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Abstract. A Picone-type identity and the Sturm-type comparison the-
orems are established for ordinary differential equations of the form

(
p(t)ϕ(u(2m))

)(2m) + q(t)ϕ(u) = 0

and (
P (t)ϕ(v(2m))

)(2m) + Q(t)ϕ(v) = 0,

where m≥1, p, P ∈ C2m([a, b], (0,∞)), q, Q ∈ C([a, b],R), ϕ(s) := |s|α sgn s
and α > 0.
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îâäæñéâ. øãâñèâĲîæãæ áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæïŽåãæï
(
p(t)ϕ(u(2m))

)(2m) + q(t)ϕ(u) = 0
áŽ (

P (t)ϕ(v(2m))
)(2m) + Q(t)ϕ(v) = 0,

ïŽáŽù m ≥ 1, p, P ∈ C2m([a, b], (0,∞)), q, Q ∈ C([a, b],R), ϕ(s) :=
|s|α sgn s áŽ α > 0, áŽáàâêæèæŽ ìæçëêâï ðæìæï æàæãëĲŽ áŽ öðñîéæï
öâáŽîâĲæï åâëîâéŽ.



Generalized Picone Identity and Comparison of Half-Linear DEs of Order 4m 43

1. Introduction

In the classical Sturm comparison theory for linear self-adjoint differential
equations of the second order a fundamental role plays by the so-called Pi-
cone’s formula (see [14]). It states that if x, px′, y and Py′ are continuously
differentiable functions on an interval I with y(t) 6= 0, then

d

dt

[x

y

(
px′y − Pxy′

)]
=

= −x2

y
(Py′)′ + x(px′)′ + (p− P )x′2 + P

(
x′ − x

y
y′

)2

. (1.1)

If, in addition, x and y solve in I the equations

−(
p(t)u′

)′ + q(t)u = 0 (1.2)

and
−(

P (t)v′
)′ + Q(t)v = 0, (1.3)

respectively, where 0 < P (t) ≤ p(t) and Q(t) ≤ q(t) in I, and x have
consecutive zeros at a and b (a < b), then integrating (1.1) between a and
b, we obtain

0 =

b∫

a

[(
q(t)−Q(t)

)
x2 +

(
p(t)− P (t)

)
x′2 + P (t)

(
x′ − x

y
y′

)2
]

dt (1.4)

and the Sturmian conclusion about the existence of a zero in [a, b] for any
solution y of the majorant equation (1.3) readily follows from (1.4).

Generalizations and extensions of the Sturm’s comparison principle and
underlying Picone-type identities to nonlinear equations and higher-order
(ordinary and partial) differential operators have been obtained by various
authors. We refer, in particular, to the papers [1]–[17] and the references
cited therein.

The purpose of the present paper is to extend (1.1) to half-linear ordinary
differential operators of the form

lα[x] ≡ (
pϕ(x(2m))

)(2m) + qϕ(x) (1.5)

and
Lα[y] ≡ (

Pϕ(y(2m))
)(2m) + Qϕ(y), (1.6)

where m ≥ 1, p, P ∈ C2m([a, b], (0,∞)), q, Q ∈ C([a, b],R) and ϕ(s) :=
|s|α−1s for s 6= 0, α > 0, and ϕ(0) = 0. Next, in Section 3, we illustrate the
usefulness of the obtained identity by deriving Sturm’s comparison theorems
and other qualitative results concerning half-linear differential equations of
the order 4m.

In the linear case, i.e. if (1.5) and (1.6) reduce to a pair of 4mth-order
self-adjoint operators of the form l1[x] ≡ (px(2m))(2m) + qx and L1[y] ≡
(Py(2m))(2m)+Qy, respectively, two different kinds of Picone-type identities
are known in the literature. The first one which can be found in Kusano
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et al. [12] says (when specialized to (1.5) and (1.6)), that if x ∈ Dl1(I),
y ∈ DL1(I), and none of y, y′, . . . , y(2m−1) vanishes in I, then

d

dt

{ 2m−1∑

k=0

(−1)k x(k)

y(k)

[
x(k)(Py(2m))(2m−k−1)−y(k)(px(2m))(2m−k−1)

]}
=

=
x2

y
L1[y]− xl1[x] + (q −Q)x2 + (p− P )

[
x(2m)

]2+

+P
[
x(2m)− x(2m−1)

y(2m−1)
y(2m)

]2

−y(2m−1)
(
Py(2m)

)′[x(2m−1)

y(2m−1)
− x(2m−2)

y(2m−2)

]2

. (1.7)

A typical comparison result based on the above formula is the following
theorem (see [12]).

Theorem A. Suppose there exists a nontrivial real-valued function u ∈
Dl1([a, b]) which satisfies

b∫

a

ul1[u] dt ≤ 0,

u(a) = u′(a) = · · · = u(2m−1)(a) = u(b) = · · · = u(2m−1)(b) = 0

and
b∫

a

[(
p(t)− P (t)

)(
u(2m)

)2 +
(
q(t)−Q(t)

)
u2

]
dt ≥ 0.

If v ∈ DL1([a, b]) satisfies

vL1[v] ≥ 0 in (a, b), where P (t) ≥ 0,

v(k)
[
P (t)v(2m)

](2m−k) ≥ 0 in (a, b), 1 ≤ k ≤ 2m− 1,

and
[
P (t)v(2m)

](2m−ν) 6= 0 in (a, b) for some ν, 1 ≤ ν ≤ 2m− 1,

then at least one of v, v′, . . . , v(2m−1) has a zero in (a, b).

Recently, Kusano–Yoshida’s formula (1.7) was generalized to half-linear
ordinary differential operators of an arbitrary even order (see [5]).

The second Picone type identity applied to (1.5) and (1.6) has been
obtained by N. Yoshida [16]. The specialization to the one-dimensional case
studied here says that if x∈Dl1(I), y∈DL1(I) and none of y, y′, . . . , y(2m−2)

vanishes in I, then

d

dt

{
m−1∑

k=0

x(2m−2k−2)

y(2m−2k−2)

[
x(2m−2k−2)

(
Py(2m)

)(2k+1)−

− y(2m−2k−2)
(
px(2m)

)(2k+1)
]
+
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+
m−1∑

k=0

[(
px(2m)

)(2m−2k−2)
x(2k+1) − (

Py(2m)
)(2k)

(
(x(2m−2k−2))2

y(2m−2k−2)

)′]}
=

=
x2

y
L1[y]− xl1[x] + (p− P )

[
x(2m)

]2 + (q −Q)x2+

+ P
[
x(2m) − x(2m−2)

y(2m−2)
y(2m)

]2

+

+
m−1∑

k=1

(
Py(2m)

)(2k)

y(2m−2k)

[
x(2m−2k) − x(2m−2k−2)

y(2m−2k−2)
y(2m−2k)

]2

−

− 2
m−1∑

k=0

(
Py(2m)

)(2k)

y(2m−2k−2)

[
x(2m−2k−1) − x(2m−2k−2)

y(2m−2k−2)
y(2m−2k−1)

]2

. (1.8)

The following comparison theorem can be easily obtained with the help
of the identity (1.8) (see [16]).

Theorem B. Assume that there exists a nontrivial function u∈Dl1([a, b])
which satisfies

b∫

a

ul1[u] dt ≤ 0,

u(a) = u′(a) = · · · = u(2m−1)(a) = u(b) = u′(b) = · · · = u(2m−1)(b) = 0

and

V [u] ≡
b∫

a

[
(p(t)− P (t))

(
u(2m)

)2 + (q(t)−Q(t))u2
]
dt ≥ 0.

If v ∈ DL1([a, b]) satisfies

L1[v] ≥ 0 in (a, b),

(−1)kv(2k)(t) > 0 at some point t ∈ (a, b), 0 ≤ k ≤ m− 1,

(−1)m+k)
(
Pv(2m)

)(2k) ≥ 0 in (a, b), 0 ≤ k ≤ m− 2,

(Pv(2m))(2m−2) < 0 in (a, b),

then at least one of the functions v, v′, . . . , v(2m−2) must vanish at some
point of [a, b].

2. The Generalized Picone’s Identity

Let p, P ∈ C2m([a, b], (0,∞)), m ≥ 1 and q, Q ∈ C([a, b],R). For a fixed
α > 0 we define the function ϕ : R → R by ϕ(s) = |s|α−1s for s 6= 0 and
ϕ(0) = 0, and consider ordinary differential operators of the form

lα[x] =
(
p(t)ϕ(x(2m))

)(2m) + q(t)ϕ(x)
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and
Lα[y] =

(
P (t)ϕ(y(2m))

)(2m) + Q(t)ϕ(y)

with the domains Dlα(a, b) (resp., DLα(a, b)) defined to be the sets of all
functions x (resp., y) of the class C2m([a, b],R) such that pϕ(x(2m)) (resp.,
Pϕ(y(2m))) are in C2m((a, b),R)

⋂
C([a, b],R).

Also, by Φα we denote the form defined for X, Y ∈ R and α > 0 by

Φα(X, Y ) := |X|α+1 + α|Y |α+1 − (α + 1)Xϕ(Y ).

According to the Young inequality, it follows that Φα(X,Y ) ≥ 0 for all
X, Y ∈ R and the equality holds if and only if X = Y .

We begin with the following lemma which can be verified by a routine
computation.

Lemma 2.1. If x ∈ C2m([a, b],R), y ∈ DLα((a, b)) and none of y, y′, . . . ,
y(2m−2) vanishes in (a, b), then

d

dt

{
m−1∑

k=0

[
− |x(2m−2k−2)|α+1

ϕ(y(2m−2k−2))
(
Pϕ(y(2m))

)(2k+1)+

+
( |x(2m−2k−2)|α+1

ϕ(y(2m−2k−2))

)′(
Pϕ(y(2m))

)(2k)
]}

=

= −|x|
α+1

ϕ(y)
Lα[y]+Q|x|α+1+P |x(2m)|α+1−PΦα

(
x(2m),

x(2m−2)

y(2m−2)
y(2m)

)
−

−
m−1∑

k=1

(
Pϕ(y(2m))

)(2k)

ϕ
(
y(2m−2k)

) Φα

(
x(2m−2k),

x(2m−2k−2)

y(2m−2k−2)
y(2m−2k)

)
+

+ α(α + 1)
m−1∑

k=0

(
Pϕ(y(2m))

)(2k)

ϕ
(
y(2m−2k−2)

) ∣∣x(2m−2k−2)
∣∣α−1×

×
[
x(2m−2k−1) − x(2m−2k−2)

y(2m−2k−2)
y(2m−2k−1)

]2

. (2.1)

We now establish a stronger form of Picone’s identity in which the rela-
tively weak hypothesis from Lemma 2.1 that x is any 2m-times continuously
differentiable function is replaced by the assumption that x is from the do-
main Dlα of the operator lα.

Lemma 2.2. If x ∈ Dlα((a, b)), y ∈ DLα((a, b)) and none of y, y′, . . . ,
y(2m−2) vanishes in (a, b), then

d

dt

{
m−1∑

k=0

[ |x(2m−2k−2)|α+1

ϕ(y(2m−2k−2))
(
Pϕ(y(2m))

)(2k+1)−

− (
Pϕ(y(2m))

)(2k)
( |x(2m−2k−2)|α+1

ϕ(y(2m−2k−2))

)′
+
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+
(
pϕ(x(2m))

)(2m−2k−2)
x(2k+1) − x(2m−2k−2)

(
pϕ(x(2m))

)(2k+1)
]}

=

=
|x|α+1

ϕ(y)
Lα[y]− xlα[x] + (p− P )|x(2m)|α+1 + (q −Q)|u|α+1+

+ PΦα

(
x(2m),

x(2m−2)

y(2m−2)
y(2m)

)
+

+
m−1∑

k=1

(
Pϕ(y(2m))

)(2k)

ϕ(y(2m−2k))
Φα

(
x(2m−2k),

x(2m−2k−2)

y(2m−2k−2)
y(2m−2k)

)
−

− α(α + 1)
m−1∑

k=0

(
Pϕ(y(2m))

)(2k)

ϕ(y(2m−2k−2))

∣∣x(2m−2k−2)
∣∣α−1×

×
[
x(2m−2k−1) − x(2m−2k−2)

y(2m−2k−2)
y(2m−2k−1)

]2

. (2.2)

3. Applications

As the first application of the identity (2.1) we obtain the following result.

Theorem 3.1. If there exists a nontrivial function u ∈ C2m([a, b],R)
such that

u(a) = u′(a) = · · · = u(2m−1)(a) = u(b) = · · · = u(2m−1)(b) = 0 (3.1)

and

Mα[u] ≡
b∫

a

[
P (t)|u(2m)|α+1 + Q(t)|u|α+1

]
dt ≤ 0, (3.2)

then there does not exist a v ∈ DLα([a, b]) satisfying

Lα[v] ≥ 0 in (a, b), (3.3)

v(a) > 0, v(b) > 0, (3.4)

(−1)kv(2k) > 0 in [a, b], 1 ≤ k ≤ m− 1, (3.5)

(−1)m+k
(
Pϕ(v(2m))

)(2k) ≥ 0 in (a, b), 0 ≤ k ≤ m− 2, (3.6)

and (
Pϕ(v(2m))

)(2m−2)
< 0 in (a, b). (3.7)

Proof. Suppose to the contrary that there exists a v ∈ DLα([a, b]) satisfying
(3.3)–(3.7). Since v(a) > 0, v(b) > 0 and v′′(t) < 0 in (a, b), it follows that
v(t) > 0 on [a, b]. Integrating the identity (2.1) on [a, b], we obtain

0 ≥ Mα[u]−
b∫

a

|u|α+1

vα
Lα[v] dt ≥
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≥ −α(α + 1)

b∫

a

(Pϕ(v(2m)))(2m−2)

vα
|u|α−1

(
u′ − u

v
v′

)2

dt ≥ 0.

It follows that u′ − uv′/v = 0 in (a, b) and therefore u/v = k in [a, b] for
some nonzero constant k. Since u(a) = u(b) = 0 and v(a) > 0, v(b) > 0, we
have a contradiction. Hence there can exist no v satisfying (3.3)–(3.7). ¤

Theorem 3.2. If there exists a nontrivial u ∈ C2m([a, b],R) satisfying
(3.1) and (3.2), then every solution v ∈ DLα((a, b)) of the inequality (3.3)
satisfying (3.5)–(3.7) and

v(t0) > 0 for some t0 ∈ (a, b) (3.8)

has zero in [a, b].

Proof. If the function v satisfies (3.3), (3.5)–(3.7) and (3.8), then either
v(a) < 0, and hence v, must vanish somewhere in (a, b), or v(a) ≥ 0. In the
latter case, however, Theorem 3.1 implies that v(a) = 0 or v(b) = 0, and
thus the proof is complete. ¤

As an application of the identity (2.2), we derive the Sturm-type com-
parison theorem. It belongs to weak comparison results in the sense that
the conclusion regarding to v applies to [a, b] rather than (a, b).

Theorem 3.3. If there exists a nontrivial u ∈ Dlα((a, b)) such that
b∫

a

ulα[u] dt ≤ 0, (3.9)

u(a) = u′(a) = · · · = u(2m−1)(a) = u(b) = · · · = u(2m−1)(b) = 0, (3.10)

Vα[u] ≡
b∫

a

[(
p(t)− P (t)

)|u(2m)|α+1 +
(
q(t)−Q(t)

)|u|α+1
]
dt ≥ 0, (3.11)

and if v ∈ DLα((a, b)) satisfies

Lα[v] ≥ 0 in (a, b), (3.12)

(−1)kv(2k)(tk) > 0 at some point tk ∈ (a, b), 0 ≤ k ≤ m− 1, (3.13)

(−1)m+k
(
Pϕ(v(2m))

)(2k) ≥ 0 in (a, b), 0 ≤ k ≤ m− 2, (3.14)

and (
Pϕ(v(2m))

)(2m−2)
< 0 in (a, b), (3.15)

then at least one of v, v′′, . . . , v(2m−2) vanishes somewhere in [a, b].

Proof. Suppose that none of v, v′, . . . , v(2m−2) vanishes in [a, b]. From the
identity (2.2) integrated on [a, b] we obtain, in view of the the conditions of
the theorem, that
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0=Vα[u]+

b∫

a

|u|α+1

vα
Lα[v] dt−

b∫

a

ulα[u] dt+

b∫

a

PΦα

(
u(2m),

u(2m−2)

v(2m−2)
v(2m)

)
dt+

+

b∫

a

{ m−1∑

k=1

(Pϕ(v(2m))
)(2k)

ϕ(v(2m−2k))
Φα

(
u(2m−2k),

u(2m−2k−2)

v(2m−2k−2)
v(2m−2k)

)}
dt−

− α(α + 1)

b∫

a

{ m−1∑

k=0

(
Pϕ(v(2m))

)(2k)

ϕ(v(2m−2k−2))
|u(2m−2k−2)|α−1×

×
[
u2m−2k−1) − u(2m−2k−2)

v(2m−2k−2)
v(2m−2k−1)

]2
}

dt ≥

≥ −α(α + 1)

b∫

a

(
Pϕ(v(2m))

)(2m−2)

vα
|u|α−1

(
u′ − u

v
v′

)2

dt ≥ 0.

Consequently, u′ − uv′/v = 0 in (a, b), that is, u/v = k in (a, b), and hence
on [a, b] by continuity, for some nonzero constant k. However, this is not the
case since u(a) = u(b) = 0, whereas v(t) > 0 on [a, b]. This contradiction
shows that at least one of v, v′, . . . , v(2m−2) must vanish in [a, b]. ¤

Finally, we use the identity (2.2) to obtain a lower bound for the first
eigenvalue of the nonlinear eigenvalue problem

lα[u] = λϕ(u) in (a, b), (3.16)

u(a) = u′(a) = · · · = u(2m−1)(a) = u(b) = · · · = u(2m−1)(b) = 0. (3.17)

Theorem 3.4. Let λ1 be the first eigenvalue of the problem (3.16)–(3.17)
and u1 ∈ Dlα((a, b)) be the corresponding eigenfunction. If there exists a
function v ∈ DLα((a, b)) such that

(−1)kv(2k) > 0 in [a, b], 0 ≤ k ≤ m− 1,

(−1)m+k
(
Pϕ(v(2m))

)(2k) ≥ 0 in (a, b), 0 ≤ k ≤ m− 1,

and if Vα[u1] ≥ 0, then λ1 ≥ inf
t∈(a,b)

[Lα[v]
vα

]
.

Proof. The identity (2.2) in view of the above hypotheses implies that

λ1

b∫

a

|u1|α+1 dt−
b∫

a

|u1|α+1 Lα[v]
vα

dt ≥ 0,

from which the conclusion follows readily. ¤
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4. J. Jaroš, Comparison theorems for half-linear equations of fourth order. Equadiff 9 –
Conference on Differential Equations and Their Applications (Brno, Czech Republic,
August 25–29, 1997). Abstracts and Enlarged Abstracts (Ed. by Z. Došlá, J. Kalas,
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