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Abstract. A linear optimal control problem is considered. Optimal feed-
back controls are realized by digital computers (microprocessors). Because
of deficiency of microprocessor speed available, a number of microprocessors
is used for forming control functions. This fact results in delays between the
moments when information on current states of the system become avail-
able to Optimal Controller and the moments when controls are fed to the
control system. An algorithm for Optimal Controller under such conditions
is presented. Results of operating of Optimal Controller implemented on a
number of slow microprocessors and on one fast microprocessor with delays
in closed channel are compared.
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1. Introduction

There are different sources of delays in control systems. They can in-
fluence substantially the behaviour of control objects. In the mathematical
theory of optimal control [1], G. L. Kharatishvili [2] was the first who solved
optimal control problems with delays. These results were developed by his
disciples and other authors [3].

The aim of this paper is to describe methods of optimal control in real-
time for nonstationary linear systems when delays result from the slow pro-
cessing of current information or from lags in the feedback loop. A similar
problem without delays was studied in [4].

The paper is organized in the following way. Section 2 contains the
statement of the problem. The behaviour of a nonstationary linear system
with moving terminal state is optimized by bounded piecewise-continuous
controls over linear terminal performance index . Notions of open-loop and
closed-loop solutions are introduced. Difficulties are stressed that arise when
classical approaches are used to solve the optimal synthesis problem. The
presentation of a new approach to the optimal synthesis problem starts in
Section 3. Here optimality and suboptimality criteria for the problem under
consideration in the class of discrete controls are formulated. The notion
of support is the main tool of the method used and support optimality
criteria are also presented in Section 3. The method (Section 4) is a dynamic
realization of the authors’ dual adaptive method [5] of linear programming
(LP). The efficiency of the dual method while calculating optimal open-loop
controls is illustrated by the example of a model of the car. Section 5 deals
with an algorithm for operating of Optimal Controller able to calculate the
current value of the realization of the optimal feedback in real time. The
base of the algorithm is again the dual method. Results of optimal on-line
control are presented by means of the previous example. Section 6 concludes
the paper describing the method of optimal control in real-time taking into
account the delays. Influence of delays is studied on a numerical example.

2. Problem Statement

Let T = [t∗, t
∗], −∞ < t∗ < t∗ <∞, be a control interval.

In the class of piecewise-continuous functions u(·) = (u(t), t ∈ T ) consider
the linear optimal control problem

ẋ = A(t)x+ b(t)u, x(t∗) = x0, (1)

c′x(t∗) → max, (2)

Hx(t∗) = g, |u(t)| ≤ L, t ∈ T. (3)

Here, x = x(t) ∈ Rn is the state vector of (2) at the moment t, u = u(t) ∈ R
is the control variable; A(t), b(t), t ∈ T , are piecewise-continuous n × n-
matrix and n-vector functions, H ∈ Rm×n, rankH = m < n.

As is known, there are two types of solutions in the optimal control
theory: 1) optimal open-loop controls and 2) feedback controls.
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A piecewise-continuous function u(·) is called an admissible open-loop
control if it satisfies the geometrical constraint |u(t)| ≤ L, t ∈ T , and the
corresponding trajectory x(·) of (2) at the moment t∗ reaches the terminal
set X∗ = {x ∈ Rn : Hx = g}.

An admissible open-loop control u0(·) is said to be an optimal open-loop
control of the problem (1) – (3) if the optimal trajectory x0(·) satisfies the
equality c′x0(t∗) = max c′x(t∗).

For any ε > 0, an admissible open-loop control uε(·) is called a sub-
optimal open-loop control if it generates a trajectory xε(·) satisfying the
inequality c′x0(t∗)− c′xε(t∗) ≤ ε.

To define optimal feedback control, imbed the problem (1)-(3) into the
family of problems

c′x(t∗) → max, ẋ = A(t)x + b(t)u, x(τ) = ξ,

x(t∗) ∈ X∗, |u(t)| ≤ L, t ∈ T (τ) = [τ, t∗], (4)

depending on the scalar τ ∈ T and n-vector ξ. Let u0(t|τ, ξ), t ∈ T (τ),
be an optimal open-loop control of the problem (2) for the values of the
parameters (τ, ξ), Xτ be the set of vectors ξ ∈ Rn for which the problem
(2) has a solution at fixed τ ∈ T .

The function

u0(τ, ξ) = u0(τ |τ, ξ), ξ ∈ Xτ , τ ∈ T, (5)

is said to be an optimal feedback control of the problem (1)–(3).
The problem under consideration is the simplest one in the mathematical

theory of optimal processes. Without any of its elements it becomes trivial.
It is substantially simpler than the time-optimal problem

t∗ → min, ; ẋ = A(t)x + b(t)u, x(t∗) = x0, x(t∗) = 0, |u(t)| ≤ L, t ∈ T,

for which the Maximum Principle for the first time was proved by R.V.Gam-
krelidze [6]. The result of R.V.Gamkrelidze together with some preliminary
investigations allowed L.S.Pontryagin to state as a hypothesis his famous
Maximum Principle for nonlinear optimal control problems. While quali-
tative theory for the problem (1)–(3) is developed in great detail, effective
numerical methods are still in need. Numerous methods for calculating op-
timal open-loop controls are suggested but the optimal synthesis problem
(construction of optimal feedback controls) has been open as yet.

The optimal synthesis problem appeared on the frontier of classical and
modern theories of control. It is formulated in the terms of the classical the-
ory as the problem of consrtucting optimal feedbacks realizing the classical
principle of closed-loop control. Synthesis of optimal feedbacks, feedbacks
with marginal properties appeared to be on the boundary of possibilities
of the classical theory. In the frame of the theory it is realizable only for
isolated examples. In this connection the classical theory hands over the op-
timal synthesis problem to the modern theory which possesses the modern
theory of extremal problems and methods for their solution.
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Principles of on-line control proved to be very important in the optimal
synthesis problem. The new principle is not a surplus but the only tool of
solving the classical problem.

The aim of both the classical principle of closed-loop controls and the
modern one is construction of feedback controls. The difference between
the two principles is that the classical approach implies the construction of
feedbacks before the control process starts (off-line computations), while in
the on-line control the values of the feedback are calculated in the course of
the process (on-line control).

Obviously, realizability of the modern approach depends crucially on
modern computers. However, it cannot solve the problems just by itself
thanks to high velocity of modern digital devices.

During first years of development of the optimal control theory, the main
hopes of synthesis constructions were pinned on dynamical programming
[7]. It was thought that mathematical baselessness of the Bellman equation
was the main obstacle. Nowadays, when the Bellman equation is justified in
the frame of nonsmooth analysis, there still remains a basic difficulty — the
curse of dimensionality — for the optimal synthesis problem to be solved
effectively.

Our concept of positional solution began to be formed in the late 80s
[8, 9]. Before that (starting from 70s) the authors were concentrated on
effective methods for open-loop solution. Being aware that complicated ex-
tremal problems cannot be solved without skills to solve more simple ones
and having analyzed the simplest nonclassical extremal problems, which
were without doubt linear programming problems, the authors proposed
new methods of linear programming and developed them for optimal con-
trol problems [10]. Besides, on the whole, only open-loop solutions were
considered at that time.

As a rule, open-loop solutions are seldom used for real control. They
allow to estimate the potentials of control systems but are not effective for
real-time control since: 1) the behaviour of real systems differ from that of
mathematical models used in construction of optimal open-loop controls;
2) real systems operate under disturbances which cannot be taken into ac-
count while modelling.

To our opinion, while studying optimal control problems one should keep
in mind the words of Dantzig’s fundamental work [11]: “The final test of
a theory is its capacity to solve the problems which originated it”. The
optimal synthesis problem was the first one which stimulated the creation
of the optimal control theory [12]. Therefore a value of the optimal control
theory can be evaluated by effective solution to this problem.

The significance of methods for synthesis of optimal systems is deter-
mined not only by own needs of the optimal control theory. With the help
of these methods classical problems of the control theory (stabilization,
regulation, tracking problems) which have no extremal form can be effec-
tively solved [13]. Methods of optimal control can be the core of the model
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predictive control theory which is being intensively developed and used in
applications [14].

Analysis of the known by the late 80s approaches to the synthesis of opti-
mal systems and results obtained persuaded the authors that the problem in
the classical statement is not solvable without computer tools. The classical
statement requires the feedback to be constructed before the real control
process starts. This is the essence of the classical closed-loop principle. For
simple problems, where marginal abilities of feedbacks are not used, effec-
tive feedbacks can be constructed. But for optimal control problems the
feedbacks as a rule are very complicated and success is possible only for
particular examples∗.

The solution to the problem was found by the authors after changing the
classical feedback principle by the modern one (the control in the real-time
mode). According to it, the optimal feedback is not constructed beforehand
but the current values needed for the control are calculated in the course
of the process. Implementation of that principle is supported by two facts:
1) the fast algorithms for calculating optimal open-loop controls created on
the basis of the adaptive method of linear programming [5], 2) the use of
modern computers.

Below we present principal elements of the new approach to the optimal
synthesis problem.

3. Maximum and ε-Maximum Principles

A natural way to solve the problem (1)–(3) is based on the use of digital
computers. Keeping in mind real applications, we narrow the class of ad-
missible controls and consider the problem (1)–(3) in the class of discrete
controls.

A function u(·) is said to be a discrete control (with the quantization
period h = (t∗ − t∗/N)), if

u(t) = u(tk), t ∈ [tk, tk + h[, tk = t∗ + kh, k = 0, N − 1,

where N is fixed.
The use of discrete controls dismiss some analytical problems but does

not simplify the problem (1) – (3) for the constructive approach.
In the class of discrete controls the problem (1)–(3) is equivalent to LP

problem
∑

t∈Th

ch(t)u(t) → max,
∑

t∈Th

dh(t)u(t) = g̃,

|u(t)| ≤ L, t ∈ Th = {t∗, t∗ + h, . . . t∗ − h}.

(6)

∗The Kalman–Letov problem is an exception confirming the general rule. But it
doesn’t contain important for applications geometric constraints on controls, being more
a problem of calculus of variations than that of optimal control.
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Here ch(t) =
t+h
∫

t

c(s)ds, c(t) = c′F (t∗)F−1(t), dh(t) =
t+h
∫

t

d(s)ds, d(t) =

HF (t∗)F−1(t); Ḟ = A(t)F , F (t∗) = E, E is the identity matrix; g̃ =
g −HF (t∗)x0.

For small quantization periods h the problem (6) has not many (m) ba-
sic constraints but it has a large number (N) of variables, and neighboring
columns dh(t), dh(t + h) are almost collinear. The problem (6) can be
solved by standard methods of LP, but in case of this approach dynami-
cal specificity of the problem (6) can be missed. The situation resembles
the one with transportation problems. Any transportation problem can
be reduced to a general linear programming problem and solved by the
simplex-method. But a special simplex-method being “transportation’s re-
alization” of it, which takes into account all features of the specific prob-
lem, proved to be more effective. Following this idea, the authors (together
with N.V.Balashevich) justified a dynamical realization [4] of the adaptive
method [5] for optimal open-loop solutions.

The main tool of the adaptive method is the notion of support. Its analog
for dynamic problem (6) is the set Tsup = {ti ∈ Th, i = 1,m} consisting of
m moments such that the matrix

Dsup = (dh(t), t ∈ Tsup) (7)

is nonsingular.
To construct the support matrix (7), it is sufficient to find m solutions

ψi(t), t ∈ T , i = 1,m, to the adjoint system

ψ̇ = −A′(t)ψ (8)

with initial conditions ψ(t∗) = hi, i = 1,m (hi is the ith row of the ma-
trix H), and calculate the functions d(t) = (ψ′i(t)b(t), i = 1,m), dh(t) =
t+h
∫

t

d(s)ds.

The support characterizes controllability of the output y = Hx(t∗) by
means of the values of the input u(t) at the support moments t ∈ Tsup.

Every support is accompanied by:
1) an m-vector of Lagrange multipliers

ν′ = c′supD
−1
sup, csup =

(

t+h
∫

t

c(s)ds, t ∈ Tsup

)

, c(t) = ψ′c(t)b(t);

2) a co-control

δh(t) =

t+h
∫

t

δ(s)ds, t ∈ Th; δ(t) = ψ′(t)b(t), t ∈ T,

where the co-trajectory ψ(t), t ∈ T , is a solution of the equation (8) with
the initial condition ψ(t∗) = c−H ′ν.
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3) a pseudocontrol ω(t), t ∈ T . Nonsupport values ω(t), t ∈ Tn =
Th \ Tsup are defined as

ω(t) = L sign δh(t), at δh(t) 6= 0; ω(t) ∈ [−L,L], at δh(t) = 0; t ∈ Tn .

Support values ωsup = (ω(t), t ∈ Tsup), of the pseudocontrol are given by
the formula

ωsup = D−1
sup(g −Hæ0(t

∗)),

where æ0(t
∗) is the state at the moment t∗ of the system (2) with the control

ω0(t) = ω(t), t ∈ Tn , ω0(t) = 0, t ∈ Tsup.
The support is the main tool for identifying the optimal controls.

Theorem 1 (Maximum Principle). For an admissible open-loop control

u(t), t ∈ T , to be optimal it is necessary and sufficient that a support Tsup

exists with the accompanying co-control δh(t), t ∈ T, satisfying the maximum

condition

δh(t)u(t) = max
|u|≤L

δh(t)u, t ∈ Tn.

A support Tsup which identifies an optimal control is said to be the
optimal support.

Theorem 2 (Support Optimality Criteria). A support Tsup is optimal if

the accompanying pseudocontrol ω(t), t ∈ Th, satisfies the inequality

|ω(t)| ≤ L, t ∈ Tsup.

In this case the pseudocontrol ω(t), t ∈ T , is an optimal control of the

problem (1)–(3): u0(t) = ω(t), t ∈ T .

Suboptimality criteria can also be proved in terms of the support:

Theorem 3 (ε-maximum Principle). For any ε ≥ 0, for ε-optimality of

an admissible control u(t), t ∈ T , it is necessary and sufficient the existence

of such a support Tsup for which the following conditions hold:

1) ε-maximum condition

δh(t)u(t) = max
|u|≤L

δh(t)u− ε(t), t ∈ Tn;

2) ε-accuracy condition
∑

t∈Tn

ε(t) ≤ ε.

4. A Dual Method for Program (Open-Loop) Solutions

On the basis of the results from Section 3, primal and dual methods for
constructing optimal open-loop controls are elaborated [5]. Below the main
elements of the dual method are presented. The method in question allows
to construct program solution to the problem (1)–(3) very quickly. The
significance of the method is revealed while solving the optimal synthesis
problem (see Sections 5 and 6).



OPTIMAL ON-LINE CONTROL WITH DELAYS 43

The dual method for the program solution is a dynamic realization of
the dual adaptive method of LP [10]. It consists in consecutive change of
supports

T 1
sup → T 2

sup → . . . T 0
sup,

which results in construction of support T 0
sup . The initial support T 1

sup can
be arbitrary.

The method is finite if the supports used in iterations are all regular
(with δh(t) 6= 0, t ∈ Tn). There exists [13] a modification of the dual
method which is finite for any problem (1)–(3).

The iteration of the dual method represents a movement by specified rules
of one support and all nonsupport zeroes of the co-control until complete
relaxation of the performance index of the dual to (6) problem. The details
can be found in [4].

The effectiveness of the dual method is estimated as in [16]. According
to the mentioned methodology of the estimate, the main time consuming
operations are integrations of primal (2) and dual (8) systems. The method
has a complexity equal to the unit if while constructing an optimal open-loop
control the integrations were made on the intervals of summarized length
equal to t∗ − t∗. It is impossible to find explicit formulae to estimate the
complexity but computer experiments can give a certain idea about it.

Fig. 1

The effectiveness of the dual method in consideration is illustrated on
the following example which is a one-quarter model of a car (see Figure 1).

The mathematical model of the problem is as follows:

J(u) =

25
∫

0

u(t)dt→ min, ẋ1 = x3, ẋ2 = x4, x1(0) = x2(0) = 0,

ẋ3 = −x1 + x2 + u, ẋ4 = 0.1x1 − 1.02x2, x3(0) = 2, x4(0) = 1, (9)

x1(25) = x2(25) = x3(25) = x4(25) = 0, 0 ≤ u(t) ≤ 1, t ∈ [0, 25[,
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where x1 = x1(t) is the deviation of the first mass from its equilibrium,
x2 = x2(t) is the deviation of the second mass, x3 = dx1/dt, x4 = dx2/dt.

If we interpret u(t) as fuel consumption per second at the moment t, then
the problem (4) is to damp oscillations of both masses with the minimal
fuel consumption. The problem (4) is equivalent to (1) – (3) with x5(t) =
t
∫

0

u(s)ds.

As an initial support, the set Tsup = {5, 10, 15, 20} of moments uniformly
distributed on T was taken. The problem (4) was solved for different values
of h. It was discovered that the complexity of the dual method almost
doesn’t depend on h (at h = 0.0025 the complexity was equal to 0.2018
with J(u0) = 6.330941; at h = 0.001 the complexity was equal to 0.23564
with J(u0) = 6.330938). In all cases the complexity of iterations did not
exceed 0.25. That means that time spent on calculation of the optimal
open-loop controls is not greater that 25 percent of time needed to perform
one integration of the adjoint system (8) on the interval [0, 25].

Fig. 2

Figure 2 presents the projections on the planes Ox1x2 and Ox3x4 of
optimal open-loop trajectories of the system (2).

5. Optimal on-Line Control

In the previous section discrete controls were introduced. Let us modify
the definition of the optimal feedback control according to the new class of
admissible open-loop controls. Assume that during the control process the
current states of the control system are measured at the moments t ∈ Th

only.
Imbed the problem (1)–(3) into a new family of problems

c′x(t∗) → max, ẋ = A(t)x + b(t)u, x(τ) = ξ,

x(t∗) ∈ X∗, |u(t)| ≤ L, t ∈ T (τ) = [τ, t∗],

depending on a discrete moment τ ∈ Th and an n-vector ξ.
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A function

u0(τ, ξ) = u0(τ |τ, ξ), ξ ∈ Xτ , τ ∈ Th, (10)

is said to be a discrete optimal feedback control of the problem (1)–(3).
While using discrete optimal feedbacks, the dynamic programming does

not come across any problems of justification. However the “curse of di-
mensionality” is present as usual if the order of the control system is more
than 2.

An analysis of optimal feedback controls led the authors to a new state-
ment of the synthesis problem. First of all, the goal of feedbacks and the
way they are used in optimal control processes were clarified: the system
(2) represents a mathematical model of a real dynamic system. The be-
haviour of this real system differs from that of the model (2). Let a physical
prototype of that system (2) behave according to the equation

ẋ = A(t)x + b(t)u+ w, x(t∗) = x0, (11)

where w is a totality of elements corresponding to mathematical modelling
inaccuracies and unknown disturbances.

Optimal feedback (10) is determined from (2) but is intended for control
of the real system (11). Close the system (11) by feedback (10)

ẋ = A(t)x + b(t)u0(t, x) + w, x(t∗) = x0. (12)

The equation (12) is a nonlinear differential equation with discontinuous
righthand side. Basing on discrete feedback (10), define the solution of
the equation (12) as a solution of the equation ẋ = A(t)x + b(t)u(t) + w,
x(t∗) = x0, where u(t) = u0(t|t∗+kh, x(t∗+kh)), t ∈ [t∗+kh, t∗+(k+1)h[,
k = 0, N − 1.

Suppose that the optimal feedback (10) has been constructed. Consider
the behaviour of the closed system (12) in a concrete control process where
an unknown disturbance w∗ = w∗(t), t ∈ T , is realized. This disturbance
generates a trajectory x∗(t), t ∈ T , of (12) satisfying the identity

ẋ∗(t) ≡ A(t)x∗(t) + b(t)u0(t, x∗(t)) + w∗(t), t ∈ T.

From the identity one can observe that in the process in question the optimal
feedback is not used as a whole (for all x ∈ Xτ , τ ∈ Th). Only the signals
u∗(t) = u0(t, x∗(t)), t ∈ Th, along the continuous trajectory x∗(t), t ∈ T ,
are used in the control process. Moreover, it is not necessary to know
beforehand the realization u∗(t), t ∈ T , of optimal the feedback (10). It is
sufficient to know x∗(τ) at each moment τ ∈ Th to calculate the current
value u∗(τ) in time s(τ) which does not exceed h.†

A device which is able to fulfill this work is called Optimal Controller.
Thus, the optimal synthesis problem is reduced to constructing algorithm

for Optimal Controller.

† The delay s(τ) influences the optimal trajectory at control switching point only
yielding minor variations.
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Optimal Controller operates as follows. Before the process starts, it
calculates the optimal open-loop control u0(t|t∗, x0), t ∈ T , for the initial
position (t∗, x0). Any algorithm for program solution can be used as there
are no restrictions on duration of calculations. Nevertheless, it is reasonable
to use the above described dual method to construct the optimal support
which plays a significant part in what follows. When the control process
starts, Optimal Controller feeds to the input of the control system a signal
u∗(t) = u0(t|t∗, x0), t ∈ [t∗, t∗ + h+ s(t∗ + h)[.

Suppose that Optimal Controller has been acting during the time [t∗, τ [.
At the moment τ −h+s(τ+h) it finished constructing the optimal support
T 0

sup(τ −h) and the current value u∗(τ −h) of the realization of the optimal
feedback. The signals u∗∗(t) = u∗(τ − 2h), t ∈ [τ − 2h, τ − h + s(τ − h)[;
u∗∗(t) = u∗(τ − h), t ∈ [τ − h + s(τ − h), τ − h[; and realized disturbance
w∗(t), t ∈ [τ − h, τ ], transfer the system (2) at the moment τ into the
state x∗(τ). Optimal Controller obtains the information about this state
at instant τ . The task of Optimal Controller on the interval [τ, τ + h[ is to
calculate the optimal open-loop control u0(t|τ, x∗(τ)), t ∈ T (τ).

Let x0(τ) be a state of the system (2) achieved from the state x∗(τ − h)
with the signal u∗∗(t), t ∈ [τ−h, τ [. The vector x0(τ) differs from the “true”

state x∗(τ) by the quantity
τ
∫

τ−h

F (τ)F−1(s)w∗(s)ds. Under bounded dis-

turbances w∗(t), t ∈ [τ − h, τ ], the smaller is the quantization period h
the smaller is the distance ‖x∗(τ − x0(τ))‖. In this situation the dual
method proves to be very efficient. This method takes the optimal sup-
port T 0

sup(τ − h) constructed during the previous interval [τ − h, τ [ as an

initial support Tsup(τ) to construct the optimal support T 0
sup(τ) and the

corresponding optimal open-loop control u0(t|τ, x∗(τ)), t ∈ T (τ). Starting
from the moment τ + s(τ), Optimal Controller feeds to the input of the
dynamical system the signal u∗(t) = u0(t|t∗, x0), t ≥ τ + s(τ).

Optimal Controller repeats the described operations at the moments
τ + h ∈ Th. The control signal u∗∗(t), t ∈ T , generated by Optimal Con-
troller may only differ from the ideal realization u∗(t), t ∈ T , of the optimal
feedback in the neighborhoods of the switching points. Therefore the tra-
jectories of the dynamical system (2) generated by these controls will be
almost nondistinct.

Let us use the previous example to show how Optimal Controller oper-
ates.

Let the realized disturbance (unknown to Optimal Controller) be

w∗(t) ≡ 0.3 sin 4t, t ∈ [0, 9.75[, w∗(t) ≡ 0, t ≥ 9.75.

It turned out that in the course of the control process the complexity of
calculating the current values u∗(τ), τ ∈ Th, did no exceed 0.02. This
means that for every τ ∈ Th, to calculate u∗(τ) it is used only 2 percent of
time needed to integrate the adjoint system on the whole interval T . The
realization of the optimal feedback u∗(t), t ∈ T , is given in Figure 3. Figure
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3 presents the projections on the planes 0x1x3, 0x2x4 of the trajectories of
the closed system.

Fig. 3

If a given microprocessor integrates the adjoint system in time α and
0.02α < h, then the microprocessor can be used for optimal on-line control.
It is clear that this inequality is fulfilled for high-order control systems.

Notes:
1. It was assumed above that the initial condition x0 was known. The

method can be developed in situation when x0 becomes available at the
instant t∗ only but before that moment it is known that it belongs to a
bounded set X0 ⊂ Rn [17].

2. The method described is developed for more complicated problems
such as optimal control problem with intermediate state constraints [18],
optimal control problem for piecewise-linear systems [19] and nonlinear sys-
tems [20], optimal control problem with parallelepiped restrictions on con-
trols [21] and optimal control problem under uncertainty [22, 23].

6. Optimal Control in Real Time with Delays

Consider the situation‡ which corresponds to the goal of the paper. First,
define slow and fast microprocessors. Let the system (2), set of its admissible
states X(τ), τ ∈ Th, optimal supports Tsup(τ, x) for all possible positions
(τ, x), x ∈ X(τ), τ ∈ Th, be given.

A microprocessor is said to belong to the class l if for a given level ρ of
disturbance the dual method knowing the support Tsup(τ, x) constructs in
time not exceeding lh the optimal support Tsup(τ, x̄) for all x̄ ∈ X(τ) such
that ‖x̄− x‖ ≤ ρ.

Microprocessors with l ≤ 1 are said to be fast microprocessors, with l > 1
are called slow ones.

‡The results were obtained together with N. N. Kavalionak.
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The microprocessors of class l can be used for optimal on-line control of
the dynamic system if it operates under disturbances satisfying the inequal-

ity
∥

∥

∥

τ+lh
∫

τ

F (τ + lh)F−1(s)w(s)ds
∥

∥

∥
≤ ρ for all τ ∈ Th.

The procedure of optimal control in real-time is described in Section
5. Now we suppose that for control of the dynamic system in question,
microprocessors of class l (l > 1) only are available.

Under such condition the optimal control process is divided into stages:
preliminary stage, first, second etc.

On the preliminary stage (before the control process), using the a priori
information Optimal Controller constructs the optimal support Tsup(t∗, x0)
and the optimal open-loop control u0(t|t∗, x0), t ∈ Th, for the initial position
(t∗, x0). The optimal support Tsup(t∗, x0) is corrected for the moments

τ = t∗ + ih, i = 1, l, if there exists a support moment t ∈ Tsup(t∗, x0) such
that t < τ . The correction is made according to the following rules. With
the initial support Tsup(t∗, x0) for every τ > t ∈ Tsup(t∗, x0), the following
problem is solved by the dual method

c′x(t∗) → max; ẋ = A(t)x + b(t)u, x(t∗) = x0; x(t∗) ∈ X∗;

l∗(t) ≤ u(t) ≤ l∗(t), t ∈ [t∗, τ [; |u(t)| ≤ L, t ∈ T (τ),
(13)

where l∗(t) = l∗(t) = u0(t|t∗, x0), t ∈ [t∗, τ [. Denote by Tsup(t∗, x0|τ) the

modified support for the moment τ = t∗ + ih, i = 1, l, (the optimal support
of problem (13)). On the preliminary stage, the time needed to perform
these operations is not essential.

The control process starts at the moment t∗. The signal u∗(t) =
u0(t|t∗, x0), t ∈ [t∗, t∗ + (l + 1)h[ is fed to the input of the control system.

The first stage of operating Optimal Controller is the control of the sys-
tem in question on the interval [t∗, t∗ + (l + 1)h[. At the moment t∗ + h
Optimal Controller obtains the first measurement, the state x∗(t∗ + h) of
the system generated by u∗(t), w∗(t), t ∈ [t∗, t∗ + h[. The measurement
x∗(t∗ + h) is transferred to the first microprocessor (M1) which using sup-
port Tsup(t∗, x0|t∗ + h) as the initial one solves by the dual method the
following problem:

c′x(t∗) → max; ẋ = A(t)x + b(t)u, x(τ) = x∗(τ); x(t∗) ∈ X∗l;

l∗(t) ≤ u(t) ≤ l∗(t), t ∈ [τ, τ + lh[; |u(t)| ≤ L, t ∈ T (τ + lh),
(14)

where l∗(t) = l∗(t) = u0(t|t∗, x0), t ∈ [τ, τ + lh[, τ = t∗ + h. As a result,
the microprocessor M1 constructs the optimal support Tsup(t∗ + h, x∗(t∗ +
h)|t∗ + (l+ 1)h) and the optimal open-loop control u0(t|t∗ + h, x∗(t∗ + h)),
t ∈ T (t∗ + h). The value of the obtained optimal open-loop control is fed
into the input of the control system on the interval [t∗(l+1)h, t∗+(l+2)h[.
A part u0(t|t∗ + h, x∗(t∗ + h)), t ∈ [t∗(l+ 1)h, t∗ + (2l+ 1)h[, together with
the support Tsup(t∗ + h, x∗(t∗ + h)|t∗ + (l + 1)h) will be used by M1 for
processing the measurement x∗(t∗ + (l + 1)h)) on the second stage.
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Following measurements x∗(t∗ + ih), i = 2, l, are processed by micropro-
cessors M2, . . . ,Ml according to the scheme described for M1. By complet-
ing this task, the first stage of functioning Optimal Controller is finished.

The second stage starts at the t∗ + (l + 1)h when Optimal Controller
obtains the measurement x∗(t∗+(l+1)h) transferred to the microprocessor
M1 becoming free by this moment. Using the initial support Tsup(t∗ +
h, x∗(t∗+h)|t∗+(l+1)h), M1 solves problem (14) by the dual method with
τ = t∗ + (l+ 1)h, l∗(t) = l∗(t) = u0(t|t∗ +h, x∗(t∗ +h)), t ∈ [τ, τ + lh[. As a
result, the optimal support Tsup(t∗+(l+1)h, x∗(t∗+(l+1)h)|t∗+(2l+1)h)
and the optimal open-loop control u0(t|t∗ + (l + 1)h, x∗(t∗ + (l + 1)h)),
t ∈ T (t∗+(l+1)h), are obtained. A part of the obtained optimal open-loop
control on the interval [t∗(2l + 1)h, t∗ + (2l + 2)h[ is fed into the input of
the control system. The optimal support Tsup(t∗ + (l + 1)h, x∗(t∗ + (l +
1)h)|t∗ + (2l+ 1)h) and the values u0(t|t∗ + (l+ 1)h, x∗(t∗ + (l+ 1)h)), t ∈
[t∗(2l+1)h, t∗+(3l+1)h[ will be used by M1 for processing the measurement
x∗(t∗ + (2l + 1)h)) on the third stage.

The described rules are applied to the rest of the microprocessors. All
consequent stages are similar to the second stage.

Now consider the situation where the delay in the course of the optimal
real-time control appears due to the other reason. Let every current mea-
sured state x∗(τ) be processed by a fast microprocessor but measurements
become available to it in lh units of time. Describe an algorithm for optimal
Controller in this case.

Before the control process starts, Optimal Controller constructs the op-
timal support Tsup(t∗, x0) and the optimal open-loop control u0(t|t∗, x0),
t ∈ T , for the initial position (t∗, x0).

On the interval [t∗, t∗ + (l + 1)h[ the object moves under the control
u∗(t) = u0(t|t∗, x0). At the moment t∗ + h Optimal Controller gets the
first measurement x∗(t∗ + h). Using this measurement and the support
Tsup(t∗, x0), Optimal Controller constructs the optimal support Tsup(t∗ +
h, x∗(t∗ + h)) and the optimal open-loop control u0(t|t∗ + h, x∗(t∗ + h)),
t ∈ T (t∗+h). The value u0(t∗+(l+1)h|t∗+h, x∗(t∗+h)) sent to the input
of the control system reaches it at the instant t∗ + (l + 1)h and is used on
the interval [t∗ + (l + 1)h, t∗ + (l + 2)h[.

Processing of the rest measurements x∗(t∗ + 2h), x∗(t∗ + 3h), . . . are
performed similarly.

The described method for control via Optimal Controllers can be called
the optimal control in real-time with delays. In the method the rate of
processing information on the behaviour of the control system and the rate
at which this information becomes available are the same. But there exists
a delay between moments when measurements are made and moments when
the signals constructed on these measurements are fed to the control system.
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The influence of delays during real-time control was performed by the
use of the following example:

J(u) =

12
∫

0

u(t)dt→ min
u
, ÿ = −y + u+ w, y(0) = 3, ẏ(0) = 0,

y(12) = ẏ(12) = 0, 0 ≤ u(t) ≤ 1, t ∈ T = [0, 12],

(15)

where w(t) = 0.3 sin t, t ∈ [0, 6[, w(t) = 0, t ∈ [6, 12], h = 0.12.
If u(t) is treated as consumption of fuel per second, then the problem

(15) is to minimize fuel expenditures for damping the oscillator (15) during
12 units of time.

Fig. 4

Positional solutions for the problem (15) were constructed for slow (l = 3)
and fast microprocessors.

Almost similar are the phase trajectories of the closed system for the fast
microprocessor without delay (Section 5), J(u) = 2.838, the fast micropro-
cessor with delay (l = 3), J(u) = 2.840, and slow microprocessors (l = 3),
J(u) = 2.842, with similar input data. Figure 4 contains a phase trajectory
of the closed system obtained with the help of slow microprocessors (l = 3)
(dash line), and with the help of only one microprocessor (solid line) which
obtains information on system state at instants lh, J(u) = 2.885.
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and the help at preparing the paper.
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