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Abstract. We apply the basic concepts of vector optimization theory
to certain problems arising in the asymptotic theory of total differential
equations. This approach enables us to establish interrelations between
characteristic functionals and characteristic exponents, which are the main
asymptotic characteristics of solutions of these equations. We are also en-
abled to construct a set of proper characteristic functionals with a number of
useful properties. Using these results, we study the structure of character-
istic sets, the properties of weakly regular linear total differential equations,
and the behavior of characteristic functionals of equations under exponen-
tially decreasing perturbations.
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1. Introduction

Let E and F be real Banach spaces, U be a connected open subset of E,
and L(E,F ) be the Banach space of all linear continuous mappings from E
to F . We supply L(E,F ) with the operator norm. The set of all invertible
elements of L(F, F ) is denoted by GL(F ). In this paper, we consider linear
total differential equations (TDE) of the form

y′h = A(x)hy, y ∈ F, x ∈ U, h ∈ E, (1.1)

where the derivative y′ is the Frechét derivative with respect to x ∈ U and
the coefficient A : U → L(E,L(F, F )) is continuous and bounded on U . We
put M := sup

x∈U
‖A(x)‖. If E is finite-dimensional, the equation (1.1) can be

rewritten as follows

dy = A1(x)ydx1 + . . .+Am(x)ydxm, (1.2)

y ∈ F, x ∈ U ⊂ E = R
m,

where the coefficients Ai : U → L(F, F ) are continuous and bounded. Note
that h ∈ E in (1.1) corresponds to dx1, . . . , dxm in (1.2). In what follows,
we suppose that all TDEs under consideration are completely integrable
(see Section 2 below).

The regular way to obtain a linear total differential equation (1.1) is to
linearize some nonlinear TDE

y′ = f(x, y), y ∈ D ⊂ F, x ∈ U, (1.3)

where f : U × D → L(E,F ) should be at least continuous. Since total
differential equations are very similar to ordinary differential equations in
their basic properties, some analogue of the Lyapunov exponents theory is
therefore possible (and needed).

Foundations of this new theory were laid by E. I. Grudo in 1974. In his
paper [18], he defined the key notion of characteristic vector (functional, in
fact) and investigated basic properties of these objects in the case dimE <
+∞. These results were completely published in [19] and [20].

In the subsequent years, the leading role in the asymptotic theory of
TDEs was played by Byelorussian mathematicians. This theory was devel-
oped by I. V. Găıshun, E. I. Grudo, and M. V. Kozhero, as well as N. E. Bol-
shakov, P.T. Lasy̆ı, L. F. Yanchuk, P.P. Potapenko, and others. By virtue of
their efforts, the theory of characteristic functionals and exponents of TDEs
was created as a very non-trivial generalization of the Lyapunov character-
istic exponents theory.

Now the following asymptotic characteristics are mainly used for solu-
tions of TDEs: strong exponents [39], (weak) characteristic exponents [39;
15, p. 115], and characteristic functionals (vectors) [18; 20; 15, p. 108; 11,
p. 82]. Each of these notions is a straightforward generalization of the clas-
sical Lyapunov exponent and coincides with it when E = R.
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Strong exponents and weak characteristic exponents were introduced by
M. V. Kozhero in [39]. Characteristic vectors were defined by E. I. Grudo
for E = R

n and K = R
n
+. Characteristic functionals are a generalization

of characteristic vectors to an arbitrary Banach space E with an appropri-
ate closed convex cone K. This notion was introduced and investigated by
I.V. Găıshun in [10]. He also obtained a number of fundamental results in
the field including the development of Floquet theory for TDEs with peri-
odic coefficients in infinite dimensional spaces [7, 8, 9, 13, 14]; construction
of the Lyapunov classification of linear TDEs and profound investigation of
regular and reducible TDEs [1, 10, 11, 12, 16, 15]; a proof of the theorem
on stability by regular linear approximation in an infinite-dimensional space
[16]; establishing relations between geometric properties of the ordering cone
and uniqueness of characteristic functionals [16, 15].

Some of these issues were considered by E. I. Grudo [18–23] in the case
E = R

2. Different variants of the theorem on stability by an irregular
linear approximation were proved by P. T. Lasy̆ı [48], N. E. Bolshakov and
P.P. Potapenko [5]. E. I. Grudo [21] and P.G. Lasy̆ı [47] estimated the range
of characteristic functionals of TDE under small perturbations. Certain
problems closely related to the asymptotic theory of TDEs were also treated
by D. A. Bože [3], I. P. Karkliņš [38], A. D. Myshkis [4, 60], A. I. Perov [62,
63], L. E. Reiziņš [66] and others.

This stage of investigations has ended at the beginning of 90th. The ob-
tained results are summarized by I. V. Găıshun in the monographs [11] and
[15], where the general and asymptotic theories of TDEs are systematically
presented.

Recently N. A. Izobov together with his co-workers A. S. Platonov and
E.N. Krupchik started systematic investigation of upper and lower charac-
teristic and power characteristic sets of TDEs, see [28, 29, 30, 33, 34, 35,
36, 44]. Some results on central characteristic vectors were also obtained by
P.P. Potapenko [64].

A brief inquiry into the matter shows that a good deal of difficulties
arising in the asymptotic theory of TDEs is due to the complicated nature
of asymptotic characteristics used in that theory. The aim of this paper
is to demonstrate that some concepts of vector optimization theory can be
fruitfully applied to studying characteristic functionals and exponents of
solutions to TDEs.

The paper is organized in the following way. In Section 2 we recall
some preliminary notions and results. In Section 3 we consider the relation
between characteristic functionals and characteristic exponents of solutions
to TDEs. In Section 4 the notion of proper characteristic functional is
discussed. The paper is ended by conclusions.

2. Preliminaries

Here we recall and discuss some notions and results from the general
theory of TDEs as well as from convex analysis and vector optimization
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theory, which will be necessary in the sequel. Detailed presentation of most
of these issues can be found in [17, 42, 43, 65, 67, 37, 61], and also in [11,
15].

Completely integrable total differential equations. The system

∂y

∂xi
= Ai(x)y, i = 1, . . . ,m, (2.1)

equivalent to (1.2), consists of nm equations in n unknown scalar functions
yi being the components of y. This means that (2.1) is overdetermined and,
therefore, (1.2) must satisfy some strongly restrictive conditions in order to
have a rich collection of solutions. In the general case of (1.1), the same
conclusion is the more so valid.

Let BF (0, R) := {y ∈ F : ‖y‖ < R} with some R > 0. Consider the
nonlinear equation

y′h = f(x, y)h, x ∈ U, y ∈ F, h ∈ E, (2.2)

with a continuous right hand f : U × BF (0, R) → L(E,F ) such that
f(x, 0) = 0 for all x ∈ U .

Definition 2.1. The equation (2.2) is said to be completely integrable at
(x0, y0) ∈ U × BF (0, R) if there exists a solution y of the Cauchy problem
for (2.2) with initial data y(x0) = y0 defined and bounded in some neigh-
borhood of x0. The equation (2.2) is said to be completely integrable on
G ⊂ U ×BF (0, R) if it is completely integrable at each x0 ∈ G.

The common way to prove complete integrability of (1.1) is to use infin-
itesimal sufficient conditions due to Frobenius, Perov and some others (see
[15, p. 160; 24, p. 357; 62]).

Suppose that

f(x, y)h = Q(x)hy + ϕ(x, y),

where Q : U → L(E,L(F, F )) is continuous and ϕ satisfies the condition
r(x, y) := ‖ϕ(x, y)‖/‖y‖ → 0 as y → 0 for each given x ∈ U . Then the
equation

y′h = P (x)yh, x ∈ U, y ∈ F, h ∈ E, (2.3)

is a linear approximation of (2.2) along the trivial solution y = 0.
In order to use (2.3) within the standard scheme of the stability theory,

we heve to be sure that (2.3) is completely integrable. If f is C2, then the
required assertion follows from [3]. Some less restrictive conditions were
obtained in [58, 57].

Theorem 2.1 ([58, 57]). If (i) (2.2) is completely integrable on U ×
BF (0, R), (ii) f is C1(U), and (iii) r is finally bounded on U uniformly in

y ∈ BF (0, R), i.e., any x0 ∈ U has a neighborhood V such that r is bounded

on V ×BF (0, R), then (2.3) is completely integrable on U × F .

Vector optimization and convex analysis. Let X be a Banach space
and X∗ be its topological dual. A set K ⊂ X is said to be a cone if
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K ⊃ tK for each t > 0. In this subsection we denote cones by K and an
arbitrary subsets of X by Q. The conical hull of arbitrary set Q ⊂ X or
the cone generated by Q is the set coneQ := {tx : x ∈ Q, t ≥ 0}. Note that
0 ∈ coneQ by definition. The convex hull of Q is the least (with respect
to inclusion) set convQ containing Q. We use the notation convQ :=
cl convQ. If Q is a cone, then clQ, convQ, and convQ are cones too.

For a mapping f : Q→ R, the epigraph of f is the set epi f := {(x, s) ∈
Q × R : s ≥ f(x)}. A mapping f : K → R is said to be positively ho-
mogeneous if f(tx) = tf(x) for each x ∈ K and t > 0 or, equivalently,
if epi f is a cone in X × R. A mapping f : Q → R is convex iff epi f
is convex. In what follows, we suppose that all convex functions are de-
fined everywhere on X and, therefore, we put f(x) = +∞ for x 6∈ Q.
The domain of a convex mapping f is the projection of epi f onto X , i.e.
dom f := {x ∈ X : f(x) < +∞}.

The closed convex hull of an arbitrary mapping f : Q→ R is the mapping
conv f : X → R defined by the condition epi conv f = conv epi f . According
to the above, we assume conv f(x) = +∞ for x 6∈ clQ.

A continuous linear functional µ ∈ X∗ is said to be a subgradient of a
convex function f : X → R at x ∈ X if f(z) ≥ f(x) + µ(z − x) for all
z ∈ X . The subdifferential of f at x ∈ X is the set ∂f(x) containing all the
subgradients of f at x.

If the mapping f : K → R is convex and positively homogeneous, then
µ ∈ ∂f(x0) for some x0 ∈ K iff µx ≤ f(x) for all x ∈ K and µx0 = f(x0).

Suppose that there exists an affine mapping majorizing the mapping f ,
i.e. f(x) ≤ µ(x− x0) for each x ∈ X with some µ ∈ X∗ and x0 ∈ X . Then
the set

∂>f(x) = −∂(conv(−f))(x)

if defined for any x ∈ dom f . We will refer to the set ∂>f(x) as the Penot
superdifferential of f at x. It should be stressed that the Penot superdif-
ferential ∂≥f considered in [26] does not coincide with ∂>f(0) in general.
However, we have ∂≥f(0) = ∂>f(0) for any positively homogeneous f .

A cone K is convex iff K + K ⊂ K. A convex cone K is said to be
pointed if K ∩ (−K) = {0}.

For any given pointed convex cone K, we can define the following binary
relation: x � y iff y−x ∈ K. It can be easily seen that � is a partial order.

A point x ∈ Q ⊂ X is called maximal in Q with respect to K if (x +
K) ∩Q = {x}. The set of all such points of Q is denoted by Max(Q|K).

Suppose that X is partially ordered by a closed convex pointed cone K.
A continuous linear functional f ∈ X∗ is called positive if f(x) ≥ 0 for any
x ∈ K, and it is called strictly positive if f(x) > 0 for any x ∈ K \{0}. The
set of all positive elements f ∈ X∗ is called the dual cone of K. We denote
it by K+. The set of all strictly positive elements f ∈ X∗ is denoted by
K+i. A continuous linear functional f ∈ X∗ is called uniformly positive if
there exists a positive number cf such that f(x) ≥ cf‖x‖ for any x ∈ K.
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For any K its dual cone is closed and convex. If K is solid, then K+ is
pointed and, therefore, X∗ is partially ordered by K+.

By Pos(Q|Λ) we denote the set of x ∈ Q such that f(x) = max
y∈Q

f(y) for

some f ∈ Λ ⊂ X∗. If the set Q is convex, then by linear scalarization we
have Pos(Q|K+ \ {0}) ⊃ Max(Q|K) when IntK+ 6= ∅ and Max(Q|K) ⊃
Pos(Q|K+i) when K+i is not empty. The elements of Pos(Q|K+i) are called
positive proper efficient (maximal) elements of Q.

A convex set B ⊂ X is said to be a base of some convex coneK if 0 6∈ clB
and K = coneB. The cone K has a base iff the set K+i is not empty. If
the cone K has a closed bounded base, then K is closed and pointed.

The following statements are equivalent:
(i) the cone K has a bounded base;
(ii) there exists a uniformly positive functional on K.
Note that {x ∈ K : f(x) = 1} is a bounded base of K for any uniformly

positive f ∈ X∗. In a finite-dimensional X , the conditions (i) and (ii) are
valid for each pointed closed convex cone K.

3. Relations between Asymptotic Characteristics of Solutions

In this section, we study relations between two main notions used in
the asymptotic theory of TDEs and derive some consequences from those
relations.

Characteristic exponents and functionals of mappings. Let E be
a Banach space partially ordered by a closed convex pointed cone K with a
bounded base. By F we denote the filter on K generated by the sets K \B,
where B is an arbitrary bounded subset of E. Further we suppose that the
domain U contains some element D ∈ F.

Take any f : U → R such that f(x) ≥ 0 for all x from some Df ∈
F, Df ⊂ U . The following definitions are basic in our considerations.

Definition 3.1 ([39; 15, p. 115]). The (weak) characteristic exponent of
f is the function χ[y] : K \ {0} → R defined by

χ[f ](x) := lim
t→+∞

1

t‖x‖ ln f(tx).

Definition 3.2 ([18; 20; 15, p. 108; 11, p. 82]). A functional λ ∈ E∗ is
said to be a characteristic functional of f if

lim sup
F

‖x‖−1(λx + ln f(x)) = 0

and

lim sup
F

‖x‖−1(λx+ µx+ ln f(x)) > 0

for all µ ∈ K+, µ 6= 0.

The set of all characteristic functionals is called the characteristic set of
f . We denote it by M[f ]. Both characteristic exponents and functionals are
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straightforward generalizations of Lyapunov exponents and coincide with
them when E is finite-dimensional.

If ln f is Lipschitzian, i.e., satisfies the condition

| ln f(x)− ln f(y)| ≤ L‖x− y‖ (3.1)

for all x, y ∈ Df , then it follows from [15, pp. 111, 116] that f has the
continuous and bounded on K \ {0} (weak) characteristic exponent and
there exists at least one characteristic functional of f .

It should be noted that the function χ[f ] has some anomalous properties.
First of all, χ[f ] depends on the norm in E, specifically, replacing the norm
‖ ·‖ by another norm ‖ ·‖1 in E we get χ1[f ] = ‖x‖χ[f ]/‖x‖1. Furthermore,
the function χ[f ] is Lipschitzian on E\{0}, but we can not define it at x = 0
preserving continuity if χ1[f ] is not a constant. To avoid these problems,
the following definition was introduced in [52].

Definition 3.3. The modified characteristic exponent of f is the function
ψ[f ] : K → R such that ψ[f ](0) = 0 and

ψ[f ](x) := lim
t→+∞

1

t
ln f(tx) (3.2)

for x 6= 0.

It should be noted that ψ[f ](x) = ‖x‖χ[f ](x) for x 6= 0 and, therefore,
ψ[f ](x) does not depend on the norm in E. Useful properties of ψ[f ](x) are
given in the following statement.

Lemma 3.1 ([52]). If f satisfies the condition (3.1), then ψ[f ] is positively

homogeneous and satisfies the Lipschitz condition |ψ(x)−ψ(y)| ≤ L‖x− y‖
everywhere on K.

Proof. For all s > 0, x 6= 0 we have

ψ[f ](sx) = lim
t→+∞

1

t
ln f(tsx) = lim

t→+∞

s

t
ln f(tx) =

= s lim
t→+∞

1

t
ln f(tx) = sψ[f ](x).

Since ψ[f ](0) = 0, we can assume that the function ψ[f ] is positively homo-
geneous.

Since Df ∈ F, the set K \Df is bounded and tx ∈ Df for any x ∈ K \{0}
and t > 0 sufficiently large. If x, y ∈ K \ {0}, then

|ψ[f ](x) − ψ[f ](y)| = | lim
t→∞

t−1 ln f(tx)− lim
t→∞

t−1 ln f(ty)| ≤

≤ lim
t→∞

t−1| ln f(tx)− ln f(ty)| ≤ lim
t→∞

t−1L‖tx− ty‖ = L‖x− y‖.

If x ∈ K \ {0} and y = 0, then

|ψ[f ](x)− ψ[f ](y)| = | lim
t→∞

t−1 ln f(tx)| =

= | lim
t→∞

t−1 ln f(tx)f(sx)−1| ≤ lim
t→∞

t−1L‖tx− sx‖ = L‖x‖
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with s > 0 large enough. Finally, for x = y = 0 the required assertion is
obvious. �

Let us denote

g(f, µ, x) := ‖x‖−1(µx+ ln f(x)), G(f, µ) := lim sup
F

g(f, µ, x),

and put E(f) := {µ ∈ E∗ : G(f, µ) ≤ 0}. Thus, E(f) is the set of all µ ∈ E∗
such that

lim sup
F

‖x‖−1(ln f(x) + µx) ≤ 0,

and M[f ] is the set of all λ ∈ E∗ such that G(f, λ) = 0 and G(f, λ+ µ) > 0
for each µ ∈ K+ \ {0}.

Lemma 3.2. The set E[f ] is convex.

Proof. Take any µ0, µ1 ∈ E[f ]. Then for each µs = sµ1 + (1 − s)µ0 with
s ∈]0, 1[, we have g(f, µs, x) = sg(f, µ1, x)+(1−s)g(f, µ0, x) and G(f, µs) ≤
sG(f, µ1) + (1− s)G(f, µ0) ≤ 0. Thus, µs ∈ E[f ]. �

Since K is solid, K+ is pointed. Hence, the space E∗ is partially ordered
by K+. This fact enables us to give a characterization of M[f ] in terms of
vector optimization.

Lemma 3.3 (see [15, p. 111; 11, p. 86], and also [52, 54]). If f satisfies

(3.1), then M[f ] = Max(E(f)|K+).

Proof. Since

g(f, µ, x) ≤ ‖x‖−1| ln f(x) + µx| ≤
≤ ‖x‖−1(| ln f(x0)|+ ‖µ‖ ‖x‖+ L‖x− x0‖) ≤
≤ ‖x‖−1| ln f(x0)|+ ‖µ‖+ L(1 + ‖x‖−1‖x0‖)

for all x, x0 ∈ Df and µ ∈ E∗, we assume that G(f, µ) is defined and finite
for each µ ∈ E∗.

It follows now from

|G(f, µ)−G(f, η)| ≤ lim sup
F

|g(µ, x)− g(η, x)| =

= lim sup
F

‖x‖−1‖µx− ηx‖ ≤ ‖µ− η‖,

where µ, η ∈ E∗, that G is continuous on E∗.
If λ ∈ E(f) is a maximal element in E(f) with respect to K+, then

λ + γ 6∈ E(f) whatever γ ∈ K+ \ {0} be taken, i.e., we have G(f, λ) ≤ 0
and G(f, λ+ γ) > 0. Choosing γ arbitrary small, we get G(f, λ) = 0 in the
limit since G is continuous. This means that λ ∈ M[f ].

Conversely, if λ ∈ M[f ], then G(f, λ) = 0 and G(f, λ+γ) > 0 for any γ ∈
K+ \ {0}. Hence, λ ∈ E(f) and λ+ γ /∈ E(f), i.e., λ ∈ Max(E(f)|K+). �

Corollary 3.1. If f satisfies (3.1) and λ ∈ M[f ], then the equality

G(f, λ) = 0 holds.
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Remark 3.1. For E = R
2, K = R

2
+, the analogous statement was proved

in [23].

A sequence p : N → K such that ‖p(j)‖ → +∞ as j → ∞ is said to be
realizing for some functional µ ∈ E∗ if

lim
j→∞

g(f, µ, p(j)) = G(u, µ).

It can be easily seen that each µ ∈ E∗ has some realizing sequence.

Lemma 3.4. Let dimE < +∞. If f satisfies the condition (3.1),
then G(f, µ) = max{µz + ψ[f ](z) : z ∈ K, ‖z‖ = 1} for each µ ∈ E∗

and G(f, µ) = µz + ψ[f ](z) iff z is a cluster point of the sequence bi =
‖xi‖−1xi, i ∈ N, where xi is some realizing sequence for µ.

Proof. Take any µ ∈ E∗. Let xi, i ∈ N, be a realizing sequence for µ. Since
the sequence bi = ‖xi‖−1xi is bounded, there exists a cluster point z of
this sequence. Obviously, ‖z‖ = lim

i→+∞
‖bi‖ = 1 and z ∈ K as bi ∈ K and

K is closed. Let xi(k), k ∈ N, be a subsequence of xi such that bi(k) =

‖xi(k)‖−1xi(k) → z as k → +∞. Note that xi(k) is also a realizing sequence
for µ. Then we have

G(f, µ) = lim
k→∞

‖xi(k)‖−1(µxi(k) + ln f(xi(k))) =

= µz + lim
k→∞

t−1
k ln ‖u(xi(k))‖,

where tk = ‖xi(k)‖. By (3.1) we get

0 ≤ lim
k→∞

t−1
k (ln f(xi(k))− ln f(tkz)) ≤ lim

k→∞
t−1
k M‖xi(k)− tkz‖ = 0

and, therefore, we have

lim
k→∞

t−1
k ln f(xi(k)) = lim

k→∞
t−1
k ln f(tkz)) ≤ ψ[f ](z).

Thus, we obtain

G(f, µ) ≤ µz + ψ[f ](z). (3.3)

On the other hand, for each y ∈ K such that ‖y‖ = 1 we have

G(f, µ) ≥ lim
t→+∞

t−1(tµy + ln f(ty)) = µy + ψ[f ](y). (3.4)

Combining (3.3) with (3.4), we can write G(f, µ) = max{µz + ψ[f ](z) :
z ∈ K, ‖z‖ = 1} and G(f, µ) = µz + ψ[f ](z) if z is a cluster point of some
sequence bi.

Now let G(f, µ) = µz0 + ψ[f ](z0) for some z0 ∈ E. Obviously, z0 ∈ K
since K is the domain of ψ[f ]. Take a sequence tk ∈ R+, k ∈ N, such
that lim

k→∞
t−1
k ln f(tkz0)) = ψ[f ](z0). Then we have lim

k→+∞
t−1
k (tkµz0 +

ln f(tkz0) = µz0 + ψ[f ](z0) = G(f, µ), i.e., the sequence xk = tkz0 is a
realizing sequence for µ and z0 is a cluster point for ‖xk‖−1xk. �

Corollary 3.2. If dimE < +∞, then E[f ] = {µ ∈ E∗ : µy+ψ[f ](y) ≤ 0}.
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Theorem 3.1 ([52, 54]). If f satisfies (3.1), then

(i) the inclusion E(f) ⊂ E(expψ[f ]) holds in each Banach space E;

(ii) the equality E(f) = E(expψ[f ]) holds in an arbitrary finite-dimen-

sional E.

Proof. Let µ ∈ E(f). Then for any ε > 0 there exists a set D(ε) such that
K \D(ε) is bounded and ln f(x) ≤ −µx+ ε‖x‖ for each x ∈ D(ε). Hence

ψ[f ](x) = lim
t→∞

t−1 ln f(tx) ≤

≤ lim
t→∞

t−1(−µtx+ ε‖tx‖) = −µx+ ε‖x‖

for all x ∈ K. It follows now from the definitions that G(expψ[f ], µ) ≤ 0
since ε is arbitrarily small. Thus, µ ∈ E(expψ[f ]).

Now let dimE < +∞ and µ ∈ E(expψ[f ]). Since ψ[f ] is positively
homogeneous, we can write

G(expψ[f ], µ) = lim sup
F

‖x‖−1(µx+ ψ[f ](x)) =

= lim sup
F

(‖x‖−1µx+ ψ[f ](‖x‖−1x)) =

= sup{µx+ ψ[f ](x) : ‖x‖ = 1, x ∈ K},
and by Lemma 3.4 we have G(expψ[f ], µ) = G(f, µ). Hence, E(f) =
E(expψ[f ]). �

Corollary 3.3 ([52, 54]). If f satisfies (3.1) and E is finite-dimensional,

then M(f) = M(expψ[f ]).

Proof. By Lemma 3.3, we have

M(f) = Max(E(f)|K+) = Max(E(expψ[f ])|K+) = M(expψ[f ]). �

The second part of Theorem 3.1 substantially uses the compactness of the
unit ball in a finite-dimensional space. If the unit ball in E is not compact,
the assertion (ii) fails. This fact is demonstrated by the example below.

Example 3.1. Let E = `1, i.e., the space of sequences x : N → R (or

x = (x1, x2, . . .)) with the norm ‖x‖ =
∞
∑

k=1

|xk| < +∞. Consider the cone

K = cone(B) = {x ∈ `1 : 2x1 ≥ ‖x‖}, where B := {z ∈ `1 : z1 = 1, ‖z‖ ≤
2}. Since 0 6∈ B and B is closed, bounded, and convex, the cone K is a
closed convex pointed cone with the bounded base B. Moreover,K contains
the unit ball of `1 centered at (1, 0, 0, . . .), hence K is solid.

Define the mapping ϕ : K \ {0} → R by

ϕ(x) =
∞
∑

k=2

xkx
−1/k
1 (3.5)

for all x ∈ K \ {0}. The series (3.5) converges absolutely everywhere on

K \ {0} since
∞
∑

k=1

|xk| = ‖x‖ < +∞ and x
−1/k
1 → 1 as k → +∞ for such x.
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The function ϕ is Lipschitzian on D = {x ∈ K : x1 ≥ 1} ∈ F. To verify
this fact, we write

|ϕ(x) − ϕ(v)| ≤
∞
∑

k=2

|xkx
−1/k
1 − vkv

−1/k
1 | ≤

≤
∞
∑

k=2

|xk − vk ||x−1/k
1 |+

∞
∑

k=2

|vk||x−1/k
1 − v

−1/k
1 |.

If x1 ≥ v1 ≥ 1, then we get |x−1/k
1 | ≤ 1, |x−1/k

1 − v
−1/k
1 | ≤ |x1 − v1| ×

sup{k−1s−1−1/k : k ≥ 2, s ≥ v1} ≤ (2v1)
−1|x1 − v1|. Thus,

|ϕ(x) − ϕ(v)| ≤
∞
∑

k=2

|xk − vk|+
1

2
v−1
1 |x1 − v1|

∞
∑

k=2

|vk| ≤ ‖x− v‖.

It can be easily shown that everywhere on U = {x ∈ `1 : 3x1 > ‖x‖, x1 >
1} the function f = expϕ satisfies the equation

y′h =

(

∞
∑

k=2

x
−1/k
1 hk − x−1

1

∞
∑

k=2

k−1xkx
−1/k
1 h1

)

y, (3.6)

y ∈ R, x ∈ U. h ∈ `1.
Evaluating ψ[f ], we obtain

ψ[f ](x) = lim
s→∞

s−1 ln f(sx) = lim
s→∞

∞
∑

k=2

xk(sx1)
−1/k.

For any m > 2, s ≥ 1, we have
∣

∣

∣

∣

∣

∞
∑

k=2

xk(sx1)
−1/k

∣

∣

∣

∣

∣

≤ s−1/m
m
∑

k=2

|xk|x−1/k
1 +

+

∞
∑

k=m+1

|xk|x−1/k
1 →

∞
∑

k=m+1

|xk|x−1/k
1 (3.7)

as s→ +∞. Since the series (3.5) converges absolutely, we get ψ[f ](x) = 0
for each x ∈ K.

Suppose that E(f) ⊃ E(expψ[f ]). Then 0 ∈ E(f) since 0 ∈ E(expψ[f ])
and expψ[f ] ≡ 1. This yields

lim sup
F

‖x‖−1ϕ(x) ≤ 0. (3.8)

Take now the sequence v : N → `1 such that v1(k) = vk(k) = 2k, k ∈ N,
and vj(k) = 0 for all j 6= 1, k. It is easy to see that v(n) ∈ K \ {0} for
each n ∈ N and ‖v(n)‖ = 2n+1 → +∞ as n → ∞. Evaluating the limit
lim

n→∞
‖v(n)‖−1ϕ(v(n)) = 1/4, we obtain the contradiction to (3.8). Hence,

0 6∈ E(f) and, therefore, E(f) 6⊃ E(expψ[f ]).
It can be easily seen that in order to obtain the equality E(f)=E(expψ[f ]),

we need a uniform estimate for | ln f(x) − ψ[f ](x)| on K \ {0}. If dimE <
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+∞, we get such an estimate from the compactness of the unit ball in E.
If E is infinite-dimensional, we can deduce the required estimate from some
other conditions.

Theorem 3.2 ([53]). If 0 ∈ E(f exp(−ψ[f ])), then the equality E(f) =
E(exp(ψ[f ])) holds.

Proof. The proof is an immediate consequence of the following inequalities:

lim sup
F

‖x‖−1(ψ[f ](x) + µx) ≤ lim sup
F

‖x‖−1(ln f(x) + µx)+

+ lim sup
F

‖x‖−1 ln(f(x) exp(−ψ[f ])) ≤ 0,

where µ ∈ E(f) is arbitrary. �

Characteristic exponents and functionals for solutions of TDEs.

By [15, p. 28], each nontrivial solution u of (1.1) with sup
x∈U

‖A(x)‖ ≤ M <

+∞ satisfies the condition

| ln ‖u(x)‖ − ln ‖u(y)‖| ≤M‖x− y‖
for all x, y ∈ U such that the segment [x, y] = conv{x, y} lies in U . Hence,
f = ln ‖u‖ satisfies the condition (3.1) and, therefore, Theorem 3.1 is valid
for any such u. This means that the characteristic functionals of u are
completely determined by the characteristic exponents of u when E is finite-
dimensional. Some particular case of this result was proved for E = R

2,
K = R

2
+ in [46].

To obtain the consequences of the established relations let us introduce
some necessary definitions.

It is well known that linear TDEs admit a classification analogous to the
Lyapunov classification of linear ordinary differential systems [6, p. 242]. In
particular, regular TDEs were defined by E. I. Grudo [20] for E = R

n, K =
R

n
+ and by I. V. Găıshun [11, p. 94, 15, p. 122] in the general case. There

exist two distinct ways to define regular TDEs. To this end, we can use
various generalizations of irregularity coefficients as in [20] and [11, p. 94].
However, if F is infinite-dimensional, this definition fails. So, the universal
definition should be given in terms of generalized reducibility as in [15,
p. 123]. Surely, such a definition is equivalent to the latter one if dimE <
+∞, see Theorems 10.6 and 10.7 in [11, p. 96–98] and Theorem 19.1 in [15,
p. 150].

Let Q be a transformation defined by u = Q(x)v, where u, v ∈ F and
Q : U → GL(F ). The set SExp of all transformations Q such that Q is
continuously Frechét differentiable on U and

lim sup
F

‖x‖−1 ln ‖Q(x)‖ = lim sup
F

‖x‖−1 ln ‖Q−1(x)‖ = 0

is called strong exponential group. The set Exp of all transformations Q such
that Q is continuously Frechét differentiable on U and M[Q] = M[Q−1] = 0
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is called exponential group. (We suppose that the group operation is the
usual composition of transformations.)

Note that both Exp and SExp are completely defined only when U and
K are predetermined. It was proved in [15, p. 113] that SExp = Exp.

Definition 3.4 (see [15]). The equation (1.1) is said to be regular if there
exists a transformation Q ∈ Exp reducing (1.1) to an autonomous equation.

Regular TDEs with finite-dimensional F provide another known class of
equations having some relation between characteristic exponents and char-
acteristic functionals of solutions. This relation can be established on the
basis of Theorem 3.2.

Theorem 3.3 ([53]). If dimF < +∞ and (1.1) is regular, then E(u) =
E(exp(ψ[u])) and M[u] = M[expψ[u]].

A particular case of this result was proved in [15, p. 153].
In [41] M. V. Kozhero introduced the concept of weak regularity for TDEs

based on the notion of the (weak) characteristic exponent. It seems to be
natural that there exist two distinct ways to define weak regularity. But
the analogy with the usual regularity is not complete since these ways are
not equivalent even if E and F are finite-dimensional.

Definition 3.5 ([54, 55]). The set WExp(K) of all transformations
Q such that Q satisfies the condition χ[Q](x) = χ[Q−1](x) = 0 for all
x ∈ K \ {0} and the function Sx defined by Sx(t) := Q(tx), t > tx, has the
piecewise continuous derivative in t is called weak exponential group.

One can easily show that WExp is a group with respect to the usual
composition of transformations and each Q ∈ WExp preserves (weak) char-
acteristic exponents.

The equation (1.1) is said to be weakly exponentially equivalent (WExp-
equivalent) to another equation of the same type if there exists a transfor-
mation Q ∈ WExp taking one of these equations to another.

Definition 3.6 ([55]). The equation (1.1) is said to be weakly regular if
this equation is WExp-equivalent to some autonomous equation.

For each b ∈ K \ {0}, consider the linear system

ż = [A(tb)b]z, t > tb, z ∈ F, (3.9)

where tb = inf{t ∈ R : tb ∈ U}. The system (3.9) is called restriction
of (1.1) onto the ray r(b) = {x ∈ E : x = tb, t > tb}. Let y be any
solution to (1.1). Then z(t) = y(tb), t > tb, defines a solution to (3.9)
and λ[z] = lim

t→+∞
t−1 ln ‖z(t)‖ = lim

t→+∞
t−1 ln ‖y(tb)‖ = ψ[y](b), where λ[z]

denotes the Lyapunov exponent of z.
The equation (1.1) is said to be regular along b ∈ K\{0} if the restriction

(3.9) of (1.1) onto the ray r(b) is Lyapunov regular [6, p. 238].
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Definition 3.7 ([41]). The equation (1.1) is said to be Kozhero regular
if this equation is regular along each b ∈ K \ {0}.

Let dimF = n < +∞ and λ1(A, b) ≤ . . . ≤ λn(A, b) be the Lyapunov
spectrum [6, p. 63] of (3.9). Characteristic exponent of (1.1) is the map-
ping χ(A) : K \ {0} → R

n defined by χ(A)(x) = (χ1(A)(x), . . . , χn(A)(x)),
χi(A)(x) = λi(A, b), i = 1, . . . , n.

Proposition 3.1. Let dimF = n < +∞. The equation (1.1) is Kozhero

regular iff

χ1(A)(x) + . . .+ χn(A)(x) − lim
t→∞

1

t‖x‖

t
∫

tx

Sp(A(tx)x) dt = 0, (3.10)

for all x ∈ K \ {0}.
Proof. The left side of (3.10) is a Lyapunov irregularity coefficient for (3.9)
with b = x. Now the required assertion follows from the usual theorems for
ordinary linear differential systems, see [27, p. 77]. �

Since WExp preserves (weak) characteristic exponents of TDEs, the char-
acteristic exponent of a weakly regular TDE should coincide with the expo-
nent of some autonomous TDE. This approach enables us to give a descrip-
tion of weakly regular TDEs in terms of their characteristic exponents. To
this end, we use the concept of weakly normal basis (fundamental system)
of solutions introduced by M. V. Kozhero in [40].

Let dimF = n < +∞. A fundamental system Y = [y1, . . . , yn] of solu-
tions to (1.1) is said to be weakly normal if the sum ωY (x) = χ[y1](x) +
· · ·+χ[yn](x) does not exceed the analogous sum for any other fundamental
system of solutions to (1.1).

Note that a basis of solutions to (1.1) is weakly normal iff its restriction
to each ray r(b), b ∈ K \ {0}, coincides with some normal basis of solutions
to (3.9).

A weakly normal basis of solutions to (1.1) is called regular if there exist

µi ∈ E∗, i = 1, . . . , n, such that χ[ui](x) = ‖x‖−1
µix, x ∈ K \ {0}.

Proposition 3.2 ([55]). Let dimF = n < +∞. The equation (1.1) is

weakly regular iff it is Kozhero regular and has a regular basis of solutions.

Now it is interesting to compare weak and Kozhero regularity with usual
regularity. We begin with comparison of WExp and Exp. One can easily
prove that WExp(K) ⊃ Exp(K). The reverse inclusion can be obtained
using the relation between characteristic exponents and functionals.

Proposition 3.3 ([55]). Suppose that dimE < +∞ and Q : U → GL(F )
is continuously Frechét differentiable. If Q ∈ WExp(K) and both ‖Q‖ and

‖Q−1‖ satisfy (3.1), then Q ∈ Exp(K).

Proof. By Theorem 3.1, we have M[Q±1] = {0} since χ[Q] ≡ 0 on K \ {0}.
Hence Q ∈ Exp(K). �
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Theorem 3.4 ([55]). Let dimE < +∞. If two equations of the form (1.2)
are weakly exponentially equivalent, then these equations are exponentially

equivalent.

Proof. Let X and Y be the Cauchy operators of the given equations and
L ∈ WExp(K) be the transformation taking one of them to another. Then
for all x, y ∈ U we have L(x)X(x, y)L−1(y) = Y (x, y). Since K is convex,
there exists a convex D0 ∈ F contained in U . Then for any x, y ∈ D0 we
get ‖X(x, y)‖ ≤ expM‖x− y‖,‖Y (x, y)‖ ≤ expM‖x− y‖. Hence,

‖L(x)‖ = ‖Y (x, y)L(y)X(y, x)‖ ≤ ‖L(y)‖ exp 2M‖x− y‖
and, analogously, ‖L(y)‖ ≤ ‖L(x)‖ exp 2M‖x− y‖. Thus,

| ln ‖L(x)‖ − ln ‖L(y)‖| ≤ 2M‖x− y‖.
Since the coefficients of each equation (1.2) are continuous, L is continuously
Frechét differentiable. Now, to finish the proof, it is sufficient to apply
Proposition 3.3. �

Corollary 3.4. If E is finite-dimensional, then any weakly regular equa-

tion (1.2) is regular.

Corollary 3.5. Let dimE < +∞. A Kozhero regular equation (1.2) is

regular iff it has a regular basis of solutions.

One of the most interesting unsolved problems of the asymptotic theory of
TDEs is the behavior of characteristic functionals under exponentially small
perturbations of the equation. It is the more so interesting that the same
problem for characteristic exponents can be solved by means of the results
known for ordinary differential systems. Using the above relations between
characteristic exponents and characteristic functionals, we can obtain some
advances in this problem.

Let us consider a perturbed equation

v′h = (A(x) +Q(x))hy, v ∈ F, x ∈ U, h ∈ E, (3.11)

where Q : U → L(E,L(F, F )) is continuous and bounded. It should be
stressed that there are no reasons for (3.11) to be completely integrable
for arbitrary Q even if Q is taken very small or vanishing. To avoid these
difficulties, for any ρ : K → R we introduce the set P (ρ,A) of all perturba-
tions Q satisfying the condition ψQ(x) < −ρ(x), x ∈ K, and such that the
equation (3.11) is completely integrable.

To formulate the result, we need the notion of normal domain for (1.1)
introduced by M. V. Kozhero in [40]. A point x0 ∈ K \ {0} is said to be
a branching point for exponents of (1.1) if there exist two solutions y1 and
y2 to (1.1) such that χ[y1](x0) = χ[y2](x0) and for any ε > 0 there exists
a point ξ ∈ K \ {0} such that ‖ξ − x0‖ < ε and χ[y1](ξ) 6= χ[y2](ξ). A
point x ∈ K \ {0} is called normal if x is not branching. Any connected
component of the set of all normal points is called a normal domain for
(1.1).
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Theorem 3.5 ([52, 54]). Let dimE < +∞ and K ⊂ clH, where H is

some normal domain for (1.2). Then there exists a positive and positively

homogeneous function σ : K → R satisfying the Lipschitz condition on K
with the Lipschitz constant 2M such that for each solution v to (3.11) with

any Q ∈ P (σ,A) there exists a solution u to (1.2) with M[u] = M[v].

4. Proper Characteristic Functionals

The techniques developed in Section 3 make it possible to reduce the
evaluation of the characteristic set to a vector optimization problem. By
Lemma 3.3 we can write M[u] = Max(E(u)|K+), where u is any nontrivial
solution of (1.1). Thus, to evaluate M[u], we have (i) to construct the set
E(u) and then (ii) to find the maximal elements of E(u).

However, both (i) and (ii) are difficult problems. To avoid the difficulties
arising here, we apply a specific modification of the scalarization method
[17, p. 48] commonly used in the vector optimization theory.

It turns out that there exists a set of proper characteristic functionals
P[u] ⊂ M[u] with many useful properties. For example, we can prove the
inclusion µ ∈ P[u] for a given µ ∈ E∗ without global information about E(u).
Moreover, the set P[u] is norm-dense in M[u] when E is finite-dimensional.
Our approach enables us to describe the set P[u] and to use it in studying
characteristic functionals.

General construction of proper characteristic set. For any se-
quence p : N → K, let us consider the sequence bp : N → K such that
bp(j) := ‖p(j)‖−1p(j). By Banach –Alaoglu theorem [68, p. 80] the unit
ball of E∗ is compact with respect to weak-star topology σ(E∗∗, E∗) [68,
p. 80]. Since ‖bp(j)‖ = 1, we assume that the weak-star cluster set of bp is
not empty. Now let us denote the σ(E∗∗, E∗)-closure of convex hull of this
cluster set by B(p).

Definition 4.1 ([53]). Let u be a nontrivial solution of (1.1). We say
that µ ∈ E(u) is a proper characteristic functional of u if G(u, µ) = 0 and
there exists a realizing sequence p such that B(p) ∩ (K+)+i 6= ∅.

We denote the set of all proper characteristic functionals by P[u]. This
set is called proper characteristic set.

Theorem 4.1 ([53]). The inclusion

P[u] ⊂ Pos(E(u)|(K+)+i)

holds for any nontrivial solution u to (1.1).

Proof. Take any µ ∈ P[u]. By definition of P[u], there exists a realizing
sequence p such that B(p)∩ (K+)+i 6= ∅. For any cluster point a0 ∈ E∗∗ of
bp, there exists a directed set Γ and a subnet q : Γ → p(N) of the sequence p
such that the net a : Γ → K++ defined by a(γ) = ‖q(γ)‖−1q(γ) converges to
a0 with respect to σ(E∗∗, E∗). Note that q is not necessarily a subsequence
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of p. Hence we get

0 = lim
j→∞

g(u, µ, p(j)) = lim
Γ
g(u, µ, q(γ)) =

= lim
Γ
‖q(γ)‖−1 ln ‖u(q(γ))‖+ µa0. (4.1)

On the other hand, for any ν ∈ E(u) we have

0 ≥ lim sup
F

g(u, µ, x) ≥ lim
Γ
‖q(γ)‖−1 ln ‖u(q(γ))‖+ νa0. (4.2)

From (4.1) and (4.2), we obtain µa0 ≥ νa0, i.e., µ ∈ Pos(E(u)|a0). Since
each λ ∈ E(u) is linear and σ(E∗∗, E∗)-continuous functional on E∗∗, we get
µb ≥ νb for any b ∈ B(p). Now we can choose b = b0 ∈ B(p)∩ (K+)+i 6= ∅.
Thus, µ ∈ Pos(E(u)|(K+)+i). �

Corollary 4.1 ([53]). The inclusion

M[u] ⊃ P[u].

holds for any non-zero solution u to (1.1).

Proof. By [17, p. 49], we have

Pos(Q|(K+)+i) ⊂ Max(Q|K+)

for any Q ⊂ E∗. Since M[u] = Max(E(u)|K+), we get the required inclu-
sion. �

Example 4.1. Consider the equation

y′h =

(

∞
∑

k=2

x
−1/k
1 hk − x−1

1

∞
∑

k=2

k−1xkx
−1/k
1 h1

)

y, (4.3)

where x ∈ U = {x ∈ `1 : x1 > 1, ‖x‖ < 3x1}, y ∈ R, h ∈ `1.
It can be easily proved that the operator coefficient of (4.3) is bounded

and continuous on U .

Let ϕ(x) =
∞
∑

k=2

xkx
−1/k
1 . For each C ∈ R, the functions u = C expϕ

are Frechèt differentiable on U and satisfy the equation (4.3). Thus, the
equation (4.3) is completely integrable.

Let K = {x ∈ `1 : ‖x‖ ≤ 2x1}. Pick out any nontrivial solution u to
(4.3) from the above family. Then for µ ∈ `∞ = `∗1 with the components
µk = −1/2, k ∈ N, we have

g(u, µ, x) = ‖x‖−1

(

ln |C|+
∞
∑

k=2

xkx
−1/k
1 −

∞
∑

k=1

xk/2

)

=

= ‖x‖−1 ln |C|+ ‖x‖−1

(

−x1/2 +

∞
∑

k=2

xk(x
−1/k
1 − 1/2)

)

for all x ∈ U .
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Since x1 > 0, we have |x−1/k
1 − 1/2| ≤ 1/2 for each k ∈ N and therefore

∣

∣

∣

∣

∣

∞
∑

k=2

xk(x
−1/k
1 − 1/2)

∣

∣

∣

∣

∣

≤ max
k
|x−1/k

1 − 1/2|
∞
∑

k=2

|xk| ≤
‖x‖ − x1

2
.

Hence for all x ∈ K ∩ U we obtain

g(u, µ, x) ≤ ‖x‖−1 ln |C|+ 1

2
− x1

‖x‖ ≤ ‖x‖−1 ln |C|. (4.4)

Since ‖x‖−1 ln |C| → 0 as ‖x‖ → +∞, (4.4) yields G(u, µ) ≤ 0 and finally
we get the inclusion µ ∈ E(u).

On the other hand, taking the sequence p : N → K with p(n) =
(nn, 0, . . . , 0,−nn, 0, 0, . . .), i.e. p1(n) = −pn(n) = nn and pj(n) = 0 for
all the remaining j ∈ N, we obtain

lim
n→∞

g(u, µ, p(n)) = 2−1 lim
n→∞

n−n(−nn(n−1 − 1/2)− nn/2) = 0.

Hence G(u, µ) = 0 and p is a realizing sequence for µ.
Analogously, taking the sequence q : N → K with q(n) = (n, 0, . . . , 0, n,

0, 0, . . .), i.e., q1(n) = qn(n) = n and qj(n) = 0 for all the remaining j ∈ N,
we obtain

lim
n→∞

g(u, µ, q(n)) = 2−1 lim
n→∞

n−1(n(n−1/n − 1/2)− n/2) = 0,

i.e., the q is realizing for µ too.
Since the elements ‖p(n)‖−1p(n) and ‖q(n)‖−1q(n) are symmetric with

respect to b0 = (1/2, 0, 0, . . .) ∈ (K+)+i, the cluster sets of bp and bq are
symmetric too and, therefore, their common convex hull contains b0.

Finally, let us take the sequence r : N → K such that r(2k) = p(k)
and r(2k − 1) = q(k) for all k ∈ N. It can be easily proved that B(r) ⊃
conv(B(p)∪B(q)) 3 b0. Thus, B(r)∩ (K+)+i 6= ∅ and we immediately get
µ ∈ P[u] by definition of proper characteristic set.

Finite-dimensional proper characteristic sets. Up to the end of
this section, we will assume E to be finite-dimensional. In the finite-
dimensional space the weak-star topology σ(E∗∗, E∗) coincides with the
original (norm) topology of E and for any solid pointed convex cone K,
the equality (K+)+i = IntK holds. These facts make the definition of
proper characteristic set substantially clearer. Moreover, in this specific
case the relation between characteristic exponents and characteristic func-
tionals demonstrated in Section 3 enables us to obtain much more advanced
results.

Lemma 4.1 ([56]). Let dimE < +∞. If µ ∈ P[u] for some nontrivial

solution u of (1.2), then conv{x ∈ K : µx + ψ[u](x) = 0} ∩ IntK 6= ∅ and

µx+ ψ[u](x) ≤ 0 for all x ∈ K.

Proof. By definition of P[u], we assert that G(u, µ) = 0. Take now any
realizing sequence xi, i ∈ N, of µ. If z is some limiting point of the sequence
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‖xi‖−1xi, then there exists a subsequence xi(k), k ∈ N, of xi such that

‖xi(k)‖−1xi(k) → z as k → +∞, and we can write

0 = G(u, µ) = lim
k→∞

t−1
k (µxi(k) + ln ‖u(xi(k))‖) =

= µz + lim
k→∞

t−1
k ln ‖u(xi(k))‖ = µz + lim

k→∞
t−1
k ln ‖u(tkz)‖+

+ lim
k→∞

t−1
k (ln ‖u(xi(k))‖ − ln ‖u(tkz)‖) ≤

≤ µz + ψ[u](z) + lim
k→∞

t−1
k M‖xi(k)− tkz‖ = µz + ψ[u](z),

where tk = ‖xi(k)‖, M = sup
x∈U

‖A(x)‖.

Thus, any limiting point of ‖xi‖−1xi satisfies the condition µz+ψ[u](z) =
0 and by definition of P[u] we get conv{x ∈ K : µx+ψ[u](x) = 0}∩ IntK 6=
∅.

On the other hand, we have

0 = G(u, µ) ≥ lim
t→+∞

(t‖x‖)−1(tµx+ ln ‖u(tx)‖) = µx+ ψ[u](x).

for any x ∈ K and this completes the proof. �

From Lemma 4.1 and the Separation Theorem [68, Theorem 3.4], we
obtain the following statement.

Theorem 4.2. If dimE < +∞, then

P[u] = Pos(E(u)| IntK)

for any nontrivial solution u to (1.2).

Corollary 4.2 ([56]). The inclusion

M[u] ⊂ clP[u]

is valid for any nontrivial solution u to (1.2).

Proof. Since E is finite-dimensional, the set E(y) 6= ∅ is closed and convex
and the cone K+ is closed, convex, and pointed, we can apply Theorem 5.5
from [25]. By this theorem we get

Max(E(u)|K+) ⊂ clPos(E(u)|(K+)+i).

Now the required inclusion is an immediate consequence of Theorems 3.1
and 4.2. �

From Lemma 4.1 and Theorem 4.2, we can easily obtain the following
description of the sets E(u) and P[u] using some standard techniques of
Convex Analysis.

Theorem 4.3 ([53]). For any nontrivial solution u to (1.2), the equalities

E(u) = −∂>ψ[u](0),

P[u] = Pos(E(u)| IntK) = −
⋃

x∈IntK

∂>ψ[u](x)
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hold, where ∂>ψ[u] := −∂(conv(−ψ[u])) is the Penot superdifferential.

Corollary 4.3 ([53]). For any nontrivial solution u of (1.2), the equalities

E(u) = ∂ϕ[u](0), P[u] =
⋃

x∈IntK

∂ϕ[u](x)

hold, where ϕ[u] := conv(−ψ[u]).

The above statements are very useful in studying boundedness and closed-
ness of characteristic sets of TDEs.

In [19], E. I. Grudo proved that the characteristic set of each solution
to (1.2) is closed when E = R

2, K = R
2
+. However, it was demonstrated

in [2] that the set Max(Q|K) is closed for any convex Q ⊂ R
2 and any

pointed convex ordering cone K ⊂ R
2, but this is not true for R

3. Since
M[u] = Max(E(u)|K+), we can assume that the analogous problems arise
for characteristic sets. The following statement shows that this assumption
is true.

Proposition 4.1 ([53]). If E = R
3 and K = R

3
+ := {x = (x1, x2, x3) ∈

R
3}, then there exists an equation (1.2) with bounded C∞(E) coefficients

such that M[u] is non-closed for each nontrivial solution u to this equation.

Proof. Let ‖x‖=(x2
1+x

2
2+x

2
3)

1/2 be the Euclidean norm of x = (x1, x2, x3) ∈
E and ωh : R

+ → R be some averaging kernel with the averaging radius
h > 0 [59, p. 29], i.e., a continuous function such that (i)

∫

E

ωh(‖x‖)dx = 1;

(ii) ωh(r) > 0 for r < h and ωh(r) = 0 for r ≥ h; (iii) ωh(‖x‖) is C∞(E). It
can be easily proved that for each t > 0 the function ωh/t(r) := t3ωh(tr) is
also an averaging kernel with the averaging radius h/t.

Define f : E → R by f(x) = max{x1 + x2 + x3,
√

2 ‖x‖} and put

ϕ(x) = f̄h(x) :=

∫

E

ωh(‖x− z‖)f(z) dz.

It follows from [59, p. 31] that ϕ is C∞(E) and the partial derivatives
∂ϕ/∂xi, i = 1, 2, 3, are bounded on E.

Now let us show that the equation

dy = −
3
∑

i=1

∂ϕ

∂xi
y dxi, x ∈ E, y ∈ R, (4.5)

possesses all the required properties.
An arbitrary solution to (4.5) can be written in the form u(x) =

C exp(−ϕ(x)). Evaluating the modified characteristic exponent ψ[u], of
u we get

ψ[u](x) = lim
t→+∞

t−1 ln |u(tx)| = − lim
t→+∞

t−1ϕ(tx)
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and

ϕ(tx) =

∫

E

ωh(‖tx− z‖)f(z) dz =

∫

E

t3ωh(t‖x− y‖)f(ty) dy =

= t

∫

E

ωh/t(‖x− y‖)f(y) dy = tf̄h/t(x).

Since lim
t→+∞

f̄h/t(x) = f(x) by Theorem 2.2.1 from [59, p. 29], we obtain

ψ[u](x) = −f(x) for all x ∈ E.

Let S := {x ∈ E : ‖x‖ =
√

2, x1 + x2 + x3 = 2}. It can be easily seen
that S is a circumference contained in K and tangent to the boundary of
K at the points P1 = (0, 1, 1), P2 = (1, 0, 1), and P3 = (1, 1, 0) in such a
manner that S \ {P1, P2, P3} ⊂ IntK. Note that f is convex and ∂f(x) =
conv{x, (1, 1, 1)} for all x ∈ S.

From Theorem 4.3 and Corollary 4.1, we get

∂f(x) = ∂(−ψ[u](x)) ⊂ M[u]

for each x ∈ S ∩ IntK = S \ {P1, P2, P3}. Suppose now that x tends to
some of Pi, i = 1, 2, 3, along the set S ∩ IntK. Then for each i = 1, 2, 3, we
obtain ∆i := conv{Pi, (1, 1, 1)} ⊂ cl

⋃

x∈IntK

∂f(x) ⊂ cl M[u].

Since all elements of ∆i are comparable with (1, 1, 1) with respect to
K+ = K and (1, 1, 1) = Max(∆i|K+), we see that (∆i \{(1, 1, 1)})∩M[u] =
∅. On the other hand, we have (1, 1, 1) ∈ ∂f(1, 1, 1) ⊂ M[u] since (1, 1, 1) ∈
IntK.

Thus, for any nontrivial solution of (4.5) the set M[u] has three cuts
along the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) with common vertex at (1, 1, 1)
and, therefore, is not closed. �

The following statement gives a sufficient condition for a characteristic
set to be closed.

Corollary 4.4 ([53]). Suppose that dimE < +∞ and there exists a convex

polyhedral set M such that M −K+ ⊃ E(u) ⊃M . Then M[u] = cl P[u] for

any nontrivial solution u to (1.2).

Proof. Since M is polyhedral, we have

Max(E(u)|K+) = cl Pos(E(u)|(K+)+i)

by Theorem 5.4 in [25]. Now the required assertion is an immediate conse-
quence of Theorem 4.2. �

Corollary 4.5 ([53]). Let dimE < +∞, and dimF < +∞. If the

cone K is polyhedral, then the characteristic set of any nontrivial solution

to (1.2) is closed.

If n = 2 and K = R
2
+, then it follows from [20] that M[u] is bounded

for any nontrivial solution u to (1.2). On the other hand, if n > 2, then
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the set M[u] may be unbounded. Indeed, it was shown in [15, c. 156] that a
certain equation (1.2) with constant coefficients has a solution u such that
M[u] is unbounded when n = 3, m = 2, and K = {(x1, x2, x3) ∈ E : x3 ≥
(x2

1 + x2
2)

1/2}.
In order to establish sufficient conditions for the boundedness of M[u] we

will use the following statement.

Theorem 4.4 ([56]). Let dimE < +∞. The characteristic set of a

nontrivial solution to (1.2) is bounded iff the proper characteristic set of

this solution is bounded.

Proof. By Corollary 4.1, we have P[u] ⊂ M[u]. Hence, the boundedness
of M[u] implies the boundedness of P[u]. The opposite implication follows
from the inclusion M[u] ⊂ cl P(u) since the closure of a bounded set is
bounded in a finite-dimensional space. �

Theorem 4.4 enables us to give a criterion of boundedness for character-
istic sets in terms of characteristic exponents.

Theorem 4.5 ([56]). Let dimE < +∞. The characteristic set M[u] of a

nontrivial solution u to (1.2) is bounded iff the function ϕ[u] := conv(−ψ[u])
is Lipschitzian on IntK.

Proof. Suppose that ϕ[u] is Lipschitzian on IntK with the Lipschitz con-
stant L. Take any x ∈ IntK and h ∈ E such that x+ h ∈ IntK. Then for
any subgradient µ ∈ ∂ϕ[u](x) ⊂ E∗ we have µh ≤ ϕ[u](x + h)− ϕ[u](x) ≤
L‖h‖ and µ(−h) ≤ ϕ[u](x− h)− ϕ[u](x) ≤ L‖h‖ by definition [67, p. 230].
Hence we get |µh| ≤ L‖h‖. Since K − x is a neighborhood of zero in E,
we have ‖µ‖ ≤ L. By corollary 4.3, it follows that P[u] is bounded. Thus,
M[u] is bounded too by Theorem 4.4.

Conversely, suppose that M[u] ⊂ B := {x ∈ E : ‖x‖ ≤ L}. Then by
Theorem 4.3 and Corollary 4.1 we have ∂ϕ[u](x) ⊂ P[u] ⊂ M[u] ⊂ B for all
x ∈ IntK. Take any x, y ∈ IntK and µ ∈ ∂ϕ[u](y), ν ∈ ∂ϕ[u](x). Then we
can write ϕ[u](x)−ϕ[u](y) ≥ µ(x−y) ≥ −L‖x−y‖ and ϕ[u](y)−ϕ[u](x) ≥
ν(y − x) ≥ −L‖x− y‖. It follows now that |ϕ[u](x) − ϕ[u](y)| ≤ L‖x− y‖,
and this completes the proof. �

In general case, to verify the conditions of Theorem 4.5 is a difficult
problem since there is no easy way to evaluate the function ϕ[u]. However, in
some specific cases we are able to obtain effective conditions for boundedness
and unboundedness of M[u] using some information on geometric properties
of K.

The cone K is said to be strictly convex if K \ r is convex for any ray r
contained in the boundary of K, i.e., each such r is extremal.

Theorem 4.6 ([56]). Let dimE < +∞. If K is strictly convex, then

M[u] is bounded for some nontrivial solution u of (1.2) iff there exists a
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number L > 0 such that for any x 6= 0 from the boundary of K there exists

a functional µx ∈ E∗ such that ‖µx‖ ≤ L and

ψ[u](z) ≤ ψ[u](x) + µx(x− z). (4.6)

for all z ∈ K.

Remark 4.1. If n = 2, then Theorem 4.6 is equivalent to Theorem 1.7 in
[19].

Example 4.2. Consider the equation

dy = y dx1, y ∈ R
2, x = (x1, x2, x3) ∈ R

3.

with constant coefficients. The solution y of the Cauchy problem for this
equation with initial value y(0) = (1, 1) has a modified characteristic expo-

nent ψ[y](x) = |x1|. If K = {(x1, x2, x3) ∈ E : x3 ≥ (x2
1 + x2

2)
1/2}, then

M[y] is unbounded since the estimation (4.6) is not valid for the function
ψ[y](x) = |x1| at the point x0 = (0, 1, 1), whatever µx be taken.

Indeed, suppose that there exists some µ ∈ E∗ such that (4.6) holds. Let
z± := (±(2t− t2)1/2, −t, 1). Then for 0 < t < 1 we have x0 + z± ∈ IntK
and µz± ≥ ψ[y](x0 + z±) − ψ[y](x0) = (2t − t2)1/2. Hence ‖µ‖ ≥ ‖z+ +
z−‖−1|µ(z+) + µ(z−)| = (2/t− 1)−1/2 → +∞ as t→ 0.

Note that in this case the unboundedness of M[y] can be proved in an-
other way presented in [15, p. 156].

Theorem 4.7 ([56]). Let dimE < +∞. If K is polyhedral, then the

characteristic set of any nontrivial solution to (1.2) is bounded.

Remark 4.2. Note that any closed convex pointed cone can be approx-
imated by some convex polyhedral cone with arbitrarily small deviation.
Thus we see that unboundedness of the characteristic set is merely a local
effect related with a bad behavior of the solution near the boundary of K.

Finally we give the following statement describing a very good property
of regular equations.

Corollary 4.6 ([56]). Let dimE < +∞. If K is polyhedral and the equa-

tion (1.2) is regular, then the characteristic set of any nontrivial solution to

(1.2) is compact.

Proof. The characteristic set is bounded by Theorem 4.7 and closed by
Corollary 4.5. �

5. Conclusions

The results presented in the paper show that the vector optimization
theory provides adequate tools for the asymptotic theory of total differential
equations. It turns out that applying these tools, we can solve several
problems being too difficult for traditional approach. In addition, we are
enabled to simplify the proofs substantially and make the presentation of
the matter more clear and concise.
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