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Abstract. The conditions for the so called conditionally well-posedness
of a class of a linear generalized boundary value problems are given in the
case when the generalized differential system has singularities.
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In the paper we give conditions for the well-posedness for the following
linear system of generalized ordinary differential equations with singularities

dxi(t) = xi+1dai(t) for t ∈ [a, b] (i = 1, . . . , n− 1),

dxn(t) =
n∑

i=1

hi(t)xi(t)dbi(t) + df(t) for t ∈ [a, b],
(1)

with the nonlocal boundary value condition

`i(x1, . . . , xn) = 0 (i = 1, . . . , n), (2)

where n is a natural number, ai ∈ BV([a, b],R) (i = 1, . . . , n − 1), f ∈
BV([a, b],R), bi ∈ BV([a, b],R) (i = 1, . . . , n), hi : [a, b] → R is a function
measurable with respect to the measures µ(bi1) and µ(bi2), corresponding,

respectively, to the nondecreasing functions bi1(t) ≡
t∨
a
(bi) and bi2(t) ≡
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bi(t) − bi1(t) for every i ∈ {1, . . . , n}, and `i : BVv([a, b],Rn) → R (i =
1, . . . , n) are linear bounded functionals.

The general differential system of the form (1) represents in a defined
sense the analogy of the nth order linear ordinary differential equation of
the form

u(n) =
n∑

i=1

hi(t)u(i−1) + h(t) for t ∈ [a, b]. (3)

Note that the ordinary differential equation of the form (3) is a particular

case of the system (1), where ai(t) ≡ t (i = 1, . . . , n), and f(t) ≡
t∫

a

h(τ) dτ .

It is well known that in the regular case, where the coefficients of the
system (1) are Lebesgue–Stieltjes integrable on [a, b] with respect the cor-
responding measures, problem (1), (2) has the Fredholm property in the
defined conditions, and the unique solvability of that problem ensures its
well-posedness (see [3]–[6], [13], [14], [22], [25]).

We are interested in the case, where the system (1) is singular, i.e., when
some of the coefficients hi (i = 1, . . . , n) are not, in general, Lebesgue–
Stieltjes integrable on [a, b] with respect to the corresponding measures,
having singularities at some boundary or interior points of the interval [a, b].
Some questions dealing with the singular boundary value problems of the
form (1), (2), e.g., those dealing with the Fredholm property and the solv-
ability have been investigated in [8]–[10]. As we know, in this case, the
question on the well-posedness of the generalized problem (1), (2) remains
still unstudied. In the present paper, an attempt is made to fill up the
existing gaps.

As for the question of the solvability and well-posedness for singular
boundary value problems for ordinary differential equations, i.e., for the
singular (3), (2) problem, it is investigated in [19] for the general case, and
in [1], [15–17], [20], [21], [23] for some important particular cases. Note that
the questions for the regular case of the ordinary differential equations are
investigated sufficiently well for the linear and nonlinear cases (see, e.g., [2],
[11], [12], [17], [18] and the references therein).

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has also been stimulated by the fact that this
theory enables one to investigate ordinary differential, impulsive and differ-
ence equations from a unified point of view (see, e.g., [7], [24], [25] and the
references therein).

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0, +∞[ ; [a, b] (a, b ∈ R) is a closed segment.
Rn×m is the space of all real n × m-matrices X = (xij)

n,m
i,j=1 with the

norm

‖X‖ = max
j=1,...,m

n∑

i=1

|xij |;



107

Rn = Rn×1 is the space of all real column n-vectors x = (xi)n
i=1.

b∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m,

i.e., the sum of total variations of the latter components xij (i = 1, . . . , n;
j = 1, . . . ,m); V (X)(t) = (v(xij)(t))

n,m
i,j=1, where v(xij)(a) = 0, v(xij)(t) =

t∨
a
(xij) for a < t ≤ b;

X(t−) and X(t+) are the left and the right limits of the matrix-function
X : [a, b] → Rn×m at the point t (we will assume X(t) = X(a) for t ≤ a
and X(t) = X(b) for t ≥ b, if necessary);

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t);

‖X‖s = sup
{‖X(t)‖ : t ∈ [a, b]

}
, ‖X‖v = ‖x(a)‖+

b∨
a
(X);

BV([a, b],Rn×m) is the set of all matrix-functions of bounded variation

X : [a, b] → Rn×m (i.e., such that
b∨
a
(X) < +∞);

BVs([a, b],Rn) is the normed space (BV([a, b],Rn), ‖·‖s); BVv([a, b],Rn)
is the Banach space (BV([a, b],Rn), ‖ · ‖v).

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

sj : BV([a, b],R) → BV([a, b],R) (j = 0, 1, 2) are the operators defined,
respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and

s0(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s <
t ≤ b, then

t∫

s

x(τ) dg(τ) =

=
∫

]s,t[

x(τ) dS0(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open

interval ]s, t[ with respect to the measure µ0(s0(g)) corresponding to the

function s0(g); if a = b, then we assume
b∫

a

x(t) dg(t) = 0;

L([a, b],R; g) is a set of all functions x : [a, b] → R measurable and
integrable with respect to the measure µ(g).
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If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then
t∫

s

x(τ) dg(τ) =

t∫

s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for s ≤ t.

If G = (gik)l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function

and D ⊂ Rn×m, then L([a, b], D;G) is the set of all matrix-functions X =
(xkj)

n,m
k,j=1 : [a, b] → D such that xkj ∈ L([a, b],R; gik) (i = 1, . . . , l; k =

1, . . . , n; j = 1, . . . ,m);
t∫

s

dG(τ) ·X(τ) =
( n∑

k=1

t∫

s

xkj(τ) dgik(τ)
)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡ (
sj(gik)(t)

)l,n

i,k=1
(j = 0, 1, 2).

If Gj : [a, b] → Rl×n (j = 1, 2) are nondecreasing matrix-functions,
G = G1 −G2 and X : [a, b] → Rn×m, then

t∫

s

dG(τ) ·X(τ) =

t∫

s

dG1(τ) ·X(τ)−
t∫

s

dG2(τ) ·X(τ) for s ≤ t,

Sk(G) = Sk(G1)− Sk(G2) (k = 0, 1, 2),

L([a, b], D; G) =
2⋂

j=1

L([a, b], D; Gj),

K([a, b]×D1, D2; G) =
2⋂

j=1

K([a, b]×D1, D2;Gj).

A vector-function x = (xi)n
i=1 ∈ BV([a, b],Rn) is said to be a solution of

the system (1) if the function hixi belongs to L([a, b], bi1)∩L([a, b], bi2) and

xi(t) = xi(s) +

t∫

s

xi(τ) dai(τ) for a ≤ s ≤ t ≤ b (i = 1, . . . , n− 1),

xn(t) = xn(s) +
n∑

i=1

t∫

s

hi(τ)xi(τ) dbi(τ) for a ≤ s ≤ t ≤ b.

A solution of the system (1) satisfying the boundary conditions (2) is
called a solution of the problem (1),(2).

Along with the system (1), we will need to consider, respectively, the
corresponding homogeneous and perturbed systems

dxi(t) = xi+1dai(t) for t ∈ [a, b] (i = 1, . . . , n− 1),

dxn(t) =
n∑

i=1

hi(t)xi(t)dbi(t) for t ∈ [a, b],
(10)
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and
dxi(t) = xi+1dai(t) for t ∈ [a, b] (i = 1, . . . , n− 1),

dxn(t) =
n∑

i=1

hki(t)xi(t)dbi(t) + df̃(t) for t ∈ [a, b],
(4)

with the inhomogeneous boundary conditions

`i(x1, . . . , xn) = ci (i = 1, . . . , n), (5)

where f̃ ∈ BV([a, b],R), and ci ∈ R (i = 1, . . . , n).

Definition 1. The problem (1), (2) is said to be well-posed if for an
arbitrary f̃ ∈ BV([a, b],R) and ci ∈ R (i = 1, . . . , n) the problem (4), (5) is
uniquely solvable, and there exists a positive constant r independent of f̃
and c such that

‖x̃− x‖s ≤ r
( n∑

i=1

‖ci‖+ ‖f̃ − f‖
)
,

where x = (xi)n
i=1 and x̃ = (x̃i)n

i=1 are, respectively, the solutions of the
problems (1), (2) and (4), (5).

Definition 2. The problem (1), (2) is said to be conditionally well-posed
if for an arbitrary f̃ ∈ BV([a, b],R) the problem (10), (2) is uniquely solvable
and there exists a positive constant r, independent of f̃ and c, such that

‖x̃− x‖s ≤ r‖f̃ − f‖,
where x = (xi)n

i=1 and x̃ = (x̃i)n
i=1 are, respectively, the solutions of the

problems (1), (2) and (10), (2).

Note that if the coefficients of the system (10) are integrable on [a, b] with
corresponding measures, then the conditional well-posedness of the problem
(1), (2) implies its well-posedness. If, however,

n∑

i=1

b∫

a

|hi(t)| dv(bi)(t) = +∞,

then the conditional well-posedness of the problem (1), (2) does not guar-
antee its well-posedness.

Definition 3. Let `i : BVv([a, b],Rn) → R (i = 1, . . . , n) be linear
bounded functionals. We say that the vector function (ϕ1, . . . , ϕn) : [a, b] →
Rn belongs to the set E`1,...,`n if:

(i) for an arbitrary i ∈ {1, . . . , n}, the function ϕi : [a, b] → R is
continuous and ϕi(t) > 0 for µ(v(bi))-almost all t ∈ [a, b];

(ii) an arbitrary vector function (xi)n
i=1 ∈ BV([a, b],Rn), satisfying the

boundary conditions (2), admits the estimate

|xi(t)| ≤
t∨
a
(xn) · ϕi(t) for t ∈ [a, b] (i = 1, . . . , n).
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Note that the set E`1,...,`n is nonempty if and only if the system

dxi(t) = xi+1dai(t) (i = 1, . . . , n− 1), dxn(t) = 0 for t ∈ [a, b]

under the condition (2) has only the trivial solution.

Theorem 1. Let there exist a vector function (ϕ1, . . . , ϕn) : [a, b] → Rn

such that
(ϕ1, . . . , ϕn) ∈ E`1,...,`n

(6)
and

n∑

i=1

b∫

a

ϕi(t)|hi(t)| dv(bi)(t) < +∞ (i = 1, . . . , n).

Then the problem (1), (2) is conditionally well-posed if and only if the cor-
responding homogeneous problem (10), (2) has only the trivial solution.

Theorem 2. Let there exist a vector function (ϕ1, . . . , ϕn) : [a, b] → Rn

such that conditions (6) and

n∑

i=1

b∫

a

ϕi(t)|hi(t)| dv(bi)(t) < 1 (i = 1, . . . , n) (7)

hold. Then the problem (1), (2) is conditionally well-posed.

Theorem 3. Let there exist a vector function (ϕ1, . . . , ϕn) : [a, b] → Rn

such that the conditions (6) and (7) hold and
b∫

a

ϕi(t)|h1(t)| dv(b1)(t) = +∞.

Then the problem (1), (2) is conditionally well-posed but not well-posed.

Basing on the above results, we can establish the effective conditions
for the problem (1),(2) to have the well-posed and conditionally well-posed
properties for some concrete type of linear bounded functionals `i (i =
1, . . . , n).
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