 the inclusion

(p

0

; p

1

) 2V

2;0

(]a; b[) (1.3.69)

is satis�ed. Then, as is seen fromRemark 1.2.2, there exists Green's function

G of the problem (1.2.4), (1:2:2

20

), and by Lemma 1.2.7,

b

Z

a

jG(t; s)jq

�

(s) ds = O

�

(x

�

(s)) as t! a; (1.3.70)

where

q

�

(t) =

�

2

(p

1

)(t)

x

2��

(t)

:

Rewrite now (1.3.66) as

(x

�

(t))

00

= p

0

(t)x

�

(t) + p

1

(t)(x

�

(t))

0

� h(x

�

)� "q

�

(t) +
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+

�

h(x

�

)(t) � p

0

(t)x

�

(t) � (�(1 � �) � ")

�

2

(p

1

)(t)

x

2��

(t)

�

:

This equality by virtue of the condition (1.3.67) enables us to see that

(1.3.60) is satis�ed. From the conditions (1.3.60), (1.3.69), (1.3.70) and

according to De�nition 1.1.4, we can conclude that the inclusion (1:1:7

2

) is

satis�ed for 0 < � < 1.

Assume now that � = 1. From the condition (1:1:50

2

) for � = 1 it follows

the existence of a constant " > 0 such that

ess sup

t2 ]a;b[

�

x(t)

�

2

(p

1

)(t)

�

h(x)(t)

x(t)

� p

0

(t)

�

�

< �": (1.3.71)

Then it is clear from the negativeness of the operator h that

p

0

(t) � 0 for a < t < b;

i.e., by virtue of Remark 1.2.6, the inclusion (1.3.69) is satis�ed and hence

there exists Green's function G of the problem (1.2.4), (1:2:2

20

). As is seen

from lemma 1.2.7, if q

1

(t) = �

2

(p

1

)(t), then

b

Z

a

jG(t; s)jq

1

(s) ds = O

�

(x(t)) as t! a: (1.3.72)

Note that

x

00

(t) = p

0

(t)x(t) + p

1

(t)x

0

(t)� h(x)(t)� "q

1

(t) +

+

�

h(x)(t)� p

0

(t)x(t) + "�

2

(p

1

)(t)

�

;

whence with regard for (1.3.71) we see that (1.3.65) is satis�ed.

From the conditions (1.3.65), (1.3.69), (1.3.72), owing to De�nition 1.1.4

we conclude that the inclusion (1:1:7

2

) is satis�ed for � = 1 as well.

The proof of the given and of the previous corollary is identical for the

case � = 0.

Proof of Corollary 1:1:5

i0

. Coincides completely with that of Corolla-

ry 1:1:5

i

for 0 < � � 1.

Proof of Corollary 1:1:6

1

. Let

h(u)(t) =

n

X

k=1

jg

k

(t)ju(�

k

(t)): (1.3.73)

Then we can see from (1:1:56

1

) that the inclusion (1:1:8

1

) is satis�ed for

� = 0. It is also clear that all the requirements of Theorem 1:1:1

1

for � = 1,

� = 0, except (1:1:7

1

), follow directly from the conditions of our corollary. It

remains to show that the conditions (1:1:57

1

), (1:1:58

1

) imply the inclusion

(1:1:7

1

) as well.
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Without restriction of generality we assume that c 2]a; b[ . Then by

(1:1:57

1

) there exist 

m

, �

m

(m = 1; 2) such that

0 � 

m

< �

m

< +1 (m = 1; 2)

and

�

1

Z



1

ds

�

11

+ �

12

s + s

2

=

(c� a)

1��

1

1� �

1

;

�

2

Z



2

ds

�

21

+ �

22

s + s

2

=

(b� c)

1��

2

1� �

2

:

(1.3.74)

Introduce the functions '

1

and '

2

by

�

1

Z

'

1

(t)

ds

�

11

+ �

12

s+ s

2

=

(t � a)

1��

1

1� �

1

for a � t � c

and

�

2

Z

'

2

(t)

ds

�

21

+ �

22

s + s

2

=

(b� t)

1��

2

1� �

2

for c � t � b:

From (1.3.74) we have



1

< '

1

(t) < �

1

for a < t < c; 

2

< '

2

(t) < �

2

for c < t < b and

'

m

(c) = 

m

(m = 1; 2):

Introduce also the function w by

w(t) = exp

�

t

Z

c

(s � a)

��

1

'

1

(s) ds

�

for a � t < c;

w(t) = exp

�

c

Z

t

(b� s)

��

2

'

2

(s) ds

�

for c � t � b:

Then

w

0

(t) > 0 for a < t < c; w

0

(t) < 0 for c � t < b;

w(t) > 0 for a � t � b;

(1.3.75)

w 2

e

C

0

loc

( ]a; c[)\

e

C

0

loc

( ]c; b[); w(c�) � w(c+); (1.3.76)
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and the equalities

w

00

(t) = �

�

11

(t � a)

2�

1

w(t)�

h

�

12

(t � a)

�

1

+

�

1

t� a

i

w

0

(t)

for a < t < c;

w

00

(t) = �

�

21

(b � t)

2�

2

w(t) +

h

�

22

(b � t)

�

2

+

�

2

b� t

i

w

0

(t)

for c � t < b

(1.3.77)

are valid.

From the above equalities, by virtue of (1.3.75) it follows that

w

00

(t) � 0 for a < t < b: (1.3.78)

On the other hand, taking into account the conditions (1:1:58

1

) in the equal-

ities (1.3.77), we obtain

w

00

(t) �

�

p

0

(t) �

n

X

k=1

jg

k

(t)j

�

w(t) + p

1

(t)w

0

(t)�

�w

0

(t)

n

X

k=1

jg

k

(t)j

�

�

k

(t) � t

�

for a < t < b: (1.3.79)

Analogously, from (1.3.78) it follows

�

k

(t)

Z

t

w

0

(s) ds � w

0

(t)

�

�

k

(t) � t

�

(k = 1; : : : ; n) for a < t < b:

Taking this inequality into consideration, from (1.3.79) we can see that

w

00

(t) � p

0

(t)w(t) + p

1

(t)w

0

(t) �

n

X

k=1

jg

k

(t)jw

�

�

k

(t)

�

for a < t < b:

The latter inequality together with (1.3.75), (1.3.76) and by virtue of De�-

nition 1.1.3 shows that the inclusion (p

0

; p

1

) 2V

1;0

(]a; b[;h) is satis�ed.

Proof of Corollary 1:1:6

2

. We de�ne the operator h by the equality (1.3.73).

Note also that if p

1

2 L

loc

(]a; b]), then from the conditions (1.1.56) and

(1.1.59) we obtain

�(p

1

) 2 L([a; b]); p

j

�

2

(p

1

) 2 L([a; b]) (j = 0; 2);

g

k

�

2

(p

1

) 2 L([a; b]) (k = 1; : : : ; n);

i.e., the conditions (1:1:3

2

), (1:1:5

2

), and (1:1:8

2

), are satis�ed where � = 0,

� = 1. Then just as in the previous proof it remains to show that from the

conditions (1:1:57

2

){(1.1.59) it follows the inclusion (1:1:7

2

) for � = 0.
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Without restriction of generality we assume that c 2]a; b[ . Then by virtue

of (1:1:57

2

) there exist constants 

m

, �

m

(m = 1; 2) such that

" � 

1

< �

1

< +1; 0 < 

2

< �

2

< +1

and (1.3.74) is satis�ed. Introduce the functions '

1

and '

2

by

�

Z

'

1

(t)

ds

�

11

+ �

12

s + s

2

=

(t� a)

1��

1

1� �

1

for a � t < c;

'

2

(t)

Z



2

ds

�

21

+ �

22

s + s

2

=

(b� t)

1��

2

1� �

2

for c � t � b:

From (1.3.74) we have



1

< '

1

(t) < �

1

for a < t < c; 

2

< '

2

(t) < �

2

for c < t < b;

'

1

(c) = 

1

'

2

(c) = �

2

:

Introduce likewise the function w by the equalities

w(t) = exp

�

t

Z

a

(s � a)

��

1

'

1

(s) ds

�

for a � t < c;

w(t) = exp

�

�

t

Z

c

(b� s)

��

3

'

2

(s) ds

�

for c � t � b;

where 0 < � < min

�

1;



1

�

2

(b� c)

��

3

(c� a)

��

1

�

; i.e.,

� 2]0; 1[: (1.3.80)

Then

w

0

(t) > 0 for t 2 ]a; c[[ ]c; b[; w(t) > 0 for a � t � b; (1.3.81)

w 2

e

C

0

loc

( ]a; c[)\

e

C

0

loc

( ]c; b[); w(c�) � w(c+); w

0

(b�) � 0; (1.3.82)

and the equalities

w

00

(t) = �

�

11

(t� a)

2�

1

w(t)�

h

�

12

(t� a)

�

1

+

�

1

t� a

i

w

0

(t) (1.3.83)

for a < t < c

and

w

00

(t) = �

��

21

(b� t)

�

2

��

3

w(t)�

h

�

22

(b� t)

�

2

+

�

3

b� t

i

w

0

(t) �

��

�

1� �(b� t)

�

2

+�

3

�

(b� t)

�

3

��

2

w(t)'

2

2

(t); for c < t < b (1.3.84)



67

are valid. Note also that the condition c 2 [max(a; b � 1); b] and (1.3.80)

imply

1� �(b� t)

�

2

+�

3

� 0 for c � t � b:

Taking this into account in the equality (1.3.84), we obtain

w

00

(t) � �

��

21

(b� t)

�

2

��

3

w(t)�

h

�

22

(b� t)

�

2

+

�

3

b� t

i

w

0

(t): (1.3.85)

for a � t < b:

From (1.3.83) and (1.3.85), according to the condition (1.3.81), it is clear

that the inequality (1.3.78) is satis�ed.

On the other hand, taking into account in (1.3.83) and (1.3.85) the con-

ditions (1:1:58

2

), we get

w

00

(t) �

�

p

0

(t)�

n

X

k=1

jg

k

(t)j

�

w(t) + ep

1

(t)w

0

(t)�

� w

0

(t)

n

X

k=1

jg

k

(t)j

�

�

k

(t) � t

�

for a < t < b;

which with regard for (1.3.81) and (1.1.59) imply that (1.3.79) is satis�ed.

Reasoning in the same way as in the previous proof, we see that the inclusion

(p

0

; p

1

) 2V

2;0

(]a; b[ ;h) is valid.

Proof of Corollary 1:1:7

1

. It is not di�cult to notice that if we introduce

the notation

g(u)(t) =

n

X

k=1

g

k

(t)u

�

�

k

(t)

�

;

then the inequality (1.1.22) will be satis�ed, and from (1.1.61), (1.1.62)

it follows that the conditions (1.1.17) and (1.1.18) are valid. That is, all

the requirements of Theorem 1:1:2

1

are ful�lled and this implies that our

corollary is valid.

Proof of Remark 1:1:10. Follows directly from that of Remark 1.1.2.

Corollaries 1:1:7

2

and 1:1:7

i0

are proved analogously to Corollary 1:1:7

1

.
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CHAPTER II

CORRECTNESS OF TWO-POINT PROBLEMS FOR LINEAR

SINGULAR FUNCTIONAL DIFFERENTIAL EQUATIONS

OF SECOND ORDER

x

2.1. Statement of the Problem and Formulation of Main

Results

2.1.1. Statement of the Problem.

Let us Consider the functional di�erential equations

u

00

(t) = p

0

(t)u(t) + p

1

(t)u

0

(t) + g(u)(t) + p

2

(t); (2.1.1)

u

00

(t) = p

0k

(t)u(t) + p

1k

(t)u

0

(t) + g

k

(u)(t) + p

2k

(t); k 2 N; (2:1:1

k

)

under one of the following the boundary conditions

u(a) = 0; u(�b) = 0; (2:1:2

10

)

u(a) = 0; u

0

(b�) = 0; (2:1:2

20

)

u(a) = c

1

; u(b) = c

2

; (2:1:2

1

)

u(a) = c

1

; u

0

(b�) = c

2

; (2:1:2

2

)

u(a) = c

1k

; u(b) = c

2k

; (2:1:2

1k

)

u(a) = c

1k

; u

0

(b�) = c

2k

; (2:1:2

2k

)

where c

l

, c

l

k

2 R, (l = 1; 2; k 2 N), g, g

k

: C(]a; b[)! L

loc

(]a; b[), k 2 N, are

continuous operators,

p

1

; p

j

2 L

loc

(]a; b[) �(p

1

) 2 L([a; b]);

p

j

2 L

�

1

(p

1

)

([a; b]) (j = 0; 2)

(2:1:3

1

)

if i = 1,

p

1

; p

j

2 L

loc

(]a; b]) �(p

1

) 2 L([a; b]);

p

j

2 L

�

2

(p

1

)

([a; b]) (j = 0; 2)

(2:1:3

2

)

if i = 2, and p

jk

: ]a; b[!R (j = 0; 1; 2; k 2 N) are measurable functions.

The correctness of the problem (2.1.1), (2:1:2

i

) will be studied under the

assumption that the inclusion

(p

0

; p

1

) 2V

i;0

(]a; b[ ;h)

is satis�ed. (E�ective su�cient conditions for the above inclusion to be

ful�lled are given in x1.1, where

jg(x)(t)j � h(jxj)(t)

almost everywhere in the interval ]a; b[ for every x 2 C(]a; b[).)

Consider also the following linear equation

u

00

(t) = p

0k

(t)u(t) + p

1k

(t)u

0

(t) + p

2k

(t): (2:1:4

k

)



69

Let G

k

be Green's function of the problem (2:1:4

k

), (2:1:2

i0

) and r 2 R

+

.

Then we denote the set

�

y(t) : y(t) = �

1

ev

k

(t) +

b

Z

a

G

k

(t; s)g

k

(x)(s) ds; �

1

2 [0; r]; kxk

C

� r

�

by B

r;k

if ev

k

is a solution of the problem (2:1:4

k

), (2:1:2

i0

), and by B

0

r;k

if

ev

k

is a solution of the problem (2:1:4

k

), (2:1:2

ik

).

Throughout this chapter the use will also be made of the notation

I

i

(x)(t) =

t

Z

a

x(s) ds

�

b

Z

t

x(s) ds

�

2�i

for a � t � b;

where x 2 L([a; b]).

2.1.2. Formulation of Main Results.

Theorem 2:1:1

i

. Let i 2 f1; 2g, the continuous linear operators g, g

k

; h :

C(]a; b[)! L

loc

(]a; b[) (k 2 N), the measurable functions p

j

, p

jk

:]a; b[!R

(j = 0; 1; 2; k 2 N) and the constants � 2 [a; b],  2]1;+1[, �; � 2 R be

such that

0 � � < � <

 � 1

 � �

; (2.1.5)

�



(p

1

) 2 L([a; b]);

b

Z

a

jp

j

(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds < +1 (j = 0; 2);

b

Z

a

h(1)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds < +1;

(2.1.6)

where h is a non-negative operator and uniformly on the segment [a; b]

lim

k!1

t

Z

a

jp

1

(s) � p

1k

(s)j ds = 0;

lim

k!1

t

Z

a

p

j

(s) � p

jk

(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds = 0 (j = 0; 2);

(2.1.7)

lim

k!1

�

sup

�

�

�

�

t

Z

a

g(y)(s) � g

k

(y(s))

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

:

a � t � b; y 2 B

1k

��

= 0: (2.1.8)
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Moreover, let

(p

0

; p

1

) 2V

i;0

( ]a; b[; h); (2.1.9)

where for every x 2 C(]a; b[) almost everywhere in the interval ]a; b[ the

inequality

jg(x)(t)j � h(jxj)(t) (2.1.10)

is satis�ed. Then there exists a number k

0

such that if k > k

0

, then the

problem (2:1:1

k

), (2:1:2

i0

) has a unique solution u

k

and uniformly in the

interval ]a; b[

lim

k!1

I

��1

i

(�

1���

1��

(p

1

))(t)(u(t) � u

k

(t)) = 0; (2.1.11)

lim

k!1

I

�

i

(�

�

(p

1

))(t)

�(p

1

)(t)

(u

0

(t)� u

0

k

(t)) = 0; (2.1.12)

where u is the solution of the problem (2:1:1), (2:1:2

i0

).

Theorem 2:1:2

i

. Let i 2 f1; 2g, the continuous linear operators g, g

k

; h :

C(]a; b[)! L

loc

(]a; b[) (k 2 N), the measurable functions p

j

, p

jk

: (]a; b[)!

R (j = 0; 1; 2; k 2 N) and the constans � 2 [a; b],  2]1;+1[, c

l

, c

lk

, �,

� 2 R (l = 1; 2; k 2 N) be such that conditions (2:1:5){(2:1:7), (2:1:9),

(2:1:10) and also

lim

k!1

�

sup

�

�

�

�

t

Z

a

g(y)(s) � g

k

(y(s))

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

:

a � t � b; x 2 B

0

1k

��

= 0 (2.1.13)

and

lim

k!1

c

lk

= c

l

(l = 1; 2) (2.1.14)

are satis�ed. Then there exists a number k

0

such that if k > k

0

, the problem

(2:1:1

k

), (2:1:2

i0

) has a unique solution u

k

, and uniformly on the interval

]a; b[ the equalities (2:1:12) and

lim

k!1

�

u(t)� u

k

(t)

�

= 0 (2.1.15)

are satis�ed, where u is the solution of the problem (2:1:1), (2:1:2

i0

).

2.1.3. Corollaries of Theorems (2:1:1

i

) (2:1:2

i

) (i = 1; 2).

Corollary 2:1:1

i

. Let i 2 f1; 2g, the continuous linear operators g, g

k

; h :

C(]a; b[)! L

loc

(]a; b[) (k 2 N), the measurable functions �, p

j

, p

jk

:]a; b[!

R (j = 0; 1; 2; k 2 N) and the constants � 2 [0; 1],  2]1;+1[, �, � 2 R

+
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be such that the conditions (2:1:5){(2:1:7), (2:1:9), (2:1:10) are satis�ed and

for every y 2

e

C(]a; b[) almost everywhere on the interval ]a; b[

�

�

g

k

(y)(t) � g(y)(t)

�

�

� �(t)kyk

C

(k 2 N) (2.1.16)

and uniformly on the segment [a; b]

lim

k!1

t

Z

a

g

k

(y)(s) � g(y)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds = 0; (2.1.17)

where

b

Z

a

�(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds < +1: (2.1.18)

Then there exists a number k

0

, such that for k > k

0

the problem (2:1:1

k

),

(2:1:2

i0

) has a unique solution u

k

, and uniformly on the interval ]a; b[ the

equalities (2:1:11), (2:1:12) are satis�ed, where u is the solution of the prob-

lem (2:1:1), (2:1:2

i0

).

Corollary 2:1:2

i

. Let i 2 f1; 2g, the continuous linear operators g, g

k

; h :

C(]a; b[)! L

loc

(]a; b[) (k 2 N), the measurable functions �, p

j

, p

jk

:]a; b[!

R, (j = 0; 1; 2; k 2 N) and constants � 2 [0; 1],  2]1;+1[, �, � 2 R

+

be such that the conditions (2:1:5){(2:1:7), (2:1:9), (2:1:10), (2:1:14), and

(2:1:16){(2:1:18) are satis�ed. Then there exists a number k

0

such that

for k > k

0

the problem (2:1:1

k

), (2:1:2

ik

) has a unique solution u

k

, and

uniformly on the interval ]a; b[ the equalities (2:1:12), (2:1:15) are satis�ed,

where u is the solution of the problem (2:1:1), (2:1:2

i

).

Consider now the case where the equations (2.1.1) and (2:1:1

k

) are of the

form

u

00

(t) = p

0

(t)u(t) + p

1

(t)u

0

(t) +

n

X

m=1

g

0m

(t)u(�

0m

(t)) + p

2

(t) (2.1.19)

and

u

00

(t) = p

0k

(t)u(t) + p

1k

(t)u

0

(t) +

n

X

m=1

g

km

(t)u(�

km

(t)) + p

2k

(t); (2:1:19

k

)

where g

0m

, g

km

: ]a; b[! R and �

0m

, �

km

: [a; b] ! [a; b] (m = 1; : : : ; n,

k 2 N) are measurable functions.

Corollary 2:1:3

i

. Let i 2 f1; 2g, the measurable functions �, g

0m

, g

km

,

p

j

, p

jk

: ]a; b[!R, �

0m

, �

km

: [a; b]! [a; b], (m = 1; : : : ; n; j = 0; 1; 2; k 2
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N) and the constants � 2 [0; 1],  2 ]1;+1[ , �, � 2 R be such that condi-

tions (2:1:5), (2:1:7), (2:1:18) as well as

�



(p

1

) 2 L([a; b]);

b

Z

a

h

jp

j

(s)j +

n

X

m=1

jg

0m

(s)j

i

I

�

i

(�

�

(p

1

))(s)

�(p

1

)(s)

ds < +1 (j = 0; 2);

(2.1.20)

�

�

�

n

X

m=1

�

g

0m

(t) � g

km

(t)

�

�

�

�

� �(t) (k 2 N) (2.1.21)

are satis�ed, and uniformly on the segment [a; b]

lim

k!1

n

X

m=1

�

�

�

�

t

Z

a

g

km

(s) � g

0m

(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

�

= 0; (2.1.22)

ess sup

�

I

���

i

(�

�

(p

1

))(t)

n

X

m=1

�

�

�

�

km

(t)

Z

�

0m

(t)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)

ds

�

�

�

: a<t<b

�

! 0

as k ! +1: (2.1.23)

Let also the condition (2:1:9) be satis�ed, where

h(x)(t) =

n

X

m=1

jg

0m

(t)jx(�

0m

(t)):

Then there exists a number k

0

such that for k > k

0

the problem (2:1:19

k

),

(2:1:2

i0

) has a unique solution u

k

, and uniformly on the interval ]a; b[ the

equalities (2:1:11), (2:1:12) are satis�ed, where u is the solution of the prob-

lem (2:1:19), (2:1:2

i0

).

Corollary 2:1:4

i

. Let i 2 f1; 2g, the measurable functions �, g

0m

, g

km

,

p

j

, p

jk

: ]a; b[!R, �

0m

, �

km

: [a; b]! [a; b], (m = 1; : : : ; n; j = 0; 1; 2; k 2

N) and the constants � 2 [0; 1],  2 ]1;+1[ , c

l

, c

lk

, �, � 2 R (l = 1; 2; k 2

N) be such that the conditions (2:1:5), (2:1:7), (2:1:9), (2:1:14), (2:1:18),

(2:1:20){(2:1:23) are satis�ed, where h(x)(t) =

P

n

m=1

jg

0m

(t)jx(�

0m

(t)).

Then there exists a number k

0

such that for k > k

0

the problem (2:1:19

k

),

(2:1:2

ik

) has a unique solution u

k

, and uniformly on the interval ]a; b[ the

equalities (2:1:12), (2:1:15) are satis�ed, where u is the solution of the prob-

lem (2:1:19), (2:1:2

i

).

Corollary 2:1:5

i

. Let i 2 f1; 2g, the measurable functions �, g

0m

, g

km

,

p

j

, p

jk

: ]a; b[!R, �

0m

, �

km

: [a; b]! [a; b], (m = 1; : : : ; n; j = 0; 1; 2; k 2

N) and the constants � 2 [0; 1],  2 ]1;+1[ , �, � 2 R be such that the
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conditions (2:1:5), (2:1:7), (2:1:18), (2:1:22) as well as

�



(p

1

) 2 L([a; b]);

b

Z

a

jp

j

(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds < +1 (j = 0; 2); (2.1.24)

n

X

m=1

�

jg

km

(t)j+ jg

0m

(t)j

�

� �(t) (k 2 N) for a < t < b (2.1.25)

and

ess sup

n

n

X

m=1

j�

0m

(t) � �

km

(t)j : a � t � b

o

! 0 for k! +1 (2.1.26)

are satis�ed. Let also the condition (2:1:9) be satis�ed, where h(x)(t) =

n

P

m=1

jg

0m

(t)jx(�

0m

(t)). Then there exists a number k

0

such that for k > k

0

the problem (2:1:19

k

), (2:1:2

i0

) has a unique solution u

k

, and uniformly on

the interval ]a; b[ the equalities (2:1:11), (2:1:12) are satis�ed, where u is the

solution of the problem (2:1:19), (2:1:2

i0

).

Corollary 2:1:6

i

. Let i 2 f1; 2g, the measurable functions �, g

0m

, g

km

,

p

j

, p

jm

:]a; b[!R �

0m

, �

km

: [a; b]! [a; b], (m = 1; : : : ; n; j = 0; 1; 2; k2N)

and the constants �2 [0; 1], 2 ]1;+1[ , c

l

, c

lk

, �, � 2 R (l = 1; 2; k2N) be

such that the conditions (2:1:5), (2:1:7), (2:1:9), (2:1:14), (2:1:18), (2:1:22)

and (2:1:24){(2:1:26) are satis�ed, where h(x)(t) =

n

P

m=1

jg

0m

(t)jx(�

0m

(t)).

Then there exists a number k

0

such that for k > k

0

the problem (2:1:19

k

),

(2:1:2

ik

) has a unique solution u

k

, and uniformly on the interval ]a; b[ the

equalities (2:1:12), (2:1:15) are satis�ed, where u is the solution of the prob-

lem (2:1:19), (2:1:2

i0

).

For more clearness, let us consider the equations

u

00

(t) = g

0

(t)u(�

0

(t)) + p

2

(t); (2.1.27)

u

00

(t) = g

0k

(t)u(�

k

(t)) + p

2k

(t); (2:1:27

k

)

where g

0

, g

0k

, p

2

, p

2k

; ]a; b[! R, and �

0

, �

0k

; [a; b] ! [a; b] (k 2 N) are

measurable functions.

Corollary 2:1:7

i

. Let i 2 f1; 2g, the measurable functions �, g

0

, g

0k

, p

2

,

p

2k

: ]a; b[! R, �

0

, �

k

: [a; b] ! [a; b], (k 2 N) and the constants �, � 2 R

be such that the conditions

� < � < 1; (2.1.28)

jg

0

(t)j+ jg

0k

(t)j � �(t) for a < t < b; (2.1.29)
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b

Z

a

jp

2

(s)j(s � a)

�

(b� s)

�(2�i)

ds < +1;

b

Z

a

�(s)(s � a)

�

(b� s)

�(2�i)

ds < +1

(2.1.30)

are satis�ed, and uniformly on the segment [a; b]

lim

k!1

t

Z

a

�

p

2

(s) � p

2k

(s)

�

(s � a)

�

(b� s)

�(2�i)

ds = 0;

lim

k!1

t

Z

a

�

g

0

(s) � g

0k

(s)

�

(s � a)

�

(b� s)

�(2�i)

ds = 0

(2.1.31)

and

ess sup

�

j�

0

(t) � �

k

(t)j : a � t � b

	

! 0 as k! +1: (2.1.32)

Let, moreover, the inclusion

(0; 0) 2V

i;0

(]a; b[;h) (2.1.33)

be satis�ed, where h(x)(t) = jg

0

(t)jx(�

0

(t)). Then there exists a number k

0

,

such that for k > k

0

, the problem (2:1:27

k

), (2:1:2

i0

) has a unique solution

u

k

, and uniformly on the interval ]a; b[ the conditions (2:1:11), (2:1:12) are

satis�ed, where u is a solution of the problem (2:1:27), (2:1:2

i0

).

Corollary 2:1:8

i

. Let i 2 f1; 2g, the measurable functions �, g

0m

, g

0k

,

p

2

, p

2k

: ]a; b[! R, �

0

, �

k

: [a; b] ! [a; b], (k 2 N) and the constants c

l

,

c

lk

, �, � 2 R (l = 1; 2; k 2 N) be such that the conditions (2:1:14) and

(2:1:28){(2:1:33) are satis�ed, where h(x)(t) = jg

0

(t)jx(�

0

(t)). Then there

exists a number k

0

such that for k > k

0

the problem (2:1:27

k

), (2:1:2

ik

)

has a unique solution u

k

, and uniformly on the interval ]a; b[ the equali-

ties (2:1:12), (2:1:15) are satis�ed, where u is the solution of the problem

(2:1:27), (2:1:2

i

).

x

2.2. Auxiliary Propositions

2.2.1. Correctness of the Initial Problem for Linear Second Order Ordinary

Di�erential Equations. Consider on the interval ]a; b[ the equations

v

00

(t) = p

0

(t)v(t) + p

1

(t)u

0

(t) (2.2.1)

and

v

00

(t) = p

0k

(t)v(t) + p

1k

(t)v

0

(t); k 2 N; (2:2:1

k

)
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where

p

0

; p

1

2 L

loc

(]a; b[); �(p

1

) 2 L([a; b]); p

0

2 L

�

1

(p

1

)

; ([a; b]) (2:2:2

1

)

p

0k

; p

1k

2 L

loc

(]a; b[); k 2 N; (2:2:3

1

)

or

p

0

; p

1

2 L

loc

(]a; b]); �(p

1

) 2 L( [a; b] ); p

0

2 L

�

2

(p

1

)

([a; b]); (2:2:2

2

)

p

0k

; p

1k

2 L

loc

( ]a; b]); k 2 N; (2:2:3

2

)

and the following initial conditions:

v(a) = 0; lim

t!a

v

0

(t)

�(p

1

)(t)

= 1; (2:2:4

1

)

v(a) = 0; lim

t!a

v

0

(t)

�(p

1k

)(t)

= 1; (2:2:4

k

)

v(b) = 0; lim

t!b

v

0

(t)

�(p

1

)(t)

= �1; (2:2:5

1

)

v(b) = 0; lim

t!b

v

0

(t)

�(p

1k

)(t)

= �1; (2:2:5

1k

)

v(b) = 1; v

0

(b) = 0: (2:2:5

2

)

Remark 2.2.1. It has been shown in [23] that for the conditions (2:2:2

i

)

the problems (2.2.1), (2.2.4) and (2.2.1), (2:2:5

i

) are uniquely solvable.

Analogously, if

p

0k

; p

1k

2 L

loc

(]a; b[); �(p

1k

) 2 L([a; b]); p

0k

2 L

�

1

(p

1k

)

([a; b]);

then the problems (2:2:1

k

), (2:2:4

k

) and (2:2:1

k

), (2:2:5

1k

) are uniquely

solvable, and if

p

0k

; p

1k

2 L

loc

(]a; b]); �(p

1k

) 2 L([a; b]); p

0k

2 L

�

2

(p

1k

)

([a; b]);

then the problems (2:2:1

k

), (2:2:4

k

) and (2:2:1

k

), (2:2:5

2

) are uniquely solv-

able as well.

For brevity we introduce the notation

�p

jk

(t) = p

j

(t) � p

jk

(t) (j = 0; 1; 2; k 2 N) for a < t < b:

Lemma 2:2:1

1

. Let the measurable functions p

j

, p

jk

: ]a; b[! R (j =

0; 1; k 2 N) and the constants � 2 [0; 1],  2]1;+1[, �, � 2 R such that

0 � � < � �

 � 1

 � �

; (2.2.6)

�



(p

1

) 2 L([a; b]);

b

Z

a

jp

0

(s)j

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s) ds < +1 (2:2:7

1

)
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and uniformly on the segment [a; b] the conditions

lim

k!1

t

Z

a

�p

0k

(s)

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s) ds = 0; lim

k!1

t

Z

a

j�p

1k

(s)j ds = 0 (2:2:8

1

)

be satis�ed. Then there exists a number k

0

such that for k > k

0

the prob-

lem (2:2:1

k

), (2:2:4

1k

) has a unique solution v

1k

and the problem (2:2:1

k

),

(2:2:5

1k

) has a unique solution v

2k

, and uniformly on the interval ]a; b[

lim

k!1

�

v

1k

(t)� v

1

(t)

�

�

t

Z

a

�(p

1

)(s) ds

�

�1

= 0; (2:2:9

11

)

lim

k!1

�

v

2k

(t)� v

2

(t)

�

�

b

Z

t

�(p

1

)(s) ds

�

�1

= 0 (2:2:9

12

)

and

lim

k!1

v

0

1k

(t)� v

0

1

(t)

�(p

1

)(t)

�

b

Z

t

�

�

(p

1

)(s) ds

�

�

= 0; (2:2:10

11

)

lim

k!1

v

0

2k

(t)� v

0

2

(t)

�(p

1

)(t)

�

t

Z

a

�

�

(p

1

)(s) ds

�

�

= 0; (2:2:10

12

)

where v

1

and v

2

are the solutions of the problems (2:2:1), (2:2:4

1

) and

(2:2:1), (2:2:5

1

), respectively.

Proof. It is clear from the de�nition of the constants �, �, , � that

� � � < 0; 0 <

1� ��

1� �

<

1� ��

1� �

� : (2.2.11)

Hence

�

�

(p

1

); �

1���

1��

(p

1

); �

1���

1��

(p

1

) 2 L([a; b]): (2.2.12)

Using the H�older inequality, we obtain

t

2

Z

t

1

�(p

1

)(s) ds �

�

t

2

Z

t

1

�

1���

1��

(p

1

)(s) ds

�

1��

�

�

�

t

2

Z

t

1

�

�

(p

1

)(s) ds

�

�

for a � t

1

� t

2

� b; (2.2.13)
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b

Z

a

�(p

1

)(s)

�

s

R

a

�

�

(p

1

)(�) d�

�

�

ds �

�

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

1��

�

b

Z

a

�

�

(p

1

)(s)

�

s

R

a

�

�

(p

1

)(�) d�

�

�

�

ds

�

�

=

=

�

�

� � �

�

�

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

1��

�

b

Z

a

�

�

(p

1

)(s) ds

�

���

; (2.2.14)

b

Z

a

�(p

1

)(s)

�

b

R

s

�

�

(p

1

)(�) d�

�

�

ds �

�

�

�

�� �

�

�

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

1��

�

b

Z

a

�

�

(p

1

)(s) ds

�

���

; (2.2.15)

where the existence of the integrals follows from (2.2.12). By means of

(2.2.14), (2.2.15) we easily get

b

Z

a

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s)

ds � 2

�

�

�� �

�

�

I

��

1

(�

�

(p

1

))

�

a+ b

2

�

�

�

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

1��

�

b

Z

a

�

�

(p

1

)(s) ds

�

���

< +1: (2.2.16)

It is also evident that for every � 2 [0; 1[

b

Z

a

�

�

(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)

ds < +1: (2.2.17)

By virtue of condition (2:2:8

1

), for every " > 1 there exists a number k

0

such that for k > k

0

"

�1

� �(�p

1k

)(t) � " for a � t � b: (2.2.18)

We now proceed to the proof of the lemma. Taking into account the condi-

tions (2:2:7

1

), (2:2:12) and the inequality (2:2:13), the inequality

b

Z

a

jp

0

(s)j�

1

(p

1

)(s) ds �

b

Z

a

jp

0

(s)j

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s) ds �
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�

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

2(1��)

< +1 (2.2.19)

is valid, i.e. the conditions (2:2:2

1

) are satis�ed. In this case, owing to

Remark 2.2.1, the problems (2.2.1), (2.2.4) and (2.2.1), (2:2:5

1

) are uniquely

solvable. Integrating by parts and using (2.2.18), we arrive at

�

�

�

�

b

Z

a

p

0k

(s)

�(p

1k

)(s)

I

�

1

(�

�

(p

1k

))(s) ds

�

�

�

�

�

�

�

�

�

�

b

Z

a

�p

0k

(s)

�(p

1k

)(s)

I

�

1

(�

�

(p

1k

))(s) ds

�

�

�

�

+

b

Z

a

jp

0

(s)j

�(p

1k

)(s)

I

�

1

(�

�

(p

1k

))(s) ds �

� A

k

b

Z

a

�

�

�

�

�

�(�p

1k

)(s)

I

�

1

(�

�

(p

1k

))(s)

I

�

1

(�

�

(p

1

))(s)

�

0

�

�

�

�

ds+

+"

3

b

Z

a

jp

0

(s)j

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s) ds for k > k

0

; (2.2.20)

where

A

k

= sup

�

�

�

�

t

2

Z

t

1

�p

0k

(s)

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s) ds

�

�

�

: a � t

1

< t

2

� b

�

:

In view of (2:2:8

1

)

lim

k!1

A

k

= 0; (2.2.21)

and by virtue of (2.2.18) the estimate

�

�

�

�

�

�(�p

1k

)(t)

I

�

1

(�

�

(p

1k

))(t)

I

�

1

(�

�

(p

1

))(t)

�

0

�

�

�

�

� "

3

j�p

1k

(t)jI

���

1

(�

�

(p

1

))(t) +

+(�+ �)"

3

b

Z

a

�

�

(p

1

)(s) ds

�

�

(p

1

)(t)

I

1+���

1

(�

�

(p

1

))(t)

for a < t < b

is valid. Substituting the latter in (2.2.20) and taking into account (2:2:7

1

),

(2:2:8

1

), (2.2.17) and (2.2.21), we can see that a constant r

0

2 R

+

exist,

such that

sup

�

b

Z

a

jp

0k

(s)j

�(p

1k

)(s)

I

�

1

(�

�

(p

1k

))(s) ds : k > k

0

�

< r

0

: (2.2.22)
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In the same way we get

p

0k

2 L

�

1

(p

1k

)

([a; b]) for k > k

0

;

where in view of (2.2.18)

�(p

1k

) 2 L([a; b]) for k > k

0

;

which together with the conditions (2:2:3

i

) and Remark 2.2.1 imply that

the problems (2:2:1

k

), (2:2:4

k

) and (2:2:1

k

), (2:2:5

1k

) are uniquely solvable

for k > k

0

.

Note that the function w

jk

(t) = v

j

(t) � v

jk

(t) (j = 1; 2; k > k

0

) is a

solution of the equation

v

00

(t) = p

0k

(t)v(t) + p

1k

(t)v

0

(t) +

+�p

0k

(t)v

j

(t) + �p

1k

(t)v

0

j

(t) (j = 1; 2) (2.2.23)

and

w

1k

(a) = 0; lim

t!a

w

0

1k

(t)

�(p

1k

)(t)

= �(�p

1k

)(a) � 1; (2:2:24

1

)

w

2k

(b) = 0; lim

t!b

w

0

2k

(t)

�(p

1k

)(t)

= 1� �(�p

1k

)(b); (2:2:24

2

)

where in view of (2:2:8

1

),

lim

k!1





1� �(�p

1k

)





C

= 0: (2.2.25)

Consider �rst the case j = 1. From (2.2.23), (2:2:24

1

) we have

w

0

1k

(t)

�(p

1k

)(t)

= �(�p

1k

)(t) � 1 +

t

Z

a

�p

0k

(s)

v

1

(s) �w

1k

(s)

�(p

1k

)(s)

ds+

+

t

Z

a

p

0

(s)w

1k

(s) + �p

1k

(s)v

0

1

(s)

�(p

1k

)(s)

ds for a < t < b; (2.2.26)

where the existence of integrals follows from the estimate (1:2:10

1

), (1:2:11

1

)

and the conditions (2:2:7

1

), (2:2:8

1

). From (2.2.26), integration by parts

results in

jw

0

1k

(t)j

�(p

1k

)(t)

�

�

�

1� �(�p

1k

)(a)

�

�

+ A

k

t

Z

a

�

�

�

�

v

1

(s) �w

1k

(s)

I

�

1

(�

�

(p

1

))(s)

�(�p

1k

)(s)

�

0

�

�

�

ds+

+

t

Z

a

jp

0

(s)w

1k

(s) + �p

1k

(s)v

0

1

(s)j

�(p

1k

)(s)

ds for a < t < b; (2.2.27)
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where in view of (2.2.18),

t

Z

a

�

�

�

�

�

v

1

(s) � w

1k

(s)

I

�

1

(�

�

(p

1

))(s)

�(�p

1k

)(s)

�

0

�

�

�

�

ds �

� "

t

Z

a

jw

0

1k

(s)j + jv

0

1

(s)j

I

�

1

(�

�

(p

1

))(s)

+

�

jw

1k

(s)j+ jv

1

(s)j

�

h

k

(s) ds

with

h

k

(t)=

j�p

1k

(t)j

I

�

1

(�

�

(p

1

))(t)

+�

b

Z

a

�

�

(p

1

)(s) ds

�

�

(p

1

)(t)

I

1+�

1

(�

�

(p

1

))(t)

for a < t < b:

Substituting the latter inequality in (2.2.27), with regard for (2.2.18) we get

jw

0

1k

(t)j

�(p

1

)(t)

� "

2

A

k

t

Z

a

jw

0

1k

(s)j

I

�

1

(�

�

(p

1

))(s)

ds+

+"

2

�





1� �(�p

1k

)





C

+

t

Z

a

f

k

(s)jw

1k

(s)j+ q

k

(s) ds

�

; (2.2.28)

where

f

k

(t) =

jp

0k

(t)j

�(p

1

)(t)

+A

k

h

k

(t);

q

k

(t) =

jv

0

1

(t)j

�(p

1

)(t)

�

j�p

1k

(t)j+A

k

�(p

1

)(t)

I

�

1

(�

�

(p

1

))(t)

�

+A

k

h

k

(t)jv

1

(t)j

for a < t < b:

From (2.2.28), using Gronwall-Bellman's lemma, it follows that

jw

0

1k

(t)j � r

k

�(p

1

)(t)

�





1� �(�p

1k

)





C

+

+

t

Z

a

f

k

(s)jw

1k

(s)j+ q

k

(s) ds

�

for a < t < b; (2.2.29)

where

r

k

= "

2

�

1 + exp

�

"

2

A

k

b

Z

a

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s)

ds

�

�

for k > k

0

and by virtue of (2.2.16), (2.2.21),

supfr

k

: k > k

0

g < +1: (2.2.30)
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Let us now introduce the notation

z

k

= jw

1k

(t)j

�

t

Z

a

�(p

1

)(s) ds

�

�1

for a < t < b:

Integrating (2.2.29) from a to t, dividing by

t

R

a

�(p

1

)(s) ds and using inte-

gration by parts, by virtue of the inequalities (2.2.13) and

t

Z

s

�(p

1

)(s) ds

�

t

Z

a

�(p

1

)(s) ds

�

�1

�

�

b

Z

s

�(p

1

)(s) ds

�

b

Z

a

�(p

1

)(s) ds

�

�1

for a < s � t < b

we obtain

z

k

(t) � r

t

Z

a

f

k

(s)I

�

1

(�

�

(p

1

))(s)z

k

(s) ds + er

k

for a < t < b;

where

r = sup

�

r

k

: k > k

0

	

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

2(1��)

�

b

Z

a

�(p

1

)(s) ds

�

�1

;

er

k

= r

�

�

b

R

a

�

1���

1��

(p

1

)(s) ds

�

1��

b

R

a

�

�

(p

1

)(s) ds

b

Z

a

q

k

(s)

�

b

Z

s

�

�

(p

1

)(�) d�

�

�

ds +

+





1 + �(�p

1k

)





C

�

:

Applying Gronwall{Bellman's lemma, from the latter inequality we get

z

k

(t) � er

k

exp

�

r

b

Z

a

f

k

(s)I

�

1

(�

�

(p

1

))(s) ds

�

for a < t < b: (2.2.31)

By virtue of (2.2.18) we note that the estimate

b

Z

a

f

k

(s)I

�

1

(�

�

(p

1

))(s) ds � "

3

b

Z

a

jp

0k

(s)j

�(p

1k

)(s)

I

�

1

(�

�

(p

1k

))(s) ds +
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+A

k

�

�

b

Z

a

�

�

(p

1

)(s) ds

�

2(���)

b

Z

a

j�p

1k

(s)j ds+

+�

b

Z

a

�

�

(p

1

)(s) ds

b

Z

a

�

�

(p

1

)(s)

I

1+���

1

(�

�

(p

1

))(s)

ds

�

for k > k

0

is valid, which with regard for the conditions (2:2:8

1

), (2.2.17) with � =

1 + � � � and the condition (2.2.22) results in

sup

�

b

Z

a

f

k

(s)I

�

1

(�

�

(p

1

))(s) ds : k > k

0

�

< +1: (2.2.32)

Just in the same way, taking into account the estimates (1:2:10

1

), (1:2:11

1

)

and the inequality (2.2.13), we obtain

b

Z

a

q

k

(s)

�

b

Z

s

�

�

(p

1

)(�) d�

�

�

ds �

�

b

Z

a

j�p

1k

(s)j+ A

k

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s)

ds

�

�

b

Z

a

�

�

(p

1

)(s) ds

�

�

+

+c

�

b

Z

a

jp

0

(s)j

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s) ds

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

1��

�

+

+c

�

A

k

�

b

Z

a

�

1���

1��

(p

1

)(s)ds

�

1��

�

�

b

Z

a

�

�

(p

1

)(s)ds

b

Z

a

�

�

(p

1

)(s)

I

1+���

1

(�

�

(p

1

))(s)

ds+

+

�

b

Z

a

�

�

(p

1

)(s) ds

�

2(���)

b

Z

a

j�p

1k

(s)j ds

�

for k > k

0

;

By virtue of the inequalities (2:2:16), (2:2:17) with � = 1 + � � � and the

conditions (2:2:7

1

), (2:2:8

1

) and (2.2.21)

lim

k!1

b

Z

a

q

k

(s)

�

b

Z

s

�

�

(p

1

)(�) d�

�

�

ds = 0 (2.2.33)

which together with (2.2.25) implies

lim

k!1

er

k

= 0: (2.2.34)
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Substituting (2.2.32) and (2.2.34) in (2.2.31) we get

lim

k!1

kz

k

k

C

= 0; (2.2.35)

i.e., the condition (2:2:9

11

) is satis�ed.

Applying (2.2.13), we see from (2.2.29) that

jw

0

1k

(t)j

�(p

1

)(t)

�

b

Z

t

�

�

(p

1

)(s) ds

�

�

�

� er

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

1��

�

kz

k

k

C

b

Z

a

f

k

(s)I

�

1

(�

�

(p

1

))(s) ds +

+

b

Z

a

q

k

(s)

�

b

Z

s

�

�

(p

1

)(�) d�

�

�

ds

�

+

+er





1� �(�p

1k

)





C

�

b

Z

a

�

�

(p

1

)(s)ds

�

�

for a < t < b;

where er = supfr

k

: k > k

0

g: The above inequality with regard for (2.2.25),

(2.2.32), (2.2.33) and (2.2.35) implies that the condition (2:2:10

11

) is valid.

Consider now the case j = 2. Let k > k

0

. Then for w

2k

, i.e., for a

solution of the problem (2.2.23), (2:2:24

2

) the representation

�

w

0

2k

(t)

�(p

1k

)(t)

= �(�p

1k

)(t)� 1 +

b

Z

t

�p

0k

(s)

v

2

(s) �w

2k

(s)

�(p

1k

)(s)

ds +

+

b

Z

t

p

0k

(s)w

2k

(s) + �p

1k

v

0

2

(s)

�(p

1k

)(s)

ds for a < t < b

is valid. Repeating the arguments presented for j = 1, where f

k

, h

k

are

de�ned as before,

q

k

(t) =

�

j�p

1k

(t)j+ A

k

�(p

1

)(t)

I

�

1

(�

�

(p

1

))(t)

�

jv

0

2

(t)j

�(p

1

)(t)

+A

k

h

k

(t)jv

2

(t)j;

z

k

(t) = jw

2k

(t)j

�

b

Z

t

�(p

1

)(s)ds

�

�1
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and

er

k

= r

�

�

b

R

a

�

1���

1��

(p

1

)(s) ds

�

1��

b

R

a

�

�

(p

1

)(s) ds

b

Z

a

q

k

(s)

�

s

Z

a

�

�

(p

1

)(�) d�

�

�

ds +

+





1 + �(�p

1k

)





C

�

;

we see that the conditions (2:2:9

12

), (2:2:10

12

) are valid.

Lemma 2:2:1

2

. Let the measurable functions p

j

; p

jk

: ]a; b[!R (j = 0; 1;

k 2 N) and the constants � 2 [0; 1],  2 ]1;+1[, �; � 2 R be such that the

conditions (2:2:6) are satis�ed,

�



(p

1

) 2 L([a; b]);

b

Z

a

jp

0

(s)j

�(p

1

)(s)

I

�

2

(�

�

(p

1

))(s) ds < +1 (2:2:7

2

)

and uniformly on the segment [a; b] the conditions

lim

k!1

t

Z

a

�p

0k

(s)

�(p

1

)(s)

I

�

2

(�

�

(p

1

))(s) ds = 0;

lim

k!1

t

Z

a

j�p

1k

(s)j ds = 0

(2:2:8

2

)

are satis�ed. Then there exists a number k

0

such that for k > k

0

the problem

(2:2:1

k

), (2:2:4

k

) has a unique solution v

1k

and the problem (2:2:1

k

), (2:2:5

2

)

has a unique solution v

2k

, and uniformly on the interval ]a; b[

lim

k!1

�

v

1k

(t) � v

1

(t)

�

�

t

Z

a

�(p

1

)(s) ds

�

�1

= 0; (2:2:9

21

)

lim

k!1

�

v

2k

(t) � v

2

(t)

�

= 0 (2:2:9

22

)

and

lim

k!1

v

0

1k

(t)� v

0

1

(t)

�(p

1

)(t)

= 0; (2:2:10

21

)

lim

k!1

v

0

2k

(t)� v

0

2

(t)

�(p

1

)(t)

�

t

Z

a

�

�

(p

1

)(s) ds

�

�

= 0; (2:2:10

22

)

where v

1

and v

2

are the solutions of the problems (2:2:1), (2:2:4) and (2:2:1),

(2:2:5

2

), respectively.
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Proof. Repeating word by word the previous proof for the case j = 1 and re-

placing everywhere I

1

by I

2

, we can see that the problems (2:2:1

k

), (2:2:4

k

)

and (2:2:1

k

), (2:2:5

2

) are uniquely solvable, the condition (2:2:9

21

) is satis-

�ed and for the function w

1k

(t) = v

1

(t)� v

1k

(t) the representation

jw

0

1k

(t)j

�(p

1

)(t)

� r

k

�

kz

k

k

C

t

Z

a

f

k

(s)

�

s

Z

a

�

�

(p

1

)(�) d�

�

�

ds+

+

t

Z

a

q

k

(s) ds + k1� �(�p

1k

)k

C

�

for a < t � b (2.2.36)

is valid, where the functions f

k

, q

k

and z

k

are de�ned in the previous proof.

Using the same technique as when proving the relations (2.2.25), (2.2.32),

(2.2.33), we obtain

sup

�

b

Z

a

f

k

(s)I

�

2

(�

�

(p

1

))(s) ds : k > k

0

�

< +1;

lim

k!1

b

Z

a

q

k

(s) ds = 0; lim

k!1

k1� �(�p

1k

)k

C

= 0

and

lim

k!1

kz

k

k

C

= 0;

from which it follows with regard for (2.2.36) that the condition (2:2:10

21

)

is valid.

Note that the function w

2k

(t) = v

2

(t) � v

2k

(t) satis�es the conditions

w

2k

(b) = 0; w

0

2k

(b) = 0;

i.e., the representation

jw

0

2k

(t)j

�(p

1k

)(t)

= �

b

Z

t

�p

0k

(s)

w

2k

(s)

�(p

1k

)(s)

ds�

b

Z

t

�p

0k

(s)

v

2

(s)

�(p

1k

)(s)

ds�

�

b

Z

t

p

0

(s)w

1k

(s) + �p

1k

(s)v

0

2

(s)

�(p

1k

)(s)

ds for a < t � b

is valid. Repeating the arguments taking place in the proof of Lemma 2.2.1

for j = 2, we come to the conclusion that the conditions (2:2:9

12

) and

(2:2:10

22

) are valid. But owing to the condition p

1

2 L

loc

(]a; b]), it follows

from (2:2:9

12

) that (2:2:9

22

) is valid.
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Lemma 2.2.2. Let i 2 f1; 2g, the measurable functions p

j

, p

jk

: ]a; b[!

R and the constants � 2 [0; 1],  2 ]1;+1[ , �, � 2 R be such that the

conditions (2:2:6), (2:2:7

i

), (2:2:8

i

) and

(p

0

; p

1

) 2V

i;0

(]a; b[) (2:2:37

i

)

are satis�ed. Then there exists a number k

0

such that for k > k

0

(p

0k

; p

1k

) 2V

i;0

(]a; b[): (2:2:38

i

)

Proof. Let i = 1 and v

1

, v

2

, v

1k

, v

2k

be solutions of the problems (2.2.1),

(2.2.4), (2.2.1), (2:2:5

1

), (2:2:1

k

), (2:2:4

k

), (2:2:1

k

), (2:2:5

1k

) respectively,

whose existence and uniqueness follow from Remark 2.2.1.

As is seen from De�nition 1.1.2 of the set V

1;0

(]a; b[) and Remark 1.2.1,

v

1

(b) > 0 and v

1

(a) > 0. Then by virtue of Remark 1.2.5 and the inclusion

(2:2:37

i

),

v

1

(t) + v

2

(t) > 0 for a � t � b;

hence if

c = min

�

v

1

(t) + v

2

(t) : a � t � b

	

;

then

c > 0: (2.2.39)

On the other hand, by Lemma 2:2:1

i

, there exists a number k

0

such that

for any k > k

0

�

c

2

< v

jk

(t)� v

j

(t) (j = 1; 2) for a � t � b: (2.2.40)

Thus for the solution v

k

of the equation (2:2:1

k

), where

v

k

(t) = v

1k

(t) + v

2k

(t);

the estimate

v

k

(t) =

�

v

1k

(t) � v

1

(t)

�

+

�

v

2k

(t) � v

2

(t)

�

+

�

v

1

(t) + v

2

(t)

�

is valid from which with regard for (2.2.39) and (2.2.40) we obtain

v

k

(t) > 0 for a � t � b:

This inequality by virtue of Lemma 1.2.2 means that the inclusion (2:2:38

i

)

is true.

Consider now the boundary conditions

u(a) = 0; u(b) = 0 (2:2:41

1

)

and

u(a) = 0; u

0

(b�) = 0: (2:2:41

2

)

The following Lemma is valid.
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Lemma 2.2.3. Let i 2 f1; 2g, the measurable functions f , p

j

, p

jk

: ]a; b[!

R and the constants � 2 [0; 1],  2 ]1;+1[ , �; � 2 R satisfy the conditions

(2:2:6), (2:2:7

i

), (2:2:8

i

), (2:2:37

i

) and

b

Z

a

jf(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds < +1: (2.2.42)

Then there exists a number k

0

such that for k > k

0

the problem (2:2:1

k

),

(2:2:41

i

) has a unique Green's function G

k

, and uniformly in the interval

]a; b[

lim

k!1

I

��1

i

(�

1���

1��

(p

1

))(t)

b

Z

a

jG(t; s)�G

k

(t; s)j jf(s)j ds = 0; (2.2.43)

lim

k!1

I

�

i

(�

�

(p

1

))(t)

�(p

1

)(t)

b

Z

a

�

�

�

@(G(t; s)� G

k

(t; s))

@t

�

�

�

jf(s)j ds = 0; (2.2.44)

where G is Green's function of the problem (2:2:1), (2:2:41

i

).

Proof. By Lemma 2:2:2

i

, for k > k

0

the inclusion (2:2:38

i

) is satis�ed. Then

as is seen from Remark 1.2.2, the inclusions (2:2:37

i

) and (2:2:38

i

) imply

the existence of the functions G and G

k

, respectively, where G is de�ned by

the equality (1.2.7), and

G

k

(t; s) =

8

>

>

<

>

>

:

�

v

2k

(t)v

1k

(s)

v

2k

(a)�(p

1k

)(s)

for a � s < t � b;

�

v

1k

(t)v

2k

(s)

v

2k

(a)�(p

1k

)(s)

for a � t < s � b;

(2.2.45)

where v

1k

is the solution of the problem (2:2:1

k

), (2:2:4

ik

) and v

2k

is that

of the problem (2:2:1

k

), (2:2:5

1k

) for i = 1 and of the problem (2:2:1

k

),

(2:2:5

2

) for i = 2.

From the estimates (1:2:10

i

), (1:2:11

i

) and the equalities (2:2:9

i1

),

(2:2:9

i2

), (2:2:10

i1

), (2:2:10

i2

) it follows the existence of constants d

1

and

d

2

, such that on the interval ]a; b[ the estimates

v

1k

(t)

�

t

Z

a

�(p

1

)(s) ds

�

�1

� d

1

; v

2k

(t)

�

b

Z

t

�(p

1

)(s) ds

�

i�2

� d

1

for k > k

0

;

v

1

(t)

�

t

Z

a

�(p

1

)(s) ds

�

�1

� d

1

; v

2

(t)

�

b

Z

t

�(p

1

)(s) ds

�

i�2

� d

1

(2.2.46)
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and

jv

0

1k

(t)j

�(p

1

)(t)

�

b

Z

t

�

�

(p

1

)(s) ds

�

�(2�i)

�d

1

;

jv

0

2k

(t)j

�(p

1

)(t)

�

t

Z

a

�

�

(p

1

)(s) ds

�

�

�d

1

for k > k

0

; (2.2.47)

jv

0

1

(t)j

�(p

1

)(t)

�

b

Z

t

�

�

(p

1

)(s) ds

�

�(2�i)

�d

1

;

jv

0

2

(t)j

�(p

1

)(t)

�

t

Z

a

�

�

(p

1

)(s) ds

�

�

�d

1

;

as well as

v

2k

(a) � d

2

for k > k

0

; v

2

(a) � d

2

(2.2.48)

are valid.

Introduce now the notation w

(j)

lk

(t) = v

(j)

l

(t) � v

(j)

lk

(t) (l = 1; 2; j = 0; 1;

k 2 N) and

!

1k

= sup

�

jw

1k

(t)j

�

t

Z

a

�(p

1

)(s) ds

�

�1

: a < t � b

�

;

!

2k

= sup

�

jw

2k

(t)j

�

b

Z

t

�(p

1

)(s) ds

�

i�2

: a � t < b

�

;

!

0

1k

= sup

�

jw

0

1k

(t)j

�(p

1

)(t)

�

b

Z

t

�

�

(p

1

)(s) ds

�

(2�i)�

: a < t < b

�

;

!

0

2k

= sup

�

jw

0

2k

(t)j

�(p

1

)(t)

�

t

Z

a

�

�

(p

1

)(s) ds

�

�

: a < t < b

�

:

Then as is seen from Lemma 2:2:1

i

,

lim

k!1

!

jk

= 0; lim

k!1

!

0

jk

= 0 (j = 1; 2): (2.2.49)

It is also clear that the equality

�

I

�

i

(�

�

(p

1

))(t)

�(p

1

)(t)

�

j

b

Z

a

�

�

�

@

j

@t

j

(G

k

(t; s)�G(t; s))

�

�

�

jf(s)j ds =

=

�

I

�

i

(�

�

(p

1

))(t)

�(p

1

)(t)

�

j

t

Z

a

�

�

�

v

(j)

2k

(t)v

1k

(s)

v

2k

(a)�(p

1k

)(s)

�

v

(j)

2

(t)v

1

(s)

v

2

(a)�(p

1

)(s)

�

�

�

jf(s)j ds +

+

b

Z

t

�

�

�

v

(j)

1k

(t)v

2k

(s)

v

2k

(a)�(p

1k

)(s)

�

v

(j)

1

(t)v

2

(s)

v

2

(a)�(p

1

)(s)

�

�

�

jf(s)j ds (j = 0; 1) (2.2.50)

for a < t < b
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is valid.

Let j = 0. With regard for the inequalities (2.2.18) and (2.2.46) we

obtain the estimate

t

Z

a

�

�

�

v

2k

(t)v

1k

(s)

v

2k

(a)�(�p

1k

)(s)

�

v

2

(t)v

1

(s)

v

2

(a)�(�p

1k

)(s)

�

�

�

jf(s)j ds �

�

"

v

2k

(a)

�

jw

2

(t)j

t

Z

a

jf(s)j

�(p

1

)(s)

jv

1k

(s)j ds +

+jv

2

(t)j

�

t

Z

a

jf(s)j

�(p

1

)(s)

jw

1k

(s)j ds+

jw

2k

(a)j

v

2

(a)

t

Z

a

jf(s)j

�(p

1

)(s)

jv

1

(s)j ds

��

+

+

k1� �(�p

1k

)k

C

v

2

(a)

v

2

(t)

t

Z

a

jf(s)j

�(p

1

)(s)

jv

1

(s)j ds �

� r

k

I

1��

i

(�

1���

1��

(p

1

))(t) for a � t � b;

where

r

k

= "

d

1

d

2

�

!

1k

+ !

2k

�

1 +

d

1

d

2

b

Z

a

�(p

1

)(s) ds

�

+

d

1

"





1� �(�p

1k

)





C

�

�

�

b

Z

a

jf(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

and in view of the conditions (2:2:8

i

), (2.2.42), and (2.2.49),

lim

k!1

r

k

= 0: (2.2.51)

Having analogously estimated the second integral in (2.2.50) for j = 0,

we obtain for any k > k

0

I

��1

i

(�

1���

1��

(p

1

))(t)

b

Z

a

jG(t; s)� G

k

(t; s)j jf(s)j ds � 2r

k

for a < t < b

which in view of (2.2.51) implies the validity of the condition (2.2.43).

Similarly, from the equality (2.2.50) for j = 1, with regard for (2.2.18),

(2.2.46) and (2.2.47), for any k > k

0

we get

I

�

i

(�

�

(p

1

))(t)

�(p

1

)(t)

b

Z

a

�

�

�

@(G(t; s) �G

k

(t; s))

@t

�

�

�

jf(s)j ds � er

k

for a < t < b;
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where

er

k

= 2"

d

1

d

2

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

b

Z

a

jf(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds �

�

�

!

0

1k

+ !

0

2k

+ !

1k

+ !

2k

�

1 +

d

1

d

2

b

Z

a

�(p

1

)(s) ds

�

+

d

1

"

k1� �(�p

1k

)k

C

�

:

By the conditions (2:2:8

i

), (2.2.42), and (2.2.49),

lim

k!1

er

k

= 0

which guarantees the validity of the condition (2.2.44).

Lemma 2.2.4. Let i 2 f1; 2g, the measurable functions f , p

j

, p

jk

: ]a; b[!

R (j = 0; 1; k 2 N) and the constants � 2 [0; 1],  2 ]1;+1[ , �; � 2 R

satisfy conditions (2:2:6), (2:2:7

i

), (2:2:8

i

), (2:2:37

i

) and

b

Z

a

jf(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds < +1: (2.2.52)

Then there exist a constant r

1

2 R

+

and a number k

0

such that for k > k

0

the problem (2:2:1

k

), (2:2:42

i

) has a unique Green's function G

k

, and

�

�

�

�

b

Z

a

G

k

(t; s)f(s) ds

�

�

�

�

�r

1

max

�

�

�

�

t

Z

a

f(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds : a � t � b

�

�

�I

1��

i

(�

1���

1��

(p

1

))(t) for a � t � b (2.2.53)

and

I

�

i

(�

�

(p

1

))(t)

�(p

1

)(t)

�

�

�

�

b

Z

a

@G

k

(t; s)

@t

f(s) ds

�

�

�

�

�

� r

1

max

�

�

�

�

t

Z

a

f(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds : a � t � b

�

(2.2.54)

for a < t < b:

Proof. In the proof of the previous lemma it has been shown that under

the conditions of that lemma the problem (2:2:1

k

), (2:2:42

i

) has a unique

Green's function G

k

which is represented by the equality (2.2.45).
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Consider separately the case i = 1. First we note that in view of (2.2.12)

and (2.2.17) the inequality

t

2

Z

t

1

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s)

ds �

�

t

2

Z

t

1

�

1���

1��

(p

1

)(s) ds

�

1��

�

�

�

b

Z

a

�

�

(p

1

)(s)

I

�

�

1

(�

�

(p

1

))(s)

ds

�

�

< +1 for a � t

1

< t

2

� b (2.2.55)

is valid. Integrating by parts and applying (2.2.48), we get

�

�

�

�

b

Z

a

@

j

G(t; s)

@t

j

f(s) ds

�

�

�

�

�

�

2

d

2

max

�

�

�

�

t

Z

a

f(s)

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s) ds

�

�

�

: a � t � b

�

�

�

�

jv

(j)

2k

(t)j

t

Z

a

�

�

�

�

v

1k

(s)�(�p

1k

)(s)

I

�

1

(�

�

(p

1

))(s)

�

0

�

�

�

ds+

+jv

(j)

1k

(t)j

b

Z

t

�

�

�

�

v

2k

(s)�(�p

1k

)(s)

I

�

1

(�

�

(p

1

))(s)

�

0

�

�

�

ds (j = 0; 1) for a < t < b: (2.2.56)

Using now the estimates (2.2.46), (2.2.55), we obtain

jv

2k

(t)j

t

Z

a

�

�

�

�

�

v

1k

(s)�(�p

1k

)(s)

I

�

1

(�

�

(p

1

))(s)

�

0

�

�

�

�

ds � "d

1

�

b

Z

t

�

1���

1��

(p

1

)(s) ds

�

1��

�

�

t

Z

a

�(p

1

)(s)

I

�

1

(�

�

(p

1

))(s)

v

0

1k

(s)

�(p

1

)(s)

�

b

Z

s

�

�

(p

1

)(�) d�

�

�

ds+

+"d

2

1

I

1��

1

(�

1���

1��

(p

1

))(t)

�

�

b

Z

a

�

�

(p

1

)(s) ds

�

2(���)

b

Z

a

j�p

1k

(s)j ds+

+

b

Z

a

�

�

(p

1

)(s) ds

b

Z

a

�

�

(p

1

)(s)

I

1+���

1

(�

�

(p

1

))(s)

ds

�

�

� er

1

I

1��

1

(�

1���

1��

(p

1

))(t) for a � t � b; (2.2.57)
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where

er

1

= "d

2

1

�

�

b

Z

a

�

�

(p

1

)(s)

I

�

�

1

(�

�

(p

1

))(s)

ds

�

�

+

+

�

b

Z

a

�

�

(p

1

)(s) ds

�

2(���)

sup

n

b

Z

a

j�p

1k

(s)j ds : k > k

0

o

+

+

b

Z

a

�

�

(p

1

)(s) ds

b

Z

a

�

�

(p

1

)(s)

I

1+���

1

(�

�

(p

1

))(s)

ds

�

:

Analogously we have

jv

1k

(t)j

b

Z

t

�

�

�

�

�

v

2k

(s)�(�p

1k

)(s)

I

�

1

(�

�

(p

1

))(s)

�

0

�

�

�

�

ds �

� er

1

I

1��

1

(�

1���

1��

(p

1

))(t) for a � t � b; (2.2.58)

I

�

1

(�

�

(p

1

))(t)

�(p

1

)(t)

jv

0

2k

(t)j

t

Z

a

�

�

�

�

�

v

1k

(s)�(�p

1k

)(s)

I

�

1

(�

�

(p

1

))(s)

�

0

�

�

�

�

ds �

� er

2

for a < t < b (2.2.59)

and

I

�

1

(�

�

(p

1

))(t)

�(p

1

)(t)

jv

0

1k

(t)j

b

Z

t

�

�

�

�

�

v

2k

(s)�(�p

1k

)(s)

I

�

1

(�

�

(p

1

))(s)

�

0

�

�

�

�

ds �

� er

2

for a < t < b; (2.2.60)

where

er

2

= "d

2

1

�

b

Z

a

�

1

(p

1

)(s)

I

�

1

(�

�

(p

1

))(s)

ds+

�

b

Z

a

�

1���

1��

(p

1

)(s) ds

�

1��

�

�

�

sup

n

b

Z

a

j�p

1k

j ds : k > k

0

o�

b

Z

a

�

�

(p

1

)(s) ds

�

2(���)

+

+

b

Z

a

�

�

(p

1

)(s) ds

b

Z

a

�

�

(p

1

)(s)

I

1+���

1

(�

�

(p

1

))(s)

ds

�

�

:

Let us now introduce the notation

r

1

=

4

d

2

max(er

1

; er

2

):
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Substituting the estimates (2.2.57), (2.2.58) in (2.2.56) for j = 0, we see that

the condition (2.2.53) is valid. Taking then into account (2.2.59), (2.2.60)

in (2.2.56) for j = 1, we are convinced of the validity of (2.2.54).

For i = 2 the lemma is proved analogously.

Lemma 2.2.5. Let i 2 f1; 2g, the measurable functions p

j

, p

jk

: ]a; b[!R

(j = 0; 1; k 2 N) and the constants � 2 [0; 1],  2 ]1;+1[ , �; � 2 R

satisfy the conditions (2:2:6), (2:2:7

i

), (2:2:8

i

), (2:2:37

i

). Then there exists

a number k

0

such that for k > k

0

the problem (2:2:1

k

), (2:2:41

k

) has a

unique Green's function G

k

for which the estimate

�

�

�

d

j

G

k

(t; s)

dt

j

�

�

�

� c

0

�

i

(p

1

)(s)

[�

i

(p

1

)(t)]

j

(j = 0; 1) for a < t; s < b; t 6= s; (2.2.61)

is valid, where c

0

is a constant.

Proof. The existence of Green's function under the given conditions has

been shown in Lemma 2.2.3. Similarly, by virtue of the estimate (1:2:12

i

)

from Remark 1.2.3,

�

�

�

d

j

G

k

(t; s)

dt

j

�

�

�

� c

�

�

i

(p

1k

)(s)

[�

i

(p

1k

)(t)]

j

(j = 0; 1) for a < t; s < b; t 6= s;

whence with regard for the inequalities (2.2.18) and (2.2.48) follows the

validity of our lemma.

Consider now the equations

v

00

(t) = p

0

(t)v(t) + p

1

(t)v

0

(t) + p

2

(t); (2.2.62)

v

00

(t) = p

0k

(t)v(t) + p

1k

(t)v

0

(t) + p

2k

(t); (2:2:62

k

)

where p

2

, p

2k

2 L

loc

(]a; b[) (k 2 N) and the boundary conditions

u(a) = c

1

; u(b) = c

2

(2:2:63

1

)

or

u(a) = c

1

; u

0

(b�) = c

2

; (2:2:63

2

)

and

u(a) = c

1k

; u(b) = c

2k

(2:2:63

1k

)

or

u(a) = c

1k

; u

0

(b�) = c

2k

; (2:2:63

2k

)

where c

l

, c

lk

2 R (l = 1; 2; k 2 N). Then the following lemma is valid.
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Lemma 2.2.6. Let i 2 f1; 2g, the measurable functions p

j

, p

jk

: ]a; b[!R

(j = 0; 1; 2; k 2 N) and the constants � 2 [0; 1],  2 ]1;+1[ , �; � 2 R

satisfy the conditions (2:2:6), (2:2:7

i

), (2:2:8

i

), (2:2:37

i

),

b

Z

a

jp

2

(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds < +1 (2.2.64)

and uniformly on the segment [a; b]

lim

k!1

t

Z

a

p

2

(s) � p

2k

(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds = 0: (2.2.65)

Then there exists a number k

0

such that for k > k

0

:

(a) the problem (2:2:62

k

), (2:2:41

i

) has a unique solution ev

k

, and uni-

formly on the interval ]a; b[

lim

k!1

I

��1

i

(�

1���

1��

(p

1

))(t)

�

ev(t) � ev

k

(t)

�

= 0; (2.2.66)

lim

k!1

ev

0

(t) � ev

0

k

(t)

�(p

1

)(t)

I

�

i

(�

�

(p

1

))(t) = 0; (2.2.67)

where ev is a solution of the problem (2:2:61), (2:2:41

i

);

(b) the problem (2:2:62

k

), (2:2:63

ik

) has a unique solution ev

k

, and if

lim

k!1

c

lk

= c

l

(l = 1; 2); (2.2.68)

then uniformly on the interval ]a; b[ the conditions (2:2:67) and

lim

k!1

�

ev(t) � ev

k

(t)

�

= 0 (2.2.69)

are satis�ed, where ev is a solution of the problem (2:2:62), (2:2:63

i

);

(c) the sequence (ev

k

)

1

k=1

, where ev

k

is a solution of the problem (2:2:62

k

),

(2:2:41

i

), ((2:2:62

k

), (2:2:63

ik

)), is uniformly bounded and equicontinuous.

Proof. First we prove the validity of proposition (a). It has been mentioned

in the proof of Lemma 2.2.3 that under the above-mentioned conditions the

problems (2.2.1), (2:2:41

i

), and (2:2:1

k

), (2:2:41

i

) for k > k

0

have a unique

Green's function G and G

k

, respectively.

Let

ev(t) =

b

Z

a

G(t; s)p

2

(s) ds and ev

k

(t) =

b

Z

a

G

k

(t; s)p

2k

(s) ds:

Then

ev

(j)

(t)� ev

(j)

k

(t) =

b

Z

a

@

j

G

k

(t; s)

@t

j

�

p

2

(s) � p

2k

(s)

�

ds +
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+

b

Z

a

@

j

�G

k

(t; s)

@t

j

p

2

(s) ds (j = 0; 1) for a < t < b:

Taking into account the equalities (2.2.43), (2.2.44) of Lemma 2.2.3 and

the equalities (2.2.53), (2.2.54) of Lemma 2.2.4, by means of the conditions

(2.2.64), (2.2.65) we make sure that the equalities (2.2.66) and (2.2.67) are

valid.

Now we proceed to proving proposition (b). Let v

0

and v

0k

be solutions

of the problems (2.2.1), (2:2:63

i

) and (2:2:1

k

), (2:2:63

ik

), respectively. Then

ev(t) = v

0

(t) +

b

Z

a

G(t; s)p

2

(s) ds ev

k

(t) = v

0k

(t) +

b

Z

a

G(t; s)p

2k

(s) ds

and

ev

(j)

(t)� ev

(j)

k

(t) = v

(j)

0

(t) � v

(j)

0k

(t) +

b

Z

a

@

j

G

k

(t; s)

@t

j

�

p

2

(s) � p

2k

(s)

�

ds +

+

b

Z

a

@

j

�G

k

(t; s)

@t

j

p

2

(s) ds (j = 0; 1) for a < t < b;

where

v

0

(t) � v

0k

(t) =

= c

1

v

2

(t)

v

2

(a)

� c

1k

v

2k

(t)

v

2k

(a)

+ c

2

v

1

(t)

v

1

(b)

� c

2k

v

1k

(t)

v

1k

(b)

for a � t < b

and v

j

, v

jk

(j = 1; 2; k � k

0

) are the solutions mentioned in Lemma 2:2:1

i

.

It follows from the given representation, Lemma 2:2:1

i

and the condition

(2.2.68) that uniformly in the interval ]a; b[

lim

k!1

�

v

0

(t)� v

0k

(t)

�

= 0

and

lim

k!1

v

0

0

(t)� v

0

0k

(t)

�(p

1

)(t)

I

�

i

(�

�

(p

1

))(t) = 0:

Next, reasoning analogously as in proving proposition (a), we can see

that the conditions (2.2.67), (2.2.69) are valid.

The validity of proposition (c) follows immediately from (2.2.66)

((2.2.69)) and also from

�

�

ev

k

(t

1

) � ev

k

(t

2

)

�

�

�

�

�

ev

k

(t

1

)� ev(t

1

)

�

�

+

�

�

ev

k

(t

2

)� ev(t

2

)

�

�

+

�

�

ev(t

1

) � ev(t

2

)

�

�

�

� 2kev

k

� vk

C

+

�

�

ev(t

1

)� ev(t

2

)

�

�

;

where t

1

, t

2

2 [a; b].
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Remark 2.2.2. It is not di�cult to notice that if the condition (2.1.8) is

satis�ed, then for any �xed r 2 R

+

the equality

lim

k!1

�

sup

�

�

�

�

t

Z

a

g

k

(x)(s) � g(x)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

:

a � t � b; x 2 B

r;k

��

= 0 (2.2.70)

is valid. The same is true for the set B

0

r;k

.

Lemma 2.2.7. Let i 2 f1; 2g, the measurable functions p

j

, p

jk

: ]a; b[!R

(j = 0; 1; 2; k 2 N) and the constants � 2 [0; 1],  2 ]1;+1[ , �; � 2 R sat-

isfy the conditions (2:2:6), (2:2:7

i

), (2:2:8

i

), (2:2:37

i

), (2:2:64) and (2:2:65).

Moreover, let continuous linear operators g; g

k

: C(]a; b[)! L

loc

(]a; b[), be

such that the condition (2:1:8) is satis�ed. Then for every �xed r 2 R

+

the

sequence (z

k

)

1

k=1

z

k

(t) = �

k

ev

k

(t) +

b

Z

a

G

k

(t; s)g

k

(x

k

)(s) ds;

is uniformly bounded and equicontinuous, where ev

k

is a solution of the prob-

lem (2:2:62

k

), (2:2:41

i

), G

k

is the Green's function of that problem, and for

every �

k

2 [0; r], x

k

2 B

r;k

(k 2 N).

Proof. Introduce the notation

ez

k

(t) =

b

Z

a

G

k

(t; s)g

k

(x

k

)(s) ds; w

k

(t) =

b

Z

a

G(t; s)g(x

k

)(s) ds;

where G is Green's function of the problem (2.2.62), (2:2:41

i

).

Similarly to the proof of Lemma 1.2.4 we see that

sup

�

kw

k

k

C

: k 2 N

	

< +1

and for any " > 0 there exists a constant � > 0 such that for every k 2 N

�

�

w

k

(t

1

)� w

k

(t

2

)

�

�

< " for jt

1

� t

2

j < �: (2.2.71)

On the other hand, from the inequality

�

�

ez

k

(t) �w

k

(t)

�

�

�

�

�

�

�

b

Z

a

�

G

k

(t; s) �G(t; s)

�

g(x

k

)(s) ds

�

�

�

�

+

+

�

�

�

�

b

Z

a

G

k

(t; s)

�

g

k

(x

k

)(s) � g(x

k

)(s)

�

ds

�

�

�

�
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by virtue of Lemmas 2.2.3{2.2.4 and Remark 2.2.2 with all conditions sat-

is�ed, we obtain

lim

k!1

kez

k

� w

k

k

C

= 0 (2.2.72)

which, owing to the inequality

�

�

ez

k

(t

1

)� ez

k

(t

2

)

�

�

�

�

�

ez

k

(t

1

)� w

k

(t

1

)

�

�

+

�

�

ez

k

(t

2

)� w

k

(t

2

)

�

�

+

+jw

k

(t

2

) �w

k

(t

1

)j � 2kez

k

� w

k

k

C

+ jw

k

(t

2

)� w

k

(t

1

)j

with regard for (2.2.71) and (2.2.72), implies the uniform boundedness and

equicontinuity of the sequence (ez

k

)

1

k=1

. This together with proposition (c)

of Lemma 2.2.5 proves our lemma.

Remark 2.2.3. Lemma 2.2.7 remains valid if ev

k

is a solution of the prob-

lem (2:2:62

k

), (2:2:63

ik

), x

k

2 B

0

r;k

(k 2 N) and

lim

k!1

c

lk

= c

l

(l = 1; 2):

Lemma 2.2.8. Let functions V

k

2 L

1

(]a; b[) and H

k

2 L([a; b]) (k 2 N)

be such that uniformly on [a; b]

lim

k!1

t

Z

a

H

k

(s) ds = 0; (2.2.73)

ess sup

�

jV

k

(t)�V(t)j : a � t � b

	

! 0 as k! +1; (2.2.74)

and let there exist a function � 2 L([a; b]) such that everywhere on the

interval ]a; b[

jH

k

(t)j � �(t) (k 2 N): (2.2.75)

Then uniformly on the segment [a; b]

lim

k!1

t

Z

a

H

k

(s)V

k

(s) ds = 0:

This lemma is a particular case of Lemma 2.1 from [19].

x

2.3. Proof of Main Results

2.3.1. Proof of Theorems 2:1:1

i

, 2:1:2

i

(i = 1; 2).

Proof of Theorem 2:1:1

i

. From the inclusion (2.1.9), by Lemma 1.2.1 we ob-

tain (p

0

; p

1

) 2V

i;0

(]a; b[); which, owing to Lemma 2.2.2 for k > k

0

, implies

(p

0k

; p

1k

) 2 V

i;0

(]a; b[): From Remark 1.2.2 follows the unique solvability

of the problems (2.2.61), (2:1:2

i0

) and (2:2:61

k

), (2:1:2

i0

). Denote by ev, ev

k

and G, G

k

, respectively, solutions and Green's functions of these problems.
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Then the problems (2.1.1), (2:1:2

i0

) and (2:1:1

k

), (2:1:2

i0

) are equivalent,

respectively, to the equations

u(t) =U

0

(u)(t) + ev(t) (2.3.1)

and

u(t) = U

k

(u)(t) + ev

k

(t); (2:3:1

k

)

where the continuous linear operators U

k

; U

0

: C(]a; b[) ! C(]a; b[) are

de�ned by the equalities

U

0

(x)(t) =

b

Z

a

G(t; s)g(x)(s) ds and U

k

(x)(t) =

b

Z

a

G

k

(t; s)g

k

(x)(s) ds:

If � : [a; b]! R

+

is the function mentioned in the proof of Theorem 1:1:1

i

,

then as is seen from that proof, there exists a constant �

0

2 [0; 1[ such that

kU

0

k

C

�

!C

�

< �

0

: (2.3.2)

Suppose that the equation

u(t) = U

k

(u)(t) (2:3:1

0k

)

has a non-zero solution u

0k

. Not restricting the generality, we assume that

ku

0k

k

C;�

= 1 for k > k

0

; (2.3.3)

in which case ku

0k

k

C

� k�k

C

; i.e., if we introduce the notation r = k�k

C

,

then

u

0k

2 B

rk

for k > k

0

: (2.3.4)

Also, from (2:3:1

0k

), (2.3.3), by Lemma 2.2.7 it follows that the sequence

(u

0k

)

1

k=1

is uniformly bounded and equicontinuous. Hence by the Arzella{

Ascoli lemma, not restricting the generality we can assume that there exists

a function u

0

2 C(]a; b[) such that uniformly on the segment [a; b]

lim

k!1

u

0k

(t) = u

0

(t): (2.3.5)

It is clear from the equations (2.3.3), (2.3.5) that

ku

0

k

C;�

= 1: (2.3.6)

Let us now introduce the notation

�p

jk

(t) = p

j

(t) � p

jk

(t) (j = 0; 1; 2); �G

k

(t; s) = G(t; s)�G

k

(t; s);

�g

k

(x)(t) = g(x)(t) � g

k

(x)(t) (k 2 N):
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For u

0k

, when k > k

0

, the representation

u

0k

(t) = U

0

(u

0k

)(t) +

b

Z

a

�G

k

(t; s)g(u

0k

)(s) ds +

+

b

Z

a

G

k

(t; s)�g

k

(u

0k

)(s) ds (k 2 N) for a � t � b (2.3.7)

is valid. Taking into account (2.3.4), (2.3.5), Remark 2.2.2, equality the

(2.2.43) of Lemma 2.2.3 and also the equality (2.2.53) of Lemma 2.2.4 with

all conditions satis�ed, and then passing in (2.3.7) to limit as k ! +1, we

get

u

0

(t) = U

0

(u

0

)(t)

which, with regard for (2.3.2), (2.3.6), results in the estimate

ku

0

k

C;�

< 1:

But this contradicts (2.3.6). Hence our assumption is invalid and the equa-

tion (2:3:1

0k

) has only the zero solution, and because of its Fredholm prop-

erty the equation (2:3:1

k

) is uniquely solvable. The unique solvability of the

equation (2.3.1) follows from Theorem 1:1:1

i

.

Let u and u

k

be respectively solutions of the equations (2.3.1) and

(2:3:1

k

),

w

k

(t) = u(t) � u

k

(t) for k > k

0

;

�

k

=

8

<

:

ku

k

k

C;�

for ku

k

k

C;�

> 1;

1 for ku

k

k

C;�

� 1;

(2.3.8)

eu

k

(t) = �

�1

k

u

k

(t)

and

�

k

(t) =

ev(t) � ev

k

(t)

�

k

+

b

Z

a

�G

k

(t; s)g(eu

k

)(s) ds +

b

Z

a

G

k

(t; s)�g

k

(eu

k

)(s) ds:

Then for w

k

the representation

w

k

(t) = U

0

(w

k

)(t) + �

k

�

k

(t) for a � t � b (2.3.9)

is valid, and if r = k�k

C

, then

eu

k

2 B

r;k

: (2.3.10)
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In such a case, taking into account proposition (a) of Lemma 1.2.6, Remark

2.2.2, the equation (2.2.43) of Lemma 2.2.3 and also the equation (2.2.53)

of Lemma 2.2.4, we obtain

lim

k!1

k�

k

k

C;�

= 0: (2.3.11)

On the other hand, from (2.3.9), with regard for (2.3.2), we get the

estimate

kw

k

k

C;�

� �

k

�

k

for k > k

0

; (2.3.12)

where

�

k

=

k�

k

k

C;�

1� �

0

and by virtue of (2.3.11),

lim

k!1

�

k

= 0: (2.3.13)

Suppose now that we can extract from the sequence (�

k

)

1

k=1

a sequence

(�

k

m

)

1

m=1

such that �

k

m

� 1 for m 2 N and

lim

m!1

�

k

m

= +1; (2.3.14)

and note that by our de�nition of the function w

k

the inequality

�

k

m

� kuk

C;�

� kw

k

m

k

C;�

(2.3.15)

is valid. Substituting now the inequality (2.3.12) in (2.3.15) and taking

into account (2.3.13), we can see that this contradicts (2.3.14), i.e., our

assumption is invalid, and there exists a constant � 2 R

+

such that

�

k

� � for k > k

0

(2.3.16)

which, with regard for (2.3.12), yields

lim

k!1

kw

k

k

C;�

= 0: (2.3.17)

Now we notice that (2.3.9) and (2.3.16) imply

jw

(j)

k

(t)j �

d

j

dt

j

U

0

(w

k

)(t) + �j�

(j)

k

(t)j (j = 0; 1) for a < t < b: (2:3:18

j

)

Applying the estimates (2.2.46){(2.2.48) and the inequalities (2.2.13),

(2.2.10), we arrive at

�

�

U

0

(w

k

)(t)

�

�

� r

0

kw

k

k

C;�

I

1��

i

(�

1���

1��

(p

1

))(t) for a � t � b; (2.3.19)

I

�

i

(�

�

(p

1

))(t)

�(p

1

)(t)

�

�

�

d

dt

U

0

(w

k

)(t)

�

�

�

� r

0

kw

k

k

C;�

for a < t < b; (2.3.20)
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where

r

0

=

d

2

1

d

2

b

Z

a

h(�)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds:

By de�nition of the function eu

k

, in view of the inequality (2.1.10) and the

equalities (2.2.43), (2.2.44) of Lemma 2.2.3, we make sure that uniformly

on the interval ]a; b[

lim

k!1

I

��1

i

(�

1���

1��

(p

1

))(t)

�

�

�

�

b

Z

a

�G

k

(t; s)g(eu

k

)(s) ds

�

�

�

�

= 0 (2.3.21)

and

lim

k!1

I

�

i

(�

�

(p

1

))(t)

�(p

1

)(t)

�

�

�

�

b

Z

a

d�G

k

(t; s)

dt

g(eu

k

)(s) ds

�

�

�

�

= 0: (2.3.22)

Just in the same way, taking into account the inclusion (2.3.10) and the

equalities (2.2.53), (2.2.54) of Lemma 2.2.4, we can see that

�

�

�

�

b

Z

a

G

k

(t; s)�g

k

(eu

k

)(s) ds

�

�

�

�

�

� r

1

sup

�

�

�

�

t

Z

a

�g

k

(x)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

: a � t � b; x 2 B

r;k

�

�

�I

1��

i

(�

�

(p

1

))(t) for a � t � b; (2.3.23)

I

�

i

(�

�

(p

1

))(t)

�(p

1

)(t)

�

�

�

�

b

Z

a

d

dt

G

k

(t; s)�g

k

(eu

k

)(s) ds

�

�

�

�

�

� r

1

sup

�

�

�

�

t

Z

a

�g

k

(x)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

:

a � t � b; x 2 B

r;k

�

for a < t < b: (2.3.24)

It is clear from the equalities (2.3.21){(2.3.24), proposition (a) of Lemma

2.2.5 and also from the condition (2.1.8) and Remark 2.2.2 that uniformly

on the interval ]a; b[

lim

k!1

I

��1

i

(�

�

(p

1

))(t)�

k

(t) = 0 (2.3.25)

and

lim

k!1

�

k

(t)

�(p

1

)(t)

I

�

i

(�

�

(p

1

))(t) = 0: (2.3.26)



102

Multiplying (2:3:18

0

) by I

��1

i

(�

�

(p

1

))(t) and taking into consideration

(2.3.17), (2.3.19) and (2.3.25) we see that the condition (2.1.11) is valid.

Analogously, multiplying (2:3:18

1

) by �

�1

(p

1

)(t)I

�

i

�

�

(p

1

)(t) and taking into

account (2.3.17), (2.3.20) and (2.3.26), we make sure that the condition

(2.1.12) is valid.

Proof of Theorem 2:1:2

i

. Reasoning in the same way as in the previous proof

for the function w

k

(t) = u(t)� u

k

(t), where u

k

is a solution of the problem

(2:1:1

k

), (2:1:2

ik

), using Remark 2.2.3 and proposition (b) of Lemma 2.2.6,

we get the equality (2.3.17) which is the same as the condition (2.1.15).

The proof of the condition (2.1.12) coincides completely with its proof in

Theorem 2:1:1

i

.

2.3.2. Proof of Corollaries.

Proof of Corollary 2:1:1

i

. It is su�cient to show that (2.1.8) follows from

(2.1.16){(2.1.18). Suppose to the contrary that the condition (2.1.18) is

violated. Then there exist " > 0, a sequence of positive numbers (k

m

)

1

m=1

and a sequence of functions

y

m

2 B

k

m

(2.3.27)

such that

max

�

�

�

�

t

Z

a

�g

k

m

(y

m

)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

: a � t � b

�

> ": (2.3.28)

From (2.3.27) it follows

y

m

(t) = �

1m

ev

k

m

(t) +

b

Z

a

G

k

m

(t; s)g

k

m

(x

m

)(s) ds (m 2 N); (2.3.29)

where x

m

2 C(]a; b[) (m 2 N) and

0 � �

1m

� 1 (m 2 N); (2.3.30)

kx

m

k

C

� 1 (m 2 N): (2.3.31)

Introduce the notation

z

m

(t) =

b

Z

a

G

k

m

(t; s)g

k

m

(x

m

)(s) ds (m 2 N)

and rewrite z

m

as follows:

z

m

(t) =

b

Z

a

G

k

m

(t; s)�g

k

m

(x

m

)(s) ds +

b

Z

a

G

k

m

(t; s)g(x

m

)(s) ds:
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Then according to (2.1.10), (2.1.16), and (2.1.31) the inequality

jz

(j)

m

(t)j �

b

Z

a

�

�

�

@

j

@t

j

�G

k

m

(t; s)

�

�

�

�

�(s) + h(1)(s)

�

ds+

+

b

Z

a

�

�

�

@

j

@t

j

G(t; s)

�

�

�

�

�(s) + h(1)(s)

�

ds (j = 0; 1) (2:3:32

j

)

is valid. By the conditions (2.1.6) and (2.1.18),

b

Z

a

�(s) + h(1)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds < +1

owing to which from (2:3:32

0

), in view of the equality (2.2.43) of Lemma

2.2.3 and by Lemma 2.2.5 we obtain the existence of a constant �

1

such

that

kz

m

k

C

< �

1

(m 2 N): (2.3.33)

Consider now the case i = 1 separately. From (2:3:32

j

) (j = 0; 1), by

Lemmas 2.2.3 and 2.2.5 and the fact that

G(a; s) = G(b; s) = 0 for a < s < b

we can choose for any "

0

> 0 constants m

0

, a

1

, b

1

, �, where

a < a

1

< b

1

< b; � < min(a

1

� a; b� b

1

);

such that

jz

m

(t)j �

"

0

4

; m > m

0

for a � t � a

1

; b

1

� t � b;

i.e.,

�

�

z

m

(t

1

)�z

m

(t

2

)

�

�

�

"

0

2

; m>m

0

; for a� t

1

; t

2

�a

1

; b

1

� t

1

; t

2

�b; (2.3.34)

and A� <

"

0

2

; where

A = sup

�

jz

0

m

(t)j : a

1

� � < t < b

1

+ �; m > m

0

	

< +1;

i.e.,

�

�

z

m

(t

1

)� z

m

(t

2

)j � Ajt

1

� t

2

j <

"

0

2

; m > m

0

for a

1

� � < t

1

; t

2

< b

1

+ �; jt

1

� t

2

j < �:

(2.3.35)

The uniform boundedness and equicontinuity of the sequence (z

m

)

1

m=1

fol-

lows from (2.3.33){(2.3.35). Then by the Arzella{Ascoli lemma, not re-

stricting the generality, we assume that uniformly on the segment [a; b]

lim

m!1

z

m

(t) = z(t): (2.3.36)
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Notice now that however close may be a

1

from a and b

1

from b, the inequality

(2.3.35) remains valid if we choose � su�ciently small. Therefore, passing in

(2.3.35) to limit, we can see that z is absolutely continuous on any segment

contained in ]a; b[ , i.e.,

z 2

e

C

loc

(]a; b[)\C([a; b]): (2.3.37)

On the other hand, in view of (2.3.30), not restricting the generality, we

can assume that

lim

m!1

�

1m

= �

0

;

which together with proposition (a) of Lemma 2.2.6 implies

lim

m!1

�

1m

ev

k

m

(t) = �

0

ev(t) uniformly on [a; b]; (2.3.38)

where ev is a solution of the problem (2.2.62), (2:1:2

i0

).

Further, taking into account (2.3.36){(2.3.38) in (2.3.29), we conclude

that uniformly on the segment [a; b]

lim

m!1

y

m

(t) = y(t); (2.3.39)

where

y 2

e

C

loc

(]a; b[)\C([a; b]): (2.3.40)

The same takes place in the case i = 2 owing to the fact that the relations

G(a; s) = 0 and

@

@t

G(t; s)

�

�

�

t=b

= 1 for a < s < b

follow from the inequalities

�

�

z

m

(t

1

)� z

m

(t

2

)

�

�

�

"

0

2

; m > m

0

for a � t

1

; t

2

� a

1

and

�

�

z

m

(t

1

)� z

m

(t

2

)

�

�

� A

1

jt

1

� t

2

j �

"

0

2

; m > m

0

for a

1

� � < t

1

; t

2

� b; jt

1

� t

2

j < �

with

A

1

= sup

�

jz

0

m

(t)j : a

1

� � < t < b; m > m

0

	

< +1;

and from the condition (2.3.38).

Finally, the conditions (2.1.16){(2.1.18) and (2.3.39) imply

max

�

�

�

�

t

Z

a

�g

k

m

(y

m

)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

: a � t � b

�

�

� max

�

�

�

�

t

Z

a

�g

k

m

(y

m

� y)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

: a � t � b

�

+
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+max

�

�

�

�

t

Z

a

�g

k

m

(y)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

: a � t � b

�

�

�

b

Z

a

�(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds ky

m

� yk

C

+

+max

�

�

�

�

t

Z

a

�g

k

m

(y)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

�

�

: a � t � b

�

! 0

as m! +1:

But this contradicts (2.3.28) and proves the validity of our corollary.

Proof of Corollary 2:1:2

i

. Coincides completely with that of the previous

corollary with the only di�erence that the functions ev

k

and ev in (2.3.38) are

solutions of the problems (2:2:62

k

), (2:2:2

ik

) and (2.2.62), (2:1:2

i

), respec-

tively, where the validity of the equality (2.3.38) follows from proposition

(b) of Lemma 2.2.6.

Proof of Corollary 2:1:3

i

. It can be easily veri�ed that under the notation

g(x)(t) =

n

X

m=1

g

0m

(s)x(�

0m

(t));

g

k

(x)(t) =

n

X

m=1

g

km

(t)x(�

km

(t))

(2.3.41)

all the requirements of Theorem 2:1:1

i

, except for (2.1.8), are satis�ed.

First we show the existence of a constant �

1

such that

sup

�







y

0

�(p

1

)

I

�

i

(�

�

(p

1

))







C

: y 2 B

1k

; k > k

0

�

� �

1

: (2.3.42)

To this end we choose arbitrarily k

1

> k

0

and y

1

2 B

k

1

. Then there exist

�

1

< 1, x

1

2 C(]a; b[), kx

1

k

C

� 1 such that

y

1

(t) = �

1

ev

k

1

(t) +

b

Z

a

G

k

1

(t; s)g

k

1

(x

1

)(s) ds;

where ev

k

1

is a solution of the problem (2:2:62

k

), (2:1:2

i0

). Next,

jy

0

1

(t)j � jev

0

k

1

(t)j+

b

Z

a

�

�

�

@G

k

1

(t; s)

@t

�

�

�

�(s) ds +

+

b

Z

a

�

�

�

@G(t; s)

@t

�

�

�

h(1)(s) ds for a < t < b:
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By virtue of the equality (2.2.67) of Lemma 2.2.6, there exists a constant

�

2

such that for any k � k

0







ev

0

k

�(p

1

)

I

�

i

(�

�

(p

1

))







C

< �

2

: (2.3.43)

Taking into account (2.3.43), the representation (2.2.45) of Green's func-

tion the estimates (2.2.46){(2.2.48), the inequality (2.2.13) and the condi-

tions (2.1.18), (2.2.20) and (2.2.21), we make sure that the estimate (2.3.42)

is valid, where

�

1

=�

2

+

d

2

1

d

2

2

�

b

Z

a

�

1���

1��

(p

1

)(s)ds

�

1��

�

b

Z

a

�(s) + h(1)(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds

�

:

We now notice that if

lim

k!1

�

sup

�

n

X

m=1

�

�

�

t

Z

a

g

0m

(s) � g

km

(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)y(�

km

(s)) ds

�

�

�

:

a � t � b; y 2 B

1k

��

= 0 (2.3.44)

and

lim

k!1

�

sup

�

n

X

m=1

�

�

�

t

Z

a

g

0m

(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)

�

0m

(s)

Z

�

km

(s)

y

0

(�) d� ds

�

�

�

:

a � t � b; y 2 B

1k

��

= 0; (2.3.45)

then the condition (2.1.8) is satis�ed.

Reasoning analogously to the proof of Corollary 2:1:1

i

, we obtain that

(2.3.44) is satis�ed if for any y 2

e

C

loc

(]a; b[)\C([a; b])

lim

k!1

�

n

X

m=1

�

�

�

t

Z

a

g

0m

(s) � g

km

(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)y(�

km

(s)) ds

�

�

�

�

=0: (2.3.46)

On the other hand, from (2.1.23) it follows that

ess sup

�

n

X

m=1

�

�

�

0m

(t) � �

km

(t)

�

�

: a � t � b

�

! 0 as k ! +1;

and hence for every y 2

e

C

loc

(]a; b[)\C([a; b])

ess sup

�

n

X

m=1

�

�

y(�

km

(t))� y(�

0m

(t))

�

�

: a � t � b

�

! 0

as k! +1: (2.3.47)
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Then (2.1.21), (2.1.22), and (2.3.47) and lemma 2.2.8 imply the validity of

the equality (2.3.46).

The validity of the equality (2.3.45) follows from the estimate (2.3.42),

the condition (2.1.23) and the inequalities

�

�

�

�

t

Z

a

g

0m

(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)

�

0m

(s)

Z

�

km

(s)

y

0

(�) d� ds

�

�

�

�

�

�

b

Z

a

jg

0m

(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds �

� ess sup

�

I

���

i

(�

�

(p

1

))(t)

�

�

�

�

0m

(t)

Z

�

km

(t)

�(p

1

)(s)ds

I

�

i

(�(p

1

))(s)

�

�

�

: a � t � b

�

�

�







y

0

�(p

1

)

I

�

i

(�

�

(p

1

))







C

(m = 1; : : : ; n; k 2 N) for a � t � b:

Proof of Corollary 2:1:4

i

. Coincides with the previous proof with the only

di�erence that in the inequality (2.3.42) we will assume that y 2 B

0

1k

, i.e.,

the validity of (2.3.43) with ev

k

as a solution of the problem (2:1:4

k

), (2:1:2

ik

)

will be shown by means of proposition (b) of Lemma 2.2.6.

Proof of Corollary 2:1:5

i

. It is not di�cult to notice that the conditions

(2.1.18), (2.1.25) yield

b

Z

a

jg

0m

(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)ds < +1 (m = 1; : : : ; n); (2.3.48)

whence, owing to the fact that � < �, together with (2.1.24), we obtain the

validity of the conditions (2.1.20), (2.1.21). That is, as it has been shown in

the proof of Lemma 2:1:3

i

, all the requirements of Theorem 2:1:1

i

, except

for (2.1.8), are satis�ed.

On the other hand, the condition (2.1.8) under the notation (2.3.41)

follows from the conditions (2.3.44), (2.3.45). Repeating now word by word

the proof of Corollary 2:1:3

i

, by the condition (2.1.26) we can see that

(2.3.42) and (2.3.44) are valid.

Choosing �

1

> � so as to satisfy

�

1

< 1;

1� ��

1

1� �

1

� �;
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analogously to the inequalities (2.2.15),(2.2.16) we obtain

b

Z

a

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)

ds �

�

2I

�

1

(�

�

(p

1

))

�

a+ b

2

�

�

2�i

�

�

1

�

1

� �

�

�

�

�

b

Z

a

�

1���

1

1��

1

(p

1

)(s) ds

�

1��

1

�

b

Z

a

�

�

(p

1

)(s) ds

�

�

1

��

< +1:

From this and also from the condition (2.1.26), owing to the absolute

continuity of the Lebesgue integral it follows that

ess sup

�

n

X

m=1

�

�

�

�

0m

(t)

Z

�

km

(t)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)

ds

�

�

�

: a � t � b

�

! 0 (2.3.49)

for k! +1:

Then the validity of the equality (2.3.45) follows from the conditions (2.3.48),

(2.3.49) and also from the estimate (2.3.42) and the inequality

�

�

�

�

t

Z

a

g

0m

(s)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)

�

0m

(s)

Z

�

km

(s)

y

0

(�) d� ds

�

�

�

�

�

�

�

�

�

�

b

Z

a

jg

0m

(s)j

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s) ds �

� ess sup

�

�

�

�

�

0m

(t)

Z

�

km

(t)

�(p

1

)(s)

I

�

i

(�

�

(p

1

))(s)

ds

�

�

�

: a � t � b

�

�

�







y

0

�(p

1

)

I

�

i

(�

�

(p

1

))







C

(m = 1; : : : ; n; k 2 N):

Proof of Corollary 2:1:6

i

. Coincides with the previous proof with the only

di�erence that in the inequality (2.3.42) it will be assumed that y 2 B

0

1k

, i.e.,

the validity of the inequality (2.3.43) with ev

k

as a solution of the problem

(2:1:4

k

), (2:1:2

ik

) will be shown by means of proposition (b) of Lemma

2.2.6.

Proof of Corollary 2:1:7

i

(2:1:8

i

). It is easily seen that for any � 2 [0; 1] and

 > 1, by conditions (2.1.28){(2.1.32) ((2.1.28){(2.1.32), (2.1.14)), all the

requirements of Corollary (2:1:5

i

) ((2:1:6

i

)) are satis�ed for p

j

� 0, p

jk

� 0

(j = 0; 1; k 2 N), n = 1, whence it follows that our corollary is valid.
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