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In the present paper we give new results on oscillatory properties of the functional
differential equation

u(n)(t) = (−1)k

τ(t)
∫

τ0(t)

f(u(s))dsp(s, t). (1k)

Throughout the paper it will be assumed that n ≥ 2, k ∈ {1, 2} and the following
conditions are fulfilled:

(i) f : R → R is a continuous nondecreasing function such that

−f(−x) = f(x) > 0,

+∞
∫

x

ds

f(s)
= +∞ for x > 0, lim

x→+∞
f(x) = +∞;

(ii) the functions τ0 and τ : [0,+∞[→ [0, +∞[ are continuous and

τ(t) > τ0(t) ≥ t for t ≥ 0;

(iii) the function p : [0, +∞[×[0,+∞[→ R is nondecreasing in the first argument,
and Lebesgue integrable on each finite interval of [0,+∞[ in the second argument.

Particular cases of (1k) are the following differential equations frequently occurring in
the oscillation theory (see [1–17] and the references therein):

u(n)(t) = (−1)k

m
∑

j=1

pj(t)|u(τj (t))|λ sgn(u(τj(t)) (2k)

and

u(n)(t) = (−1)k

m
∑

j=1

pj(t)u(τj (t)), (3k)

where λ ∈ ]0, 1[ , the functions pj : [0,+∞[→ [0,+∞[ (j = 1, . . . , m) are Lebesgue
integrable on each finite interval of [0, +∞[ , and τj : [0, +∞[→ [0,+∞[ (j = 1, . . . ,m)
are continuous functions satisfying the inequalities

τj(t) ≥ t (j = 1, . . . ,m).
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By a solution of equation (1k) on an interval [a, +∞[⊂ [0, +∞[ we understand a
function u : [a, +∞[→ R which is absolutely continuous together with its first n − 1
derivatives on each finite interval of [0, +∞[ and satisfies (1k) almost everywhere on
[a,+∞[ .

A solution u of equation (1k) is said to be proper if it is defined on an interval
[a,+∞[⊂ [0, +∞[ and

sup{|u(s)| : s ≥ t} > 0 for t ≥ a.

A proper solution of equation (1k) is said to be oscillatory if it has a sequence of zeros
converging to +∞.

We use the following definitions from [9] and [3].

Definition 1. Equation (1k) has property A if every proper solution of this equation
for n even is oscillatory and for n odd either is oscillatory or satisfies the condition

|u(i)(t)| ↓ 0 as t → +∞ (i = 0, 1, . . . , n− 1). (4)

Definition 2. Equation (1k) has property B if every proper solution of this equation
for n even either is oscillatory or satisfies (4) or satisfies the condition

|u(i)(t)| ↑ +∞ as t → +∞ (i = 0, 1, . . . , n− 1), (5)

and for n odd either is oscillatory or satisfies (5).

We introduce the following notation.

q(t) = p(τ(t), t) − p(τ0(t), t), ql(t) = tn−l

m
∑

j=1

[τj(t)]
l−1pj(t) (l = 1, . . . , n).

Nn,k is the set of l ∈ {1, . . . , n− 1} for which l + n + k is even.

For any l ∈ {1, . . . , n−1} and a > 0 the function va,l : [a, +∞[→ [1,+∞[ is the lower
solution of the Cauchy problem

v′(t) =
1

(n− l)!
tn−l

τ(t)
∫

τ0(t)

f

(

sl−1

l!
v(t)

)

dsp(s, t), v(a) = 1.

Theorem 1. The condition

+∞
∫

0

tn−1q(t)dt = +∞ (6)

is necessary for equation (11) (equation (12)) to have property A (property B). If along

with (6) the condition

+∞
∫

a

tn−l−1

[

τ(t)
∫

τ0(t)

f

(

sl−1

l!
va,l(s)

)

dsp(s, t)

]

dt = +∞

holds for any a > 0 and l ∈ Nn,1 (for any a > 0 and l ∈ Nn,2), then equation (11)
(equation (12)) has property A (property B).
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Corollary 1. Let condition (6) be fulfilled. Then there exists a continuous function

τ∗ : [0,+∞[→ [0,+∞[ such that if

τ0(t) ≥ τ∗(t) for t ≥ 0,

then equation (11) (equation (12)) has property A (property B).

Theorem 2. Let n be odd (even) and

lim inf
t→+∞

f(τ l−1
0 (t))

tl
> 0

for any l ∈ Nn,1 (for any l ∈ Nn,2). Then condition (6) is necessary and sufficient for

equation (11) (equation (12)) to have property A (property B).

Theorems 1, 2 and Corollary 1 generalize respectively Theorems 1.1, 1.2 and Corol-
lary 1.1 from [7]. For equations (2k) and (3k) from these results we have the following
statements.

Corollary 2. The condition

+∞
∫

0

tn−1q1(t)dt = +∞ (7)

is necessary for equation (21) (equation (22)) to have property A (property B). If along

with (7) the condition

+∞
∫

0

tn−l−1

[ m
∑

j=1

[τj(t)]
λ(l−1)pj(t)

(

τj(t)
∫

0

ql(s)ds

)
λ

λ−1

]

dt = +∞

holds for any l ∈ Nn,1 (for any l ∈ Nn,2), then equation (21) (equation (22)) has property

A (property B).

Corollary 3. Let condition (7) be fulfilled. Then there exists a continuous function

τ∗ : [0,+∞[→ [0,+∞[ such that if

τj(t) ≥ τ∗(t) for t ≥ 0 (j = 1, . . . ,m), (8)

then equation (21) (equation (22)) has property A (property B).

Corollary 4. Let n be odd (even) and

lim inf
t→+∞

[

t−2/λτj(t)
]

> 0 (j = 1, . . . , m).

Then condition (7) is necessary and sufficient for equation (21) (equation (22)) to have

property A (property B).

Corollary 5. The condition (7) is necessary for equation (31) (equation (32)) to have

property A (property B). If along with (7) the condition

+∞
∫

0

tn−l−1

[ m
∑

j=1

[τj(t)]
l−1 exp

(

1

(n− l)! l!

τj(t)
∫

0

ql(s)ds

)

pj(t)

]

dt = +∞

holds for any l ∈ Nn,1 (for any l ∈ Nn,2), then equation (31) (equation (32)) has property

A (property B).
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Corollary 6. Let condition (7) be fulfilled. Then there exists a continuous function

τ∗ : [0, +∞[→ [0,+∞[ such that if inequalities (8) hold, then equation (31) (equation
(32)) has property A (property B).

Corollary 7. Let n be odd (even) and

lim inf
t→+∞

[

t−2τj(t)
]

> 0 (j = 1, . . . , m).

Then condition (7) is necessary and sufficient for equation (31) (equation (32)) to have

property A (property B).

Note that Corollaries 2–7 take into account the effect of advanvced arguments since,
as it is well-known (see [4]), in the case

τj(t) ≡ t (j = 1, . . . ,m)

condition (7) does not guarantee that equations (21) and (31) (equations (22) and (32))
have property A (property B).
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