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VARIATION FORMULAS OF SOLUTION FOR A
CONTROLLED DELAY FUNCTIONAL-DIFFERENTIAL

EQUATION TAKING INTO ACCOUNT DELAYS
PERTURBATIONS AND THE MIXED INITIAL CONDITION

Abstract. Variation formulas of solution are obtained for a nonlinear
controlled delay functional-differential equation with respect to perturba-
tions of initial moment, constant delays, initial vector, initial functions and
control function. The effects of delay perturbations and the mixed initial
condition are discovered in the variation formulas.

îâäæñéâ. ïŽéŽîåæ áŽàãæŽêâĲñè ŽîàñéâêðæŽêæ òñêóùæëêŽèñî-áæòâ-
îâêùæŽèñîæ àŽêðëèâĲæïŽåãæï éæôâĲñèæŽ ŽéëêŽýïêæï ãŽîæŽùææï òë-
îéñèâĲæ ïŽûõæïæ éëéâêðæï, éñáéæãæ áŽàãæŽêâĲâĲæï, ïŽûõæïæ ãâóðë-
îæï, ïŽûõæïæ òñêóùæâĲæïŽ áŽ éŽîåãæï òñêóùææï öâöòëåâĲâĲæï éæéŽîå.
ãŽîæŽùææï òëîéñèâĲöæ àŽéëãèâêæèæŽ áŽàãæŽêâĲâĲæï öâöòëåâĲæïŽ áŽ
öâîâñèæ ïŽûõæïæ ìæîëĲæï âòâóðâĲæ.
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1. Introduction

In the present paper, variation formulas of solution (variation formulas)
are obtained for a nonlinear controlled delay functional-differential equa-
tion under perturbations of initial moment, constant delays, initial vector,
initial functions and control function. The effects of delays perturbations
and the mixed initial condition are discovered in the variation formulas.
The mixed initial condition means that at the initial moment, some coordi-
nates of the trajectory do not coincide with the corresponding coordinates
of the initial function, whereas the others coincide. The variation formula
allows one to construct an approximate solution of the perturbed equation
in an analytical form on the one hand, and in the theory of optimal con-
trol it plays the basic role in proving the necessary conditions of optimality
[1]–[11], on the other. Variation formulas for various classes of functional-
differential equations without perturbation of delay are given in [2], [6], [7]
and [9]–[13]. Variation formulas for delay functional-differential equations
with the continuous and discontinuous initial condition taking into account
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constant delay perturbation are proved in [14] and [15], respectively. Varia-
tion formulas for controlled delay functional-differential equations with the
continuous initial condition taking into account constant delay perturbation
are proved in [16].

2. Formulation of the Main Results

Let Rn
x be the n-dimensional vector space of points x = (x1, . . . , xn)T ,

where T denotes transposition; suppose P ⊂ Rk
p , Z ⊂ Rm

z and W ⊂ Rr
u

are open sets and O = (P, Z)T = {x = (p, z)T ∈ Rn
x : p ∈ P, z ∈ Z}, with

k+m = n. Let the n-dimensional function f(t, x, p, z, u) satisfy the following
conditions: for almost all t ∈ I = [a, b], the function f(t, ·) : O×P×Z×W →
Rn

x is continuously differentiable; for any (x, p, z, u) ∈ O × P × Z × W ,
the functions f(t, x, p, z, u), fx(·), fp(·), fz(·)fu(·) are measurable on I; for
arbitrary compacts K ⊂ O, U ⊂ W there exists a function mK,U (·) ∈
L(I, [0,∞)), such that for any x ∈ K, (p, z)T ∈ K, u ∈ U and for almost all
t ∈ I the inequality

|f(t, x, p, z, u)|+ |fx(·)|+ |fp(·)|+ |fz(·)|+ |fu(·)| ≤ mK,U (t)

is fulfilled.
Let 0 < τ1 < τ2, 0 < σ1 < σ2 be the given numbers and Eϕ = Eϕ(I1, R

k
p)

be the space of continuous functions ϕ : I1 → Rk
p , where I1 = [τ̂ , b], τ̂ =

a−max{τ2, σ2}. Further,

Φ =
{
ϕ ∈ Eϕ : ϕ(t) ∈ P

}
and G =

{
g ∈ Eg = Eg(I1, R

m
z ) : g(t) ∈ Z

}

are the sets of initial functions. Let Eu be the space of bounded measurable
functions u : I → Rr

u and Ω = {u ∈ Eu : u(t) ∈ W , t ∈ I, cl u(I) ⊂ W}
be a set of control functions, where u(I) = {u(t) : t ∈ I} and cl u(I) is the
closure of the set u(I).

To any element

µ = (t0, τ, σ, p0, ϕ, g, u) ∈ Λ = (a, b)× (τ1, τ2)× (σ1, σ2)× P × Φ×G× Ω,

we assign the controlled delay functional-differential equation

ẋ(t) = (ṗ(t), ż(t))T = f
(
t, x(t), p(t− τ), z(t− σ), u(t)

)
(2.1)

with a mixed initial condition

x(t) = (ϕ(t), g(t))T , t ∈ [τ̂ , t0), x(t0) = (p0, g(t0))T . (2.2)

The condition (2.2) is said to be a mixed initial condition; it consists of two
parts: the first part is p(t) = ϕ(t), t ∈ [τ̂ , t0), p(t0) = p0, the discontinuous
part, since generally p(t0) 6= ϕ(t0); the second part is z(t) = g(t), t ∈ [τ̂ , t0],
the continuous part, since always z(t0) = g(t0).

Definition 2.1. Let µ = (t0, τ, σ, p0, ϕ, g, u) ∈ Λ. A function x(t) =
x(t; µ) ∈ O, t ∈ [τ̂ , t1], t1 ∈ (t0, b), is called a solution of equation (2.1)
with the initial condition (2.2) or a solution corresponding to the element
µ and defined on the interval [τ̂ , t1] if it satisfies the condition (2.2) and is
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absolutely continuous on the interval [t0, t1] and satisfies the equation (2.1)
almost everywhere on [t0, t1].

Let µ0 = (t00, τ0, σ0, p00, ϕ0, g0, u0) ∈ Λ be a fixed element. In the space
Eµ = R1

t0 ×R1
τ ×R1

σ×Rk
p×Eϕ×Eg×Eu we introduce the set of variations

V =
{

δµ = (δt0, δτ, δσ, δp0, δϕ, δg, δu) ∈ Eµ − µ0 : |δt0| ≤ α,

|δτ | ≤ α, |δσ| ≤ α, |δp0| ≤ α, δϕ =
ν∑

i=1

λiδϕi,

δg =
ν∑

i=1

λiδgi, δu =
ν∑

i=1

λiδui, |λi| ≤ α, i = 1, ν

}
,

where δϕi ∈ Eϕ − ϕ0, δgi ∈ Eg − g0, δui ∈ Eu − u0, i = 1, ν, are the fixed
functions; α > 0 is a fixed number.

Let x0(t) = (p0(t), z0(t))T be the solution corresponding to the element
µ0 and defined on the interval [τ̂ , t10], with t10 < b. There exist numbers
δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δµ) ∈ [0, ε1] × V we have
µ0 + εδµ ∈ Λ. In addition, to this element there corresponds the solution
x(t; µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 (see Theorem 5.3 in
[17, p. 111]).

Due to the uniqueness, the solution x(t;µ0) is a continuation of the so-
lution x0(t) on the interval [τ̂ , t10 + δ1]. Therefore, the solution x0(t) is
assumed to be defined on the interval [τ̂ , t10 + δ1].

Let us define the increment of the solution x0(t) = x(t;µ0):

∆x(t; εδµ) = x(t; µ0 + εδµ)− x0(t), (t, ε, δµ) ∈ [τ̂ , t10 + δ1]× [0, ε1]× V.

Theorem 2.1. Let the following conditions hold:

2.1. t00 + τ0 < t10;

2.2. the functions ϕ0(t), g0(t), t ∈ I1, are absolutely continuous and
ϕ̇0(t), ġ0(t) are bounded; there exist compact sets K0 ⊂ O and U0 ⊂
W containing neighborhoods of sets (ϕ0(I1), g0(I1))T ∪ x0([t00, t10])
and cl u0(I), respectively, such that the function f(t, x, p, z, u),
(t, x) ∈ I ×K0, (p, z)T ∈ K0, u ∈ U0, is bounded;

2.3. there exist the limits

lim
t→t00−

ġ0(t) = ġ−0 ,

lim
w→w0

f(w, u0(t)) = f−0 , w∈(t00 − τ0, t00]×O×P ×Z,

lim
(w1,w2)→(w01,w02)

[
f(w1, u0(t))− f(w2, u0(t))

]
= f−01,

w1, w2 ∈ (t00, t00 + τ0]×O × P × Z,
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where

w = (t, x, p, z),

w0 =
(
t00, x00, ϕ0(t00 − τ0), g0(t00 − σ0)

)
,

x00 = (p00, g0(t00))T ,

w01 =
(
t00 + τ0, x0(t00 + τ0), p00, z0(t00 + τ0 − σ0)

)
,

w02 =
(
t00 + τ0, x0(t00 + τ0), ϕ0(t00), z0(t00 + τ0 − σ0)

)
.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ) (2.3)

for arbitrary

(t, ε, δµ)∈ [t10 − δ2, t10 + δ2]×[0, ε2]×
{
δµ ∈ V : δt0 ≤ 0, δτ ≤ 0, δσ ≤ 0

}
,

where

δx(t; δµ) =
{

Y (t00; t)
[
(Θk×1, ġ

−
0 )T − f−0

]− Y (t00 + τ0; t)f−01
}

δt0−
− Y (t00 + τ0; t)f−01δτ + β(t; εδµ), (2.4)

β(t; εδµ) = Y (t00; t)(δp0, δg(t00))T−

−
{ t∫

t00

Y (ξ; t)fp[ξ]ṗ0(ξ − τ0) dξ

}
δτ−

−
{ t∫

t00

Y (ξ; t)fz[ξ]ż0(ξ − σ0) dξ

}
δσ+

+

t00∫

t00−τ0

Y (ξ + τ0; t)fp[ξ + τ0]δϕ(ξ) dξ+

+

t00∫

t00−σ0

Y (ξ + σ0; t)fz[ξ + σ0]δg(ξ) dξ+

+

t∫

t00

Y (ξ; t)fu[ξ]δu(ξ) dξ; (2.5)

lim
ε→0

o(t; εδµ)
ε

= 0

uniformly for

(t, δµ) ∈ [t10 − δ2, t10 + δ2]×
{
δµ ∈ V : δt0 ≤ 0, δτ ≤ 0, δσ ≤ 0

}
;
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Θk×1 is the k×1 zero matrix, Y (s; t) is the n×n matrix function satisfying
on the interval [t00, t] the equation

Yξ(ξ; t) = −Y (ξ; t)fx[ξ]−
(
Y (ξ + τ0; t)fp[ξ + τ0], Y (ξ + σ0; t)fz[ξ + σ0]

)
,

and the condition

Y (ξ; t) =

{
Hn×n for ξ = t,

Θn×n for ξ > t.

Here, Hn×n is the n× n identity matrix,

fx[ξ]=fx

(
ξ, x0(ξ), p0(ξ−τ0), z0(ξ−σ0), u0(ξ)

)
, ṗ0(ξ−τ0)= ṗ0(s)|s=ξ−τ0

,

under ṗ0(s) is assumed derivative of the function p0(s) on the set [τ̂ , t00) ∪
(t00, t10 + δ2].

Some comments. The function δx(t; δµ) is called the variation of the
solution x0(t) on the interval [t10 − δ2, t10 + δ2] and the expression (2.4) is
called the variation formula.

c 1) Theorem 2.1 corresponds to the case where the variations at the
points t00, τ0, σ0 are performed simultaneously on the left.

c 2) The addend

−
{

Y (t00 + τ0; t)f−01 +

t∫

t00

Y (ξ; t)fp[ξ]ṗ0(ξ − τ0) dξ

}
δτ−

−
{ t∫

t00

Y (ξ; t)fz[ξ]ż0(ξ − σ0) dξ

}
δσ

is the effect of perturbations of the delays τ0 and σ0 (see (2.4) and
(2.5)).

c 3) The expression

Y (t00; t)(δp0, δg(t00))T +

+
{

Y (t00; t)
[
(Θk×1, ġ

−
0 )T − f−0

]− Y (t00 + τ0; t)f−01

}
δt0

is the effect of the mixed initial condition (2.2) under perturbations
of initial moment t00, initial vector p00 and function g0(t).
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c 4) The expression

t00∫

t00−τ0

Y (ξ + τ0; t)fp[ξ + τ0]δϕ(ξ) dξ+

+

t00∫

t00−σ0

Y (ξ + σ0; t)fz[ξ + σ0]δg(ξ) dξ +

t∫

t00

Y (ξ; t)fu[ξ]δu(ξ) dξ

in the formula (2.5) is the effect of perturbations of the initial func-
tions ϕ0(t), g0(t) and the control function u0(t).

c 5) The variation formula allows one to obtain an approximate solution
of the perturbed functional-differential equation

ẋ(t) = f
(
t, x(t), p(t− τ0 − εδτ), z(t− σ0 − εδσ), u0(t) + εδu(t)

)

with the perturbed initial condition

x(t) =
(
ϕ0(t) + εδϕ(t), g0(t) + εδg(t)

)T
, t ∈ [τ̂ , t00 + εδt0),

x(t00 + εδt0) =
(
p00 + εδp0, g0(t00) + εδg(t00)

)T
.

In fact, for a sufficiently small ε ∈ (0, ε2] from (2.3) it follows that

x(t; µ0 + εδµ) ≈ x0(t) + εδx(t; δµ).

Theorem 2.2. Let the conditions 2.1 and 2.2 of Theorem 2.1 hold.
Moreover, there exist the limits

lim
t→t00+

ġ0(t) = ġ+
0 ,

lim
w→w0

f(w, u0(t)) = f+
0 , w ∈ [t00, t10)×O × P × Z,

lim
(w1,w2)→(w01,w02)

[
f(w1, u0(t))− f0(w2, u0(t))

]
= f+

01,

w1, w2 ∈ [t00 + τ0, t10)×O × P × Z.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that for arbitrary

(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× [0, ε2]× {δµ ∈ V : δt0 ≥ 0, δτ ≥ 0, δσ ≥ 0}
the formula (2.3) holds, where

δx(t; δµ) =
{

Y (t00; t)
[
(Θk×1, ġ

+
0 )T − f+

0

]− Y (t00 + τ0; t)f+
01

}
δt0−

− Y (t00 + τ0; t)f+
01δτ + β(t; εδµ).

Theorem 2.2 corresponds to the case where the variations at the points
t00, τ0, σ0 are performed simultaneously on the right.
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Theorem 2.3. Let the conditions of Theorems 2.1 and 2.2 hold. More-
over,

(Θk×1, ġ
−
0 )T − f−0 = (Θk×1, ġ

+
0 )T − f+

0 =: f̂0, f
−
01 = f+

01 =: f̂01.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that for arbitrary
(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× [0, ε2]× V the formula (2.3) holds, where

δx(t; δµ) =
{

Y (t00; t)f̂0 − Y (t00 + τ0; t)f̂01

}
δt0−

− Y (t00 + τ0; t)f̂01δτ + β(t; εδµ).

Theorem 2.3 corresponds to the case where at the points t00, τ0, σ0 the
two-sided variations are simultaneously performed. Theorems 2.1–2.3 are
proved by the method given in [10]. If t00 + τ0 > t10, then Theorems 2.1–
2.3 are also valid. In this case the number δ2 is so small that t00 + τ0 >
t10 + δ2, therefore in the variation formulas we have Y (t00 + τ0; t) = Θn×n,
t ∈ [t10 − δ2, t10 + δ2]. If t00 + τ0 = t10, then Theorem 2.1 is valid on the
interval [t10, t10 + δ2] and Theorem 2.2 is valid on the interval [t10− δ2, t10].
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