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îâäæñéâ. çŽìñðëï ûæèŽáûŽîéëâĲñèæŽêæ æéìñèïñîæ áæòâîâêùæŽèñîæ
àŽêðëèâĲâĲæïŽåãæï óãâáŽ áŽ äâáŽ ŽéëêŽýïêâĲæï éâåëáæï áŽ öŽñáâîæï ñúîŽãæ
ûâîðæèæï ìîæêùæìæï àŽéëõâêâĲæå áŽáàâêæèæŽ ïŽûõæïæ ŽéëùŽêæï ŽéëýïêŽáë-
Ĳæï ïŽçéŽîæïæ ìæîëĲâĲæ.
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1. Introduction

This paper is concerned the existence of solutions for the initial value
problems (IVP for short), for impulsive fractional order differential equation

cDαy(t) = f(t, y(t))

for each t ∈ J = [0, T ], t 6= tk, k = 1, . . . ,m, 0 < α ≤ 1,
(1)

∆y|t=tk
= Ik(y(t−k )), k = 1, . . . , m, (2)

y(0) = y0, (3)

where cDα is the Caputo fractional derivative, f : J × R is a continuous
function, Ik : R → R, k = 1, . . . , m and y0 ∈ R, 0 = t0 < t1 < · · · <
tm < tm+1 = T , ∆y

∣∣
t=tk

= y(t+k ) − y(t−k ), y(t+k ) = lim
h→0+

y(tk + h) and

y(t−k ) = lim
h→0−

y(tk + h) represent the right and left limits of y(t) at t = tk,

k = 1, . . . ,m.
Differential equations of fractional order have recently proved to be valu-

able tools in the modeling of many phenomena in various fields of science
and engineering. Indeed, we can find numerous applications in viscoelas-
ticity, electrochemistry, control, porous media, electromagnetic, etc. (see
[12, 16, 17, 19, 25, 26, 28]). There has been a significant development in
fractional differential and partial differential equations in recent years; see
the monographs of Kilbas et al. [21], Kiryakova [22], Lakshmikantham et
al. [24], Miller and Ross [27], Samko et al. [32] and the papers of Agarwal
et al. [1, 2], Belarbi et al. [5, 6], Benchohra et al. [7, 8, 10], Diethelm et al.
[12, 13, 14], Furati and Tatar [15], Kilbas and Marzan [20], Mainardi [25],
Podlubny et al. [31], and the references therein.

Applied problems require definitions of fractional derivatives allowing the
utilization of physically interpretable initial conditions, which contain y(0),
y′(0), etc. the same requirements of boundary conditions. Caputo’s frac-
tional derivative satisfies these demands. For more details on the geometric
and physical interpretation for fractional derivatives of both the Riemann–
Liouville and Caputo types see [18, 30].

Integer order impulsive differential equations have become important in
recent years as mathematical models of phenomena in both the physical
and social sciences. There has a significant development in impulsive theory
especially in the area of impulsive differential equations with fixed moments;
see for instance the monographs by Bainov and Simeonov [4], Benchohra et
al. [9], Lakshmikantham et al. [23], and Samoilenko and Perestyuk [33] and
the references therein. In [3, 11] Agarwal et al. and Benchohra and Slimani
have initiated the study of fractional differential equations with impulses.

By means of the concept of upper and lower solutions combined with
Schauder’s fixed point theorem, we present an existence result for the prob-
lem (1)–(3). This paper initiates the application of the upper and lower
solution method to impulsive fractional differential equations at fixed mo-
ments of impulse.
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2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
that will be used in the remainder of this paper. Let [a, b] be a compact
interval. C([a, b],R) be the Banach space of all continuous functions from
[a, b] into R with the norm

‖y‖∞ = sup
{|y(t)| : a ≤ t ≤ b

}
,

and we let L1([a, b],R) the Banach space of functions y : [a, b] −→ R that
are Lebesgue integrable with norm

‖y‖L1 =

b∫

a

|y(t)| dt.

Definition 2.1 ([21, 29]). The fractional (arbitrary) order integral of
the function h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iα
a h(t) =

t∫

a

(t− s)α−1

Γ(α)
h(s) ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = [h ∗ϕα](t),
where ϕα(t) = tα−1

Γ(α) for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as
α → 0, where δ is the delta function.

Definition 2.2 ([21, 29]). For a function h given on the interval [a, b],
the αth Riemann–Liouville fractional-order derivative of h, is defined by

(Dα
a+h)(t) =

1
Γ(n− α)

(
d

dt

)n
t∫

a

(t− s)n−α−1h(s) ds.

Here n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3 ([21]). For a function h given on the interval [a, b], the
Caputo fractional-order derivative of h, is defined by

(cDα
a+h)(t) =

1
Γ(n− α)

t∫

a

(t− s)n−α−1h(n)(s) ds,

where n = [α] + 1.

3. Main Result

Consider the following space

PC(J,R) =
{

y : J → R : y ∈ C((tk, tk+1],R), k = 0, . . . , m + 1

and there exist y(t−k ) and y(t+k ), k = 1, . . . ,m with y(t−k ) = y(tk)
}

.
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C(J,R) is a Banach space with norm

‖y‖PC = sup
t∈J

|y(t)|.

Set J ′ := [0, T ] \ {t1, . . . , tm}.
Definition 3.1. A function y ∈ PC(J,R) ∩ C1(J ′,R) is said to be a

solution of (1)–(3) if satisfies the differential equation cDαy(t) = f(t, y(t))
on J ′, and conditions

∆y|t=tk
= Ik(y(t−k )), k = 1, . . . , m,

and
y(0) = y0

are satisfied.

Definition 3.2. A function u ∈ PC(J,R) ∩ C1(J ′,R) is said to be a
lower solution of (1)–(3) if cDαu(t) ≤ f(t, u(t)) on J ′, ∆u|t=tk

≤ Ik(u(t−k )),
k = 1, . . . ,m, and u(0) ≤ y0. Similarly, a function v ∈ PC(J,R)∩C1(J ′,R)
is said to be an upper solution of (1)–(3) if cDαv(t) ≥ f(t, v(t)) on J ′,
∆v|t=tk

≥ Ik(v(t−k )), k = 1, . . . ,m, and v(0) ≥ y0.

For the existence of solutions for the problem (1)–(3), we need the fol-
lowing auxiliary lemmas:

Lemma 3.3 ([21]). Let α > 0. Then the differential equation
cDαh(t) = 0

has solutions h(t) = c0+c1t+c2t
2+· · ·+cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n−
1, n = [α] + 1.

Lemma 3.4 ([21]). Let α > 0. Then

IαcDαh(t) = h(t) + c0 + c1t + c2t
2 + · · ·+ cn−1t

n−1 + Iαh(t)

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

As a consequence of Lemma 3.3 and Lemma 3.4 we have the following
result which is useful in what follows. The proof may be found in [11]. For
the completeness we present it.

Lemma 3.5. Let 0 < α ≤ 1 and let ρ ∈ PC(J,R). A function y ∈
PC(J,R) is a solution of the fractional integral equation

y(t)=





y0 +
1

Γ(α)

t∫

0

(t− s)α−1ρ(s) ds if t ∈ [0, t1],

y0+
1

Γ(α)

k∑

i=1

ti∫

ti−1

(ti−s)α−1ρ(s) ds+
1

Γ(α)

t∫

tk

(t−s)α−1ρ(s) ds+

+
k∑

i=1

Ii(y(t−i )), if t ∈ (tk, tk+1], k = 1, . . . ,m

(4)
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if and only if y ∈ PC(J,R) ∩ C1(J ′,R) is a solution of the fractional IVP
cDαy(t) = ρ(t) for each t ∈ J ′, (5)

∆y
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m, (6)

y(0) = y0. (7)

Proof. Assume that y satisfies (5)–(7). If t ∈ [0, t1], then
cDαy(t) = ρ(t).

Lemma 3.4 implies

y(t) = y0 +
1

Γ(α)

t∫

0

(t− s)α−1ρ(s) ds.

If t ∈ (t1, t2], then Lemma 3.4 implies

y(t) = y(t+1 ) +
1

Γ(α)

t∫

t1

(t− s)α−1ρ(s) ds =

= ∆y
∣∣
t=t1

+ y(t−1 ) +
1

Γ(α)

t∫

t1

(t− s)α−1ρ(s) ds =

= I1(y(t−1 )) + y0 +
1

Γ(α)

t1∫

0

(t1 − s)α−1ρ(s) ds+

+
1

Γ(α)

t∫

t1

(t− s)α−1ρ(s) ds.

If t ∈ (t2, t3], then from Lemma 3.4 we get

y(t) = y(t+2 ) +
1

Γ(α)

t∫

t2

(t− s)α−1ρ(s) ds =

= ∆y
∣∣
t=t2

+ y(t−2 ) +
1

Γ(α)

t∫

t2

(t− s)α−1ρ(s) ds =

= I2(y(t−2 )) + I1(y(t−1 )) + y0 +
1

Γ(α)

t1∫

0

(t1 − s)α−1ρ(s) ds+

+
1

Γ(α)

t2∫

t1

(t2 − s)α−1ρ(s) ds +
1

Γ(α)

t∫

t2

(t− s)α−1ρ(s) ds.

If t ∈ (tk, tk+1], then again from Lemma 3.4 we get (4).
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Conversely, assume that y satisfies the impulsive fractional integral equa-
tion (4). If t ∈ [0, t1], then y(0) = y0 and using the fact that cDα is the left
inverse of Iα we get

cDαy(t) = ρ(t) for each t ∈ [0, t1].

If t ∈ [tk, tk+1), k = 1, . . . , m and using the fact that cDαC = 0, where C is
a constant, we get

cDαy(t) = ρ(t) for each t ∈ [tk, tk+1).

Also, we can easily show that

∆y
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . , m. ¤

For the study of this problem we first list the following hypotheses:
(H1) The function f : J × R→ R is jointly continuous;
(H2) There exist u and v ∈ PC ∩ C1(J ′,R), lower and upper solutions

for the problem (1)–(3) such that u ≤ v.
(H3)

u(t+k ) ≤ min
y∈[u(t−k ),v(t−k )]

Ik(y) ≤ max
y∈[u(t−k ),v(t−k )]

Ik(y) ≤ v(t+k ), k = 1, . . . ,m.

Theorem 3.6. Assume that hypotheses (H1)–(H3) hold. Then the prob-
lem (1)–(3) has at least one solution y such that

u(t) ≤ y(t) ≤ v(t) for all t ∈ J.

Proof. Transform the problem (1)–(3) into a fixed point problem. Consider
the following modified problem,

cDαy(t) = f1(t, y(t)), t ∈ J, t 6= tk, k = 1, . . . , m, 0 < α ≤ 1, (8)

∆y|t=tk
= Ik(τ(t−k , y(t−k )), k = 1, . . . , m, (9)

y(0) = y0, (10)

where

f1(t, y) = f(t, τ(t, y)),

τ(t, y) = max{u(t), min(y, v(t))}.
A solution for (8)–(10) is a fixed point of the operator N : PC(J,R) −→
PC(J,R) defined by

N(y)(t) = y0 +
1

Γ(α)

∑
0<tk<t

tk∫

tk−1

(tk − s)α−1f1(s, y(s)) ds+

+
1

Γ(α)

t∫

tk

(t− s)α−1f1(s, y(s)) ds +
∑

0<tk<t

Ik

(
τ(t−k , y(t−k ))

)
.
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Note that f1 is a continuous function and from (H2) there exists M > 0
such that

|f1(t, y)| ≤ M for each t ∈ J and y ∈ R. (11)
Also, by the definition of τ and from (H3) we have

u(t+k ) ≤ Ik(τ(tk, y(tk))) ≤ v(t+k ), k = 1, . . . , m. (12)

Set

η = |y0|+ M

Γ(α + 1)

m∑

k=1

(tk − tk−1)α+

+
MTα

Γ(α + 1)
+

m∑

k=1

max
{|u(t+k )|, |v(t+k )|}

and consider the subset

D =
{
y ∈ PC(J,R) : ‖y‖PC ≤ η

}
.

Clearly D is a closed, convex subset of PC(J,R) and N maps D into D.
We shall show that N satisfies the assumptions of Schauder’s fixed point
theorem. The proof will be given in several steps.

Step 1: N is continuous.

Let {yn} be a sequence such that yn → y in D. Then for each t ∈ J
∣∣N(yn)(t)−N(y)(t)

∣∣ ≤

≤ 1
Γ(α)

∑
0<tk<t

tk∫

tk−1

(tk − s)α−1
∣∣∣f1(s, yn(s))− f1(s, y(s))

∣∣∣ ds+

+
1

Γ(α)

t∫

tk

(t− s)α−1
∣∣∣f1(s, yn(s))− f1(s, y(s))

∣∣∣ ds

+
∑

0<tk<t

∣∣∣Ik

(
τ
(
t−k , yn(t−k )

))− Ik

(
τ
(
t−k , y(t−k )

))∣∣∣.

Since f1, Ik, k = 1, . . . , m, and τ are continuous functions, we have

‖N(yn)−N(y)‖PC → 0 as n →∞.

Step 2: N(D) is bounded.

This is clear since N(D) ⊂ D and D is bounded.

Step 3: N(D) is equicontinuous.

Let τ1, τ2 ∈ J , τ1 < τ2, and y ∈ D. Then

∣∣N(τ2)−N(τ1)
∣∣ =

1
Γ(α)

∑
0<tk<τ2−τ1

tk∫

tk−1

∣∣(tk − s)α−1
∣∣ ∣∣f1(s, y(s))

∣∣ ds+
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+
1

Γ(α)

τ1∫

0

|(τ2 − s)α−1 − (τ1 − s)α−1
∣∣f1(s, y(s))v| ds+

+
1

Γ(α)

τ2∫

τ1

∣∣(τ2 − s)α−1
∣∣ ∣∣f1(s, y(s))

∣∣ ds +
∑

0<tk<τ2−τ1

∣∣∣Ik

(
τ
(
t−k , y(t−k )

))∣∣∣ ≤

≤ M

Γ(α + 1)
(tk − tk−1)α +

M

Γ(α)

τ1∫

0

∣∣(τ2 − s)α−1 − (τ1 − s)α−1
∣∣ ds+

+
M

Γ(α + 1)
(τ2 − τ1)α +

∑
0<tk<τ2−τ1

∣∣∣Ik

(
τ
(
t−k , y(t−k )

))∣∣∣.

As τ1 −→ τ2, the right-hand side of the above inequality tends to zero. As a
consequence of Steps 1–3 together with the Arzelá–Ascoli theorem, we can
conclude that N : D → D is continuous and compact. From Schauder’s
theorem we deduce that N has a fixed point y which is a solution of the
problem (8)–(10).

Step 4: The solution y of (8)–(10) satisfies

u(t) ≤ y(t) ≤ v(t) for all t ∈ J.

Let y be the above solution of (8)–(10). We prove that

y(t) ≤ v(t) for all t ∈ J.

Assume that y − v attains a positive maximum on [t+k , t−k+1] at tk ∈
[t+k , t−k+1] for some k = 0, . . . ,m; that is,

(y − v)(tk) = max
{
y(t)− v(t) : t ∈ [t+k , t−k+1]

}
> 0 for some k = 0, . . . ,m.

We distinguish the following cases.

Case 1. If tk ∈ (t+k , t−k+1), there exists t∗k ∈ (t+k , t−k+1) such that

y(t∗k)− v(t∗k) ≤ 0, (13)

and
y(t)− v(t) > 0 for all t ∈ (t∗k, tk]. (14)

By the definition of τ one has
cDαy(t) = f(t, v(t)) for all t ∈ [t∗k, tk].

An integration on [t∗k, t] for each t ∈ [t∗k, tk] yields

y(t)− y(t∗k) =
1

Γ(α)

t∫

t∗k

(t− s)α−1f(s, v(s)) ds. (15)

From (15) and using the fact that v is an upper solution to (1)–(3) we get

y(t)− y(t∗k) ≤ v(t)− v(t∗k). (16)
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Thus from (13), (14) and (16) we obtain the contradiction

0 < y(t)− v(t) ≤ y(t∗k)− v(t∗k) ≤ 0 for all t ∈ [t∗k, tk].

Case 2. If tk = t+k , k = 1, . . . , m, then

v(t+k ) < Ik(τ(t−k , y(t−k )) ≤ v(t+k ),

which is a contradiction. Thus

y(t) ≤ v(t) for all t ∈ [0, T ].

Analogously, we can prove that

y(t) ≥ u(t) for all t ∈ [0, T ].

This shows that the problem (8)–(10) has a solution in the interval [u, v]
which is solution of (1)–(3). ¤
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