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Abstract. In a finite or infinite open interval, the linear differential
equations of second order with singularities at endpoints are considered.
By making use of principal solutions at endpoints of the interval, we obtain
sharper forms of the Strum comparison theorem.
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îâäæñéâ. ïŽïîñè Žê ñïŽïîñèë öñŽèâáöæ àŽêýæèñèæŽ éâëîâ îæ-
àæï ûîòæãæ áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæ ïæêàñèŽîëĲâĲæå ïŽäôãîæå
ûâîðæèâĲöæ. Žôêæöêñèæ ûâîðæèâĲæï éæéŽîå éåŽãŽîæ ŽéëêŽýïêâĲæï àŽ-
éëõâêâĲæå áŽáàâêæèæŽ ŽîŽàŽñéþëĲâïâĲŽáæ öðñîéæï öâáŽîâĲæï åâë-
îâéŽ.
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1. Introduction

We consider two differential equations

(p(t)u′)′ + q(t)u = 0, (1.1)

(P (t)v′)′ + Q(t)v = 0 (1.2)

on the intervals (α, ω) with −∞ ≤ α < ω ≤ ∞ and [a, ω) with a ∈ (α, ω).
Throughout the paper we assume, in (1.1) and (1.2), that p(t), q(t), P (t),
and Q(t) are continuous functions on (α, ω), and satisfy

p(t) ≥ P (t) > 0 and Q(t) ≥ q(t) on (α, ω). (1.3)

We consider the Sturm comparison theorems in the case where the con-
tinuity of the coefficients of equations is assumed only on (α, ω). The possi-
bility that the interval is unbounded is not excluded. Concerning the Sturm
comparison theorems for such singular equations, several results are sum-
marized in Reid [13] and Swanson [14]. In this paper, motivated by the
recent works by Chuaqui et. al. [2] and Aharonov and Elias [1], we will
show sharper forms of the Strum’s comparison theorem by making use of
the principal solutions at endpoints of the interval.

Let us recall the definitions of principal and nonprincipal solutions to
(1.1). Assume that (1.1) is nonoscillatory at t = ω. It is well known [5,
Ch. XI, Theorem 6.4] that (1.1) has a unique (neglecting a constant factor)
solution u0(t) satisfying

ω∫
ds

p(s)u0(s)2
= ∞, (1.4)

and any solution u1(t), linearly independent of u0(t), satisfies
ω∫

ds

p(s)u1(s)2
< ∞ (1.5)

and u0(t)/u1(t) → 0 as t → ω. A solution u0(t) satisfying (1.4) is called
a principal solution at t = ω, and a solution u1(t) satisfying (1.5) is called
a nonprincipal solution at t = ω. The principal and nonprincipal solutions
of (1.1) at t = α are defined similarly. For further information about the
properties of principal and nonprincipal solutions, we refer to Hartman [5,
Ch. XI] and Elbert and Kusano [3].

First we consider (1.1) and (1.2) on a half-open interval [a, ω) with a ∈
(α, ω). The Sturm’s comparison theorem can be stated usually as follows:
(See, e.g., [5, Ch. XI, Theorem 3.1].)

Theorem A. Let u(t) 6≡ 0 be a solution of (1.1) on [a, ω), and let v(t)
be a solution of (1.2) on [a, ω). Assume that, for some n ∈ N = {1, 2, . . .},
the solution u(t) has exactly n zeros t = t1 < t2 < · · · < tn in (a, ω). If
either u(a) = 0 or

u(a) 6= 0, v(a) 6= 0, and
p(a)u′(a)

u(a)
≥ P (a)v′(a)

v(a)
,
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then v(t) has one of the following properties:

(i) v(t) has at least n zeros in (a, tn);

(ii) v(t) is a constant multiple of u(t) on [a, tn] and

p(t) ≡ P (t), q(t) ≡ Q(t) on [a, tn].

In the case where u(t) 6= 0 on (tn, ω) in Theorem A, it seems interesting
to put a question whether a solution v(t) of (1.2) has at least one zero in
(tn, ω). Our results are the following.

Theorem 1. Assume that (1.1) is nonoscillatory at t = ω. Let u0(t) be
a principal solution of (1.1) at t = ω, and let v(t) be a solution of (1.2) on
[a, ω). Assume that u0(t) > 0 on (a, ω). If either u0(a) = 0 or

u0(a) 6= 0, v(a) 6= 0, and
p(a)u′0(a)

u0(a)
≥ P (a)v′(a)

v(a)
, (1.6)

then v(t) has one of the following properties:

(i) v(t) has at least one zero in (a, ω);

(ii) v(t) is a constant multiple of u0(t) on [a, ω), and

p(t) ≡ P (t), q(t) ≡ Q(t) on [a, ω).

Combining Theorems A and 1, we obtain the following

Theorem 2. Assume that (1.1) is nonoscillatory at t = ω. Let u0(t) be
a principal solution of (1.1) at t = ω, and let v(t) be a solution of (1.2) on
[a, ω). Assume that u(t) has exactly n zeros in (a, ω) for some n ∈ N. If
either u0(a) = 0 or (1.6) holds, then v(t) has one of the following properties:

(i) v(t) has at least n + 1 zeros in (a, ω);

(ii) v(t) is a constant multiple of u0(t) on [a, ω) and p(t) ≡ P (t), q(t) ≡
Q(t) on [a, ω).

Next, motivated by [1,2,11,12], we consider (1.1) and (1.2) on the interval
(α, ω) with −∞ ≤ α < ω ≤ ∞.

Theorem 3. Assume that there exists a solution u0(t) of (1.1) such that
u0(t) has exactly n − 1 zeros in (α, ω) for some n ∈ N and is principal at
both points t = α and t = ω, that is,

∫

α

1
p(t)u0(t)2

dt = ∞ and

ω∫
1

p(t)u0(t)2
dt = ∞. (1.7)

If v(t) is a solution of (1.2) on (α, ω), then v(t) has one of the following
properties:

(i) v(t) has at least n zeros in (α, ω);

(ii) v(t) is a constant multiple of u0(t) on (α, ω), and p(t) ≡ P (t),
q(t) ≡ Q(t) on (α, ω).
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Let us consider some corollaries of Theorem 3. For the case where p(t) ≡
P (t) and q(t) ≡ Q(t) on (α, ω) in Theorem 3, we will obtain the uniqueness
of solution of (1.1) with prescribed numbers of zeros in (α, ω).

Corollary 1. Assume that there exists a solution u0(t) of (1.1) such that
u0(t) has exactly n − 1 zeros in (α, ω) for some n ∈ N and satisfies (1.7).
Then any solution, linearly independent of u0, has exactly n zeros in (α, ω),
that is, the solution of (1.1) with n − 1 zeros in (α, ω) is unique up to a
constant factor.

In the case where

p(t) 6≡ P (t) or q(t) 6≡ Q(t) on (α, ω), (1.8)

as a corollary of Theorem 3, we obtain the following

Corollary 2. Assume that (1.8) holds. If there exists a solution u0(t) of
(1.1) such that u0(t) has exactly n− 1 zeros in (α, ω) for some n ∈ N and
satisfies (1.7), then every solution v of (1.2) has at least n zeros in (α, ω).

Remark 1.

(i) In the case where u0(t) > 0 and p(t) ≡ P (t) ≡ 1 on (α, ω), the
result in Corollary 2 was shown in [1, Theorem 1 (i)] by a different
argument.

(ii) Let us consider the equation with a parameter λ > 0:

(p(t)u′)′ + λq(t)u = 0 (1.9)

on the interval (α, ω). In (1.9) we assume that q ≥ 0, q 6≡ 0 on
(α, ω). For each n ∈ N, let us denote by λn the parameter λ such
that (1.9) has a solution u0 which has exactly n− 1 zeros in (α, ω)
and satisfies (1.7). Corollary 2 implies that λn is unique for each
n ∈ N if it exists. The existence of a sequence {λn}∞n=1 was shown
by Kusano and M. Naito [7,8] for the equation (1.9) on (a,∞) under
suitable conditions on p and q. (See also [10].) The extension of the
results to the half-linear differential equations was done by [4, 9].

We will show that the condition (1.7) is likewise necessary for the unique-
ness of a solution with prescribed numbers of zeros.

Theorem 4. Assume that (1.1) has a solution u(t) which has exactly
n − 1 zeros in (α, ω) with some n ∈ N, and that any solution, linearly
independent of u, has n zeros in (α, ω). Then u(t) is principal at both
points t = α and t = ω, that is, (1.7) holds with u0 = u.

Finally, we consider comparison results on the existence of positive so-
lutions of (1.1) and (1.2). Note that, by Corollary 2, if (1.8) holds, and if
(1.1) has a positive solution u0 satisfying (1.7), then (1.2) has no positive
solution.
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Theorem 5.

(i) Assume that (1.8) holds. If (1.2) has a positive solution on (α, ω),
then (1.1) has positive solutions u(t), u0(t), ũ0(t) on (α, ω) satisfy-
ing

∫

α

1
p(t)u(t)2

dt < ∞,

ω∫
1

p(t)u(t)2
dt < ∞, (1.10)

∫

α

1
p(t)u0(t)2

dt < ∞,

ω∫
1

p(t)u0(t)2
dt = ∞, (1.11)

and
∫

α

1
p(t)ũ0(t)2

dt = ∞,

ω∫
1

p(t)ũ0(t)2
dt < ∞, (1.12)

respectively.

(ii) Assume that (1.1) has a positive solution u(t) on (α, ω) satisfying
∫

α

1
p(t)u(t)2

dt < ∞ or

ω∫
1

p(t)u(t)2
dt < ∞. (1.13)

Then there exist continuous functions P (t) and Q(t) satisfying (1.3)
with (1.8) such that (1.2) has a positive solution on (α, ω).

Remark 2. Some concrete examples of Theorem 5 (ii) were constructed
by [1].

Theorem 1 is proved by employing Piconne’s identity [6] together with
some properties of principal solutions. We prove Theorem 3 by combining
comparison results for the half-open intervals (α, a] and [a, ω). Making use
of two principal solutions at t = α and t = ω, we obtain Theorems 4 and 5.

2. Proofs of Theorems

To prove Theorem 1, we need the following lemmas.

Lemma 1. Assume that q(t) ≤ 0 on [a, ω) in (1.1). Then (1.1) is
nonoscillatory at t = ω and a principal solution u0(t) of (1.1) satisfies
u0(t) > 0 and u′0(t) ≤ 0 on [a, ω).

Lemma 2. Assume that (1.1) is nonoscillatory at t = ω. Let u0(t) be
a principal solution of (1.1), and let v(t) be a solution of (1.2) satisfying
v(t) > 0 on [T, ω) with some T ≥ a. Then u0(t) > 0 on [T, ω) and

p(t)u′0(t)
u0(t)

≤ P (t)v′(t)
v(t)

on [T, ω).

Lemmas 1 and 2 are shown in [5, Ch. XI, Corollaries 6.4 and 6.5]. How-
ever, for reader’s convenience, we give slightly simpler proofs of them.
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Proof of Lemma 1. Let ui(t), i = 1, 2, be solutions of (1.1) determined by
ui(a) = 1 and u′i(a) = i. It is easy to see that (p(t)u′i(t))

′ ≥ 0 and ui(t) > 0
on [a, ω), i = 1, 2. Since u1(t) and u2(t) are linearly independent, either
u1(t) or u2(t) is a nonprincipal solution. Without loss of generality, we may
assume that u1(t) is a nonprincipal solution. By [5, Ch. XI, Corollary 6.3],

u0(t) = u1(t)

∞∫

t

ds

p(s)u1(s)2
for a ≤ t < ω,

is well defined and a principal solution of (1.1). Then we have u0(t) > 0 on
[a, ω). We obtain

p(t)u′0(t) = p(t)u′1(t)

∞∫

t

ds

p(s)u1(s)2
− 1

u1(t)
for a ≤ t < ω.

Since p(t)u′1(t) is nondecreasing, we have

p(t)u′0(t) ≤
∞∫

t

u′1(s)
u1(s)2

ds− 1
u1(t)

for a ≤ t < ω. (2.1)

Note here that
∞∫

t

u′1(s)
u1(s)2

ds− 1
u1(t)

=

= lim
τ→∞

( τ∫

t

u′1(s)
u1(s)2

ds− 1
u1(t)

)
= lim

τ→∞

(
− 1

u1(τ)

)
≤ 0.

Thus, from (2.1), we obtain u′0(t) ≤ 0 on [a, ω). ¤

Proof of Lemma 2. Let

w(t) = exp
( t∫

T

P (s)v′(s)
p(s)v(s)

ds

)
for T ≤ t < ω.

Then w(t) > 0 on [T, ω) and satisfies

p(t)w′(t) =
P (t)v′(t)w(t)

v(t)
for T ≤ t < ω. (2.2)

It follows that

(p(t)w′)′ = (P (t)v′)′
w

v
+ P (t)v′

(w

v

)′
.

From (2.2) we note that
(w

v

)′
=

vw′ − v′w
v2

=
w′

v
− v′w

v2
=

( 1
p(t)

− 1
P (t)

) P (t)v′w
v2

.
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Thus, w satisfies

(p(t)w′)′ + Q0(t)w = 0 for T ≤ t < ω,

where

Q0(t) = Q(t) +
( 1

P (t)
− 1

p(t)

)(P (t)v′(t)
v(t)

)2

for T ≤ t < ω.

Let

z(t) =
u0(t)
w(t)

on [T, ω).

Since z(t) satisfies

p(t)w(t)2z′(t) = p(t)u′0(t)w(t)− p(t)u0(t)w′(t),

we see that

(p(t)w(t)2z′)′ + w(t)2(q(t)−Q0(t))z = 0 for T ≤ t < ω. (2.3)

Since u0(t) is a principal solution, by [5, Ch. XI, Lemma 2.1], we have
∞∫

ds

p(s)w(s)2z(s)2
=

∞∫
ds

p(s)u0(s)2
= ∞.

Thus z(t) is a principal solution of (2.3). Note here that Q0(t) ≥ Q(t) ≥ q(t)
on [T, ω). Then, by Lemma 1, we have z(t) > 0 and z′(t) ≤ 0 on [T, ω),
which implies u0(t) > 0 on [T, ω). Then it follows that

u′0(t)
u0(t)

=
w′(t)
w(t)

+
z′(t)
z(t)

≤ w′(t)
w(t)

for T ≤ t < ω.

From (2.2) we conclude that

p(t)u′0(t)
u0(t)

≤ p(t)w′(t)
w(t)

=
P (t)v′(t)

v(t)
for T ≤ t < ω. ¤

Proof of Theorem 1. Assume that v(t) > 0 on (a, ω). By Picone’s identity
[6], we have

d

dt

(u0

v
(pu′0v−Pu0v

′)
)

= (Q−q)u2
0 +(p−P )u′0

2 +
P (u′0v − u0v

′)2

v2
. (2.4)

Note that if u0(a) = v(a) = 0, we obtain lim
t→a

u0(t)2/v(t) = 0 by l’Hospital’s

rule. Then we have, if u0(a) = 0,

lim
t→a

u0(t)
v(t)

(
p(t)u′0(t)v(t)− P (t)u0(t)v′(t)

)
= 0.

If (1.6) holds, then

lim
t→a

u0(t)
v(t)

(
p(t)u′0(t)v(t)− P (t)u0(t)v(t)′

)
=

= u0(a)2
(p(a)u′0(a)

u0(a)
− P (a)v′(a)

v(a)

)
≥ 0.
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Therefore, integrating (2.4) over [τ, t] and letting τ → a, we have

u0(t)2
(p(t)u′0(t)

u0(t)
− P (t)v′(t)

v(t)

)
≥

≥
t∫

a

(
(Q− q)u2

0 + (p− P )u′0
2 +

P (u′0v − u0v
′)2

v2

)
ds

for a < t < ω. From Lemma 2, we have
t∫

a

(
(Q− q)u2

0 + (p− P )u′0
2 +

P (u′0v − u0v
′)2

v2

)
ds ≤ 0 for a < t < ω,

which implies that

q(t) ≡ Q(t), p(t) ≡ P (t), and u0(t)v′(t) ≡ u′0(t)v(t) on [a, ω).

Hence, v(t) is a constant multiple of u0(t) on [a, ω). This completes the
proof of Theorem 1. ¤

Proof of Theorem 2. Let t = t1 < t2 < · · · < tn be zeros of u0(t) in (a, ω).
We note that v(t) satisfies either (i) or (ii) in Theorem A on [a, tn].

By applying Theorem 1 on [tn, ω), we find that either v(t) has at least
one zero in (tn, ω) or v(t) is a multiple constant of u0(t) on [tn, ω) and
p(t) ≡ P (t) and q(t) ≡ Q(t) on [tn, ω). In the former case, v(t) has at
least n + 1 zeros in (a, ω). In the latter case, since v(tn) = 0, we have
either v(t) has at least n + 1 zeros in (a, ω) or v(t) is a multiple constant
of u0(t), p(t) ≡ P (t) and q(t) ≡ Q(t) on [a, ω). This completes the proof of
Theorem 2. ¤

In order to prove Theorem 3, we consider (1.1) and (1.2) on the half-open
interval of the form (α, a] with α ≥ −∞.

Lemma 3. Assume that (1.1) is nonoscillatory at t = α. Let u0(t) be
a principal solution of (1.1) at t = α, and let v(t) be a solution of (1.2) on
(α, a]. Assume that u0(t) > 0 on (α, a). If either u0(a) = 0 or

u0(a) 6= 0, v(a) 6= 0, and
p(a)u′0(a)

u0(a)
≤ P (a)v′(a)

v(a)
,

then v(t) has one of the following properties:

(i) v(t) has at least one zero in (α, a);

(ii) v(t) is a constant multiple of u0(t) on (α, a], and p(t) ≡ P (t), q(t) ≡
Q(t) on (α, a].

Proof. Put
ũ0(t) = u0(a− t) and ṽ(t) = v(a− t).

Then ũ0 and ṽ satisfy, respectively,
(
p̃(t)ũ0

′)′ + q̃(t)ũ0 = 0 and
(
P̃ (t)ṽ ′

)′ + Q̃(t)ṽ = 0 on [0, ω̃),
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where

p̃(t) = p(a− t), q̃(t) = q(a− t), P̃ (t) = P (a− t),

Q̃(t) = Q(a− t), and ω̃ = a− α.

Furthermore, we have
ω̃∫

1
p̃(t)ũ0(t)2

dt = ∞,
p̃(0)ũ0

′(0)
ũ0(0)

= −p(a)u′0(a)
u0(a)

, and

P̃ (0)ṽ ′(0)
ṽ(0)

= −P (a)v′(a)
v(a)

.

By applying Theorem 1 to ũ0 and ṽ on [0, ω̃), we obtain Lemma 3. ¤

Proof of Theorem 3. First we consider the case n = 1. We may assume that
u0(t) > 0 on (α, ω). We show that v(t) is a constant multiple of u0(t) on
(α, ω), if v(t) > 0 on (α, ω). Assume that v(t) > 0 on (α, ω). Take any
t0 ∈ (α, ω). First we will verify that

p(t0)u′0(t0)
u0(t0)

=
P (t0)v′(t0)

v(t0)
. (2.5)

Assume to the contrary that (2.5) does not hold. If

p(t0)u′0(t0)
u0(t0)

>
P (t0)v′(t0)

v(t0)
, (2.6)

then v(t) has at least one zero in (t0, ω) by applying Theorem 1 with a = t0.
This is a contradiction. On the other hand, if the opposite inequality holds
in (2.6), then v(t) has at least one zero in (α, t0) by Lemma 3. This is a
contradiction. Thus we obtain (2.5).

By applying Theorem 1 and Lemma 3 with a = t0 again, we conclude that
v(t) is a constant multiple of u0(t) on (α, ω), and p(t) ≡ P (t), q(t) ≡ Q(t)
on (α, ω).

Next, we consider the case n ≥ 2. Let t = t1 < t2 < · · · < tn−1 be zeros
of u0(t) in (α, ω). By applying Theorem 2 with a = t1, we have either v(t)
has at least n − 1 zeros in (t1, ω) or v(t) is a multiple constant of u0(t) on
[t1, ω). Thus, v(t) has at least n− 1 zeros in (α, ω). Therefore, it suffices to
show that if v(t) has exactly n− 1 zeros, then v(t) is a multiple constant of
u0(t) on (α, ω). Assume that v(t) has exactly n − 1 zeros. First we verify
that v(t1) = 0. (Recall that t = t1 is the first zero of u0(t).) Assume to
the contrary that v(t1) 6= 0. By applying Theorem 2 and Lemma 3 with
a = t1, we see that v(t) has at least n − 1 zeros in (t1, ω) and at least one
zero in (α, t1), respectively. Thus, v(t) has at least n zeros in (α, ω). This
is a contradiction. Thus we obtain v(t1) = 0.

By applying Theorem 2 and Lemma 3 with a = t1 again, we conclude that
v(t) is a constant multiple of u0(t) on (α, ω), and p(t) ≡ P (t), q(t) ≡ Q(t)
on (α, ω). ¤
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For the proof of Theorem 4, we need the following

Lemma 4. Assume that (1.1) has a solution u(t) which has exactly n−1
zeros in (α, ω). Let u0(t) and ũ0(t) be principal solutions of (1.1) at t = ω
and t = α, respectively. Then u0(t) and ũ0(t) have at most n − 1 zeros
in (α, ω).

Proof. First we consider the case where n = 1, that is, u(t) has no zero in
(α, ω). Assume to the contrary that u0(t) has at least one zero in (α, ω). Let
t0 ∈ (α, ω) be the largest zero of u0(t). We may assume that u0(t) > 0 on
(t0, ω). By applying Theorem 1 with a = t0, p(t) ≡ P (t), and q(t) ≡ Q(t),
we see that u(t) has at least one zero in [t0, ω). This is a contradiction.
Thus u0 has no zero on (α, ω). By the similar argument as above, we see
that ũ0 has no zero on (α, ω). Next, we consider the case where n ≥ 2,
that is u(t) has exactly n− 1 zeros in (α, ω). Assume to the contrary that
u0(t) has at least n zeros in (α, ω). Let tn−1 be the (n− 1)-th zero of u(t).
Note here that zeros of u(t) and u0(t) do not coincide, since u(t) and u0(t)
are linearly independent. By the Sturm separation theorem, u0(t) has a
zero t0 ∈ (tn−1, ω). By applying Theorem 1 with a = t0, p(t) ≡ P (t), and
q(t) ≡ Q(t), we see that u(t) has at least one zero in (tn−1, ω). This is a
contradiction. Thus u0 has at most n − 1 zeros in (α, ω). By the similar
argument as above, we see that ũ0 has at most n− 1 zeros in (α, ω). ¤

Proof of Theorem 4. Let u0 and ũ0 be principal solutions of (1.1) at t = ω
and t = α, respectively. We show that the solution u is a multiple constant
of u0 on (α, ω), and also of ũ0 on (α, ω). Assume to the contrary that
u(t) and u0(t) are linearly independent. Then u0(t) has n zeros in (α, ω).
This contradicts Lemma 4. Thus u is a multiple constant of u0 on (α, ω).
Similarly, we see that u is a multiple constant of ũ0 on (α, ω). Thus, the
solution u is principal at both points t = α and t = ω, and hence (1.7) holds
with u0 = u. ¤

To prove Theorem 5, we have the following

Lemma 5. Assume that there exists a positive solution v(t) of (1.2) on
(α, ω). (Then (1.1) is nonoscillatory at t = α and t = ω.) Let u0(t) and
ũ0(t) be principal solutions of (1.1) at t = ω and t = α, respectively. Then
u0(t) and ũ0(t) have no zero on (α, ω). Furthermore, if p(t) 6≡ P (t) or
q(t) 6≡ Q(t) on (α, ω), then u0(t) and ũ0(t) are linearly independent on
(α, ω).

Proof. Assume to the contrary that u0(t) has at least one zero in (α, ω).
Let t0 ∈ (α, ω) be the largest zero of u0(t). We may assume that u0(t) > 0
on (t0, ω). By applying Theorem 1 with a = t0, we find that any solution
of (1.2) has at least one zero in [t0, ω). This is a contradiction. Thus u0

has no zero on (α, ω). By the similar argument, we see that ũ0 has no zero
on (α, ω).
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Assume that p(t) 6≡ P (t) or q(t) 6≡ Q(t) on (α, ω). In this case, we will
show that u0(t) and ũ0(t) are linearly independent on (α, ω). Assume to the
contrary that u0(t) is a constant multiple of ũ0(t) on (α, ω). Then u0(t) is
also principal at t = α, and hence (1.7) holds. Theorem 3 implies that v(t) is
a constant multiple of u0(t) on (α, ω), and p(t) ≡ P (t), q(t) ≡ Q(t) on (α, ω).
This is a contradiction. Thus u0(t) and ũ0(t) are linearly independent on
(α, ω). ¤

Proof of Theorem 5. (i) Let u0 and ũ0 be principal solutions of (1.1) at
t = ω and t = α, respectively. Lemma 5 implies that u0(t) > 0 and ũ0(t) > 0
on (α, ω), and that u0(t) and ũ0(t) are linear independent on (α, ω). Since
a principal solution at t = α (t = ω) is unique up to a constant factor, u0(t)
and ũ0(t) are nonprincipal at t = α and t = ω, respectively. Thus we obtain
(1.11) and (1.12). Put u(t) = u0(t) + ũ0(t). Then u is a positive solution
of (1.1) on (α, ω), and nonprincipal at both points t = α and t = ω. Thus
(1.10) holds.

(ii) Let u0 and ũ0 be principal solutions of (1.1) at t = ω and t = α,
respectively. Applying Lemma 5 with P (t) ≡ p(t) and Q(t) ≡ q(t) on
(α, ω), we have u0(t) > 0 and ũ0(t) > 0 on (α, ω). We show that u0(t)
and ũ0(t) are linearly independent on (α, ω). Assume to the contrary that
u0(t) is a constant multiple of ũ0(t) on (α, ω). Then u0(t) is also principal
at t = α, and hence (1.7) holds. Corollary 1 with n = 1 implies that any
positive solution of (1.1) is a constant multiple of u0(t) on (α, ω). Since (1.1)
has a positive solution u satisfying (1.13), this is a contradiction. Thus u0(t)
and ũ0(t) are linearly independent on (α, ω).

We note here that for any t ∈ (α, ω),

p(t)u′0(t)
u0(t)

<
p(t)ũ0

′(t)
ũ0(t)

. (2.7)

In fact, if (2.7) does not hold for some t = t0 ∈ (α, ω), then ũ0 has at least
one zero in (t0, ω) by Theorem 1. This is a contradiction. Thus (2.7) holds
for any t ∈ (α, ω).

For λ ≥ 0, define Pλ(t) and Qλ(t) by

Pλ(t) =
p(t)

1 + λr(t)
and Qλ(t) = q(t) + λr(t) on (α, ω),

where r(t) is a continuous function on (α, ω) satisfying r(t) ≥ 0, r(t) 6≡ 0 on
(α, ω), and r(t) ≡ 0 on (α, t1] ∪ [t2, ω) with some t1 < t2. Let us consider
the differential equation

(Pλ(t)v′)′ + Qλ(t)v = 0 on (α, ω). (2.8)

Note that

Pλ(t) ≡ p(t) and Qλ(t) ≡ q(t) on (α, t1] ∪ [t2, ω) for all λ ≥ 0.
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Then the solutions u0(t) and ũ0(t) solve (2.8) on each interval (α, t1] and
[t2, ω). For λ ≥ 0, define u0(t;λ) and ũ0(t;λ) by solutions of (2.8) satisfying

u0(t; λ) ≡ u0(t) on [t2, ω) and ũ0(t; λ) ≡ ũ0(t) on (α, t1],

respectively. Then u0(t;λ) and u′0(t; λ) depend continuously on λ ≥ 0 uni-
formly on any compact subinterval of (α, ω). In, particularly, u0(t; λ) →
u0(t) and ũ0(t; λ) → ũ0(t) as λ → 0 uniformly on [t1, t2]. Since (2.7) holds
with t = t1, for λ > 0 sufficiently small, we have

p(t1)u′0(t1;λ)
u0(t1;λ)

<
p(t1)ũ0

′(t1; λ)
ũ0(t1; λ)

and u0(t; λ) > 0 on [t1, ω). (2.9)

For λ > 0 satisfying (2.9), we will show that ũ0(t; λ) > 0 on (t1, ω). Assume
to the contrary that ũ0(t; λ) has at least one zero t0 ∈ (t1, ω). Applying
Theorem A with a = t0, u(t) ≡ ũ0(t; λ) and v(t) ≡ u0(t;λ), we see that
u0(t;λ) has at least one zero in (t1, ω). This is a contradiction. Thus
ũ0(t;λ) > 0 on (t1, ω), and hence ũ0(t; λ) > 0 on (α, ω). Then (1.2) with
P (t) ≡ Pλ(t) and Q(t) ≡ Qλ(t) has a positive solution on (α, ω). ¤
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4. Á. Elbert, T. Kusano, and M. Naito, On the number of zeros of nonoscillatory
solutions to second order half-linear differential equations. Ann. Univ. Sci. Budapest.
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