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Abstract. We discuss Fredholm pairs and restricted Grassmannians in
Banach spaces with a view towards developing geometric models of linear
conjugation problems with discontinuous coefficients. It is shown that a
considerable part of the classical theory of Fredholm pairs in Hilbert space
can be extended to a wide class of Banach spaces with contractible general
linear group. Some global geometric and topological properties of aris-
ing restricted Grassmannians are established and relations to the theory of
Fredholm structures are described.
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Introduction

We present several basic results about Fredholm pairs of subspaces intro-
duced by T.Kato [18] and discuss global geometric and topological proper-
ties of associated restricted Grassmannians which gained considerable inter-
est in last two decades (see, e.g., [4]–[7], [32], [16], [21], [8]). As was shown in
[4]–[7], many geometric aspects of classical linear conjugation problems with
sufficiently regular (differentiable, Hölder) coefficients can be formulated
and successfully studied in the framework of Fredholm pairs of subspaces
and restricted Grassmannians in real or complex Hilbert space. The ap-
proach used in [4], [7], [8], [23] was based on consideration of Fredholm
pairs in Hilbert spaces and in that setting it appeared possible to obtain a
number of general results on the solvability and homotopy classification of
linear conjugation problems with sufficiently regular coefficients (see, e.g.,
[23]).

However, when studying linear conjugation problems with discontinu-
ous coefficients and families of linear conjugation problems , the context
of Hilbert spaces appears insufficient and one is inevitably led to consider-
ing equations and operators in more general Banach spaces. For example,
investigation of linear conjugation problems with discontinuous coefficients
requires use of Lp-spaces and weighted Lp-spaces (see, e.g., [26], [28], [27],
[25]). Linear conjugation problems for monogenic functions of one quater-
nion variable require considering Hilbert spaces over the quaternion algebra
H [34]. Moreover, as was recently shown, families of linear conjugation
problems can be successfully studied in the framework of operators and
Grassmannians in Hilbert modules over C∗-algebras [22].

Thus it becomes desirable to develop a geometric theory of Fredholm
pairs and associated Grassmannians in more general classes of Banach
spaces than just real and complex Hilbert spaces. With this in mind, in
the present paper we show that some fundamental properties of Fredholm
pairs and related Grassmannians in Hilbert space can be established in more
general contexts. This in principle enables one to develop a geometric ap-
proach to linear conjugation problems with discontinuous coefficients and
families of linear conjugation problems by applying the paradigms and rea-
soning developed in [7], [8], [24]. The concrete applications to the theory of
linear conjugation problems available on this way would have taken us too
far away, so in this paper we confine ourselves to discussing the geometry
of Fredholm pairs in Banach spaces.

One of our main aims is to indicate several new settings to which one
can extend the basic results on Fredholm pairs of subspaces. In particu-
lar, we show that the homotopy type of the restricted Grassmannian can
be described for certain splitting subspaces of a Banach space with con-
tractible general linear group (Theorem 2.3). We also show that similar
results can be obtained for Fredholm pairs in Hilbert modules (Theorems
3.1 and 3.2). Another general idea we wish to advocate in this paper, is
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that the restricted Grassmannians can be studied using the so-called Fred-

holm structures. To this end we construct a natural Fredholm structure on
the restricted Grassmannian and outline some consequences and possible
applications of its existence (Theorem 4.1).

Let us now say a few words about the structure of the paper. We begin
by presenting the most essential geometric and topological properties of
Fredholm pair of subspaces in a Hilbert space. The discussion in this section
closely follows [4] and [8] (cf. also [1]). In the next section we give some
relevant results on the geometry of restricted Grassmannians and show that
they can be extended beyond the Hilbert space setting. The third section
contains results on Fredholm pairs and restricted Grassmannians over C∗-
algebras. Here we also suggest some conceptual and technical novelties. In
the conclusion, we present an explicit construction of Fredholm structures
on restricted Grassmannians .

It should be added that a number of important contributions to the
theory of linear conjugation problems and Riemann-Hilbert problems with
discontinuous coefficients were made by G. Manjavidze [28], [29]. The both
authors were lucky to enjoy scientific and friendly communication with this
wonderful person and cordially dedicate this paper to the memory of Giorgi
Manjavidze.

1. Fredholm Pairs of Subspaces and Projections

In the sequel we freely use standard concepts and results of functional
analysis and operator theory concerned with Fredholm operators, indices,
resolvents, spectra, and Hilbert modules over C∗-algebras. All Banach
spaces are supposed to be real or complex and all subspaces are supposed
to be closed. We begin by recalling the general concept of Fredholm pair of
subspaces.

Consider two (closed) subspaces L1, L2 of a Banach space E over the
field K which can be either R or C.

Definition 1.1 ([18]). The pair (L1, L2) is called a Fredholm pair of
subspaces (FPS) if their intersection L1 ∩L2 is finite dimensional and their
sum L1+L2 has finite codimension in E. Then the index of the pair (L1, L2)
is defined as

ind (L1, L2) = dimK(L1 ∩ L2)− codimK(L1 + L2). (1.1)

This concept was introduced by T.Kato who, in particular, proved that
the index is invariant under homotopies [18]. To distinguish this concept
from similar ones, we sometimes speak of a Kato Fredholm pair. Some mod-
ifications of the above definition are presented below and when no confusion
is possible they all are referred to as Fredholm pairs.

As is well known, Fredholm pairs appear in a number of important prob-
lems of analysis and operator theory [18], [5], [6], [10], [32]. Global geometric
and topological properties of the set of Fredholm pairs play essential role in
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some recent papers on differential equations and infinite dimensional Morse
theory in the spirit of Floer approach (see, e.g., [1]).

Taking this into account it seems remarkable that one can relate the
theory of Fredholm pairs with some topics of global analysis in the spirit of
Fredholm structures theory [14], [15]. In line with that idea we present in
the fourth section a natural construction of Fredholm structure on the set
of Fredholm pairs with a fixed first component and indicate some corollaries
and perspectives opened by this construction.

The theory of Fredholm pairs is especially rich and fruitful in the case of
Hilbert space. The results available in that case serve as a pattern for our
discussion, in particular, they suggest useful generalizations applicable to
wider classes of Banach spaces. Therefore we begin by presenting the basic
results in the case where E is a separable Hilbert space H . However, as was
mentioned in the introduction, studying the geometry of linear conjuga-
tion problems with discontinuous coefficients requires considering Fredholm
pairs in more general Banach spaces, in particular, in Hilbert modules over
C∗-algebras. For this reason, whenever possible we indicate possibilities of
further generalizations.

There are two important peculiarities in the case of a Hilbert space.
First of all, in a Hilbert space one can pass to the orthogonal complements
of subspaces considered. Thus, for each pair of subspaces (L1, L2), one has
a dual pair P⊥ = (L⊥1 , L⊥2 ) and it is easy to see that if one of them is a
Fredholm pair then the second one also has this property. Since

ind (L1, L2) = dimK(L1 ∩ L2)− codK(L1 + L2) =

= dimK(L1 ∩ L2)− dimK(L⊥1 ∩ L⊥2 ), (1.2)

we also have
ind (L1, L2) = −ind (L⊥1 , L⊥2 ). (1.3)

Thus there exists a sort of duality for Fredholm pairs in Hilbert spaces.

Proposition 1.1. A pair P = (L1, L2) is a FPS if and only if P⊥ =
(L⊥1 , L⊥2 ) is a FPS, and ind P = −ind P⊥.

This result means that the operation of passing to orthogonal comple-
ments acts on the set of Fredholm pairs Fp(H). As we will see below, the
set of Fredholm pairs can be endowed with a natural structure of infinite di-
mensional manifold and this map becomes a smooth self-mapping of Fp(H).
We wish to point out that one can easily generalize these observations to
the case of Banach space E.

Indeed, if one considers the dual space E ′ consisting of continuous linear
functionals on E then, for a subspace L ⊂ E, a natural analog of orthogonal
complement is the annihilator Lo = {φ ∈ E′ : φ|L = 0}. Replacing in the
above reasoning L⊥ by Lo, one can easily obtain an analog of Proposition
1.1 in this context. The analogy becomes especially far reaching in the case
of a reflexive Banach space E. However we will not further develop this
idea, the main aim of this remark being to show that results for the Hilbert
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space may really serve as a pattern and hint for the theory of Fredholm
pairs in more general Banach spaces.

In the setting of Hilbert spaces one can equivalently deal with orthogonal
projections on subspaces considered. This is convenient in many construc-
tions and more appropriate for generalizations in the context of Banach
algebras along the lines of [3] (cf. [8] and [13]). To make this idea more
precise, we now present a counterpart of Definition 1.1 in the language of
projections.

Definition 1.2 (cf. [2]). Let P1 and P2 be orthogonal projections
in a separable Hilbert space. A pair (P1, P2) is called a Fredholm pair of
projections (FPP) if the operator C = P2P1|im P1 considered as an operator
from im P1 to im P2 is Fredholm, and if this is the case then the index
ind (P1, P2) is defined as the Fredholm index of C21.

It is remarkable that the two definitions are equivalent as is shown by the
following simple but important proposition which is one of the key steps in
developing generalizations we have in mind.

Proposition 1.2. A pair of orthogonal projections (P1, P2) is a FPP if

and only if (im P1, im P⊥2 ) is a FPS. In such case

ind (P1, P2) = ind (imP1, imP⊥2 ). (1.4)

Proof. First of all it is easy to verify that

ker C = L1 ∩ L⊥2 , (im C)⊥ = L⊥1 ∩ L2.

Thus fredholmness of C is equivalent to the fact that L1∩L⊥2 and L⊥1 ∩L2 =
(L1 + L⊥2 )⊥ are finite-dimensional, which in turn means that (L1, L

⊥
2 ) is a

FPS. Moreover,

ind (P1, P2) = dimK(L1 ∩ L⊥2 )− dimK(L⊥1 ∩ L2) =

= dimK(L1 ∩ L⊥2 )− dimK(L1 + L⊥2 )⊥ =

= dimK(L1 ∩ L⊥2 )− codimK(L1 + L⊥2 ) = ind(L1, L
⊥
2 ),

which finishes the proof. �

Thus we already have two different interpretations of the concept of Fred-
holm pair each of which has its specific applications and suggests further
generalizations. One of the most interesting possibilities is related to the
abstract Fredholm theory in Banach algebras developed in [3]. In the set-
ting of Banach algebras, projections should be substituted by idempotents
and one should define which pairs of idempotents are considered as analogs
of Fredholm pairs of projections. It is not quite clear how to do this in the
most general case but we’ll suggest one version which leads to a reasonable
concept.

Recall that there also exist more restrictive notions of Fredholm pair
which appear useful in operator theory and functional analysis. We de-
scribe here one of them which plays an important role in the study of linear
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conjugation problems and Grassmannian embeddings of loop groups. It is
based on the concept of commensurability of projections which can be easily
generalized to the Banach algebra context.

Definition 1.3. Let P1, P2 be orthogonal projections in a separable
Hilbert space. They are called commensurable if their difference P1 − P2

is a compact operator and then it is also said that (P1, P2) is a commen-
surable pair of projections (CPP). A pair of subspaces (L1, L2) is called a
commensurable pair of subspaces (CPS) if orthogonal projectors on these
subspaces are commensurable.

Proposition 1.3. Two subspaces L1, L2 are commensurable if and only

if the operators PL⊥
1

PL2
and PL⊥

2

PL1
are compact.

Proof. The result follows by an easy calculation:

P1 − P2 = (P2 + P⊥2 )P1 − P2(P1 + P⊥1 ) =

= P2P1 + P⊥2 P1 − P2P1 − P2P
⊥
1 = P⊥2 P1 − P2P

⊥
1 ,

where we used the evident fact that, for each orthogonal projection P , one
has I = P + P⊥.

Comparing this proposition with the definition of Fredholm pair , one
sees that if L and M are commensurable then (L, M⊥) and (L⊥, M) are
FPSs. Thus commensurable pairs give rise to a special class of Fredholm
pairs which are sometimes called strict Fredholm pairs .

Notice that the definition of commensurability is applicable to arbitrary
(not necessarily orthogonal) projections and so it makes sense for an arbi-
trary Banach space. This suggests a way of generalization to the case of
idempotents in a Banach algebra. Recall that a general notion of compact
element in a Banach algebra A was defined in [3] using the concept of socle

socA. Thus one can call a pair of idempotents (e1, e2) ∈ A2 a Fredholm
pair of idempotents if their difference belongs to the socle socA.

It can be shown that if (e1, e2) is a Fredholm pair of idempotents in the
algebra of bounded operators B(E) in a Banach space E then such definition
is consistent with Definition 1.3. One can use the results about compact
elements in A in order to introduce a reasonable generalization of the index
in the spirit of [3] and prove basic properties of FPSs and their indices in
this context.

However we do not pursue this possibility here and return to FPSs in
Hilbert space in order to investigate their geometry more closely. For doing
so it appears extremely useful to consider certain Grassmannians which will
be our main concern in the next section. To conclude this section, we want
to point out that one can give a useful parameterization of Fredholm pairs
in terms of an associated operator group which is a sort of analog of the
classical singular integral operators and appears useful in the geometric
study of linear conjugation problems [4] (cf. [33], [22]).

In particular, one can describe the set of all subspaces which form a
commensurable Fredholm pair with a given subspace L using the following
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construction suggested in [4]. This construction is only interesting when
dim L = dim L⊥ = ∞, so we suppose that this is the case. For a given
operator A ∈ B(H) denote by A′e the essential commutant of A, i.e., the
set of all operators T such that the commutator [T, A] is compact. �

Definition 1.4. Let P be an orthogonal projection in a separable Hilbert
space such that dim im P = dim kerP = ∞. The algebra P ′

e is called the
algebra of abstract singular operators associated with P .

Invertible operators from P ′
e play an essential role in describing commen-

surable Fredholm pairs. Denote by Ge(P ) the set of all invertible operators
from P ′e. Recall that the classical singular integral operators with Cauchy
kernel arise if one takes in the role of P the Szegö projector on the Hardy
space in L2(S

1, Cn) [4]. Fix now a subspace L, denote by P the orthogo-
nal projection on L and put Q = I − P . The following result which was
established in [4] can be proved by a direct check.

Proposition 1.4 ([4]). For each A ∈ Ge(P ), the pair (L, AL⊥) is

a Fredholm pair of subspaces. The operator Φ = P + AQ is a Fredholm

operator and ind Φ = ind (L, AL⊥).

Actually, in some sense converse is also true, i.e., all subspaces commen-
surable with a given one can be obtained using the action of Ge(P ) [4]. We
do not give detailed formulation of the latter claim because more precise re-
sults will be presented in the next section in terms of the so-called restricted
Grassmannians .

2. Fredholm Pairs and Restricted Grassmannians

In many geometric problems it becomes necessary to consider the set of all
Fredholm pairs in some Banach space E with a fixed first subspace. In other
words, one chooses a closed infinite dimensional and infinite codimensional
subspace L and considers the so-called Kato Grassmannian GrF (L, E) con-
sisting of all subspaces M ⊂ E such that (L, M) is a Kato Fredholm pair [4],
[32]. This is actually just a “leaf” in the set Fp(E) of all Fredholm pairs and
in many cases one may represent Fp as a fibration over the set of all closed
subspaces Gr(E) with the fiber homeomorphic to GrF (L, E). Thus the ge-
ometry and topology of Fp(E) can be often understood by investigating
Fredholm Grassmannian .

This definition permits several useful modifications which we present fol-
lowing [32] and [1]. We consider first the case where E is a Hilbert space H

and it is convenient to introduce the Grassmannian Gr(H) defined as the
collection of all closed subspaces in H . The assignment L 7→ PL defines
an inclusion of Gr(H) into B(H) with the image equal to the set of all
orthogonal projections in H . One can now define the metric on Gr(H) by
putting the distance between two subspaces to be the norm of the differ-
ence of orthogonal projections on these subspaces. This makes Gr(H) into
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a complete metric space and it can be proved that it has a natural structure
of analytic Banach submanifold induced from B(H) [1].

The set of Fredholm pairs is an open subset of Gr(H) × Gr(H) so we
endow it with the induced topology and then index is a continuous function
on Fp. Denote by Fp∗ the subset consisting of Fredholm pairs consisting
of infinite dimensional subspaces. The connected components of Fp∗ are
exactly the subsets Fp∗k consisting of Fredholm pairs with index k and it
can be proved that all components are homeomorphic (see, e.g., [32]). For
a real Hilbert space, each of them has the homotopy type of the classifying
space of infinite orthogonal group BO(∞) and so its homotopy groups are
well known. Thus Fp∗ is homotopy equivalent to Z×BO(∞), its homotopy
groups are 8-periodic by Bott periodicity, and the first 8 homotopy groups
are: Z, Z2, Z2, 0, Z, 0, 0, 0. In the complex case one has the same picture
with 2-periodic homotopy groups beginning with Z, 0.

We are now prepared to discuss restricted Grassmannians . Consider
a complex Hilbert space decomposed into an orthogonal direct sum H =
H+⊕H− and choose a positive number s. For further use we need a family
of subideals in the ideal of compact operators K(H) which is defined as
follows (cf. [16]).

Recall that for any bounded operator A ∈ L(H) the product A∗A is
a non-negative self-adjoint operator, so it has a well-defined square root
|A| = (A∗A)1/2 (see, e.g., [14]). If A is compact, then A∗A is also compact
and |A| has a discrete sequence of eigenvalues

µ1(A) ≥ µ2(A) ≥ · · ·

tending to zero. The µn(A) are called singular values of A. For a finite
s ≥ 1 one can consider the expression (sth norm of A)

||A||s =

[ ∞
∑

j=1

(µj(A))s

]1/s

(2.1)

and define the sth Schatten ideal Ks as the collection of all compact oper-
ators A with a finite sth norm (s-summable operators) [14].

Using elementary inequalities, it is easy to check that Ks is really a two-
sided ideal in L(H). These ideals are not closed in L(H) with its usual
norm topology but if one endows Ks with the sth norm as above, then
Ks becomes a Banach space [14]. Two special cases are well-known: K1

is the ideal of trace class operators and K2 is the ideal of Hilbert-Schmidt
operators. For s = 2, the above norm is called the Hilbert-Schmidt norm
of A and it is well known that K2(H) endowed with this norm becomes a
Hilbert space (see, e.g., [14]). Obviously K1 ⊂ Ks ⊂ Kr for 1 < s < r

so one obtains a chain of ideals starting with K1. For convenience we set
K∞ = K and obtain an increasing chain of ideals Ks with s ∈ [1,∞].

Of course one can introduce similar definitions for a linear operator A

acting between two different Hilbert spaces, e.g., for an operator from one
subspace M to another subspace N of a fixed Hilbert space H . In particular
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we can consider the classes Ks(H±, H∓). Let us also denote by F (M, N)
the space of all Fredholm operators from M to N .

Definition 2.1 ([32]). The sth restricted Grassmannian of a polarized
Hilbert space H is defined as

Grs
F (H) = {W ⊂ H : π+|W is an operator from F (W, H+),

π−|W is an operator from Ks(W, H−)}.

In general, two subspaces are called s-commensurable if the difference
of orthogonal projections on these subspaces belongs to Ks. Thus the sth
Grassmannian is the collection of all subspaces s-commensurable with H+.
These Grassmannians are of the major interest for us. Actually, many of
their topological properties (e.g., the homotopy type) do not depend on
the number s appearing in the definition. On the other hand, more subtle
geometric properties like manifold structures and characteristic classes of
Grs

F do depend on s in a quite essential way. As follows from the discussion
in [16], this is a delicate issue and we circumvent it by properly choosing
the context.

As follows from the results of [32], it is especially convenient to work
with the Grassmannian Gr2

F (H) defined by the condition that the second
projection π− restricted to W is a Hilbert-Schmidt operator. Following [32]
we denote it by Grr(H) and call the restricted Grassmannian of H .

The Kato Grassmannians appear to have interesting analytic and topo-
logical properties. It turns out that Grassmannian Grs

F can be turned into
a Banach manifold modelled on Schatten ideal Ks. In particular Grr(H)
has a natural structure of a Hilbert manifold modelled on the Hilbert space
K2(H) [32]. All these Grassmannians have the same homotopy type (see
Theorem 2.2 below). Moreover, as we will see in the last section Grassman-
nians Grs

F can be endowed with so-called Fredholm structures [14], which
suggests in particular that one can define various global topological invari-
ants of Grs

F (H).
Definition 2.1 also yields a family of subgroups GLs = GL(π+, Ks) of

GL(π+, K) (s ≥ 1). For our purposes the subgroup GL(π+, K2) is especially
important.

Definition 2.2 ([32]). The restricted linear group GLr(H) is defined
as the subgroup of GL(π+, K) consisting of all operators A such that the
commutator [A, π+] belongs to the Hilbert-Schmidt class K2(H).

From the very definition it follows that GLs acts on Grs and it was shown
in [8] that these actions are transitive (cf. also [32], Ch.7). In order to give a
convenient description of the isotropy subgroups of these actions, we follow
the presentation of [32] and introduce a subgroup U s(H) = U(H)∩GLs(H)
consisting of all unitary operators from GLs. For s = 2 this subgroup is
denoted by Ur. Now the description of isotropy groups is available by the
same way of reasoning which was applied in [32] for s = 2.
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Theorem 2.1. The subgroup U s(H) acts transitively on Grs(H) and the

isotropy subgroup of the subspace H+ is isomorphic to U(H+)× U(H−).

From the existence of a polar decomposition for a bounded operator
on H it follows that the subgroup U s(H) is a retract of GLs and it is
straightforward to obtain similar conclusions for the actions of GLs.

Corollary 2.1. The group GLs acts transitively on the Grassmannian

Grs(H) and the isotropy groups of this action are contractible.

Thus such an action obviously defines a fibration with contractible fibers
and it is well known that for such fibrations the total space (GLs) and the
base (Grs) are homotopy equivalent [14].

Corollary 2.2. For any s ≥ 1, the Grassmannian Grs and the group GLs

have the same homotopy type. In particular, GLr is homotopy equivalent to

Grr.

Remark. All the groups GL(π+, J) have the same homotopy type for any
ideal J between K0 and K. In particular, this is true for every Schatten
ideal Ks. Thus all the above groups and Grassmannians have the same
homotopy type.

We are now ready to give more comprehensive results about the topology
of Grs and GLs. The homotopy type of GLr and Grr over the field of
complex numbers is described in the following statement which was obtained
in [21], [10], [32]. This gives an answer to a question posed in [4].

Theorem 2.2. For any s ∈ [1,∞], the homotopy groups of the group

GLs and Fredholm Grassmannian Grs are given by the formulae:

π0
∼= Z; π2k+1

∼= Z, π2k+2 = 0, k ≥ 0. (2.2)

This is an important result which has many applications to the homotopy
classification of linear conjugation problems [22], [8]. It follows that, in the
case of a Hilbert space, all restricted Grassmannians and Kato Grassman-
nian have the same topological structure. In particular, their topologicla
properties do not depend on the choice of subspace H+. As we will see
below this is not the case for a general Banach space.

So let us now consider restricted Grassmannians in a Banach space E.
Recall that Grassmannian G(E) is defined as the set of all closed sub-
spaces in H . As above we use the term Kato biGrassmannian to de-
note the collection of all Fredholm pairs of subspaces in E. Suppose that
dim L = codim L = ∞. The following natural definition is implicitly con-
tained in [6].

Definition 2.3. The collection of all closed subspaces M ⊂ E such that
(L, M) is a Fredholm pair of subspaces is called the Kato Grassmannian
GrF (L, E) associated with L.
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For an arbitrary Banach space E there is no a priori reason why the
topology and geometry of GrF (L) should be the same for all infinite dimen-
sional and infinite codimensional subspaces L. It may be seen in examples
that the structure of restricted Grassmannian may depend on the isomorphy
type and embedding of L and its complement. Therefore a general discus-
sion of Kato Grassmannians seems difficult and not very useful. For this
reason, in the sequel we impose some conditions on E and L which enable us
to extend the preceding discussion to a more general context. The assump-
tions we make are fulfilled, for example, for the Hardy subspace in Lp(S

1),
which is important in the investigation of linear conjugation problems with
discontinuous coefficients.

Thus we assume that L is a bisplitting subspace, i.e., it admits a closed
complement L′ such that L′ ∼= L and E ∼= L⊕L′. In such situation it is easy
to show that the topology of GrF (L) depends only on the isomorphism class
of L. Let us say that a Banach space E is tame if its general linear group
GL(E) is contractible (some authors say in such case that E has Kuiper
property).

In the sequel we fix the above decomposition of E into the direct sum of
two bisplitting subspaces and consider the Kato Grassmannian defined by
such a decomposition. In this situation on has a natural analog of the re-
stricted linear group which is defined in the same way as above and denoted
GLF (L, E). The following result can be proved analogously to Theorem 2.1.

Theorem 2.3. If L is a bisplitting tame subspace of a tame Banach space

then the group of abstract singular operators GLF (L, E) acts transitively on

the Kato Grassmannian GrF (L, E) with contractible isotropy groups.

It is possible to show that it is sufficient to require tameness of L since it
can be shown that then E is automatically tame. We do not work out this
point because the properties we need are fulfilled in many interesting cases.

We are now in a position to obtain some topological information on the
Kato Grassmannian GrF (L, E) of the above type. As was already men-
tioned, there is little hope that its topological type is always the same.
However it is remarkable that one can still obtain rather precise informa-
tion on its homotopy type. Namely, if one assumes that L is bisplitting and
tame, then it turns out that the proof of Theorem 2.1 presented above re-
mains valid in this case and one arrives at a similar conclusion. For brevity
we formulate the final result in the case of a complex Banach space. The
case of a real Banach space is completely analogous. The proof can be ob-
tained applying the same argument as was used in [32] for proving Theorem
2.2. The necessary modifications are self-evident and therefore omitted.

Theorem 2.4. Let L be a bisplitting tame subspace of a separable tame

complex Banach space E. Then the homotopy groups of the restricted Grass-

mannian GrF (L, E) are as follows:

π0
∼= Z; π2k−1

∼= Z, π2k = 0, k ≥ 1. (2.3)
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This result can be applied to investigating the homotopy classes of fam-
ilies of linear conjugation problems in Lp-spaces by the same scheme which
was used in [22], [8] in the setting of Hilbert spaces. Discussion of such ap-
plications is delayed for the future but in the next section we present some
related results which are available for linear conjugation problems and re-
stricted Grassmannians over C∗-algebras. It should be noted that the topo-
logical results presented in the next section do not follow from the above
discussion since in the setting of C∗-algebras one uses an essentially different
definition of restricted Grassmannian. We believe it might be instructive to
mention the both settings within the present paper.

3. Linear Conjugation Problems over C∗-Algebras

In this section we introduce certain geometric objects over C∗-algebras
which are relevant to the homotopy classification of abstract elliptic prob-
lems of linear conjugation. The abstract problem of linear conjugation was
introduced by B. Bojarski [4] as a natural generalization of the classical
linear conjugation problem for holomorphic vector-functions [31]. As was
realized much later (see, e.g., [22], [23]), the whole issue fits nicely into the
Fredholm structures theory [14], more precisely, into the homotopy theory
of operator groups.

Recall that in 1979 B. Bojarski formulated a topological problem which
appeared stimulating in the theory of operators and boundary value prob-
lems [4]. This problem was independently solved in [19] and [36] (cf. also
[32]). Moreover, the results obtained on this way were used in studying
several related topics of global analysis and operator theory [10], [36], [32].

An important advantage of the geometric formulation of elliptic trans-
mission problems in terms of Fredholm pairs of subspaces of a Hilbert space
given in [4] was that it permitted various modifications and generalizations.
Thus it became meaningful to consider similar problems in more general sit-
uations [22], in particular, in the context of Hilbert C∗-modules [30], which
led to some progress in the theory of generalized transmission problems [22],
[23].

Such an approach enables one, in particular, to investigate elliptic trans-
mission problems over an arbitrary C∗-algebra. Clearly, this gives a wide
generalization of the original setting used in [4], [36], [19], since the latter
corresponds to the case in which the algebra is taken to be the field of com-
plex numbers C. This also generalizes the geometric models for classical lin-
ear conjugation problems problems in terms of Grassmannian embeddings
of loop groups [32].

Notice also that the setting of linear conjugation problems over C∗-
algebras includes the investigation of families of elliptic transmission prob-
lems parameterized by a (locally) compact topological space X . In fact,
this corresponds to considering linear conjugation problems over the alge-
bra C(X) of continuous functions on the parameter space, and classification
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of families of elliptic problems of such kind becomes a special case of our
general results.

To make the presentation concise, we freely use the terms and construc-
tions from the theory of Hilbert modules over C∗-algebras. A detailed
exposition of necessary concepts and results is contained in [30].

We pass now to the precise definitions needed to formulate a general-
ization of a geometric approach to linear conjugation problems suggested
in [4]. We use essentially the same concepts as in [4], but sometimes in a
slightly different form adjusted to the case of Hilbert C∗-modules.

Let A be a unital C∗-algebra. Denote by HA the standard Hilbert module
over A, i.e.,

HA =

{

{ai}, ai ∈ A, i = 1, 2, . . . :

∞
∑

i=1

aia
∗
i ∈ A

}

. (3.1)

Since there exists a natural A-valued scalar product on HA possessing
usual properties [30], one can introduce direct sum decompositions and con-
sider various types of bounded linear operators on HA. Denote by B(HA)
the collection of all A-bounded linear operators having A-bounded adjoints.
This algebra is one of the most fundamental objects in Hilbert C∗-modules
theory [30].

As is well known, B(HA) is a Banach algebra and it is useful to consider
also its group of units GB = GB(HA) and the subgroup of unitaries U =
U(HA). For our purpose it is important to have adjoints, which, as is
explained, e.g., in [30], is not the case for an arbitrary bounded operator on
the Hilbert A-module HA. In particular, for this algebra we have an analog
of the polar decomposition [30], which implies that GB(HA) is retractable
to U(HA). Thus these two operator groups are homotopy equivalent, which
is important for our consideration.

Compact linear operators on HA are defined to be A-norm limits of finite
rank linear operators [30]. Their collection is denoted by K(HA).

Recall that one of the central objects in B. Bojarski’s approach [4] was a
special group of operators associated with a fixed direct sum decomposition
of a given complex Hilbert space which already appeared in the first section
of this paper. We now give its generalization in the context of Hilbert
modules. To this end, we fix a direct sum decomposition in the category
of Hilbert A-modules of the form HA = H+ + H−, where H+ and H− are
both isomorphic to HA as A-modules. As is well known, any operator on
HA can be written as a (2 × 2)-matrix of operators with respect to this
decomposition. Denote by π+ and π− the natural orthogonal projections
defined by this decomposition.

Introduce now the subgroup GBr = GBr(HA) of GB(HA) consisting of
operators whose off-diagonal terms belong to K(HA). Let Ur = Ur(HA)
denote the subgroup of its unitary elements. To relate this to transmission
problems, we must have an analog of the Kato Grassmannian introduced
above. In fact, this is practically equivalent to introducing the concept of
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Fredholm pairs of submodules. However we do not wish to generalize the
whole discussion in Section 1 and we introduce only the notions which are
necessary for formulating the main result.

Recall that there is a well-defined notion of a finite rank A-submodule of
a Hilbert A-module [30]. Then the notion of Fredholm operator in a Hilbert
A-module is introduced by requiring that its kernel and image be finite-rank
A-submodules [30]. It turns out that many important properties of usual
Fredholm operators remain valid in this context, too. Thus, if the collection
of all Fredholm operators on HA is denoted by F (HA), then there exists a
canonical homomorphism ind = indA : F (HA) → K0(A), where K0(A) is
the usual topological K-group of the basic algebra A [30].

This means that Fredholm operators over C∗-algebras have indices obey-
ing the usual additivity law. In the sequel, we freely refer to a detailed
exposition of these results in [30].

Granted the above technicalities, we can now introduce a special Grass-
mannian Gr+ = Gr+(HA) associated with the given decomposition. It con-
sists of all A-submodules V of HA such that the projection π+ restricted on
V is Fredholm while the projection π− restricted on V is compact. Using
the analogs of the local coordinate systems for Gr+(HC) constructed in [32],
one can verify that Gr+(HA) is a Banach manifold modelled on the Banach
space K(HA). For our purpose it suffices to consider Gr+ as a metrizable
topological space with the topology induced by the standard one on the
infinite Grassmannian Gr∞(HA).

Now the problem that we are interested in is to investigate the topology of
Gr+(HA) and GBr(HA). Notice that for A = C this is exactly the problem
formulated by B. Bojarski in [4]. The main topological results about these
objects can be formulated as follows. By K∗(A) we denote the topological
K-groups of A.

Theorem 3.1. The group GBr(HA) acts transitively on Gr+(HA) with

contractible isotropy subgroups.

Theorem 3.2. All even-dimensional homotopy groups of Gr+(HA) are

isomorphic to the index group K0(A) while its odd-dimensional homotopy

groups are isomorphic to the Milnor group K1(A).

Of course, the same statements hold for the homotopy groups of
GBr(HA), since by Theorem 3.1 these two spaces are homotopy equivalent.
We formulate the result for Gr+(HA) because it is the space of interest in
the theory of linear conjugation problems.

The homotopy groups of GBr(HA) were first computed in [19] with-
out considering Grassmannians. Later, similar results were obtained by S.
Zhang [37] in the framework of K-theory. The contractibility of isotropy
subgroups involved in Theorem 3.1 in the case A = C was established in
[32].

Actually, one can obtain more precise information on the structure of
isotropy subgroups. It should also be noted that the contractibility of
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isotropy subgroups follows from a fundamental result on C∗-modules called
the generalization of Kuiper’s theorem for Hilbert C∗-modules [30]. Par-
ticular cases of Theorem 3.2 for various commutative C∗-algebras A may
be useful to construct classifying spaces for K-theory. The solution of Bo-
jarski’s problem formulated in [4] is now immediate (cf. [19], [36], [32]).

Corollary 3.1. Even-dimensional homotopy groups of the collection of

classical Riemann–Hilbert problems are trivial while odd-dimensional ones

are isomorphic to additive group of integers Z.

Note that the above fundamental group can be interpreted in terms
of the so-called spectral flow of order zero pseudo-differential operators,
which has recently led to some interesting developments by B. Booss and
K. Wojciechowsky concerned with the Atiyah–Singer index formula in the
odd-dimensional case [10]. Similar results hold for abstract singular opera-
tors over A which are defined by an analogy with Definition 1.4 (cf. [19]).

Corollary 3.2. Homotopy groups of invertible singular operators over a

unital C∗-algebra A are expressed by the relations (n is an arbitrary natural

number)

π0
∼= K0(A), π1

∼= Z⊕ Z⊕K1(A);

π2n
∼= K0(A), π2n+1

∼= K1(A).
(3.2)

Specifying this result for the algebras of continuous functions one can,
in particular, compute the homotopy classes of invertible classical singular
integral operators on arbitrary regular closed curves in the complex plane
C (see [19], [23] for the precise definitions).

Corollary 3.3. If Γ ⊂ C is a smooth closed curve with k components,

then homotopy groups of invertible classical singular integral operators on

Γ are expressed by the relations (n is an arbitrary natural number):

π0
∼= Z, π1

∼= Z
2k+1; π2n = 0, π2n+1

∼= Z. (3.3)

There exist some other applications of the above results to linear conju-
gation problems and singular integral operators but they are not so much
in the spirit of this paper. Therefore we switch to another general paradigm
which emerged in the theory of restricted Grassmannians and Grassmannian
embeddings of loop groups. As was shown in [16], [21], the topological study
of loop groups can be performed in the framework of the theory of Fred-
holm structures [14]. Since the Grassmannian embeddings of loop groups
establish a close relation between geometric properties of the loop groups
and those of restricted Grassmannians , it became highly plausible that one
should be able to construct geometrically meaningful Fredholm structures
on restricted Grassmannians .

Indeed, it was proved in [22] that restricted Grassmannians can be en-
dowed with natural Fredholm structures arising from the generalized linear
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conjugation problems . The main construction in [22] was given in the lan-
guage of linear conjugation problems with coefficients in loop groups and
required a lot of preliminary considerations. Recently, the second author
found another construction of Fredholm structure on restricted Grassman-
nian which is more explicit and direct. As was explained in [23] and [8],
Fredholm structures on restricted Grassmannians induce the ones on loop
groups and vice versa. Therefore the results presented in the last section
provide simultaneously an alternative way of introducing Fredholm struc-
tures on loop groups which seems simpler than the one used in [16], [21].

4. Fredholm Structures on Restricted Grassmannians

The aim of this section is to show that restricted Grassmannians can be
studied using so-called Fredholm structures [14]. The main result is that
they can be endowed with natural Fredholm structures.

Fredholm structures on loop groups have already been described in the
literature (see, e.g., [16], [21]) and it has been observed in [23], [8] that this
enables one to obtain Fredholm structures on restricted Grassmannians as
well. However the construction presented below seems more simple and
instructive.

Before passing to precise definitions, we recall necessary concepts from
functional analysis. For a Banach space E, let L(E) denote the algebra
of bounded linear operators in E endowed with the norm topology. Let
F (E)(Fk(E)) denote the subset of Fredholm operators (of index k). Let
also GL(E) stand for the group of units of L(E) and denote by GC(E) the
so-called Fredholm group of E defined as the set of all invertible operators
from L(E) having the form “identity plus compact”.

Recall that a Fredholm structure on a smooth manifold M modelled on
a (infinite dimensional) Banach space E is defined as a reduction of the
structural group GL(E) of the tangent bundle TM to the subgroup GC(E)
[14]. In the sequel we only deal with the case where E = H is a separable
Hilbert space but much of the following discussion is valid in a more general
context.

As GL(H) is contractible, F0(H) is the classifying space for GC(H)
bundles [14]. For a Hilbert manifold M , defining a Fredholm structure on
M is equivalent to constructing an index zero Fredholm map M → H [15].
It was also shown in [15] that a Fredholm structure on M can be constructed
from a smooth map Φ : M → F0(H), i.e., from a smooth family of index
zero Fredholm operators parameterized by points of M . This is actually the
most effective way of constructing Fredholm structures which has already
been used in [16], [21].

We are now going to present an explicit construction of such families on
restricted Grassmannians . For simplicity we describe it for the restricted
Grassmannian Grr. It is convenient to use the subgroup Ur = GLr(H) ∩
U(H) of GLr(H) and recall that in virtue of Theorem 2.1 Ur transitively
acts on Grr and the isotropy subgroup of H+ in Ur is U(H+)× U(H−).
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We will construct a family of zero index Fredholm operators in H+ pa-
rameterized by points of Grr . For V ∈ Grr, we first construct an element
T ∈ Ur such that T (H+) = V . Let v : H+ → H be an isometry with
image V and w : H− → H be an isometry with image W = V ⊥. Then the
mapping

A = u⊕ w : H+ ⊕H− → H+ ⊕H−

is a unitary transformation in H such that A(H+) = V . Let us write it in the
block form (Aij) corresponding to the fixed decomposition H = H+ ⊕H−.
Then the left upper element T = A11 is a linear operator in H+. As V ∈
Grr, from the definition of Grr it follows that T is a Fredholm operator in
H+, in other words, T ∈ F (H+).

Consider now a component Gr0 of Grr consisting of subspaces L ∈ Grr

such that ind P+|L = 0. From the description of the connected compo-
nents of the set of Fredholm pairs Fp∗ given in Section 1 it follows that
Gr0 is a connected component of Grr and all other connected components
Grn are homeomorphic to Gr0. Moreover, the group Ur permutes those
components so that any geometric structure on one of the components can
be transplanted to all of them. Thus it is sufficient to construct a Fredholm
structure on Gr0.

Notice that the operator T constructed above is not unique so we cannot
a priori assign it to V in a well-defined way. However from the description
of the isotropy subgroups of Grr in Ur it follows that the totality of all such
operators T has the structure of smooth fibration over Grr with contractible
fiber. Thus by general results of infinite dimensional topology it has a
global section S which can be chosen to be smooth [14]. This means that
the assignment V 7→ S(V ) defines a smooth family of index zero Fredholm
operators in L(H+).

Referring now to the aforementioned result from [15], we see that the
family S(V ), V ∈ Gr0, defines a Fredholm structure on Gr0. In virtue of
the said above, this structure can be transplanted on all other connected
components. Thus we have established the desired result.

Theorem 4.1. The restricted Grassmannian of a polarized Hilbert space

has a natural structure of smooth Fredholm manifold modelled on the ideal

of Hilbert-Schmidt operators K2(H).

By using a proper modification of the above construction one can show
that a similar statement holds for each restricted Grassmannian Grs with
s > 1. A similar result holds for Kato Grassmannians in many Banach
spaces, in particular, in the tame setting described in Section 2. More-
over, using the construction of orientation bundle on the space of Fredholm
pairs given in [1], one can show that, in the real case, the above Fredholm
structure is orientable in the sense of [15]. This enables one to study the
geometry and topology of restricted Grassmannians and Kato Grassmanni-
ans using methods of the theory of Fredholm structures which are nowadays
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sufficiently developed [14], [15]. For the reason of space we confine ourselves
to a few short remarks in this spirit.

As was proved in [15], each Fredholm structure on manifold M induces
a zero index Fredholm map of M into its model. It is now natural to
conjecture that such a map of Grr into K2(H) can be obtained from our
construction. It would be instructive to find an explicit description of that
map. It would be also interesting to define the same Fredholm structure by
an explicitly given atlas on Grr.

Using the general methods of Fredholm structures theory, one can derive
a number of immediate consequences of the theorem. For example, one can
define Chern classes, fundamental classes of submanifolds, and so on in the
spirit of [14], [16], [22]. Over the field of reals one can consider the maps
between restricted Grassmannians arising from Fredholm operators in the
ambient space and try to obtain their topological invariants using the degree
theory for Fredholm manifolds developed in [15].

It is impossible to deal with any of the mentioned topics in a short paper
like this one and so in conclusion we just express an intent to continue
research in this direction.
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