
Memoirs on Differential Equations and Mathematical Physics
Volume 64, 2015, 1–121

Vladimir Maz’ya

TOPICS ON WIENER REGULARITY
FOR ELLIPTIC EQUATIONS AND SYSTEMS



Abstract. This is a survey of results on Wiener’s test for the regularity
of a boundary point in various nonstandard situations. In particular, higher
order elliptic operators, linear elasticity system, Zaremba boundary value
problem for the Laplacian are treated.
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ÒÄÆÉÖÌÄ. ÌÉÌÏáÉËÖËÉÀ ÓÀÓÀÆÙÅÒÏ ßÄÒÔÉËÉÓ ÒÄÂÖËÀÒÏÁÉÓ ÅÉ-
ÍÄÒÉÓ ÊÒÉÔÄÒÉÖÌÈÀÍ ÃÀÊÀÅÛÉÒÄÁÖËÉ ÛÄÃÄÂÄÁÉ ÓáÅÀÃÀÓáÅÀ ÀÒÀÓÔÀÍ-
ÃÀÒÔÖË ÓÉÔÖÀÝÉÀÛÉ. ÊÄÒÞÏÃ, ÂÀÍáÉËÖËÉÀ ÌÀÙÀËÉ ÒÉÂÉÓ ÄËÉ×ÓÖ-
ÒÉ ÏÐÄÒÀÔÏÒÄÁÉ, ßÒ×ÉÅÉ ÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÉÓ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓ-
ÔÄÌÀ ÃÀ ÆÀÒÄÌÁÀÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ ËÀÐËÀÓÉÀÍÉÓÈÅÉÓ.



Chapter 1

Historical background and structure
of the paper

In 1924 Wiener [71] gave his famous criterion for the so called regularity of
a boundary point.

A point O at the boundary ∂Ω of a domain Ω ⊂ Rn is called regular
if solutions of the Dirichlet problem for the Laplace equation in Ω with the
Dirichlet data, continuous at O, are continuous at this point. (I do not
want to explain in which sense the solution is understood — this is not
quite trivial and is also due to Wiener [72].)

Before Wiener’s result only some special facts concerning the regularity
were known. For example, since (by Riemann’s theorem) an arbitrary Jor-
dan domain in R2 is conformally homeomorphic to the unit disc, it follows
that any point of its boundary is regular.

As for the n-dimensional case, it was known for years that a boundary
point O is regular provided the complement of Ω near O is so thick that
it contains an open cone with O as a vertex (Poincaré [62], Zaremba [73]).
Lebesgue noticed that the vertex of a sufficiently thin cusp in R3 is irregular
[30]. Therefore it became clear that, in order to characterize the regularity,
one should find proper geometric or quasi-geometric terms describing the
massiveness of Rn\Ω near O.

To this end Wiener introduced the harmonic capacity cap(K) of a com-
pact set K in Rn, which corresponds to the electrostatic capacity of a body
when n = 3. Up to a constant factor, the harmonic capacity in the case
n > 2 is equal to

inf
{∫
Rn

| gradu|2 dx : u ∈ C∞
0 (Rn), u > 1 on K

}
.

For n = 2 this definition of capacity needs to be altered.
The notion of capacity enabled Wiener to state and prove the following

result.
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Theorem (Wiener). The point O at the boundary of the domain ω ⊂ Rn,
n ≥ 2, is regular if and only if∑

k≥1

2(n−2)k cap(B2−k \ Ω) = ∞. (1.0.1)

We assume that O is the origin of a coordinate system and use the
notation Bρ = {x ∈ Rn : |x| < ρ}. It is straightforward that (1.0.1) can be
rewritten in the integral form∫

0

cap(Bσ \ Ω)
cap(Bσ)

dσ

σ
= ∞. (1.0.2)

Wiener’s theorem was the first necessary and sufficient condition char-
acterizing the dependence of properties of solutions on geometric properties
of the boundary. The theorem strongly influenced potential theory, par-
tial differential equations, and probability theory. Especially striking was
the impact of the notion of the Wiener capacity, which gave an adequate
language to answer many important questions. During the years many at-
tempts have been made to extend the range of Wiener’s result to different
classes of linear equations of the second order, although some of them were
successful only in the sufficiency part. I mention here three necessary and
sufficient conditions.

First, for uniformly elliptic operators with measurable bounded coeffi-
cients in divergence form

u −→
n∑

i,j=1

(aij(x)uxi)xj . (1.0.3)

Littman, Stampacchia and Weinberger [32] proved that the regularity of
boundary point is equivalent to the Wiener condition (1.0.1).

Second, in 1982 Fabes, Jerison and Kenig [13] gave an interesting analog
of the Wiener criterion for a class of degenerate elliptic operators of the
form (1.0.3).

The third criterion for regularity, due to Dal Maso and Mosco [9], con-
cerns the Schrödinger operator

u→ −∆u+ µu in Ω,

where µ is a measure. It characterizes both the geometry of Ω and the
potential µ near the point O.

It seems worthwhile to mention a problem, which remained open for
twenty five years. I mean the question of the regularity of a boundary point
for the non-linear operator The third criterion for regularity, due to Dal
Maso and Mosco [8], concerns the Schrödinger operator

u→ −∆u+ µu in Ω,
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where µ is a measure. It characterizes both the geometry of Ω and the
potential µ near the point O.

It seems worthwhile to mention a recently solved problem, which re-
mained open for twenty five years. I mean the question of the regularity of
a boundary point for the non-linear operator

u −→ div
(
| gradu|p−2 gradu

)
in Ω, (1.0.4)

where p > 1. This differential operator, often called the p-Laplacian, ap-
pears in some mechanical applications and is interesting from a pure math-
ematical point of view.

In 1970 I proved [40] that the following variant of the Wiener criterion
is sufficient for the regularity with respect to (1.0.4)∫

0

(p-cap(Bσ \ Ω)
p-cap(Bσ)

) 1
p−1 dσ

σ
= ∞. (1.0.5)

Here 1 < p ≤ n and the p-capacity is a modification of the Wiener capacity
generated by the p-Laplacian. This result was generalized by Gariepy and
Ziemer [16] to a large class of elliptic quasilinear equations

divA(x, u, gradu) = B(x, u, gradu).

Condition (1.0.5) and its generalizations also turned out to be relevant
in studying the fine properties of elements in Sobolev spaces. See, e.g. the
book [4].

For a long time it seemed probable that (1.0.5) is also necessary for the
regularity with respect to (4), and indeed, for p ≥ n − 1, Lindqvist and
Martio [33] proved this for the operator (1.0.4). Finally, Kilpeläinen and
Malý found a proof valid for arbitrary values of p > 1 [22].

So far I spoke only about the regularity of a boundary point for sec-
ond order elliptic equations. However, the topic could be extended to in-
clude other equations, systems, boundary conditions and function spaces.
In principle, the Wiener criterion suggests the possibility of the complete
characterization of properties of domains, equivalent to various solvability
and spectral properties of boundary value problems.

The present article is a survey of results on Wiener’s test in various
nonstandard situations. These results were obtained by myself or together
with my collaborators.

In the second chapter, following the paper [49] by V. Maz’ya, I deal
with strongly elliptic differential operators of an arbitrary even order 2m
with constant real coefficients and introduce a notion of the regularity of a
boundary point with respect to the Dirichlet problem which is equivalent
to that given by N. Wiener in the case m = 1. It is shown that a capacitary
Wiener-type criterion is necessary and sufficient for the regularity if n = 2m.
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In the case n > 2m, the same result is obtained for a subclass of strongly
elliptic operators.

In Chapter 3, boundary behaviour of solutions to the polyharmonic equa-
tion is considered. First, conditions of weighted positivity of (−∆)m with
zero Dirichlet data are studied which, together with results in Chapter 2,
give Wiener-type criterion for the space dimensions n = 2m, 2m+1, 2m+2
with m > 2 and n = 4, 5, 6, 7 with m = 2. Second, certain pointwise esti-
mates for polyharmonic Green’s function and solutions of the polyharmonic
equation are derived for the same n and m. Here I mostly follow my pa-
per [48].

Chapter 4 addresses results by G. Luo and V. Maz’ya [33]. We con-
sider the 3D Lamé system and establish its weighted positive definiteness
for a certain range of elastic constants. By modifying the general theory
developed in Chapter 2, we then show, under the assumption of weighted
positive definiteness, that the divergence of the classical Wiener integral for
a boundary point guarantees the continuity of solutions to the Lamé system
at this point.

In Chapter 5, an analogue of the Wiener criterion for the Zaremba prob-
lem is obtained. The results are due to T. Kerimov, V. Maz’ya, and A.
Novruzov. They were announced in [20] and published with proofs in [21].

The last Chapter 6 reproduces the papers [39] and [44] by V. Maz’ya,
where various capacitary estimates for solutions of the Dirichlet problem,
Green’s function and the L -harmonic measure for elliptic second order
operators in divergent form with measurable bounded coefficients.



Chapter 2

Wiener Test for Higher Order Elliptic
Equations

2.1 Introduction

Wiener’s criterion for the regularity of a boundary point with respect to
the Dirichlet problem for the Laplace equation [71] has been extended to
various classes of elliptic and parabolic partial differential equations. These
include linear divergence and nondivergence equations with discontinuous
coefficients, equations with degenerate quadratic form, quasilinear and fully
nonlinear equations, as well as equations on Riemannian manifolds, graphs,
groups, and metric spaces (see [32], [13], [9], [33], [22], [34], [3], [4], [26], [66],
to mention only a few). A common feature of these equations is that all
of them are of second order, and Wiener-type characterizations for higher
order equations have been known so far. Indeed, the increase of the order
results in the loss of the maximum principle, Harnack’s inequality, barrier
techniques and level truncation arguments which are ingredients in different
proofs related to the Wiener test for the second order equations.

In this chapter Wiener’s result is extended to elliptic differential op-
erators L(∂) of order 2m in the Euclidean space Rn with constant real
coefficients

L(∂) = (−1)m
∑

|α|=|β|=m

aα∂
α+β .

We assume without loss of generality that aαβ = aβα and (−1)mL(ξ) > 0
for all nonzero ξ ∈ Rn. In fact, the results of this paper can be extended to
equations with variable (e.g., Hölder continuous) coefficients in divergence
form, but we leave aside this generalization to make our exposition more
lucid.

We use the notation ∂ for the gradient (∂x1 , . . . , ∂xn), where ∂xk
is the

partial derivative with respect to xk. By Ω we denote an open set in Rn,
and by Bρ(y) we denote the ball {x ∈ Rn : |x− y| < ρ}, where y ∈ Rn. We
write Bρ instead of Bρ(0).
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Consider the Dirichlet problem

L(∂)u = f, f ∈ C∞
0 (Ω), u ∈

◦
Hm(Ω), (2.1.1)

where we use the standard notation C∞
0 (Ω) for the space of infinitely dif-

ferentiable functions in Rn with compact support in Ω as well as
◦
Hm(Ω)

for the completion of C∞
0 (Ω) in the energy norm.

Definition 2.1.1. We call the point 0 ∈ ∂Ω regular with respect to L(∂)
if for any f ∈ C∞

0 (Ω) the solution of (2.1.1) satisfies

lim
Ω∋x→O

u(x) = 0. (2.1.2)

For n = 2, 3, . . . , 2m− 1, the regularity is a consequence of the Sobolev
imbedding theorem. Therefore we suppose that n ≥ 2m. In the case of
m = 1, the above definition of regularity is equivalent to that given by
Wiener (see Section 2.6 below).

The following result which coincides with Wiener’s criterion in the case
of n = 2 and m = 1, is obtained in Sections 2.8 and 2.9.

Theorem 2.1.1. Let 2m = n. Then O is regular with respect to L(∂) if
and only if

1∫
0

C2m(Bρ \ Ω)ρ−1 dρ = ∞. (2.1.3)

Here and elsewhere C2m is the potential-theoretic Bessel capacity of
order 2m (see Adams and Heard [3] and Adams and Hedberg [4]). The case
of n > 2m is more delicate because no result of Wiener’s type is valid for all
operators L(∂) (see [53, Chapter 10]). To be more precise, even the vertex
of a cone may be irregular with respect to L(∂)) if the fundamental solution
of L(∂),

F (x) = F
( x

|x|

)
|x|2m−n, x ∈ Rn \O, (2.1.4)

changes its sign. Examples of operators L(∂) with this property can be
found in Maz’ya and Nazarov [52] and Davies [10]. In the sequel, Wiener’s
type characterization of regularity for n > 2m is given for a subclass of
operators L(∂) called positive with the weight F . This means that for all
real-valued u ∈ C∞

0 (Rn \O),∫
Rn

L(∂)u(x) · u(x)F (x) dx ≥ c
m∑
k=1

∫
Rn

∣∣∇ku(x)
∣∣2|x|2k−n dx, (2.1.5)

where ∇k is the gradient of order k, that is, where ∇k = {∂α} with |α| = k.
In Sections 2.5 and 2.7, we prove the following result.
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Theorem 2.1.2. Let n > 2m, and let L(∂) be positive with weight F . Then
O is regular with respect to L(∂) if and only if

1∫
0

C2m(Bρ \ Ω)ρ2m−n−1 dρ = ∞. (2.1.6)

Note that in a direct analogy with the case of the Laplacian we could
say that 0 in Theorems 2.1.1 and 2.1.2 is irregular with respect to L(∂) if
and only if the set Rn \Ω is 2m-thin in the sense of linear potential theory
(see [29], [3], [4]).

Since, obviously, the second order operator L(∂) is positive with the
weight F , Wiener’s result for F is contained in Theorem 2.1.2. More-
over, one can notice that the same proof with F (x) being replaced by
Green’s function of the uniformly elliptic operator u → −∂xi(aij(x)∂xju)
with bounded measurable coefficients leads to the main result in [32]. We
also note that the pointwise positivity of F follows from (2.1.5), but the
converse is not true. In particular, the m-harmonic operator with 2m < n
satisfies (2.1.5) if and only if n = 5, 6, 7 for m = 2 and n = 2m+ 1, 2m+ 2
for m > 2 (see [47], where the proof of the sufficiency of (2.1.6) is given for
(−∆)m with m and n as above, and also [12] dealing with the sufficiency
for noninteger powers of the Laplacian in the intervals (0, 1) and [n2 − 1, n2 ).

It is shown in [55] that the vertices of n-dimensional cones are regular
with respect to ∆2 for all dimensions. In Theorem 2.12.1, we consider the
Dirichlet problem (2.1.1) for n ≥ 8 and for the n-dimensional biharmonic
operator with 0 being the vertex of an inner cusp. We show that condition
(2.1.6), where m = 2, guarantees that u(x) → 0 as x approaches O along any
nontangential direction. This does not mean, of course, that Theorem 2.1.2
for the biharmonic operator may be extended to higher dimensions, but
the domain Ω providing the corresponding counterexample should be more
complicated than a cusp.

There are some auxiliary assertions of independent interest proved in
this paper which concern the so-called L-capacitary potential UK of the
compact set K ⊂ Rn, that is, the solution of the variational problem

inf
{∫
Rn

L(∂)u · u dx : u ∈ C∞
0 (Rn) : u = 1 in vicinity of K

}
.

We show, in particular, that for an arbitrary operator L(∂), the potential
Uk is subject to the estimate

|UK(y)| ≤ cdist(y,K)2m−nC2m(K) for all y ∈ Rn \K,

where the constant c does not depend on K (see Proposition 2.2.1). The
natural analogue of this estimate in the theory of Riesz potentials is quite
obvious, and as a matter of fact, our L-capacitary potential is representable
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as the Riesz potential F ∗ T . However, one cannot rely upon the methods
of the classical potential theory when studying UK , because, in general, T
is only a distribution and not a positive measure. Among the properties
of UK resulting from the assumption of weighted positivity of L(∂) are the
inequalities 0 < UK < 2 on Rn \K, which holds for an arbitrary compact
set K of positive capacity C2m. Generally, the upper bound 2 cannot be
replaced by 1 if m > 1.

In conclusion, it is perhaps worth mentioning that the present paper
gives answers to some questions posed in [47].

2.2 Capacities and the L-Capacitary Potential

Let Ω be arbitrary if n > 2m and bounded if n = 2m. By Green’s m-
harmonic capacity capm(K,Ω) of a compact set K ⊂ Ω we mean

inf
{ ∑

|α|=m

m!

α!
∥∂αu∥2L2(Rn) : u∈C

∞
0 (Ω), u=1 in vicinity of K

}
. (2.2.1)

We omit the reference to Green and write capm(K) if Ω = Rn. It is well
known that capm(K) = 0 for all K if n = 2m.

Let n > 2m. One of the equivalent definitions of the potential-theoretic
Riesz capacity of order 2m is

c2m(K) = inf
{ ∑

|α|=m

m!

α!
∥∂αu∥2L2(Rn) : u ∈ C∞

0 (Rn), u ≥ 1 on K
}
.

The capacities capm(K) and c2m(K) are equivalent; that is, their ratio is
bounded and separated from zero by constants depending only on n and m
(see [49, Section 9.3.2]).

We use the notation C2m(K) for the potential-theoretic Bessel capacity
of order 2m ≤ n which can be defined by

inf
{ ∑

0≤|α|≤m

m!

α!
∥∂αu∥2L2(Rn) : u ∈ C∞

0 (Rn), u ≥ 1 on K
}
.

Here also the replacement of the condition u ≥ 1 on K by u = 1 in a
neighborhood of K leads to an equivalent capacity. Furthermore, if n > 2m
and K ⊂ B1, the Riesz and Bessel capacities of K are equivalent.

We use the bilinear form

B(u, v) =

∫
Ω

∑
|α|=|β|=m

aαβ∂
αu · ∂βv dx. (2.2.2)

The solution UK ∈
◦
Hm(Ω) of the variational problem

inf
{

B(u, u) : u ∈ C∞
0 (Ω), u = 1 in a neighbourhood of K

}
(2.2.3)



Topics on Wiener Regularity for Elliptic Equations and Systems 11

is called Green’s L-capacitary potential of the set K with respect to Ω, and
the L-capacitary potential of K in the case of Ω = Rn.

We check that the m-capacitary potential of the unit ball B1 in Rn,
where n > 2m, is given for |x| > 1 by

UB1(x) =
Γ(n2 )

Γ(m)Γ(−m+ n
2 )

|x|−2∫
0

(1− τ)m−1τ−m−1+n
2 dτ. (2.2.4)

This function solves the m-harmonic equation in Rn \ B1 because the last
integral is equal to

2

m∑
j=1

(−1)m−jΓ(m)

Γ(j)Γ(m− j + 1)(n− 2j)
|x|2j−n.

Differentiating the integral in (2.2.4), we obtain

∂k|x|UB1(x)
∣∣∣
∂B1

= 0 for k = 1, . . . ,m− 1.

The coefficient at the integral in (2.2.4) is chosen to satisfy the boundary
condition

UB1(x) = 1 on ∂B1.

Owing to (2.2.4), we see that

0 < UB1(x) < 1 on Rn \B1

and that UB1 is a decreasing function of |x|.
By Green’s formula

∑
|α|=m

∥∂αUB1∥2L2(Rn\B1)
= −

∫
∂B1

UB1(x)
∂

∂|x|
(−∆)m−1UB1(x) dsx =

= −
2Γ(n2 )

(n− 2m)Γ(m)Γ(−m+ n
2 )

∫
∂B1

∂

∂|x|
(−∆)m−1|x|2m−n dsx

and by

(−∆)m−1|x|2m−n =
4m−1Γ(m)Γ(−1 + n

2 )

Γ(−m+ n
2 )

|x|2−n,

we obtain the value of the m-harmonic capacity of the unit ball:

capmB1 =
4m

n− 2m

( Γ(n2 )

Γ(−m+ n
2 )

)2

ωn−1 (2.2.5)

with ωn−1 denoting the area of B1.
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We recall that the Riesz capacitary measure of order 2m, 2m < n, is the
normalized area on ∂B1 (see [29, Chapter 2, Section 3]). Hence, one can
verify by direct computation that

c2m(B1) =
2
√
π Γ(m)Γ(m− 1 + n

2 )

Γ(m− 1
2 )Γ(m− 1 + n

2 )
ωn−1. (2.2.6)

Lemma 2.2.1. For any u ∈ C∞
0 (Ω) and any distribution Φ ∈ [C∞

0 (Ω)]∗,

B(u, uΦ) = 2−1

∫
Ω

u2L(∂)Φ dx+

+

∫
Ω

m∑
j=1

∑
|µ|=|µ|=j

∂µu · ∂νu · Pµν(∂)Φ dx, (2.2.7)

where Pµν(ζ) are homogeneous polynomials of degree 2(m−j), Pµν = Pνµ,
and Pαβ(ζ) = aαβ for |α| = |β| = m.

Proof. The left-hand side in (2.2.7) is equal to∑
|α|=|β|=m

aαβ

∫
Ω

u∂αu · ∂βΦ dx+

+
∑

|α|=|β|=m

aαβ

(∫
Ω

∂αu · ∂βu · Φ dx+

+
∑

β>γ>0

β!

γ!(β − γ)!

∫
Ω

∂αu · ∂βu · ∂β−γΦ dx
)
.

We have∫
Rn

u∂αu · ∂βΦ dx = 2−1

∫
Ω

∂α(u2)∂βΦ dx−

− 2−1
∑

α>γ>0

α!

γ!(α− γ)!

∫
Ω

∂αu · ∂α−γu · ∂βΦ dx.

Hence by aαβ = aβα, we obtain the identity

B(u, uΦ) = 2−1

∫
Ω

u2L(∂)Φ dx+

+
∑

|α|=|β|=m

aαβ
∑

β>γ>0

β!

γ!(β−γ)!

∫
Ω

∂γu
(
∂αu · ∂β−γΦ−2−1∂β−γu · ∂α

)
dx+

+

∫
Ω

∑
|α|=|β|=m

aαβ∂
αu · ∂βu · Φ dx.
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We need to prove that the second term can be written as∫
Ω

m−1∑
j=1

∑
|µ|=|ν|=j

∂µu · ∂νu · Pµν(∂)Φ dx.

It suffices to establish such a representation for the integral

iαβγ =

∫
Ω

∂αu · ∂γu · ∂β−γΦ dx

with |α| > |γ|. Let |α|+|γ| be even. We write α = σ+τ , where |σ| = |α|+|γ|
2 .

After integrating by parts, we have

iαβγ = (−1)|τ |
∫
Ω

∂σu · ∂γ+τu · ∂β−γΦ dx+

+ (−1)|τ |
∑

0≤δ≤τ

τ !

δ!(τ − δ)!

∫
Ω

∂σu · ∂γ+δu · ∂β−γ+τ−δΦ dx.

The last integral on the right is in the required form because |σ| = |γ|+|τ | =
|α|+|γ|

2 . We have |γ| + |δ| < |α| in the remaining terms. Therefore, these
terms are subject to the induction hypothesis.

Now let |α|+ |γ| be odd. Then

iαβγ = (−1)|α|
∫
Rn

u∂α(∂γu · ∂β−γΦ) dx =

= (−1)|α|
∫
Rn

∑
0≤δ≤α

α!

δ!(α− δ)!
∂γ+δu · ∂β−γ+α−δΦ dx.

Integrating by parts, we obtain

iαβγ = (−1)|α|+|γ|
∫
Rn

u
∑

0≤δ≤α

α!

δ!(α− δ)!
∂δu · ∂γ(u∂β−γ+α−δΦ) dx =

= −
∫
Rn

u
∑

0≤δ≤α

α!

δ!(α−δ)!
∑

0≤κ≤γ

γ!

κ!(γ−κ)!
∂δu · ∂κu · ∂α+β−δ−κΦ dx.

Hence

iαβγ = −2−1
∑

0≤δ≤α, 0≤κ≤γ
|δ|+|κ|<|α|+|γ|

α!γ!

δ!(α−δ)!κ!(γ−κ)!

∫
Rn

∂δu · ∂κu · ∂α+β−δ−κΦ dx.

Every integral on the right is subject to the induction hypothesis. The result
follows.
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As in the introduction, by F (x) we denote the fundamental solution
L(∂) in Rn subject to (2.1.4). Setting Φ(x) = F (x − y), we conclude that
for all u ∈ C∞

0 (Rn), ∫
Rn

L(∂)u(x) · u(x)F (x− y) dx =

= 2−1u(y)2 +

∫
Rn

m∑
j=1

∑
|µ|=|ν|=j

∂µu(x) · ∂νu(x) · Pµν(∂)F (x− y) dx. (2.2.8)

Lemma 2.2.2. Let Ω = Rn, 2m < n. For all y ∈ Rn \K,

UK(y) = 2−1UK(y)2+

+

∫
Rn

∑
m≥j≥1

∑
|µ|=|ν|=j

∂µUK(x) · ∂νUK(x) · Pµν(∂)F (x− y) dx, (2.2.9)

where the same notation as in Lemma 2.2.1 is used.
Proof. We fix an arbitrary point y in Rn \K. Let {us}s≥1 be a sequence of
functions in C∞

0 (Rn) such that us = UK on a neighborhood of y independent
of s and us → Uk in

◦
Hm(Rn). Since UK is smooth on Rn\K and the function

F is smooth on Rn \O and vanishes at infinity, we can pass to the limit in
(2.2.8), where u = us. This implies

lim
s→∞

∫
Rn

L(∂)UK(x) · us(x)F (x− y) dx = 2−1UK(y)2+

+

∫
Rn

m∑
j=1

∑
|µ|=|ν|=j

∂µUK(x) · ∂νUK(x) · Pµν(∂)F (x− y) dx, (2.2.10)

where L(∂)UK is an element of the space H−m(Rn) dual to
◦
Hm(Rn), and

the integral on the left is understood in the sense of distributions. Taking
into account that L(∂)UK = 0 on Rn\K and that us can be chosen to satisfy
us = 1 on a neighborhood of K, we write the left-hand side in (2.2.10) as∫

Rn

L(∂)UK(x) · F (x− y) dx = UK(y). (2.2.11)

The result follows.

Corollary 2.2.1. Let 2m < n. For almost all y ∈ Rn,∣∣∇lUK(y)
∣∣ ≤

≤ c

(∣∣∇lUK(y)2
∣∣+ ∫

Rn

∑
1≤r,s≤m
r+s>l

|∇lUK(y)| |∇sUK(y)|
|x− y|n−r−s+l

dx

)
, (2.2.12)
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where l = 0, 1, . . . ,m.
Proof. Since ∇lUK vanishes almost everywhere on K, it is enough to check
(2.2.12) for y ∈ Rn \K. By (2.2.9), it suffices to estimate∣∣∣∣∇l

∫
Rn

∂µUK(x) · ∂νUK(x) · Pµν(∂)F (x− y) dx

∣∣∣∣, (2.2.13)

where |µ| = |ν| = j and j = 1, . . . ,m. Let 2j ≤ l. Since ord Pµν(∂) =
2(m− j), we have∣∣∇lPµν(∂)F (x− y)

∣∣ ≤ c|x− y|−n+2j−i,

and we can take
c

∫
Rn

|∇jUK(x)|2

|x− y|n−2j+l
dx (2.2.14)

as a majorant for (2.2.13). In the case of 2j > l, integrating by parts, we
estimate (2.2.13) by

c

∫
Rn

∣∣∣∇m−j
(
∂µUK(x) · ∂νUK(x)

)∣∣∣ ∣∣∇m−j+lF (x− y)
∣∣ dx ≤

≤ c1

∫
Rn

m−j∑
i=0

|∇i+jUK(x)| |∇m−iUK(x)|
|x− y|n−m−j+l dx.

Since m+j ≥ 2j > 1, the sum of the last majorant and (2.2.14) is dominated
by the right-hand side in (2.2.12). The proof is complete.

Proposition 2.2.1. Let Ω = Rn and 2m < n. For all y ∈ Rn \ K, the
following estimate holds:∣∣∇jUK(y)

∣∣ ≤ cj dist(y,K)2m−n−j capmK, (2.2.15)

where j = 0, 1, . . . and cj does not depend on K and y.
Proof. In order to simplify the notation, we set y = 0 and δ = dist(y,K).
By the well known local estimate for variational solutions of L(∂)u = 0 (see
[5, Chapter 3]), ∣∣∇ju(0)

∣∣2 ≤ cjδ
−n−2j

∫
B δ

2

u(x)2 dx, (2.2.16)

it suffices to prove (2.2.15) for j = 0. By (2.2.16) and Hardy’s inequality,

UK(0)2 ≤ cδ2m−n
∫
Rn

UK(x)2
dx

|x|2m
dx ≤

≤ cδ2m−n
∫
Rn

∣∣∇mUK(x)
∣∣2 dx ≤ c0δ

2m−n capmK. (2.2.17)
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If capmK ≥ c−1
0 δn−2m, then estimate (2.2.15) follows from (2.2.17).

Now, let capmK < c−1
0 δn−2m. By virtue of (2.2.17)), we have UK(0)2 ≤

|UK(0)|. Hence by (2.2.9),

|UK(0)| ≤ c
m∑
j=1

∫
Rn

∣∣∇jU(x)
∣∣2 dx

|x|n−2(m−j) .

Since by Hardy’s inequality all integrals on the right are estimated by the
mth integral, we obtain

|UK(0)| ≤ c

(
δ2m sup

x∈B δ
2

∣∣∇mUK(x)
∣∣2 + ∫

Rn

∣∣∇mUK(x)
∣∣2 dx

|x|n−2m

)
.

We estimate the above supremum using (2.2.16) with j = 0 and with u
replaced by ∇m∇K . Then

|UK(0)| ≤ cδ2m−n
(∫
Bδ

∣∣∇mUK(x)
∣∣2 + ∫

Rn\B δ
2

∣∣∇mUK(x)
∣∣2 dx).

The result follows from the definition of UK .

By M we denote the Hardy–Littlewood maximal operator, that is,

M f(x) = sup
ρ>0

n

ωn−1ρn

∫
|y−x|<ρ

|f(y)| dy.

Proposition 2.2.2. Let 2m < n and 0 < θ < 1. Also, let K be a compact
subset of Bρ \Bθρ. Then the L-capacitary potential UK satisfies

M∇lUK(0) ≤ cθρ
2m−l−n capmK, (2.2.18)

where l = 0, 1, . . . ,m and cθ does not depend on K and ρ.

Proof. Let r > 0. We have∫
Br

∣∣∇lUK(y)
∣∣ dx ≤ c

( ∫
Br∩Bθ

ρ
2

∣∣∇lUK(y)
∣∣ dx+

+

∫
Br\B2ρ

∣∣∇lUK(y)
∣∣ dx+

∫
Br∩(B2ρ\Bθ

ρ
2
)

∣∣∇lUK(y)
∣∣ dx).

Since dist(y,K) ≥ cρ for y ∈ Bθ ρ
2
∩ (Br \ B2ρ), the first and second

integrals on the right do not exceed crnρ2m−l−n capmK in view of (2.2.15).
Hence, for r ≤ θ ρ2 , the mean value of |∇kUK | on Br is dominated by
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cρ2m−l−n capmK. Let r > θ ρ2 . It follows from Corollary 2.2.1 that the
integral

Il(ρ) :=

∫
B2ρ\Bθ

ρ
2

∣∣∇lUK(y)
∣∣ dx

is majorized by

c

( ∫
B2ρ\Bθ

ρ
2

∣∣∇lUK(y)2
∣∣ dy+

+

∫
B2ρ\Bθ

ρ
2

dy

∫
Rn

∑
1≤r,s≤m
r+s>l

|∇rUK(x)| |∇sUK(x)|
|x− y|n−r−s+l

dx

)
≤

≤ c1ρ
n

∑
1≤r,s≤m

∫
Rn

|∇rUK(x)| |∇sUK(x)|
(ρ+ |x|)n−r−s+l

dx ≤

≤ c2ρ
2m−l

∑
1≤r,s≤m

∫
Rn

|∇rUK(x)| |∇sUK(x)|
|x|2m−r−s dx.

Hence by Hardy’s inequality, we obtain

Il(ρ) ≤ cρ2m−l
∫
Rn

∣∣∇mUK(x)
∣∣2 dx ≤ cρ2m−l capmK.

The proof is complete.

2.3 Weighted Positivity of L(∂)

Let 2m < n. It follows from (2.2.8) that the condition of weighted positivity
(2.1.5) is equivalent to the inequality∫

Rn

m∑
j=1

∑
|µ|=|ν|=j

∂µu(x) · ∂νu(x) · Pµν(∂)F (x) dx ≥

≥ c
m∑
k=1

∫
Rn

|∇ku(x)|2

|x|n−2k
dx (2.3.1)

for all u ∈ C∞
0 (Rn \ O). Since the restriction of F to ∂B1 is a smooth

function of the coefficients of L(∂), the last inequality implies that the set
of the operators L(∂) which are positive with the weight F is open.
Proposition 2.3.1. Inequality (2.1.5), valid for all u ∈ C∞

0 (Rn\O), implies

B(u, uF ) ≥ 2−1u(0)2 + c

m∑
j=1

∫
Rn

|∇ju(x)|2

|x|n−2j
dx (2.3.2)
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for all u ∈ C∞
0 (Rn).

Proof. Let u ∈ C∞
0 (Rn), 0 < ε < 1

2 and ηε(x) = η((log ε)−1 log |x|), where
η ∈ C∞

0 (R1), η(t) = 0 for t ≥ 2, and η(t) = 1 for t ≤ 1. Clearly, ηε(x) = 0
for x ∈ Rn \Bε, all derivatives of ηε vanish outside Bε \Bε2 , and∣∣∇jηε(x)

∣∣ ≤ cj | log ε|−1|x|−j .

By (2.1.5), the bilinear form B defined by (2.2.2) satisfies

B
(
(1− ηε)u, (1− ηε)uF

)
≥ c

m∑
j=1

∫
Rn

∣∣∇j

(
(1− ηε)u

)∣∣2 dx

|x|n−2j
. (2.3.3)

Using the just mentioned properties of ηε, we see that∣∣∣∣∣
( ∫
Rn

∣∣∇j

(
(1−ηε)u

)∣∣2 dx

|x|n−2j

) 1
2

−
(∫
Rn

(1−ηε)2|∇ju|2
dx

|x|n−2j

) 1
2

∣∣∣∣∣ ≤
≤

(∫
Rn

∣∣[∇j , 1− ηε
]
u
∣∣2 dx

|x|n−2j

) 1
2

≤

≤ c(u)

j∑
k=1

∫
Rn

|∇kηε|2
dx

|x|n−2j
= O

(
| log ε|−1

)
,

where [S, T ] stands for the commutator ST − TS. Hence by (2.3.3),

lim inf
ε→0

B
(
(1− ηε)u, (1− ηε)uF

)
≥ c

m∑
j=1

∫
Ω

|∇ju|2
dx

|x|n−2j
. (2.3.4)

Since, clearly,∣∣∣B(
ηε(u− u(0)), ηε(u− u(0))F

)∣∣∣ ≤
≤ c

m∑
j=1

∫
Bε

|∇j(ηε(u− u(0)))|2

|x|n−2j
dx = O(ε),

one can replace (1− ηε)u in the left-hand side of (2.3.4)) by u−u(0)ηε. We
use the identity

B
(
(u− u(0)ηε), (u− u(0)ηε)F

)
=

= B(u, uF ) + u(0)2
(
B(ηε, ηεF )− B(ηε, F )

)
−

− u(0)
(
B
(
ηε, (u− u(0))F

)
+ B(u, ηεF )

)
.
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It is straightforward that |B(ηε, (u− u(0)F |+ |B(u, ηεF )| ≤ cε. Therefore

lim inf
ε→0

B
(
ηε(u− u(0)), ηε(u− u(0))F

)
=

= B(u, uF ) + u(0)2
(
B(ηε, ηεF )− B(ηε, F )

)
.

Since B(ηε, F ) = 1 and since it follows from (2.2.8) that

∣∣2B(ηε, ηεF )− 1
∣∣ ≤ c

m∑
j=1

∫
Bε\Bε2

|∇jηε|2
dx

|x|n−2j
= O

(
| log ε|−1

)
,

we arrive at (2.3.2).

Proposition 2.3.2. The positivity of L(∂) with the weight F implies
F (x) > 0.

Proof. Let

uε(x) = ε−
n
2 η

(
ε−1(x− ω)

)
|ξ|−m exp

(
i, (x, ξ)

)
,

where η is a nonzero function in C∞
0 (Rn), ε is a positive number, ω ∈ ∂B1,

and ξ ∈ Rn. We put uε into the inequality

Re
∫
Rn

m∑
j=1

∑
|µ|=|µ|=j

∂µu(x) · ∂νu(x) · Pµν(∂)F (x) dx ≥

≥ c
m∑
j=1

∫
Rn

∣∣∇ju(x)
∣∣2 dx

|x|n−2j

which is equivalent to (2.3.1). Taking the limits as |ξ| → ∞, we obtain

∑
|α|=|β|=m

aαβ

( ξ

|ξ|

)α+β
ε−n

∫
Rn

∣∣η(ε−1(x− ω))
∣∣2F (x) dx ≤

≤ cε−n
∫
Rn

∣∣η(ε−1(x− ω))
∣∣2 dx.

Now the positivity of F follows by the limit passage as ε→ 0.

Remark 2.3.1. The positivity of the left-hand side in (2.3.1) is equivalent to
the inequality

R

∫
Rn

∫
Rn

L(iξ)

L(i(ξ − η))
f(ξ)f(η) dξ dη > 0,

valid for all nonzero f ∈ C∞
0 (Rn). The last inequality was studied by

S. Eilertsen [12].
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2.4 More Properties of the L-Capacitary Potential

Let L(∂) be positive with the weight F . Then identity (2.2.9) implies that
the L-capacitary potential of a compact set K with positive m-harmonic
capacity satisfies

0 < UK(x) < 2 on Rn \K. (2.4.1)

We show that, in general, the bound 2 in (2.4.1) cannot be replaced by 1.

Proposition 2.4.1. If L = ∆2m, then there exists a compact set K such
that (UK − 1)

∣∣
Rn\K changes sign in any neighborhood of a point of K.

Proof. Let C be an open cone in Rn+ = {x = (x′, xn) : xn > 0}, and
let Cε = {x : (ε−1x′, xn) ∈ C} with sufficiently small ε > 0. We define
the compact set K as B1 \ Cε. Suppose that UK(x) − 1 does not change
sign on a δ-neighborhood of the origin. Then either UK − 1 or 1 − UK is
a nontrivial nonnegative 2m-harmonic function on Bδ ∩ Cε subject to zero
Dirichlet condition on Bδ ∩ ∂Cε, which contradicts [23, Lemma 1]. The
result follows.

We give a lower pointwise estimate for UK stated in terms of capacity
(cf. the upper estimate (2.2.15)).

Proposition 2.4.2. Let n > 2m, and let L(∂) be positive with the weight
F . If K is a compact subset of Bd and y ∈ Rn \K, then

UK(y) ≥ c
(
|y|+ d

)2m−n capmK.

Proof. Let a be a point in the semiaxis (2,∞) which is specified later. By
(2.3.2),

UK(y) ≥ c
(
|y|+ ad

)2m−n
∫
Bad

|∇mu|2 dx ≥

≥ c
(
|y|+ ad

)2m−n
(

capmK −
∫

Rn\Bad

|∇mu|2 dx
)
. (2.4.2)

It follows from Proposition 2.2.1 that for x ∈ Rn \Bad,∣∣∇mUK(x)
∣∣ ≤ c0

capmK
(|x| − d)n−2m

≤ 2n−2mc0
capmK
|x|n−m

.

Hence,∫
Rn\Bad

|∇mu|2 dx ≤ c(capmK)2
∫

Rn\Bad

dx

|x|2n−2m
= c1

(capmK)2

(ad)n−2m
,
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and by (2.4.2),

UK(y) ≥ capmK
(|y|+ d)n−2m

(
1− c

capmK
(ad)n−2m

)
.

Choosing a to make the difference in braces positive, we complete the
proof.

2.5 Poincaré Inequality with m-Harmonic Capacity

The material in this section will be used in the proof of sufficiency in The-
orems 2.1.1 and 2.1.2.

We say that a compact subset of the ball Bρ = {x : |x| ≤ ρ} is m-small,
2m ≤ n, if

capm(e,B2ρ) ≤ 16−nρn−2m.

In the case 2m > n, only the empty subset of Bρ will be called m-small.
Let uρ denote the mean value of u on the ball Bρ, i.e.

uρ = (mesnBρ)−1

∫
Bρ

u(x) dx.

We introduce the seminorm

∥|u|∥m,Bρ =
( m∑
j=1

ρ2(j−m)∥∇ju∥2L2(Bρ)

) 1
2

.

Proposition 2.5.1 ([46, 10.1.2]). Let e be a closed subset of the ball Bρ.

(1) For all u ∈ C∞(Bρ) with dist(suppu, e) > 0 the inequality

∥u∥L2(Bρ) ≤ C∥|u|∥m,Bρ (2.5.1)

is valid, where
C−2 ≥ cρ−n capm(e,Bρ)

and c depends only on m and n.

(2) If e is m-small and if inequality (2.5.1) holds for all u ∈ C∞(Bρ) with
dist(suppu, e) > 0, then the best constant C in (2.5.1) satisfies

C−2 ≤ cρ−n cap(e,Bρ)

The second assertion of this proposition will not be used in the sequel
and therefore it will not be proved here. Its proof can be found in [46,
pp. 405, 406]. In order to check the first assertion we need the following
auxiliary result.
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Lemma 2.5.1. Let a be a compact set in B1. There exists a constant c
depending on n and m and such that

c−1 capm(e,B2) ≤

≤ inf
{
∥1− u∥Hm(B1) : u ∈ C∞(B1), dist(suppu, e) > 0

}
≤

≤ c capm(e,B2). (2.5.2)

Proof. To obtain the left estimate we need the following well-known asser-
tion.

There exists a linear continuous mapping A : Ck−1,1(B1) → Ck−1,1(B2),
such that

(i) Av = v on B1;

(ii) if dist(supp v, e) > 0, then dist(suppAv, e) > 0;

(iii) the inequality ∥∥∇i(Av)
∥∥
L2(B2)

≤ c∥∇iv∥L2(B1) (2.5.3)

is valid with i = 0, 1, . . . , l and c independent of v.

Let v = A(1− u) and let η denote a function in C∞
0 (B2) which is equal

to 1 in a neighborhood of the ball B1. Then

cap(e,B2) ≤ c
∥∥∇l(ηv)

∥∥2
L2(B2)

≤ c∥v∥2Hm(B2)
. (2.5.4)

Now the left estimate in (2.5.2) follows from (2.5.3) and (2.5.4).
Next we derive the right estimate in (2.5.2). Let w ∈ C∞

0 (B2), w = 1,
on a neighborhood of e.

Then
∥w∥Hm(B1) ≤ c∥∇mw∥L2(B2).

Minimizing the last norm, we obtain

inf
u
∥1− u∥2Hm(B1)

≤ inf ∥w∥2Hm(B1)
≤ c cap(e,B2).

Thus the proof is complete.

Proof of the first assertion of Proposition 2.5.1. It suffices to consider only
the case d = 1 and then use a dilation.

1) Let

N =

(
1

mesnB1

∫
B1

u2(x) dx

) 1
2

.

Since dist(suppu, e) > 0, it follows from Lemma 2.5.1 that

capm(e,B2) ≤ c∥1−N−1u∥2Hm(B1)
=

= cN−2∥|u|∥2m,B1
+ c∥1−N−1u∥2L2(B1)

,
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i.e.
N2 capm(e,B2) ≤ c∥|u|∥2m,B1

+ c∥N − u∥2L2(B1)
. (2.5.5)

Without loss of generality we assume that u1 ≥ 0. Then√
mesnB1 |N − u1| = ∥u∥L2(B1) − ∥u∥L2(B1) ≤ ∥u− u1∥L2(B1).

Consequently,

∥N − u∥L2(B1) ≤ ∥N − u1∥+ ∥u− u1∥L2(B1) ≤ 2∥u− u1∥L2(B1).

Hence, by (2.5.5) and the Poincaré inequality

∥u− u1∥L2(B1) ≤ ∥∇u∥L2(B1)

we obtain
cap(e,B2)∥u∥2L2(B1)

≤ c∥|u|∥2m,B1
,

which completes the proof.

2.6 Proof of Sufficiency in Theorem 2.1.2

In the lemma below and henceforth we use the notation

Mρ(u)ρ
−n

∫
Ω∩Sρ

u(x)2 dx, Sρ =
{
x : ρ < |x| < 2ρ

}
.

Lemma 2.6.1. Let 2m < n and let L(∂) be positive with the weight F .
Further, let u ∈

◦
Hm(Ω) be a solution of

L(∂)u = 0 on Ω ∩B2ρ. (2.6.1)

Then B(uηρ, uηρFy) ≤ cMρ(u) for an arbitrary point y ∈ Bρ, where

ηρ(x) = η
(x
ρ

)
, η ∈ C∞

0 (B2), η = 1 on B 3
2
, Fy(x) = F (x− y).

Proof. By the definition of B,

B(uηρ, uηρFy)− B(u, uη2ρFy) =

=
∑

|α|=|β|=m

aαβ

∫
Ω

(
[∂α, ηρ]u · ∂β(uηρFy)−∂αu · [∂β , ηρ](uηρFy)

)
dx. (2.6.2)

It follows from (2.6.1) that B(u, uη2ρFy) = 0. The absolute value of the
right-hand side in (2.6.2) is majorized by

c

m∑
j=0

ρ2j−n
∫
Ω

ζρ|∇ju|2 dx, (2.6.3)
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where ζρ(x) = ζ(xρ ), ζ ∈ C∞
0 (S1), and ζ = 1 on supp |∇η|. The result

follows by the well-known local energy estimate (see [5, Chapter 3])∫
Ω

ζρ|∇ju|2 dx ≤ cρ−2j

∫
Ω∩Sρ

u2 dx. (2.6.4)

Combining Proposition 2.3.1 and Lemma 2.6.1, we arrive at the following
local estimate.

Corollary 2.6.1. Let the conditions of Lemma 2.6.1 be satisfied. Then

u(y)2 +

∫
Ω∩Bρ

m∑
k=1

|∇ku(x)|2

|x− y|n−2k
dx ≤ cMρ(u), y ∈ Ω ∩Bρ. (2.6.5)

We need the following Poincaré-type inequality proved in Propositi-
on 2.3.2.

Lemma 2.6.2. Let u ∈
◦
Hm(Ω). Then for all ρ > 0,

Mρ(u) ≤
cρn−2m

capm(Sρ \ Ω)

∫
Ω∩Sρ

m∑
k=1

|∇ku(x)|2

ρn−2k
dx. (2.6.6)

Corollary 2.6.2. Let the conditions of Lemma 2.6.1 be satisfied. Then for
all points y ∈ Ω ∩Bρ, the estimate

u(y)2 +

∫
Ω∩Bρ

m∑
k=1

|∇ku(x)|2

|x− y|n−2k
dx ≤ cρn−2m

capm(Sρ,Ω)

∫
Ω∩Sρ

m∑
k=1

|∇ku(x)|2

ρn−2k
dx

holds.

Proof. We combine Corollary 2.6.1 with inequality (2.6.6).

Lemma 2.6.3. Let 2m < n, and let L(∂) be positive with weight F . Also,
let u ∈

◦
Hm(Ω) satisfy L(∂)u = 0 on Ω ∩B2ρ. Then, for all ρ ∈ (0, R),

sup
{
|u(p)|2 : p ∈ Ω ∩Bρ

}
+

∫
Ω∩Bρ

m∑
k=1

|∇ku(x)|2

|x|n−2k
dx ≤

≤ cMR(u) exp
(
− c

R∫
ρ

capm(Bτ \ Ω)
dτ

τn−2m+1

)
. (2.6.7)
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Proof. Let us use the notation

γm(r) = r2m−n capm(Sr \ Ω). (2.6.8)

It is sufficient to prove (2.6.7) only for ρ ≤ R
2 because in the opposite case

the result follows from Corollary 2.6.1. Denote the first and second terms on
the left in (2.6.7) by φρ and ψρ, respectively. It follows from Corollary 2.6.2
that for r ≤ R,

φr + ψr ≤
c

γm(r)
(ψ2r − ψr) ≤

c

γm(r)
(ψ2r − ψr + φ2r − φr).

This, along with the obvious inequality γm(r) ≤ c, implies

φr + ψr ≤ c exp(−c0γm(r))(φ2r + ψ2r).

By setting r = 2−jR, j = 1, 2, . . ., we arrive at the estimate

φ2−lR + ψ2−lR ≤ c exp
(
− c

l∑
j=1

γm(2−jR)
)
(φR + ψR).

We choose l so that l < log2(Rρ ) ≤ l + 1 in order to obtain

φρ + ψρ ≤ c exp
(
− c0

l∑
j=1

γm(2−jR)
)
(φR + ψR).

Now we notice that by Corollary 2.6.1, φR+ψR ≤ cMR(u). Assuming that
capm is replaced in definition (2.6.8) by the equivalent Riesz capacity c2m
and using the subadditivity of this capacity, we see that

φρ + ψρ ≤

≤ cMR(u) exp
(
− c0

l∑
j=1

c2m(B21−jR \ Ω)− c2m(B2−jR \ Ω)
(21−jR)n−2m

)
. (2.6.9)

Noting that the last sum is equal to

−c2m(B2−lR \ Ω)n−2m

(2−lR)n−2m
+ (1− 2−n+2m)

l−1∑
j=0

c2m(B2−jR \ Ω)
(2−jR)n−2m

≥

≥ c1

R∫
ρ

capm(Bτ \ Ω)
dτ

τn−2m+1
− c2,

we obtain the result from (2.6.9).

By (2.6.7) we conclude that (2.1.6) is sufficient for the regularity of O.
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2.7 Equivalence of Two Definitions of Regularity

Proposition 2.7.1. In the case m = 1, the regularity in the sense of
Definition 2.1.1 is equivalent to Wiener’s regularity.

Proof. Let O be regular in the Wiener sense and let u be the solution of
(2.1.4) with m = 1. We introduce the Newton potential uf with the density
f and note that uf is smooth in a neighborhood of ∂Ω. Since v = u− uf is
the H1(Ω)-solution of the Dirichlet problem

−∆u = 0 on Ω,

v = −uf on ∂Ω,

it follows from Wiener’s regularity that e is continuous at O (see [32, Sec-
tion 3]). Hence O is regular in the sense of Definition 2.1.1.

In order to prove the converse assertion we consider the Dirichlet prob-
lem

−∆w = 0 on Ω, w ∈
◦
H1(Ω),

w(x) = (2n)−1|x|2 on ∂Ω.

We show that w is continuous at O provided O is regular in the sense of
Definition 2.1.1. In fact, since the function

z(x) = w(x)− (2n)−1|x|2

satisfies
−∆z = 1 on Ω, w ∈ H1(Ω),

we have
z(x) =

∫
Ω

G(x, s) ds,

where G is Green’s function of the Dirichlet problem. Therefore,

z(x) =

∫
Ω

G(x, s)h(s) ds+

∫
Ω

G(x, s)(1− h(s)) ds,

where h ∈ C∞
0 (Ω), 0 ≤ h ≤ 1 and h = 1 on a domain ω, ω ⊂ Ω.

The first integral tends to zero as x → 0 by the regularity assumption.
Hence,

lim sup
x→0

|z(x)| ≤ c

∫
Ω\ω

ds

|x− s|n−2
= O

((
mesn(Ω \ ω)

) 2
n

)
for n > 2, and

lim sup
x→0

|z(x)| ≤ c1

∫
Ω\ω

∣∣ log
(
c2|x− s|

)∣∣ ds = O
((

mes2(Ω \ ω)
)1−ε)
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for n = 2.
Since mesn(Ω\ω) can be taken arbitrarily small, z(x) → 0 as x→ 0. As

a result, we find that z satisfies the definition of barrier (see [29, Chapter 4,
Section 2]), and by Theorem 4.8 in [29], the regularity of O in the Wiener
sense follows.

2.8 Regularity as a Local Property

We show that the regularity of a point O does not depend on the geometry
of Ω at any positive distance from O.
Lemma 2.8.1. Let n > 2m and let L(∂) be positive with the weight F . If
O is regular for the operator L on Ω, then the solution u ∈

◦
Hm(Ω) of

L(∂)u =
∑

{α: |α|≤m}

∂αfα on Ω,

with fα ∈ L2(Ω) ∩ C∞(Ω) and fα = 0 in a neighborhood of O, satisfies
(2.1.2).

Proof. Let ζ ∈ C∞(Ω). We represent u as the sum v+w, where w ∈
◦
Hm(Ω)

and
L(∂)u =

∑
{α: |α|≤m}

∂α(ζfα).

By the regularity of O, we have v(x) = o(1) as x→ 0. We verify that w can
be made arbitrarily small by making the Lebesgue measure of the support
of 1 − ζ sufficiently small. Let fα = 0 on Bδ, and let y ∈ Ω, |y| < δ

2 . By
the definition of w and by (2.3.2),∑

{α: |α|≤m}

∫
Ω

(1− ζ)fα(−∂)α(wFy) dx ≥

≥ 2−1w2(p) + c
m∑
k=1

∫
Ω

|∇kw(x)|2

|x− y|n−2k
dx,

where Fy(x) = Fy(x − y) and c does not depend on Ω. The proof is com-
plete.

Lemma 2.8.2. Let O be a regular point for the operator L(∂) on Ω, and
let Ω′ be a domain such that Ω′ ∩ B2ρ = Ω ∩ B2ρ for some ρ > 0. Then O
is regular for the operator L(∂) on Ω′.

Proof. Let u ∈
◦
Hm(Ω′) satisfy L(∂)u = f on Ω′ with f ∈ C∞

0 (Ω′). We
introduce ηρ(x) = η(xρ ), η ∈ C∞

0 (B2), η = 1 on B 3
2
. Then ηρu ∈

◦
Hm(Ω)

and
L(∂)(ηρu) = ηρf +

[
L(∂), ηρ

]
u on Ω.
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Since the commutator [L(∂), ηρ] is a differential operator of order 2m − 1
with smooth coefficients supported by B2ρ \B 3ρ

2
, it follows that

L(∂)(ηρu) =
∑

{α: |α|≤m}

∂αfα on Ω,

where fα ∈ L2(Ω)∩C∞(Ω) and fα = 0 in a neighborhood of O. Therefore,
(ηρu)(x) = o(1) as x tends to O by Lemma 2.8.1 and by the regularity of O
with respect to L(∂) on Ω.

2.9 Proof of Necessity in Theorem 2.1.2

Let n > 2m, and let condition (2.1.6) be violated. We fix a sufficiently small
ε > 0 depending on the operator L(∂) and choose a positive integer N in
order to have

∞∑
j=N

2(n−2m)j capm(B2−j \ Ω) < ε. (2.9.1)

By Lemma 2.8.2, it suffices to show that O is irregular with respect to
the domain Rn \K, where K = B2−N \Ω. Denote by UK the L-capacitary
potential of K. By subtracting a cut-off function η ∈ C∞

0 (Rn) used in
the proof of Lemma 2.8.2 from UK and noting that η is equal to 1 in a
neighborhood of K, we obtain a solution of Lu = f on Rn \ K with f ∈
C∞

0 (Rn) and zero Dirichlet data on ∂(Rn \ K). Therefore, it suffices to
show that UK(x) does not tend to 1 as x→ 0. This statement results from
(2.9.1) and the inequality

MUK(0) ≤ c
∑
j≥N

2(n−2m)j capm(B2−j \ Ω), (2.9.2)

which is obtained in what follows.
We introduce the L-capacitary potential U (j) of the set

K(j) = K ∩
(
B21−j \B2−1−j

)
, j = N,N + 1, . . . .

We also need a partition of unity {η(j)}j≥N subordinate to the covering of
K by the sets B21−j \B2−1−j . One can construct this partition of unity so
that |∇kη

(j)| ≤ ck2
kj , k = 1, 2, . . . . We now define the function

V =
∑
j≥N

η(j)U (j) (2.9.3)

satisfying the same Dirichlet conditions as UK . Let Qu(y) denote the
quadratic form

m∑
k=1

∫
Rn

|∇ku(x)|2

|x− y|n−2k
dx,
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and let Iλf be the Riesz potential |x|λ−n ∗f , 0 < λ < n. It is standard that
M Iλf(0) ≤ cIλf(0) if f ≥ 0 (see the proof of [29, Theorem 1.11]). Hence,

MQu(0) ≤ c
m∑
k=1

∫
Rn

∣∣∇ku(x)
∣∣2 dx

|x− y|n−2k
.

This inequality and definition (2.9.3) show that

MQV (0) ≤
∑
j≥N

m∑
k=0

∫
B21−j \B2−1−j

∣∣∇kU
(j)(x)

∣∣2 dx

|x|n−2k
≤

≤ c
∑
j≥N

2(n−2m)j

∫
Rn

∣∣∇kU
(j)(x)

∣∣2 dx

|x|2(m−k) ≤

≤ c
∑
j≥N

2(n−2m)j

∫
Rn

∣∣∇mU
(j)(x)

∣∣2 dx,
the last estimate being based on Hardy’s inequality. Therefore,

MQV (0) ≤ c
∑
j≥N

2(n−2m)j capmK(j). (2.9.4)

Furthermore, by Proposition 2.2.2,

MV (0) ≤ c
∑
j≥N

2(n−2m)j capmK(j). (2.9.5)

We deduce similar inequalities for W = UK − V . Note that W solves
the Dirichlet problem with zero boundary data for the equation L(∂)W =
−L(∂)V on Rn \K. Hence by (2.3.2), we conclude that for y ∈ Rn \K,

2−1W (y)2 + cQW (y) ≤

≤
∣∣∣∣ ∫
Rn

∑
|α|=|β|=m

aαβ∂
αV (x) · ∂β

(
W (x)F (x− y)

)
dx

∣∣∣∣. (2.9.6)

2.10 Proof of Sufficiency in Theorem 2.1.1

In the case of n = 2m, the operator L(∂) is arbitrary. We introduce a
sufficiently large positive constant C subject to a condition specified later.
We also need a fundamental solution

F (x) = κ log |x|−1 +Ψ
( x

|x|

)
(2.10.1)

of L(∂) in Rn (see [5]). Here κ = const, and we assume that the function
Ψ, which is defined up to a constant term, is chosen so that

F (x) ≥ κ log
(
4|x|−1

)
+ C on B2. (2.10.2)
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Proposition 2.10.1. Let Ω be an open set in Rn of diameter dΩ. Then
for all u ∈ C∞

0 and y ∈ Ω,∫
Ω

L(∂)u(x) · u(x)F
(x− y

dΩ

)
dx− 2−1u(y)2 ≥

≥
m∑
j=1

∫
Ω

|∇ju(x)|2

|x− y|2(m−j) log 4dΩ
|x− t|

dx. (2.10.3)

Everywhere in this section, by c we denote positive constants independent
of Ω.

Proof. It suffices to assume dΩ = 1. By Lemma 2.2.1, the left-hand side in
(2.10.3) is equal to the quadratic form

Hu(y) =

∫
Ω

m∑
j=1

∑
|µ|=|ν|=j

∂µu · ∂νu · Pµν(∂)F (x− y) dx.

By Hardy’s inequality,∣∣∣∣Hu(y)−
∑

|α|=|β|=m

aαβ∂
αu(x) · ∂βu(x) · F (x− y) dx

∣∣∣∣ ≤
≤
m−1∑
j=1

∫
Ω

|∇ju(x)|2

|x− y|2(m−j) dx ≤ c

∫
Ω

|∇mu(x)|2 dx.

Hence, there exist constants c1 and c2 such that

c1Hu(y) ≤
∫
Ω

|∇mu(x)|2 log
(
4|x− y|−1

)
dx ≤ c2Hu(y). (2.10.4)

(Here we have used the fact that the constant C in (2.10.2) is sufficiently
large in order to obtain the right-hand inequality). By the Hardy-type
inequality∫

Ω

|∇ju(x)|2

|x− y|2(m−j) log
(
4|x− y|−1

)
dx ≤

≤ c

∫
Ω

|∇mu(x)|2 log
(
4|x− y|−1

)
dx, (2.10.5)

we can also write∫
Ω

|∇ju(x)|2

|x− y|2(m−j) log
(
4|x− y|−1

)
dx ≤ cHu(y). (2.10.6)

Thus the proof is complete.
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Lemma 2.10.1. Let n = 2m, and let u ∈
◦
Hm(Ω) be subject to (2.6.1).

Then for an arbitrary point y ∈ Bρ, ρ ≤ 1,

u(y)2 + B(uηρ, uηρFy,ρ) ≤ cMρ(u),

where B, ηρ and Mρ(u) are the same as in Lemma 2.5.1, Fy,ρ(x) =
F (x−y2 ρ), and F is given by (2.10.1).

Proof. We majorize the second term by repeating the proof of Lemma 2.5.1.
Then the first term is estimated by (2.10.3), where the role of Ω is played
by Ω ∩B2ρ, and u is replaced by uηρ. The result follows.

Combining Proposition 2.10.1 with Ω∩B2ρ and uηρ instead of Ω and u,
with Lemma 2.10.1, we obtain the following local estimate similar to (2.6.5).

Lemma 2.10.2. Let the conditions of Lemma 2.10.1 be satisfied. Then for
all y ∈ Ω ∩Bρ, ρ ≤ 1, the estimate

u(y)2 +

∫
Ω∩Bρ

m∑
k=1

|∇ku(y)|2

|x− y|n−2k
log

(
4ρ|x− y|−1

)
dx ≤ cMρ(u) (2.10.7)

holds.

We now are in a position to finish the proof of sufficiency in Theo-
rem 2.1.1.

Let n = 2m, and let u ∈
◦
Hm(Ω) and L(∂)u = 0 on Ω∩B2ρ. We diminish

the right-hand side in (2.10.7) replacing Bρ by Bρ \ Bε with an arbitrarily
small ε > 0. The obtained integral is continuous at y = 0. Hence,∫

Ω∩Bρ

m∑
k=1

|∇ku(x)|2

|x|n−2k
log

(
4ρ|x|−1

)
dx ≤ cMρ(u). (2.10.8)

Putting here ρ = 1 and γm(r) = capm(Sr \ Ω, B4r), we estimate the left-
hand side from below by using the estimate

Mρ(u) ≤
c

γm(r)

∫
Ω∩Sr

m∑
k=1

|∇ku(x)|2

ρn−2k
dx

proved in Proposition 2.5.1. We have∑
j≥1

jγm(2−j)M2−j (u) ≤ cM1(u).

Hence by (2.10.7)),
∞∑
j=1

jγm(2−j) sup
Ω∩B2−j

u2 ≤ cM1(u).
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Suppose that O is irregular. Assuming that

lim
j→∞

sup
Ω∩B2−j

u2 > 0,

we have
∞∑
j=1

jγm(2−j) <∞. (2.10.9)

Since

capm(Sr \ Ω, B4r) ≥ capm(Sr \ Ω) ≥ cC2m(Sr \ Ω) for r ≤ 1

(see Section 2.2) and since the Bessel capacity is subadditive, we obtain the
estimate

γm(2−j) ≥ c
(
C2m(B21−j \ Ω)− C2m(B2−j \ Ω)

)
.

Hence and by Abel’s summation, we conclude that
∞∑
j=1

C2m(B2−j \ Ω) <∞;

that is, condition (2.10.9) is violated. The result follows.

2.11 Proof of Necessity in Theorem 2.1.1

By G(x, y) we denote Green’s function of the Dirichlet problem for L(∂) on
the ball B1. Also, we use the fundamental solution f given by (2.10.1). As
is well known and easily checked, for all x and y in B 4

5
,∣∣G(x, y)− F (x− y)

∣∣ ≤ c, (2.11.1)

where c is a constant depending on L(∂). Hence, there exists a sufficiently
small k such that for all y in the ball B 3

4
and for all x subject to |x−y| ≤ k,

c1 log
(
2k|x− y|−1

)
≤ G(x, y) ≤ c2 log

(
2k|x− y|−1

)
, (2.11.2)

and for all multi-indices α, β with |α|+ |β| > 0,∣∣∂αx ∂βyG(x, y)∣∣ ≤ cα,β |x− y|−|α|−|β|. (2.11.3)

Moreover, G(x, y) and its derivatives are uniformly bounded for all x and y
in B1 with |x− y| > k. By Lemma 2.2.1, for all u ∈ C∞

0 (B1),∫
B1

L(∂)u · uGy dx=2−1u(y)2+

∫
B1

m∑
j=1

∑
|µ|=|ν|=j

∂µu · ∂νu · Pµν(∂)Gy dx,
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where y ∈ B1 and Gy(x) = G(x, y). Hence, using the same argument as in
Lemma 2.2.2, we see that for an arbitrary compact set K in B1 and for all
y ∈ B1 \K the L-capacitary potential with respect to B1 satisfies

UK(y) =
1

2
UK(y)2 +

∫
B1

m∑
j=1

∑
|µ|=|ν|=j

∂µUK · ∂νUK · Pµν(∂)Gy dx. (2.11.4)

(Note that the notation UK was used in the case of n < 2m in a different
sense.)

Lemma 2.11.1. Let K be a compact subset of B 1
2
. For all y ∈ B1 \K, the

equality
|UK(y)− 1| ≤ 1 + c capm(K,B1) (2.11.5)

holds, where (and in the sequel) by c we denote positive constants indepen-
dent of K.

Proof. Since L(∂)UK = 0 on B1 \ B 1
2

and since UK satisfies zero Dirichlet
conditions on ∂B1, it is standard that

sup
B1\B 3

4

|UK | ≤ c sup
B 3

4
\B 1

2

|UK |

(see [5, Chapter 3]). Thus we only need to check (2.11.5) for y ∈ B 3
4
\K.

By (2.11.4) and (2.11.3),

(
UK(y)− 1

)2 ≤ 1−
∫
B1

aαβ∂
αUK · ∂βUK ·Gy dx+

+ c

m−1∑
j=1

∫
B1

∣∣∇jUK(x)
∣∣2|x− y|2j−n dx.

It follows from (2.11.2) and Hardy’s inequality∫
B1

∣∣∇jUK(x)
∣∣2|x− y|2j−n dx ≤ c

∫
B1

∣∣∇mUK(x)
∣∣2 dx, 1 ≤ j ≤ m,

that (
UK(y)− 1

)2 ≤ 1− c1

∫
Bk(y)

∣∣∇mUK(x)
∣∣2 log

(
4k|x− y|−1

)
dx+

+ c

∫
B1

∣∣∇mUK(x)
∣∣2 dx ≤ 1 + c2 capm(K,B1),

which is equivalent to (2.11.5).
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Lemma 2.11.2. Let n = 2m, and let K be a compact subset of B1 \ B 1
2
.

Then the L-capacitary potential UK with respect to B2 satisfies

M∇lUK(0) ≤ c capm(K,B2) for l = 0, 1, . . . ,m.

Proof. It follows from (2.11.4) and (2.10.5) that UK satisfies the inequalities

|UK(y)| ≤ c

(
UK(y)2 +

∫
B2

∣∣∇mUK(x)
∣∣2 log

(
4|x− y|−1

)
dx

)
,

|∇lUK(y)| ≤ c

(
|∇lUK(y)|2 +

∫
B2

∑
1<r,s≤m
r+s>l

|∇rUK(x)| |∇sUK(x)|
|x− y|n−r−s+l

dx

)

(cf. the proof of Corollary 2.2.1). It remains to repeat the proof of Propo-
sition 2.2.1 with the above inequalities playing the role of (2.2.12).

Lemma 2.11.3. Let n = 2m, and let K be compact subset of Bδ, δ < 1,
subject to

C2m(K) ≤ ε(m)

log( 2δ )
, (2.11.6)

where ε(m) is a sufficiently small constant independent of K and δ. Then
there exists a constant c(m) such that capm(K,B2δ) ≤ c(m)C2m(K).

Proof. Let δ−1K denote the image of K under the δ−1-dilation. Clearly,
capm(K,B2δ) = capm(δ−1K,B2). By using a cutoff function, one shows
that capm(δ−1K,B2) does not exceed

c inf
{ ∑

0≤k≤m

∥∇ku∥2L2(Rn) :

u ∈ C∞
0 (Rn), n = 1 in a neighborhood of δ−1K

}
.

Now we recall that by allowing the admissible functions to satisfy the in-
equality U ≥ 1 on K in the last infimum, one arrives at the capacity of
δ−1K equivalent to C2m(δ−1K). Hence, it is enough to verify that

C2m(δ−1K) ≤ cC2m(K). (2.11.7)

We denote by Pµ the 2m-order Bessel potential of measure µ and by
G2m the kernel of the integral operator P . Let µK be the corresponding
equilibrium measure of K. Since K ⊂ Bδ and δ < 1, we obtain for all y ∈ K
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except for a subset of K with zero capacity C2m,∫
K

G2m

(
δ−1(x− y)

)
dµK(x) ≥ c

∫
K

log
(
δ|x− y|−1

)
dµK(x) ≥

≥ c

(∫
K

log
(
2|x− y|−1

)
dµK(x)− C2m(K) log(2δ−1)

)
≥

≥ c

(∫
K

G2m(x− y) dµK(x)− ε(m)

)
≥ c0

(
1− ε(m)

)
.

Thus, for the measure µ(δ) = c−1
0 (1 − ε(m))−1µK(δξ) which is supported

by δ−1K, we have Pµ(δ) ≥ 1 on δ−1K outside a subset with zero capacity
C2m. Therefore,

C2m(δ−1K) ≤
⟨
Pµ(δ), µ(δ)

⟩
=

= c−2
0

(
1− ε(m)

)−2
∫
K

∫
K

G2m

(
δ−1(x− y)

)
dµK(x) dµK(y), (2.11.8)

where ⟨Pµ(δ), µ(δ)⟩ denotes the energy of µ(δ). Now we note that

G2m

(
δ−1(x− y)

)
≤ c log

(
4δ|x− y|−1

)
<

< c log
(
4|x− y|−1

)
≤ c1G2m(x− y)

for x and y in K. This and (2.11.8), combined with the fact that the energy
of µK is equal to C2m(K), complete the proof of the lemma.

Suppose that O is regular with respect to the set Ω. Assuming that

1∫
0

C2m(Br \ Ω)
dr

r
<∞, (2.11.9)

we arrive at a contradiction. We fix a sufficiently small ε > 0 and choose a
positive integer N so that

∞∑
j=N

C2m(B2−j \ Ω) < ε. (2.11.10)

Let K = B2−N \ Ω, and let Uk denote the L-capacitary potential of K
with respect to B1. We note that using (2.10.3) one can literally repeat the
proof of locality of the regularity property given in Lemma 2.10.1. There-
fore, O is regular with respect to B1 \ K, which implies UK(x) → 1 as
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x → O. It suffices to show that this is not the case. It is well known that
(67) implies ∑

j≥N

jC2m(K(j)) ≤ cε,

where K(j) = {x ∈ K : 2−1−j ≤ |x| ≤ 21−j}, and c depends only on n. A
proof can be found in [19, p. 240] for m = 1, and no changes are necessary
to apply the argument for m > 1. Hence, by Lemma 2.11.3, we obtain

∞∑
j≥N

j capm
(
K(j), B22−j

)
≤ cε. (2.11.11)

We use the partition of unity {η(j)}j≥N introduced at the beginning of
Section 2.9, and by U (j) we denote the L-capacitary potential of K(j) with
respect to B22−j . We also need the function V defined by (2.9.3) with the
new U (j). Let

T (j)(y) =

m∑
k=1

∫
B1

|∇kU
(j)(x)|2

|x− y|n−2k
log 24−j

|x− y|
dx.

By (2.10.5),

T (j)(y) = c

∫
B1

∣∣∇mU
(j)(x)

∣∣2 log 24−j

|x− y|
dx,

and therefore for r ≤ 1,

r−n
∫
Br

T (j)(y) dy ≤ c

∫
B2−j

2

∣∣∇mU
(j)(x)

∣∣2 log 24−j

r + |x|
dx ≤

≤ c log
(24−j

r

)
cap

(
K(j), B22−j

)
.

Hence, bearing in mind that supp η(j) ⊂ B21−j \B2−1−j , we have

M (η(j)T (j))(0) ≤ c capm
(
K(j), B22−j

)
. (2.11.12)

Furthermore, by (2.11.4) and Lemma 2.11.1,

M (η(j)U (j))(0) ≤

≤ 2−1
(
1 + c0 capm

(
k(j), B22−j

))
M (η(j)T (j))(0) + c1M (η(j)T (j))(0).

Since we may have capm(k(j), B22−j ) ≤ (2c0)
−1 by choosing a sufficiently

small ε, we obtain

M (η(j)U (j))(0) ≤ 4c1M (η(j)T (j))(0),
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and by (2.11.12),

M (η(j)U (j))(0) ≤ c capm
(
K(j), B22−j

)
, (2.11.13)

which implies
MV (0) ≤ c

∑
j≥N

cap
(
K(j), B22−j

)
. (2.11.14)

We introduce the function

Tu(y) =
m∑
k=1

∫
B1

|∇ku(x)|2

|x− y|n−2k
log

(
4|x− y|−1

)
dy.

By (2.10.5),

TV (y) ≤ c

∫
B1

(∇mV (x))2 log
(
4|x− y|−1

)
dy ≤

≤
∑
j≥N

∫
B1

∣∣∇m(η(j)U (j))(x)
∣∣2 log

(
4|x− y|−1

)
dx.

Hence, for r ≤ 1,

r−n
∫
Br

TV (y) dy ≤

≤ c
∑
j≥N

∫
B21−j \B2−1−j

∣∣∇m(η(j)U (j))(x)
∣∣2 log 4

|x|+ r
dx ≤

≤ c
∑
j≥N

j

∫
B1

∣∣∇m(η(j)U (j))(x)
∣∣2 dx. (2.11.15)

Clearly, ∫
B1

∣∣∇m(η(j)U (j))(x)
∣∣2 dx ≤

≤ c

∫
B1

∣∣∇mη
(j)(x)

∣∣2U (j)(x)2 dx+ c
m∑
k=1

∫
B1

|∇kU
(j)(x)|2

|x|2(m−k) dx. (2.11.16)

Owing to Hardy’s inequality, each term in the last sum is majorized by

c

∫
B1

∣∣∇mU
(j)(x)

∣∣2 dx = c capm(K(j), B2−j).
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By Lemma 2.10.2, the first integral in the right-hand side of (2.11.16) is
dominated by

c22mj
∫

supp η(j)

U (j)(x)2 dx ≤ cM (ζ(j)U (j))(0),

where ζ(j) is a function in C∞
0 (B21−j \ B2−1−j ) equal to 1 on the support

of η(j). Now we note that (2.11.13) is also valid with η(j) replaced by ζ(j).
Hence, ∫

B1

∣∣∇m(η(j)U (j))(x)
∣∣2 dx ≤ c capm(K(j), B22−j ), (2.11.17)

which, combined with (2.11.15), yields

MTV (0) ≤ c
∑
j≥N

j cap(K(j), B22−j ). (2.11.18)

We turn to estimate the function W = UK−V , which solves the Dirichlet
problem for the equation

L(∂)W = −L(∂)V on B1 \K. (2.11.19)

It follows from (2.10.3) that for y ∈ B1 \K,

2−1W (y)2 + c

∫
B1

(
∇mW (x)

)2 log
(
4|x− y|−1

)
dx ≤

≤
∫
B1

∑
|α|=|β|=m

aαβ∂
αV (x) · ∂β

(
W (x)F (x− y)

)
dx. (2.11.20)

Hence by (2.10.1),

W (y)2 +

∫
B1

(
∇mW (x)

)2 log
(
4|x− y|−1

)
dx ≤

≤ c

(∫
B1

|∇mV (x)| |W (x)| dx

|x− y|n−m
+

+

∫
B1

|∇mV (x)|
m−1∑
k=1

|∇kW (x)| dx

|x− y|n−m−k+

+

∫
B1

|∇mV (x)| |∇mW (x)| log
(
4|x− y|−1

)
dx

)
. (2.11.21)



Topics on Wiener Regularity for Elliptic Equations and Systems 39

Since both |UK | and |V | are bounded by a constant depending on L,
the same holds for |W |. Thus, the integral on the right containing |W | is
majorized by

c

∫
B1

|∇mV (x)| dx

|x− y|n−m
.

Obviously, two other integrals in the right-hand side of (2.11.21) are not
greater than

cTV (y)
1
2

(m−1∑
k=1

∫
B1

(∇kW (x))2

|x− y|n−2k
dx+

∫
B1

(
∇kW (x)

)2 log 4

|x− y|
dx

) 1
2

.

By Hardy’s inequality, we can remove the sum in k enlarging the constant
c. Hence by (2.11.21),

W (y)2 +

∫
B1

(
∇mW (x)

)2 log 4

|x− y|
dx ≤

≤ c

(∫
B1

|∇mV (x)| dx

|x− y|n−m
+ TV (y)

)
.

Thus by UK = V +W , we arrive at

UK(y)2 + c

∫
B1

(
∇mUK(x)

)2 log 4

|x− y|
dx ≤

≤ c

(
V (y)2 + TV (y) +

∫
B1

|∇mV (x)| dx

|x− y|n−m

)
.

The left-hand side is not less than c|UK(y)| by (2.11.4). Therefore,

MUK(0) ≤ c

(
MV 2(0) + MTV (0) +

∫
B1

|∇mV (x)| dx

|x|n−m

)
.

By Lemma 2.11.1, |V | ≤ c. This, along with (2.11.14) and (2.11.18), implies

MV 2(0) + MTV (0) ≤
∑
j≥N

j cap
(
K(j), B22−j

)
.

It follows from the definition of V and from Lemma 2.11.2 that∫
B1

|∇mV (x)|
|x|n−m

dx ≤ c
∑
j≥N

2(n−m)j

∫
B22−j

∣∣∇m(η(j)U (j))(x)
∣∣ dx ≤

≤ c
∑
j≥N

capm(K(j), B22−j ).
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Finally,
MUK(0) ≤ c

∑
j≥N

j capm(K(j), B22−j ),

and the contradiction required is a consequence of (2.11.12). The necessity
of (2.1.3) for the regularity of O follows.

2.12 The Biharmonic Equation in a Domain with In-
ner Cusp (n ≥ 8)

Let the bounded domain Ω be described by the inequality xn < f(x′),
x′ = (x1, . . . , xn−1) on B1, where f is a continuous function on the ball
{x′ : |x′| < 1}, subject to the conditions: f(0) = 0, f is smooth for x′ ̸= 0,
and ∂f

∂|x′| is a decreasing function of |x′| which tends to +∞ as |x′| → 0.
These conditions show that at the point O the surface ∂Ω has a cusp

that is directed inside Ω.

Theorem 2.12.1. Let n ≥ 8, and let u solve the Dirichlet problem

∆2u = f, u ∈
◦
H2(Ω),

where f ∈ C∞
0 (Ω). If

1∫
0

C4(Bρ \ Ω)
dρ

ρn−3
= ∞, (2.12.1)

then u(x) → 0 as x tends to O along any nontangential direction.

Proof. By νx we denote the external normal to ∂Ω at the point x ∈ (B1 ∩
∂Ω)\O. We introduce the function family {fε} by fε(x′) = (f(x′)−ε)++ε.
Replacing xn < f(x′) in the definition of Ω by xn < fε(x

′), we obtain the
family of domains Ωε such that O ∈ Ωε and Ωε ↓ Ω as ε ↓ 0.

By the implicit function theorem, the set Eε={x : xn=f(x
′)= ε} is a

smooth (n − 2)-dimensional surface for sufficiently small ε. In a neighbor-
hood of any point of Eε, the boundary of Ωε is diffeomorphic to a dihedral
angle. It follows from our conditions on f that the two hyperplanes , which
are tangent to ∂Ω at any point of the edge Eε, form a dihedral angle with
opening > 3π

2 (from the side of Ω). Then, as is well known, the solution of
the Dirichlet problem

∆2uε = f, uε ∈
◦
Hm(Ωε),

satisfies the estimate∣∣∇juε(x)
∣∣ = O

(
dist(x,Eε)−j+λ

)
, (2.12.2)
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where λ > 3π
2 (see, e.g., [54, Theorem 10.5] combined with [24, Section 7.1]).

The value of λ can be made more precise, but this is irrelevant for us. In
fact, we only need (80) to justify the integration by parts in what follows.

By y we denote a point on the semiaxis x′ = 0, xn ≤ 0, at a small
distance from O. Let (r, ω) be spherical coordinates centered at y, and let
G denote the image of Ωε under the mapping x→ (t, ω), where t = − log r.
For uε(x) written in the coordinates (t, ω), we use the notation v(t, ω). Also,
let δω denote the Laplace–Beltrami operator on ∂B1, and let ∂t, ∂2t , and so
on, denote partial derivatives with respect to t. Since

∆ = e2t(∂2t − (n− 2)∂t + δω),

we have ∆2 = e4tΛ, where

Λ =
(
(∂t + 2)2 − (n− 2)(∂t + 2) + δω

)(
∂2t − (n− 2)∂t + δω

)
=

= ∂4t + 2∂2t δω + δ2ω − 2(n− 4)(∂3t + ∂tδω)− 2(n− 4)δω+

+ (n2 − 10n+ 20)∂2t + 2(n− 2)(n− 4)∂t.

Consider the integral

I1 =

∫
Ωε

∆2uε ·
∂uε
∂r

dx

rn−5
=

∫
G

Λv · ∂tv dt dω.

Integratig by parts in the right-hand side, we obtain

I1 = 2(n− 4)

∫
G

(
(∂2t v)

2 + (gradω ∂tv)2 + (n− 2)(∂tv)
2
)
dt dω−

− 1

2

∫
∂G

(
(∂tv)

2 + 2(gradω ∂tv)2 + (δωv)
2
)

cos(ν, t) ds.

Since the angle between ν and the vector x− y does not exceed π
2 , we have

cos(ν, t) ≤ 0 and therefore,

2(n− 4)

∫
G

(
(∂tv)

2 + (gradω ∂tv)2 + (n− 2)(∂tv)
2
)
dt dω ≤ I1. (2.12.3)

We make use of another integral

I2 =

∫
Ωε

∆2uε · uε
dx

rn−4
=

∫
G

Λv · v dt dω. (2.12.4)

We remark that y ∈ Ωε implies

2

∫
G

∂tv · v dt dω =

∫
∂B1

(
v(+∞, ω)

)2
dω = ωn−1(uε(y))

2.
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After integrating by parts in (2.12.4), we obtain∫
G

(
(∂2t v)

2 + (δωv)
2 + 2(gradω vt)2 + 2(n− 4)(gradω v)2−

− (n2 − 10n+ 20)(∂tv)
2
)
dt dω + ωn−1(n− 2)(n− 4)(uε(y))

2 ≤ I2.

Combining this inequality with (2.12.3), we arrive at∫
G

(
2(n− 3)(∂2t v)

2 + 2(n− 2)(gradω ∂tv)2+

+ 2(δωv)
2 + 4(n− 4)(gradω v)2 + 8(n− 3)(∂tv)

2
)
dt dω+

+ 2ωn−1(n− 2)(n− 4)(uε(y))
2 ≤ I1 + 2I2.

Coming back to the coordinates x, we obtain

(uε(y))
2 +

∫
Ωε

(
(∇2uε)

2 +
(∇uε)2

r2

) dx

rn−4
≤

≤ c

∫
Ωε

f
(
r
∂uε
∂r

+ 2uε

) dx

rn−4
. (2.12.5)

Since uε → u in Hm(Rn), we can here replace uε by u and Ωε by Ω.
Now let ηρ and ζρ be the cutoff functions used in the proof of Lem-

ma 2.5.1. Since ∆2(uηρ) = fηρ + [∆2, ηρ]u and f = 0 near O, we see that
for yn ∈ (−ρ

2 , 0),

(u(y))2 +

∫
Ω

((
∇2(uηρ)

)2
+

(∇(uηρ))
2

r2

) dx

rn−4
≤

≤ c

∫
Ωε

(
r
∂(uηρ)

∂r
+ 2uηρ

)
[∆2, ηρ]u

dx

rn−4
.

Integrating by parts in the right-hand side, we majorize it by (2.6.3), and
therefore it follows from (2.6.4) that

sup
− ρ

2<yn<0

|u(0, yn)|2 +
∫
Bρ

(
(∇2u)

2 +
(∇u)2

r2

) dx

rn−4
< cMρ(u). (2.12.6)

We fix a sufficiently small θ and introduce a cone Cθ = {x : xn > 0, |x′| ≤
θxn}. Clearly, for all r ∈ (0, ρ),

sup
(∂Br)\Cθ

|u|2 ≤ c
(∣∣u(0,−r)∣∣2 + r2 sup

(∂Br)\Cθ

|∇u|2
)
,
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the function u being extended by zero outside Ω. Hence and by the well-
known local estimate

r2 sup
(∂Br)\Cθ

|∇u|2 ≤ c

∫
(B2r\B r

2
)\C θ

2

|∇u(x)|2 dx

|x|n−2
,

we obtain

sup
B ρ

2
\Cθ

|u|2 ≤ c

(
sup

0>yn>− ρ
2

|u(0, yn)|2 +
∫
Bρ

|∇(x)|2 dx

|x|n−2

)
.

Making use of (2.12.6), we arrive at

sup
B ρ

2
\Cθ

|u|2 +
∫
Bρ

(
|∇2u|2 +

|∇u|2

|x|2
) dx

|x|n−4
≤ cMρ(u).

Repeating the proof of Lemma 2.6.2, we find that for ρ ∈ (0, R) and for
small R, the inequality

sup
B ρ

2
\Cθ

|u|2 +
∫
Bρ

(
|∇2u|2 +

|∇u|2

|x|2
) dx

|x|n−4
≤

≤ cMR(u) exp
(
− c

R∫
ρ

cap2(Bτ \ Ω)
dτ

τn−3

)

holds. The result follows.





Chapter 3

Boundary Behavior of Solutions to
the Polyharmonic Equations

The polyharmonic equation is, obviously, a particular case of general equa-
tions in Chapter 1. However, the results for this equation obtained previ-
ously can be made more explicit.

3.1 Weighted Positivity of (−∆)m

Henceforth as above Ω is an open subset of Rn with boundary ∂Ω and O is
a point of the closure Ω. In the sequel, c is a positive constant depending
only on m and n, and ωn−1 is the (n− 1)-dimensional measure of ∂B1.

We shall deal with solution of the Dirichlet problem

(−∆)mu = f, u ∈
◦
Hm(Ω). (3.1.1)

By Γ we denote the fundamental solution of the operator (−∆)m,

Γ(x) =

γ|x|
2m−n for 2m < n,

γ log D

|x|
for 2m = n,

where D is a positive constant and

γ−1 = 2m−1(m− 1)!(n− 2)(n− 4) · · · (n− 2m)ωn−1

for n > 2m, and
γ−1

[
2m−1(m− 1)!

]2
ωn−1

for n = 2m.

Proposition 3.1.1. Let n ≥ 2m and let∫
Ω

u(x)(−∆)mu(x)Γ(x− p) dx ≥ 0 (3.1.2)

45
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for all u ∈ C∞
0 (Ω) and for at least one point p ∈ Ω. Then

n = 2m, 2m+ 1, 2m+ 2 for m > 2

and
n = 4, 5, 6, 7 for m = 2.

Proof. Assume that n ≥ 2m + 3 for m > 2 and n ≥ 8 for m = 2. Denote
by (r, ω), r > 0, ω ∈ ∂B1(p), the spherical coordinates with center p, and
by G the image of Ω under the mapping x 7−→ (t, ω), t = − log r. Since

r2∆u = r2−n(r∂r)
(
rn−2(r∂r)u

)
+ δωu,

where δω is the Beltrami operator on ∂B1(p), we have

∆ = e2t
(
∂2t − (n− 2)∂t + δω

)
= e2t

{(
∂t −

n− 2

2

)2

−A
}
,

where
A = −δω +

(n− 2)2

4
. (3.1.3)

Hence

r2m∆m =

m−1∏
j=0

{(
∂t −

n− 2

2
+ 2j

)2

−A
}
. (3.1.4)

Let u be a function in C∞
0 (Ω) which depends only on |x − p|. We set

w(t) = u(x). Clearly,∫
Ω

(−∆)mu(x)u(x)Γ(x− p) dx =

∫
R1

w(t)P
( d
dt

)
w(t) dt, (3.1.5)

where

P(λ) = (−1)mγωn−1

m−1∏
j=0

(λ+ 2j)(λ− n+ 2 + 2j) =

= (−1)mγωn−1λ(λ− n+ 2)
m−1∏
j=1

(λ+ 2j)(λ− n− 2m+ 2 + 2j).

Let

P(λ) = (−1)mγωn−1λ
2m +

2m−1∑
k=1

akλ
k.

We have

a2 =
(
λ−1P(λ)

)′∣∣∣
λ=0

=
1

2− n
+
m−1∑
j=1

( 1

2j
− 1

n− 2− 2m+ 2j

)
.
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Hence by n ≥ 2m+ 3,

a2 =
1

2
− 1

n− 2
− 1

n− 2m
+

m−1∑
j=2

n− 2−m

2j(n− 2− 2m+ 2j)
≥

≥ 1

2
− 1

n− 2
− 1

n− 2m
> 0.

We choose a real-valued function η ∈ C∞
0 (1, 2) normalized by∫

R1

|η′(σ)|2 dσ = 1

and we set u(x) = η(εt), where ε is so small that suppu ⊂ Ω. The quadratic
form on the right-hand side of (3.1.5) equals∫

R1

(
ε2mγωn−1

∣∣η(m)(εt)
∣∣2 + m−1∑

k=1

a2k(−1)kε2k
∣∣η(k)(εt)∣∣2) dt =

= −a2ε+O(ε3) < 0,

which contradicts the assumption (3.1.2).

Now we prove the converse statement.

Proposition 3.1.2. Let Γp(x) = Γ(x− p), where p ∈ Ω. If

n = 2m, 2m+ 1, 2m+ 2 for m > 2,

n = 4, 5, 6, 7 for m = 2,

n = 2, 3, 4 for m = 1,

then for all u ∈ C∞
0 (Ω),∫

Ω

(−∆)mu(x) · u(x)Γ(x− ρ) dx ≥

≥ 2−1u2(p) + c

m∑
k=1

∫
Ω

|∇ku(x)|2

|x− p|2(m−k) Γ(x− p) dx. (3.1.6)

(In the case n = 2m, the constant D in the definition of Γ is greater than
|x− p| for all x ∈ suppu.)

Proof. We preserve the notation introduced in the proof of Proposition 3.1.1.
We note first that (3.1.6) becomes identity when m = 1. The subsequent
proof will be divided into four parts.

(i) The case n = 2m+ 2.
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By (3.1.4),

r−2m∆m =
m−1∏
j=0

(∂t −m+ 2j −A
1
2 )

m−1∏
j=0

(∂t −m+ 2j +A
1
2 ),

where A = −δω +m2, and A
1
2 is defined by using spherical harmonics. By

setting k = m− j in the second product, we rewrite the right-hand side as
m−1∏
j=0

(∂t −m+ 2j −A
1
2 )

m∏
k=1

(∂t +m− 2k +A
1
2 ).

This can be represented in the form

(∂t −m−A
1
2 )(∂t −m+A

1
2 )

m−1∏
j=1

(∂2t − B2
j ),

where Bj = A
1
2 +m− 2j. Therefore,

2m∆m =
(
∂2t + δω − 2m

∂

∂t

)m−1∏
j=1

(∂2t − B2
j ) =

= (∂2t + δω)

m−1∏
j=1

(∂2t − B2
j )+

+ (−1)m2m∂t
∑

0≤j≤m−1
k1<···<kj

(−∂2t )m−j−1B2
k1 · · ·B

2
kj .

We extend w by zero outside Ω and introduce the function w defined by
w(t, ω) = u(x). We write the left-hand side of (3.1.6) in the form γ(I1+I2),
where γ is the constant in the definition of Γ,

(2m−1I1) =

∫
G

∂t
∑

0≤j≤m−1
k1<···<kj

(−∂2t )m−j−1B2
k1 · · ·B

2
kjw · w dt dω,

and

I2 = (−1)m
∫
G

(∂2t + δω)
m−1∏
j=1

(∂2t − B2
j )w · w dt dω.

Since the operators Bj are symmetric, it follows that

m−1I1 =
∑

0≤j≤m−1
k1<···<kj

∫
R1

∂t

∫
∂B1

(
∂m−j−1
t Bk1 · · ·Bkjw

)2
dω dt =

=
∑

0≤j≤m−1
k1<···<kj

∫
∂B1

∣∣∣(∂m−j−1
t Bk1 · · ·Bkjw

)
(+∞, ω)

∣∣∣2 dω.
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Since u ∈ C∞
0 (Ω), we have w(t, ω) = u(p) + O(e−t) as t → +∞, and this

can be differentiated. Therefore, all terms with j < m−1 are equal to zero,
and we find

I1 = m

∫
∂B1

∣∣(B1 · Bm−1w)(+∞, ω)
∣∣2 dω =

= mu2(p)

∫
∂B1

|B1 · Bm−11|2 dω.

By Bj = (−δω +m2)
1
2 +m− 2j, we have

I1 = 4m−1m
[
(m− 1)!

]2
ω2m+1u

2(p).

Since in the case n = 2m+ 2,

γ−1 = 22m−1m
[
(m− 1)!

]2
ω2m+1,

we conclude that
I1 = (2γ)−1u2(p). (3.1.7)

We now wish to obtain the lower bound for I2. Let w̃ denote the Fourier
transform of w with respect to t. Then

I2 =

∫
∂B1

∫
R1

(λ2 − δω)

m−1∏
j=1

(λ2 + B2
j )w̃(λ, ω) · w̃(λ, ω) dλ dω.

Clearly,
Bj ≥ (m2 − δω)

1
2 −m+ 2 ≥ 2m−1(m2 − δω)

1
2 ,

and
λ2 + B2

j ≥ 4m−2(λ2 + 1− δω),

the operators being compared with respect to their quadratic forms. Thus(m
2

)2m−2

I2 ≥

≥
∫

∂B1×R1

(λ2 − δω)(λ
2 + 1− δω)

m−1w̃(λ, ω) · w̃(λ, ω) dλ dω ≥

≥ c
(
∥∂tw∥2Hm−1(G) + ∥∇ωw∥2Hm−1(G)

)
,

where Hm−1 is the Sobolev space. This is equivalent to the inequality

I2 ≥ c

∫
Ω

m∑
k=1

|∇ku(x)|2

|x− p|n−2k
dx

which, along with (3.1.7), completes the proof for n = 2m+ 2.
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(ii) The case n = 2m+ 1.

We shall treat this case by descent from n = 2m+2 to n = 2m+1. Let
z = (x, s), where x ∈ Ω, s ∈ R1, and let q = (p, 0), where p ∈ Ω, 0 ∈ R1.
We introduce a cut-off function η ∈ C∞

0 (−2, 2) which satisfies η(s) = 1 for
|s| ≤ 1 and 0 ≤ η ≤ 1 on R1. Let

Uε(z) = u(x)η(εs)

and let Γ(n) denote the fundamental solution of (−∆)m in Rn.
By integrating

(−∆z)
mΓ(n+1)(z, q) = δ(z − q),

with respect to s ∈ R1, we have

Γ(n)(x, y) =

∫
R1

Γ(k+1)(z, q) ds. (3.1.8)

From part (i) of the present proof we obtain∫
Ω×R1

(−∆z)
mUε(z)Uε(z)Γ

(n+1)(z − q) dz ≥

≥ 1

2
U2
ε (q) + c

∫
Ω×R1

m∑
k=1

|∇kUε(z)|2

|z − q|2(m+1−k) dz.

By letting ε→ 0, we find∫
Ω×R1

(−∆z)
mu(x) · u(x)Γ(n+1)(z − q) ds dx ≥

≥ 1

2
u2(p) + c

∫
Ω×R1

m∑
k=1

|∇ku(x)|2

|z − q|2(m+1−k) ds dx.

The result follows from (3.1.8).

(iii) The case m = 2, n = 7.

By (3.1.4),

30ω6

∫
Ω

∆2u(x) · u(x)Γ(x− p) dx =

=

∫
Ω

(wtt − 5wt + δεw)(wtt + wt − 6w + δωw) dt dω.



Topics on Wiener Regularity for Elliptic Equations and Systems 51

Since w(t, ω) = u(p) +O(e−t) as t→ +∞, the last integral equals∫
Ω

(
w2
tt−5w2

t−6wttw+2wttδωw+(δωw)
2−6wδωw

)
dt dω+15ω6u

2(p).

After integrating by parts, we rewrite this in the form∫
Ω

(
w2
tt(δωw)

2 + 2(∇ωwt)
2 + 6(∇ωw)

2 + w2
t

)
dt dω + 15ω6u

2(p).

Using the variables (r, ω), we find that the left-hand side exceeds

c

∫
Ω

( (∆u(x))2
|x− p|3

+
|∆u(x)|2

|x− p|

)
dx+ 15ω6u

2(p).

Since
|∇2u|2 − (∆u)2 = ∆

(
(∇u)2

)
− ∂2

∂xi∂xj

( ∂u
∂xi

∂u

∂xj

)
,

it follows that∫
Ω

(∇2u(x))
2

|x− p|3
dx ≤

∫
Ω

(∇u(x))2

|x− p|
dx+ c

∫
Ω

(∇u(x))2

|x− p|
dx,

which completes the proof.

(iv) The case n = 2m.

By (3.1.4),

r2m∆m =
m−1∏
j=0

{
(∂t −m+ 1 + 2j)2 − (m− 1)2 + δω

}
=

=

m−1∏
j=0

(
∂t −m+ 1 + 2j − E

1
2

)m−1∏
j=0

(
∂t −m+ 1 + 2j + E

1
2

)
,

where E = −δω + (m − 1)2. We introduce k = m − 1 − j in the second
product and obtain

r2m∆m =
m−1∏
j=0

(∂2t − F 2
j ),

where Fj = m− 1− 2j + E
1
2 . Hence∫

Ω

(−∆)mu(x) · u(x)Γ(x− p) dx =

= γ

∫
G

m−1∏
j=0

(−∂2t + F 2
j )w · (ℓ+ t)w dt dω, (3.1.9)
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where ℓ = log D . Since w(t, ω) = u(p) +O(e−t) and
m−1∏
j=0

(−∂2t + F 2
j ) =

m∑
j=0

(−∂2t )m−j
∑

k1<···<kj

F 2
k1 · · ·F

2
kj ,

the right-hand side in (3.1.9) can be rewritten as

γ

∫
G

∑
0≤j≤m−1
k1<···<kj

∂m−j
t Fk1 · · ·Fkjw∂

m−j
t

(
(ℓ+ t)Fk1 · · ·Fkjw

)
dt dω =

= γ

∫
G

∑
0≤j≤m−1
k1<···<kj

(∂m−j
t Fk1 · · ·Fkjw)

2(ℓ+ t) dt dω+

+
γ

2

∫
G

∑
0≤j≤m−1
k1<···<kj

(m− j)∂t(∂
m−1−j
t Fk1 · · ·Fkjw)

2 dt dω.

The second integral in the right-hand side equals

lim
t→+∞

∫
∂B1(p)

∑
0≤j≤m−1
k1<···<kj

(m− j)∂t
∣∣∂m−1−j
t Fk1 · · ·Fkjw

∣∣2 dω =

= lim
t→+∞

∫
∂B1(p)

∑
k1<···<km−1

(Fk1 · · ·Fkm−1e)
2 dω

and since (Fm−1w)(t, ω) = O(e−t), the last expression is equal to

lim
t→+∞

∫
∂B1(p)

(
F0 · · ·Fm−2w

)2
dω =

(
2m−1(m− 1)!

)2
ωn−1u

2(p).

Hence∫
Ω

(−∆mu(x) · u(x)Γ(x− p) dx =

=
1

2
u2(p) + γ

∫
G

(ℓ+ t)
∑

0≤j≤m−1
k1<···<kj

(
∂m−1−j
t Fk1 · · ·Fkjw

)2
dt dω.

Since Fm−1 ≥ c(−δ) 1
2 and Fk ≥ c(−δ+1)

1
2 for k < m−1, the last integral

majorizes

c

∫
Ω

(ℓ+ t)
∑

1≤µ+ν≤m−1

(
∂µt (−δ)

ν
2w

)2
dt dω ≥

≥ c

∫
Ω

log D

|x− p|

m∑
k=1

|∇ku(x)|2

|x− p|2(m−k) dx,



Topics on Wiener Regularity for Elliptic Equations and Systems 53

which completes the proof.

3.2 Local Estimates

We are in a position to obtain a growth estimate for the solution formulated
in terms of a Wiener type m-capacitary integral. Before stating the result
we note that the function γm(ρ) is measurable not only for n > 2m when it
is monotonous, but also for n = 2m. In fact, one can easily show that the
function (ρ

2
,∞

)
∋ r 7−→ capm(Sρ \ Ω, B4r)

is continuous. Hence, being monotonous in ρ, the function of two variables
(ρ, r) 7−→ capm(Sρ \Ω, B4r) satisfies the so-called Carathéodory conditions
which imply the measurability of γm(ρ) in the case n = 2m (see [7], [68,
p. 152]).

Theorem 3.2.1. Let m and n be as in Proposition 3.1.2 and let the function
u ∈

◦
Hm(Ω) satisfy ∆mu = 0 on Ω ∩B2R. Then, for all ρ ∈ (0, R),

supp
{
|u(p)|2 : p ∈ Ω ∩Bρ

}
+

∫
Ω∩Bρ

m∑
k=1

|∇ku(x)|2

|x|n−2k
dx ≤

≤ cMR(u) exp
(
− c

R∫
ρ

γm(τ)
dτ

τ

)
. (3.2.1)

Proof. For n > 2m, estimate (3.2.1) is contained in Lemma 2.6.2, Chap-
ter 2. In the general case n ≥ 2m, the proof is the same and is given here
for readers convenience.

It is sufficient to assume that 2ρ ≤ R, since in the opposite case the
result follows from Corollary 2.6.1. Denote the first and the second terms
on the left by φρ and ψρ, respectively. From Lemma 2.5.1 it follows that
for r ≤ R,

φr + ψr ≤
c

γm(r)
(ψ2r − ψr) ≤

c

γm(r)
(ψ2r − ψr + φ2r − φr).

This, along with the obvious inequality γm(r) ≤ c, implies

φr + ψr ≤ ce−c0γm(r)(φ2r + ψ2r).

By setting r = 2−jR, j = 1, 2, . . ., we arrive at the estimate

φ2−ℓR + ψ2−ℓR ≤ c exp
(
− c

ℓ∑
j=1

γm(2−jR)
)
(φR + ψR).
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We choose ℓ so that
ℓ < log2

R

ρ
≤ ℓ+ 1

in order to obtain

φρ + ψρ ≤ c exp
(
− c0

ℓ∑
j=1

γm(2−jR)
)
(φR + ψR).

Now we notice that by Corollary 2.6.1,

φR + ψR ≤ cMR.

It remains to use the inequality

ℓ∑
j=1

γm(2−jR) ≥ c1

R∫
ρ

γm(τ)
dτ

τ
− c2,

which follows from the subadditivity of the Riesz capacity.

Now we obtain a positive estimate for a function, m-harmonic in Ω\Bρ.

Theorem 3.2.2. Let m and n be the same as in Proposition 3.1.2 and let
u ∈

◦
H(Ω) satisfy

∆mu = 0 on Ω \Bρ.

Then for an arbitrary p ∈ Ω \Bρ,

|u(p)| ≤ c
(
Mρ(u)

) 1
2

( ρ

|p|

)n−2m

exp
(
− c

|p|∫
ρ

γm(τ)
dτ

τ

)
. (3.2.2)

Proof. Let w denote the Kelvin transform of u, i.e. the function

w(y) = |y|2m−nu
( y

|y|2
)

defined on the image IΩ of Ω under the inversion x 7−→ y = x|x|−2. It is
well known that

∆m
y

(
|y|2m−nu

( y

|y|2
))

= |y|−n−2m(∆mu)
( y

|y|2
)
.

(A simple way to check this formula is to introduce the variables (t, ω), and
to use (3.1.4).) Consequently,∫

IΩ

w(y)∆m
y w(y) dy =

∫
Ω

u(x)∆m
x u(x) dx (3.2.3)
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and therefore w ∈
◦
Hm(IΩ) and u ∈

◦
Hm(Ω) simultaneously.

By Corollary 2.6.1,

|w(q)| ≤ c

(
ρn

∫
B 2

ρ
\B 1

ρ

w2(y) dy

) 1
2

exp
(
− c

1
ρ∫

1
|q|

γm(τ)
dτ

τ

)

for all q ∈ IΩ ∩B 1
ρ
, which is equivalent to the inequality

|q|2m−n
∣∣∣u( q

|q|2
)∣∣∣ ≤

≤ c

(
ρn

∫
B 2

ρ
\B 1

ρ

|y|2(2m−n)u2
( y

|y|2
)
dy

) 1
2

exp
(
− c

ρ∫
|p|

γm(τ)
dτ

τ

)
.

By putting p = 1|q|−2, x = y|y|−2, we complete the proof.

By (3.2.3) and Theorem 9.3.2.1 in [46] mentioned at the beginning of
Section 3.2, one can find that capm(IK,B 4

ρ
) is equivalent to ρ2(2m−n) ×

capm(K,B 4
ρ
) for K ⊂ Sρ. Hence the function

γ∗m(ρ) = ρ2m−n capm(Sρ \ IΩ, B4ρ)

satisfies the equivalence relation

γ∗m(ρ) ∼ ρn−2m capm(S 1
ρ
\ Ω, B 4

ρ
)

which, together with the easily checked property of the capacity

capm(Sρ \ Ω, B4ρ) ∼ capm(Sρ \ Ω),

valid for n > 2m (see [46, Proposition 9.1.1.3]), implies
1
ρ∫

1
|p|

γ∗m(τ) ∼
|p|∫
ρ

γm(τ)
dτ

τ
.

Here |p| > ρ and c1, c2 are positive constants depending on n and m.
Furthermore, by the definition of w,

M 1
ρ
(w) ∼ ρn−2mMρ(u),

and the result follows from (3.2.1) applied to w.
By a standard argument, Theorems 3.2.1 and 3.2.2 yield the following

variant of the Phragmén–Lindelöf principle.
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Corollary 3.2.1. Let m and n be the same as in Proposition 3.1.2 and let
ζu ∈

◦
Hm(Ω) for all ζ ∈ C∞(Rn), ζ = 0, near O. If

∆mu = 0 on Ω ∩B1,

then either u ∈
◦
H(Ω) and

lim sup
ρ→0

sup
Bρ∩Ω

|u(x)| exp
(
c

1∫
ρ

γm(τ)
dτ

τ

)
<∞ (3.2.4)

or

lim inf
ρ→0

ρn−2mMρ(u) exp
(
− c

1∫
ρ

γm(τ)
dτ

τ

)
> 0. (3.2.5)

3.3 Estimates for the Green Function

Let Gm be the Green function of the Dirichlet problem for (−∆)m, i.e. the
solution of the equation

(−∆x)
mGm(x, y) = δ(x− y), y ∈ Ω,

with zero Dirichlet data understood in the sense of the space
◦
Hm.

Theorem 3.3.1. Let n = 5, 6, 7 for m = 2 and n = 2m + 1, 2m + 2 for
m > 2. There exists a constant c which depends only on m, such that∣∣Gm(x, y)− γ|x− y|2m−n∣∣ ≤ cd2m−n

y for |x− y| ≤ dy,∣∣Gm(x, y)
∣∣ ≤ c|x− y|2m−n for |x− y| > dy,

where dy = dist(y, ∂Ω).

Proof. Let Ωy = {x ∈ Ω : |x−y| < dy} and aΩy = {x ∈ Ω : |x−y| < ady}.
We introduce the cut-off function η ∈ C∞

0 [0, 1) equal to 1 on the segment
[0, 12 ]. Put

H(x, y) = Gm(x, y)− η
( |x− y|

dy

)
Γ(x− y).

Clearly, the function x 7−→ (−∆x)
mH(x, y) is supported by Ωy \2−1Ωy and

the inequality ∣∣∆m
x H(x, y)

∣∣ ≤ cd−ny

holds.
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By Corollary 2.6.1 applied to the function x 7−→ H(x, y), we have

H(p, y)2 ≤ 2

∫
Ωy

(−∆x)
mH(x, y) ·H(x, y)Γ(x− p) dx.

Therefore,

sup
p∈Ωy

H(p, y)2 ≤ 2 sup
p∈Ωy

|H(p, y)| sup
p∈2Ωy

∫
Ωy

∣∣∆m
x H(x, y)

∣∣Γ(x− p) dx, (3.3.1)

and hence,

sup
p∈2Ωy

|H(p, y)| ≤ c d−ny sup
p∈2Ωy

∫
Ωy

Γ(x− p) dx ≤ c d2m−n
y . (3.3.2)

Since ∆m
p H(p, y) = 0 for p ̸∈ Ωy, we obtain from (3.3.2) and Corol-

lary 3.2.1, where O is replaced by p, that for p ̸∈ 2Ωy,

|H(p, y)| ≤ c
( dy
|p− y|

)n−2m

sup
x∈2Ωy

|H(x, y)| ≤ c|p− y|2m−n.

The result follows.

The just proven theorem, along with Corollary 2.6.1, yields

Corollary 3.3.1. Let m and n be the same as in Theorem 3.3.1. The Green
function Gm satisfies

|Gm(x, y)| ≤ c

|y|n−2m
exp

(
− c

|y|∫
|x|

γm(τ)
dτ

τ

)

for 2|x| < |y|.

We conclude with the following analogue of Theorem 3.3.1 in the case
n = 2m.

Theorem 3.3.2. Let n = 2m and let Ω be a domain of diameter D. Let
also

γ(x− y) = γ log D

|x− y|
.

Then ∣∣Gm(x− y)− γ(x− y)
∣∣ ≤ c1 log D

dy
+ c2m if |x− y| ≤ dy,

|Gm(x, y)| ≤ c3 log D
dy

+ c4, if |x− y| > dy.
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Proof. Proceeding in the dame way as in the proof of Theorem 3.3.1, we
arrive at (3.3.1). Therefore,

sup
p∈2Ωy

|H(p, y)| ≤ c d−2m
y sup

p∈2Ωy

∫
Ωy

Γ(x− p) dx ≤ c1 log D
dy

+ c2.

Hence by Corollary 2.6.1, we obtain

|H(p, y)| ≤ c sup
x∈2Ωy

|H(p, y)| ≤ c
(
c1 log D

dy
+ c2

)
for p ̸∈ Ωy. Since Gm(p, y) = H(p, y) for p ̸∈ 2Ωy, the result follows.



Chapter 4

Wiener Type Regularity of a
Boundary Point for the 3D Lamé
System

4.1 Introduction
In the present chapter we consider the Dirichlet problem for the 3D Lamé
system

Lu = −∆u− α grad divu, u = (u1, u2, u3)
⊤.

We derive sufficient conditions for its weighted positivity and show that
some restrictions on the elastic constants are inevitable. We then prove
that the divergence of the classical Wiener integral for a boundary point
guarantees the continuity of solutions to the Lamé system at this point,
assuming the weighted positivity.

We first give the following definition.

Definition 4.1.1. Let L be the 3D Lamé system

Lu = −∆u− α grad divu = −Dkkui − αDkiuk (i = 1, 2, 3),

where as usual repeated indices indicate summation. The system L is said
to be positive with weight Ψ(x) = (Ψij(x))

3
i,j=1 if∫

R3

(Lu)TΨu dx = −
∫
R3

[
Dkkui(x) + αDkiuk(x)

]
uj(x)Ψij(x) dx ≥ 0 (4.1.1)

for all real-valued, smooth, nonzero vector functions u = (ui)
3
i=1, ui ∈

C∞
0 (R3 \ {0}). As usual, D denotes the gradient (D1, D2, D3)

T and Du is
the Jacobian matrix of u.

Remark 4.1.1. The 3D Lamé system satisfies the strong elliptic condition if
and only if α > −1, and we will make this assumption throughout this paper.

59
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The fundamental matrix of the 3D Lamé system is given by Φ = (Φij)
3
i,j=1,

where

Φij = cαT
−1

(
δij +

α

α+ 2
ωiωj

)
(i, j = 1, 2, 3), (4.1.2)

cα =
α+ 2

8π(α+ 1)
> 0.

As usual, δij is the Kronecker delta, r = |x| and ωi =
xi

|x| .
The first result we shall prove is the following

Theorem 4.1.1. The 3D Lamé system L is positive with weight Φ when
α− < α < α+, where α− ≈ −0.194 and α+ ≈ 1.524. It is not positive
definite with weight Φ when α < α

(c)
− ≈ −0.902, or α > α

(c)
+ ≈ 39.450.

The proof of this theorem is given in Section 4.2.
Let Ω be an open set in R3 and consider the Dirichlet problem

Lu = f, fi ∈ C∞
0 (Ω), ui ∈

◦
H1(Ω). (4.1.3)

By
◦
H1(Ω) we denote the completion of C∞

0 (Ω) in the Sobolev norm:

∥f∥H2(Ω) =
[
∥f∥2L2(Ω) + ∥Df∥2L2(Ω)

] 1
2 .

Definition 4.1.2. The point P ∈ ∂Ω is regular with respect to L if for any
f = (fi)

3
i=1, fi ∈ C∞

0 (Ω), the solution of (4.1.3) satisfies

lim
Ω∋x→P

ui(x) = 0 (i = 1, 2, 3). (4.1.4)

Using Theorem 4.1.1, we will prove that the divergence of the classical
Wiener integral for a boundary point P guarantees its regularity with re-
spect to the Lamé system. To simplify notations we assume, without loss
of generality, that P = 0 is the origin of the space.

Theorem 4.1.2. Suppose the 3D Lamé system L is positive definite with
weight Φ. Then O ∈ ∂Ω is regular with respect to L if

1∫
0

cap (Bρ \ Ω)ρ−2 dρ = ∞. (4.1.5)

As usual, Bρ is the open ball centered at O with radius ρ, and cap (F ) is the
compact set F ⊂ R3.

The proof of this theorem is given in Section 4.3.
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4.2 Proof of Theorem 4.1.1

We start the proof of Theorem 4.1.1 by rewriting the integral∫
R3

(Lu)TΦu dx = −
∫
R3

(Dkkui + αDkiuk)ujΦij dx

in a more revealing form. In the following, we shall write
∫
f dx instead of

∫
R3

,

and by u2ii we always mean
3∑
i=1

u2ii; to express
( 3∑
i=1

uii
)2 we will write uiiujj

instead. Furthermore, we always assume ui ∈ C∞
0 (R3), unless otherwise

stated.

Lemma 4.2.1. ∫
(Lu)TΦu dx =

1

2
|u(0)|2 = B(u, u), (4.2.1)

where

B(u, u) =
α

2

∫
(ujDkuk − ukDkuj)DiΦij dx+

+

∫
(DkuiDkuj + αDkukDiuj)Φij dx.

Proof. By definition,∫
(Lu)TΦu dx =

= −
∫
Dkkui · ujΦij dx− α

∫
Dkiuk · ujΦij dx =: I1 + I2.

Since Φ is symmetric, we have Φij = Φji and

I1 = −
∫
Dkkui · ujΦij dx =

= −1

2

∫ [
Dkk(uiuj)− 2DkuiDkuj

]
Φij dx =

= −1

2

∫
uiujDkkΦij dx+

∫
DkuiDkuj · Φij dx.

On the other hand, Φ is the fundamental matrix of L, so we have

−DkkΦij − αDkiΦkj = δijδ(x),
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and

− 1

2

∫
uiujDkkΦij dx =

1

2

∫
uiuj

[
δijδ(x) + αDkiΦkj

]
dx =

=
1

2
|u(0)|2 − α

2

∫
(Diui · uj + uiDiuj)DkΦkj dx =

=
1

2
|u(0)|2 − α

2

∫
(Dkuk · uj + ukDkuj)DiΦij dx.

Now I2 can be written as

I2 = α

∫
Dkuk(Diuj · Φij + ujDiΦij) dx,

and the lemma follows by adding up the results.

Remark 4.2.1. With Φ(x) replaced by Φy(x) := Φ(x− y), we have∫
(Lu)TΦyu dx =

∫
(Luy)

TΦuy dx =

=
1

2
|uy(0)|2 + B(uy, uy) =:

1

2
|u(y)|2 + By(u, u),

where uy(x) = u(x+ y) and

By(u, u) =
α

2

∫
(ujDkuk − ukDkuj)DiΦy,ij dx+

+

∫
(Dkuiujuj + αDkukDiuj)Φy,ij dx.

To proceed, we introduce the following decomposition for C∞
0 (R3) functions:

f(x) = f(x) + g(x), f ∈ C∞
0 [0,∞), g ∈ C∞

0 (R3),

where
f(x) =

1

4π

∫
S2

f(rω) dσ.

Note that ∫
S2

g(rω) dσ = 0, ∀ r ≥ 0,

so we may think of f as the “0-th order harmonics” of the function f . We
shall show below in Lemma 4.2.2 that all 0-th order harmonics in (4.2.1)
are canceled, so it is possible to control u by Du.
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Lemma 4.2.2. With the decomposition

ui(x) = ui(r) + vi(x) (i = 1, 2, 3), (4.2.2)

where 
ui(r) =

1

4π

∫
S2

ui(rω) dσ,∫
S2

vi(rω) dσ = 0,
∀ r ≥ 0 (i = 1, 2, 3),

we have ∫
(Lu)TΦu dx =

1

2
|u(0)|2 + B∗(u, u), (4.2.3)

where

B∗(u, u) =
α

2

∫
(vjDkvk − vkDkvj)DiΦij dx+

+

∫
(DkuiDkuj + αDkukDiuj)Φij dx. (4.2.4)

Proof. By Lemma 4.2.1, it is enough to show∫
(ujDkuk − ukDkuj)DiΦij dx =

∫
(vjDkvk − vkDkvj)DiΦij dx.

Since∫
(ujDkuk − ukDkuj)DiΦij dx =

=

∫
(ujDkuk − ukDkuj)DiΦij dx+

∫
(ujDkvk − ukDkvj)DiΦij dx+

+

∫
(vjDkuk − vkDkuj)DiΦij dx+

∫
(vjDkvk − vkDkvj)DiΦij dx =:

=: I1 + I2 + I3 + I4,

it suffices to show I1 = I2 = I3 = 0. Now

DiΦij = Di

[
cαr

−1
(
δij +

α

α+ 2
ωiωj

)]
=

= −cαr−2ωiδij+

+
cαα

α+ 2
r−2

[
− ω2

i ωj + (δii − ω2
i )ωj + (δji − ωjωi)ωi

]
=

= −cαr−2ωj +
cαα

α+ 2
r−2ωj =: dαr

−2ωj , (4.2.5)

where
dα = − 2cα

α+ 2
= − 1

4π(α+ 1)
.
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Setting Dr =
∂
∂r , we have

I1 = dα

∫
r−2ωj

(
ujDruk · ωk − ukDruj · ωk

)
dx =

= dα

∫
r−2

(
ujDruk · ωjωk − ukDruj · ωkωj

)
dx = 0,

I3 = dα

∫
r−2

(
vjDruk · ωjωk − vkDruj · ωkωj

)
dx = 0.

As for I2, we obtain

I2 = dα

∫
r−2

(
ujDkvk · ωj − ukDkvj · ωj

)
dx =

= dα

∫
r−2

(
ujDkvk · ωj − ujDjvk · ωk

)
dx =

= − lim
ε→0+

dα

∫
S2

[
uk(ε)vk(εω)ωjωk − uj(ε)vk(εω)ωjωk

]
dσ−

− lim
ε→0+

dα

∫
R3\Bε

{
vkr

−3
[
− 2uj · ωjωk+

+ rDruj · ωjωk + uj · (δjk − ωjωk)
]
−

− vkr
−3

[
− 2uj · ωjωk + rDruj · ωjωk + uj · (δkj − ωkωj)

]}
= 0.

The result follows.

Remark 4.2.2. With Φ(x) replaced by Φy(x) := Φ(x − y) and (4.2.2) re-
placed by

ui(x) = uj(r − y) + vi(x) (i = 1, 2, 3),

where ry = |x− y| and
uj(ry) =

1

4π

∫
S2

ui(y + ryω) dσ,∫
S2

vi(y + ryω) dσ = 0,
∀ ry ≥ 0 (i = 1, 2, 3),

we have ∫
(Lu)TΦyu dx =

1

2
|u(y)|2 + B∗

y(u, u),

where

B∗
y(u, u) =

α

2

∫ (
vjDkvk − vkDkvj

)
DiΦy,ij dx+

+

∫ (
DkuiDkuj + αDkukDiuj

)
Φy,ij dx.
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In the following lemma, we use the definition of Φ and derive an explicit
expression for the bilinear form B∗(u, u) defined in (4.2.4).

Lemma 4.2.3. We have

B∗(u, u) = cα

∫ {
α

α+ 2
r−2

[
vk(Dkv) · ω − (div v)(v · ω)

]
+

+ r−1

[∣∣Dru
∣∣2 + α

2α+ 3

α+ 2
(Drui)

2ω2
i + |Dv|2 + α(div v)2+

+
α

α+ 2

∣∣(Dkv) · ω
∣∣2 + α2

α+ 2
(div v)

[
ωi(Div) · ω

]
+

+ α
3α+ 4

α+ 2
(Dru · ω)(div v) + α(Dru · ω)

[
ωi(Div) · ω

]]}
dx. (4.2.6)

Before proving this lemma, we need a simple yet important observation
that will be useful in the following computation.

Lemma 4.2.4. Let g ∈ C∞
0 (R3) be such that∫

S2

g(rω) dσ = 0, ∀ r ≥ 0.

Then 
∫
f(r)g(x) dx = 0,∫
r−1Df(x) ·Dg(x) dx = 0,

∀ f ∈ C∞
0 [0,∞).

Proof. By switching to the spherical coordinates, we easily see that

∫
f(r)g(x) dx =

∞∫
0

r2f(r)

∫
S2

g(rω) dσ = 0.

On the other hand,∫
r−1Df(r) ·Dg(x) dx =

∫
r−1DrfDig · ωi dx =

= −
∫
g
[
− r−2(Drf)ω

2
i |r−1(Drrf)ω

2
i + r−2Drf(δii − ω2

i )
]
dx =

= −
∫
g
(
− r−2Drf + r−1Drrf

)
dx = 0,

where the last equality follows by switching to polar coordinates.
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Proof of Lemma 4.2.3. By definition,

B∗(u, u) =
α

2

∫ (
vjDkvk − vkDkvj

)
DiΦij dx+

+

∫ (
DkuiDkuj + αDkukDiuj

)
Φij dx =: I1 + I2.

We have shown in Lemma 4.2.2 that (see (4.2.5))

I1 = 2−1αdα

∫
r−2ωj

(
vjDkvk − vkDkvj

)
dx =

=
cαα

α+ 2

∫
r−2

[
vk(Dkv) · ω − (div v)(v · ω)

]
dx.

On the other hand,

I2 = cα

∫
r−1DkuiDkui dx+

cαα

α+ 2

∫
r−1DkuiDkuj · ωiωj dx+

+ cαα

∫
r−1DkukDiui dx+

cαα
2

α+ 2

∫
r−1DkukDiuj · ωiωj dx =:

=: I3 + I4 + I5 + I6.

Substituting ui = ui + vi into I3 and using Lemma 4.2.4, we get

I3 = cα

∫
r−1

(
DruiDrui · ω2

k +DkviDkvi
)
dx+

+ 2cα

∫
r−1DkuiDkvi dx =

= cα

∫
r−1

(
|Dru|2 + |Dv|2

)
dx. (4.2.7)

Next,

I5 = cαα

∫
r−1

(
DrukDrui · ωkωi + 2DiviDruk · ωk +DkvkDivi

)
dx.

Note that for k ̸= i,

∫
r−1DrukDrui · ωkωi dx =

∞∫
0

rDrukDrui dr

∫
S2

ωkωiσ = 0,

and therefore,

I5 = cαα

∫
r−1

[
(Drui)

2ω2
i + 2(div v)(Dru · ω) + (div v)2

]
dx.
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As for I4, we obtain

I4 =
cαα

α+ 2

∫
r−1Dk(ui + vi)Dk(uj + vj) · ωiωj dx =

=
cαα

α+ 2

∫
r−1

(
DruiDruj · ωiωjω2

k +DruiDkvj · ωiωjωk+

+DkviDruj · ωiωjωk +DkviDkvj · ωiωj
)
dx =

=
cαα

α+ 2

∫
r−1

[
(Drui)

2ω2
i+

+ 2(Dru · ω)
[
ωk(Dkv) · ω

]
+ |Dkv · ω|2

]
dx.

Similarly,

I6 =
cαα

2

α+ 2

∫
r−1Dk(uk + vk)Di(uj + vj) · ωiωj dx =

=
cαα

2

α+ 2

∫
r−1

(
DrukDruj · ω2

i ωjωk +DrukDivj · ωiωjωk+

+DrujDkvk · ω2
i ωj +DkvkDivj · ωiωj

)
dx =

=
cαα

2

α+ 2

∫
r−1

[
(Druj)

2ω2
j + 2(Dru · ω)

[
ωi(Div) · ω

]
+

+ (Dru · ω)(div v) + (div v)
[
ωi(Div) · ω

]]
dx.

The lemma follows by adding up all these integrals.

With the help of Lemma 4.2.3, we now complete the proof of Theo-
rem 4.1.1.

Proof of Theorem 4.1.1. By Lemmas 4.2.2 and 4.2.3

−c−1
α

∫
(Lu)TΦu dx =

1

2
c−1
α |u(0)|2 + I1 + I2 + I3,

where

I1 =

∫
r−1

[
|Dru|2 + α

2α+ 3

α+ 2
(Drui)

2ω2
i+

+ |Dv|2 + α(div v)2 + α

α+ 2

∣∣(Dkv) · ω
∣∣2] dx,

I2 =

∫
r−1

[ α2

α+ 2
(div v)

[
ωi(Div) · ω

]
+ α

3α+ 4

α+ 2
(Dru · ω)(div v)+

+ α(Dru · ω)
[
ωi(Div) · ω

]]
dx,

I3 =

∫
α

α+ 2
r−2

[
vk(Dkv) · ω − (div v)(v · ω)

]
dx.
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Consider first the case α ≥ 0. By switching to the polar coordinates, we
have

I1 ≥
∫
r−1

[
|Dru|2 + α

2α+ 3

α+ 2
(Drui)

2ω2
i + |Dv|2 + α(div v)2

]
dx =

=

∞∫
0

r
[(

1 +
α

3
· 2α+ 3

α+ 2

)
∥Dru∥2ω + ∥Dv∥2ω + α∥ div v∥2ω

]
dr,

where we have written ∥ · ∥ω for ∥ · ∥L2(S2) and used the fact that

∫
S2

(Drui)
2ω2

i dσ =
4π

3

3∑
i=1

(Drui)
2 =

1

3

∫
S2

|Dru|2 dσ =
1

3
∥Dru∥2ω.

Next,

|I2| ≤
∫
r−1

[ α2

α+ 2
|div v| |Dv|+

+ α
3α+ 4

α+ 2
|Dru · ω| | div v|+ α|Dru · ω| |Dv|

]
dx ≤

≤
∞∫
0

r
[ α2

α+ 2
∥div v∥ω∥Dv∥ω+

+
α√
3
· 3α+ 4

α+ 2
∥Dru∥ω∥div v∥ω +

α√
3
∥Dru∥ω∥Dv∥ω

]
dτ,

where we have used

∥Dru · ω∥2ω =

∫
S2

DruiDruj · ωiωj dσ =

= DruiDruj ·
4π

3
δij =

4π

3

3∑
i=1

(Drui)
2 =

1

3
∥Dru∥2ω.

As for I3, we note that

|I3| ≤
α

α+ 2

∫
r−2

(
|v| |Dv|+ |v| |div v|

)
dx ≤

≤ α

α+ 2

∞∫
0

∥v∥ω
(
∥Dv∥ω + ∥div v∥ω

)
dr.

Since 2 is the first non-trivial eigenvalue of the Laplace–Beltrami oper-
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ator on S2, we have

∥v∥2ω =

∫
S2

∣∣v(rω)∣∣2 dσ ≤ 1

2

∫
S2

∣∣Dω[v(rω)]
∣∣2 dσ =

=
r2

2

∫
S2

∣∣(Dωv)(rω)
∣∣2 dσ ≤ r2

2
∥Dv∥2ω, (4.2.8)

where Dω is the gradient operator on S2. Thus

|I3| ≤
1√
2
· α

α+ 2

∞∫
0

r
[
∥Dv∥2ω + ∥Dv∥ω∥div v∥ω

]
dr,

and by putting all pieces together, we obtain

I1 + I2 + I3 ≥
∞∫
0

r(wTB+w) dr, (4.2.9)

where

w =
(
∥Dru∥ω, ∥Dv∥ω, ∥ div v∥ω

)T
,

B+ =



1 +
α

3
· 2α+ 3

α+ 2
− α

2
√
3

− α

2
√
3
· 3α+ 4

α+ 2

− α

2
√
3

1− 1√
2
· α

α+ 2
−α
2
· α+ 2−

1
2

α+ 2

− α

2
√
3
· 3α+ 4

α+ 2
−α
2
· α+ 2−

1
2

α+ 2
α


.

Clearly, the weighted positivity of L follows from the weighted positivity
of B+, because the latter implies, for some c > 0, that

∞∫
0

r(wTB+w) dr ≥ c

∞∫
0

r|w|2 dr ≥

≥ c

∞∫
0

r
(
∥Dru∥2ω + ∥Dv∥2ω

)
dr = c

∫
r−1|Du|2 dx.

The weighed positivity of B+, on the other hand, is equivalent to the posi-
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tivity of the determinants of all leading principal minors of B+:

p+,1(α) =
2α2 + 6α+ 6

3(α+ 2)
> 0, (3.2.10a)

p+,2(α) = − 1

12(α+ 2)2

[
α4 − 4(1−

√
2)α3 − 12(3−

√
2)α2−

− 12(6−
√
2)α− 48

]
> 0, (3.2.10b)

p+,3(α) = − α

12(α+ 2)3

[
6α5 + (23 + 3

√
2)α4 + (13 + 19

√
2)α3−

− (77− 38
√
2)α2 − (157− 24

√
2)α− 96

]
> 0. (3.2.10c)

With the help of computer algebra packages, we find that (3.2.10c) holds
for 0 ≤ α < α+, where α+ ≈ 1.524 is the largest real root of p+,3.

The estimates of I1, I2 and I3 are slightly different when α < 0, since
now the quadratic term α∥div v∥2ω in I1 is negative. This means that it
is no longer possible to control the ∥div v∥ω terms in I2, I3 by α∥div v∥2ω,
and in order to obtain positivity, we need to bound ∥div v∥ω by ∥Dv∥ω as
follows:

∥div v∥2ω ≤ 3∥Dv∥2ω.

This leads to the revised estimates:

I1 ≥
∞∫
0

r
[(

1 +
α

3
· 2α+ 3

α+ 2
∥Dru∥2ω+

+ ∥Dv∥2ω + 3α∥Dv∥2ω +
α

α+ 2
∥Dv∥2ω

]
dr,

|I2| ≤
∞∫
0

r
[√3α2

α+ 2
∥Dv∥2ω − α

3α+ 4

α+ 2
∥Drv∥∥ω∥Dv∥ω−

− α√
3
∥Dru∥ω∥Dv∥ω

]
dr,

|I3| ≤ − 1√
2
· α

α+ 2

∞∫
0

r
[
∥Dv∥2ω +

√
3∥Dv∥2ω

]
dr.

Hence

I1 + I2 + I3 ≥
∞∫
0

r(wTB−w) dr, (4.2.10)

where

w =
(
∥Dru∥ω, ∥Dv∥ω

)T
,
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B− =

 1 +
α

3
· 2α+ 3

α+ 2

α

2
· 3α+ 4

α+ 2
+

α

2
√
3

α

2
· 3α+ 4

α+ 2
+

α

2
√
3

1 + 3α+
α

α+ 2

(
1 +

1 +
√
3√

2
−

√
3α

)
 .

The positive definiteness of B− is equivalent to

p−,1(α) =
2α2 + 6α+ 6

3(α+ 2)
> 0, (3.2.12a)

p−,2(α) =
1

6(α+ 2)2

[
− (2 + 7

√
3)α4 + 2

(
15 +

√
2− 11

√
3 +

√
6
)
α3+

+ 2
(
57 + 3

√
2− 10

√
3 + 3

√
6
)
α2+

+ 6
(
20 +

√
2
√
6
)
α+ 24

]
> 0, (3.2.12b)

and (3.2.12b) holds for α− < α < 0, where α− ≈ −0.194 is the smallest real
root of p−,2.

Now we show that the 3D Lamé system is not positive with weight Φ
when α is either too close to −1, or too large. By Proposition 3.11 in [8],
the 3D Lamé system is positive with weight Φ only if∑

i,β,γ

Aβγip ξβξγΦip(ω) ≥ 0, ∀ ξ ∈ R3, ∀ω ∈ S2 (i = 1, 2, 3),

where
Aβγij = δijδβγ +

α

2
(δiβδjγ + δiγδjβ)

and (see equation (4.1.2))

Φij(ω) = cαr
−1

(
δij +

α

α+ 2
ωiωj

)
(i, j = 1, 2, 3).

This means, in particular, that the matrix

A(ω;α) :=
( 3∑
i=1

Aβγi1 Φi1(ω)
)3

β,γ=1
=

=
cαr

−1

2(α+ 2)


2(α+ 1)(α+ 2 + αω2

1) α2ω1ω2 α2ω1ω3

α2ω1ω2 2(α+ 2 + αω2
1) 0

α2ω1ω3 0 2(α+ 2 + αω2
1)


is semi-positive definite for any ω ∈ S2 if the 3D Lamé system is positive
with weight Φ. But A(ω;α) is semi-positive definite only if the determinant
of the leading principal minor

d2(ω;α) := det
[
2(α+ 1)(α+ 2 + αω2

1) α2ω1ω2

α2ω1ω2 2(α+ 2 + αω2
1)

]
=
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= 4(α+ 1)(α+ 2 + αω2
1)

2 − α4ω2
1ω

2
2

is nonnegative, and elementary estimate shows that

min
ω∈S2

d2(ω;α) ≤ d2
[
(2−

1
2 , 2−

1
2 , 0);α

]
= (α+ 1)(3α+ 4)2 − α4

4
=: q(α).

It follows that the 3D Lamé system is not positive with weight Φ when
q(α) < 0, which holds for α < α

(c)
− ≈ −0.902 or α > α

(c)
+ ≈ 39.450.

Remark 4.2.3. We have in fact shown that for α− < α < α+ and some c > 0
depending on α,∫

(Lu)TΦu dx ≥ 1

2
|u(0)|2 + c

∫
|Du(x)|2 dx

|x|
.

If we replace Φ(x) by Φy(x) := Φ(x− y), then∫
(Lu)TΦyu dx =

∫ [
Lu(x+ y)

]T
Φu(x+ y) dx ≥

≥ 1

2
|u(y)|2 + c

∫ ∣∣Du(x+ y)
∣∣2 dx

|x|
≥

≥ 1

2
|u(y)|2 + c

∫
|Du(x)|2

|x− y|
dx. (4.2.11)

4.3 Proof of Theorem 4.1.2

In the next lemma and henceforth, we use the notation Sρ = {x : ρ < |x| <
2ρ} and

mρ(u) = ρ−3

∫
Ω∩Sρ

|u(x)|2 dx,

Mρ(u) = ρ−3

∫
Ω∩Bρ

|u(x)|2 dx.

Lemma 4.3.1. Suppose L is positive with weight Φ, and let u = (ui)
3
i=1,

ui ∈
◦
H1(Ω) be a solution of

Lu = 0 on Ω ∩B2ρ.

Then ∫
Ω

[
L(uηρ)

]T
Φyuηρ dx ≤ cmρ(u), ∀ y ∈ Bρ,

where ηρ(x) = η(xρ ), η ∈ C∞
0 (B 5

3
), η = 1 on B 4

3
, and Φy(x) = Φ(x− y).
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Proof. By definition of u,∫
Ω

[
L(uηρ)

]T
Φyuηρ dx =

=

∫
Ω

[
L(uηρ)

]T
Φyuηρ dx−

∫
Ω

(Lu)TΦyuη
2
ρ dx,

where the second integral on the right=hand side vanishes and the first one
equals

−
∫
Ω

[
2DkukDkηrho+ uiDkkηρ+

+ α
(
DiukDkηρ+DkukDiηρ + ukDkiηρ

)]
ujηρ(Φy)ij dx.

Note thatDηρ, D2ηρ have compact supports inR := B 5ρ
3
\B 4ρ

3
and |Dkηρ| ≤

cρ−k. Besides,

|Φy,ij(x)| ≤
c

|x− y|
≤ cρ−1, ∀x ∈ R, ∀ y ∈ Bρ.

Thus∫
Ω

[
L(uηρ)

]T
Φyuηρ dx ≤

≤
∫

Ω∩R

ρ−2|u| |Du| dx+ c

∫
Ω∩R

ρ−3|u|2 dx ≤

≤ c

[
ρ−3

∫
Ω∩Sρ

|u|2 dx
] 1

2
[
ρ−1

∫
Ω∩R

|Du|2 dx
] 1

2

+ cρ−3

∫
Ω∩Sρ

|u|2 dx.

The lemma then follows from the well known local energy estimate [49]

ρ−1

∫
Ω∩R

|Du|2 dx ≤ ρ−3

∫
Ω∩Sρ

|u|2 dx.

Combining (4.2.11) (with u replaced by uηρ) and Lemma 4.3.1, we arrive
at the following local estimate.

Corollary 4.3.1. Let the conditions of Lemma 4.3.1 be satisfied. Then

|u(y)|2 +
∫

Ω∩Bρ

|Du(x)|2

|x− y|
dx ≤ cmρ(u), ∀ y ∈ Ω ∩Bρ.
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To proceed, we need the following Poincaré-type inequality (see Propo-
sition 2.5.1).

Lemma 4.3.2. Let u = (ui)
3
i=1 be any vector function with ui ∈

◦
H1(Ω).

Then for any ρ > 0,

mρ(u) ≤
c

cap(Sρ \ Ω)

∫
Ω∩Sρ

|Du|2 dx,

where c is independent of ρ.
The next corollary is a direct consequence of Corollary 4.3.1 and Lem-

ma 4.3.2.
Corollary 4.3.2. Let the conditions of Lemma 4.3.1 be satisfied. Then

|u(y)|2 +
∫

Ω∩Bρ

|Du(x)|2

|x− y|
dx ≤ c

cap(Sρ \ Ω)

∫
Ω∩Sρ

|Du|2 dx, ∀ y ∈ Ω ∩Bρ.

We are now in a position to prove the following lemma which is the key
ingredient in the proof of Theorem 4.1.2.
Lemma 4.3.3. Suppose L is positive with weight Φ, and let u = (ui)

3
i=1,

ui ∈
◦
H1(Ω) be a solution of Lu = 0 on Ω ∩B2R. Then, for all ρ ∈ (0, R),

sup
x∈Ω∩Bρ

|u(x)|2 +
∫

Ω∩Bρ

∣∣Du(x)|∣∣2 dx
|x|

≤

≤ c1M2R(u) exp
[
− c2

R∫
ρ

cap(Br \ Ω)r−2 dr

]
, (4.3.1)

where c1, c2 are independent of ρ.
Proof. Define

γ(r) := r−1 cap(Sr \ Ω).
We first claim that γ(r) is bounded from above by some absolute constant
A. Indeed, the monotonicity of capacity implies that

cap(Sr \ Ω) ≤ cap(Br).

By choosing smooth test functions ηr(x) = η(xr ) with η ∈ C∞
0 (B2) and

η = 1 on B 3
2
, we also have

cap(Br) ≤
∫
R3

|Dηr|2 dx ≤

≤ sup
x∈R3

|Dη(x)|2
∫
B2r

r−2 dx =
[32
3
π sup
x∈R3

|Dη(x)|2
]
r.
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Hence the claim follows.
We next consider the case ρ ∈ (0, R2 ]. Denote the first and the second

terms on the left-hand side of (4.3.1) by φρ and ψρ, respectively. From
Corollary 4.3.2, it follows that for r ≤ R,

φr + ψr ≤
c

γ(r)
(ψ2r − ψr) ≤

c

γ(r)
(ψ2r − ψr + φ2r − φr),

which implies that

φr + ψr ≤
c

c+ γ(r)
(φ2r + ψ2r) =

=
cec0γ(r)

c+ γ(r)

[
e−c0γ(r)(φ2r + ψ2r)

]
, ∀ c0 > 0.

Since γ(r) ≤ A and

sup
s∈[0,A]

cec0s

c+ s
≤ max

{
1,
cec0A

c+A
, cc0e

1−cc0
}
,

it is possible to choose c0 > 0 sufficiently small so that

sup
r>0

cec0γ(r)

c+ γ(r)
≤ 1.

It follows, for c0 chosen this way, that

φr + ψr ≤ e−c0γ(r)(φ2r + ψ2r). (4.3.2)

By setting r = 2−lR, l ∈ N, and repeatedly applying (4.3.2), we obtain

φ2−lR + ψ2−lR ≤ exp
[
− c0

l∑
j=1

γ(2−jR)
]
(φR + ψR).

If l is such that l ≤ log2(Rρ ) < l + 1, then ρ ≤ 2−lR < 2ρ and

φρ + ψρ ≤ φ2−lR + ψ2−lR ≤ exp
[
− c0

l∑
j=1

γ(2−jR)
]
(φR + ψR).

Note that by Corollary 4.3.1,

φR + ψR ≤ cmR(u) ≤ cM2R(u).
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In addition, the subadditivity of the harmonic capacity implies that

l∑
j=1

γ(2−jR) ≥
l∑

j=1

cap(B21−jR \ Ω)− cap(B2−jR \ Ω)
2−jR

=

=
cap(BR \ Ω)

2−1R
− cap(B2−lR \ Ω)

2−lR
+

l−1∑
j=1

cap(B2−jR \ Ω)
2−jR

=

=
1

2
· cap(BR \ Ω)

R
− 2

cap(B2−lR \ Ω)
2−lR

+

l∑
j=1

cap(B2−jR \ Ω)
2−jR

≥

≥ −2
cap(B2−lR \ Ω)

2−lR
+

1

2

l∑
j=0

cap(B2−jR \ Ω)
2−jR

.

Since
cap(B2−lR \ Ω)

2−lR
≤ A,

l∑
j=0

cap(B2−jR \ Ω)
2−jR

≥ 1

2

l+1∑
j=1

cap(B21−jR \ Ω)
(2−jR)2

· 2−jR ≥

≥ 1

2

l+1∑
j=1

21−jR∫
2−jR

cap(Br \ Ω)r−2 dr ≥ 1

2

R∫
ρ

cap(Br \ Ω)r−2 dr,

we have

exp
[
− c0

l∑
j=1

γ(2−jR)
]
≤ exp

[
− c0

4

R∫
ρ

cap(Br \ Ω)r−2 dr + 2c0A

]
.

Hence (4.3.1) follows with c1 = ce2c0A and c2 = c0
4 .

Finally, we consider the case ρ ∈ (R2 , R). By Corollary 4.3.1,

|u(y)|2 +
∫

Ω∩Bρ

|Du(x)|2

|x− y|
dx ≤ cmρ(u), ∀ y ∈ Ω ∩Bρ,

which implies that

sup
y∈Ω∩Bρ

|u(y)|2 +
∫

Ω∩Bρ

|Du(x)|2 dx
|x|

≤ cM2R(u).

In addition,
R∫
ρ

cap(Br \ Ω)r−2 dr ≤ A

R∫
R
2

r−1 dr = A log 2,
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so[
sup

y∈Ω∩Bρ

|u(y)|2 +
∫

Ω∩Bρ

|Du(x)|2 dx
|x|

]
×

× exp
[
c2

R∫
ρ

cap(Br \ Ω)r−2 dr

]
≤ c1M2R(u),

provided that c1 ≥ cec2A log 2.

Proof of Theorem 4.1.2. Consider the Dirichlet problem (4.1.3)

Lu = f, fi ∈ C∞
0 (Ω), ui ∈

◦
H1(Ω).

Since f vanishes near the boundary, there exists R > 0 such that f = 0 in
Ω ∩B2R. By Lemma 4.3.3,

sup
y∈Ω∩Bρ

|u(x)|2 ≤ c1M2R(u) exp
[
− c2

R∫
ρ

cap(Br \ Ω)r−2 dr

]
,

and in particular,

lim sup
x→0

|u(x)|2 ≤ c1M2R(u) exp
[
− c2

R∫
0

cap(Br \ Ω)r−2 dr

]
= 0,

where the last equality follows from the divergence of the Wiener integral

1∫
0

cap(Br \ Ω)r−2 dr = ∞.

Thus O is regular with respect to L.

Remark 4.3.1. In the paper by Guo Luo and Maz’ya [33] we studied weighted
integral inequalities of ∫

Ω

Lu ·Ψu dx ≥ 0 (4.3.3)

for general second order elliptic systems L in Rn (n ≥ 3). For weights that
are smooth and positive homogeneous of order 2−n, we have shown thatL is
positive in the sense of (4.3.3) only if the weight is the fundamental matrix
of L, possibly multiplies by a semi-positive definite constant matrix.





Chapter 5

An Analogue of the Wiener Criterion
for the Zaremba Problem in a
Cylindrical Domain

In this chapter asymptotic behavior at infinity of solutions to the Zaremba
problem for the Laplace operator in a half-cylinder is studied. Pointwise
estimates for solutions, the Green function and the harmonic measure are
obtained in terms of the Wiener capacity. The main result is a necessary
and sufficient condition for regularity of a point at infinity.

5.1 Formulation of the Zaremba Problem

Let G be the semicylinder {x = (x′, xn) : xn > 0, x′ ∈ ω}, where ω is a
domain in Rn−1 with compact closure and smooth boundary. Suppose that
a closed subset F is selected on ∂σ with limit points at infinity. Further, let

Gτ =
{
x ∈ G : xn > τ

}
, Sτ =

{
x ∈ G : xn = τ

}
,

Fτ =
{
x ∈ F : xn > τ

}
.

By k, k0, k1, . . . we mean positive constants depending on n and the
domain ω. In the case n > 2, by cap (e) we denote the harmonic capacity
of a Borel set e ⊂ Rn. For n = 2 we use the same notation for the capacity
generated by the operator −∆+1. By “quasi-everywhere” we mean “outside
of a set of zero capacity”.

We introduce the space
◦
L1
2(G;F ) of functions given on G having the

finite norm

∥u∥◦
L1

2(G;F )
=

(∫
G

(gradu)2 dx+

∫
G\G1

u2 dx

) 1
2

, (5.1.1)

and vanishing quasi-everywhere on F . By Hardy’s inequality the above

79
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norm is equivalent to(∫
G

[
(gradu)2 + (xn + 1)−2u2

]
dx

) 1
2

. (5.1.2)

This implies that the set of functions in
◦
L1
2(G;F ) with compact support in G

is dense in
◦
L1
2(G;F ). Since any function from that set can be approximated

in W 1
2 (G) by a sequence of smooth functions vanishing near F , it follows

that the space C∞
0 (G \ F ) is dense in

◦
L1
2(G;F ) (cf. [18]).

Let L−1
2 (G;F ) stand for the space of linear functionals on

◦
L1
2(G;F ).

Any functional f ∈ L−1
2 (G;F ) can be represented in the form

f(v) =

∫
G

( n∑
i=1

fi
∂v

∂xi
+ f0v

)
, v ∈

◦
L1
2(G;F ), (5.1.3)

where fi and (xn + 1)f0 belong to L2(G) (see [25]). Note that for any
τ ∈ (0,∞) the inequality

∥u∥2L2(G\Gτ )
≤ k(τ)

cap (F \ Fτ )
∥∇u∥2L2(G\Gτ )

,

holds (see [25, Chapter 10]). Hence, given a set F of positive capacity which
is always assumed in what follows, we see that the norm (5.1.1) is equivalent
to ∥∇u∥L2(G).

Consider the integral identity∫
G

∇u∇v dx = f(v), (5.1.4)

where f ∈ L−1
2 (G;F ), v ∈ C∞

0 (G \ F ), u belongs to W 1
2 (G \ Gτ ) for any

τ , and u vanishes quasi-everywhere on F . Assuming additionally that fi ∈
W 1

2 (G) in (5.1.3), we obtain, as is well known (cf. [17, Section 15]), that
u ∈ W 2

2 in a small neighborhood of any point in G \ F , and the equality
(5.1.4) can be understood in the strong sense:

−∆u = f0 − div f in G,
∂u

∂ν
= f · ν on ∂G \ F,

u = 0 quasi-everywhere on F,

where f = (f1, . . . , fn) and ν is the outward normal to ∂G.
Therefore, it is natural to call u as the (generalized) solution of the

Zaremba problem. If u ∈
◦
L1
2(G;F ), we call u a solution with the finite

Dirichlet integral. In this case, one can take v in (5.1.4) as an arbitrary
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function in
◦
L1
2(G;F ). Since the left-hand side of (5.1.4) is the scalar product

in
◦
L1
2(G;F ) and the right-hand side of (5.1.4) is a linear functional on

◦
L1
2(G;F ), it follows that the solution with the finite Dirichlet integral exists

and is unique.

5.2 Auxiliary Assertions

In this section we prove two auxiliary assertions and provide information
on solutions of a certain ordinary differential equation.

Lemma 5.2.1. Let u have the finite norm (5.1.2) and satisfy the inequalities

∆u ≤ 0 on G,
∂u

∂ν
≥ 0 on ∂G \ F

in the sense that ∫
G

∇u∇v dx ≥ 0 for 0 ≤ v ∈
◦
L1
2(G;F ). (5.2.1)

Besides, let u ≥ 0 quasi-everywhere on F . Then u ≥ 0 on G \ F .

Proof. Since u− = |u|−u
2 = 0 quasi-everywhere on F , we have u− ∈

◦
L1
2(G;F )

and can put v = u− in (5.2.1). Then ∥∇u−∥L2(G) = 0 and hence u− =
const. This constant is zero, because u− = 0 on a set of positive capac-
ity.

Lemma 5.2.2. Let f = 0 on Gτ and u be the solution of the Zaremba
problem with the finite Dirichlet integral. Then

sup
Sλ+1

|u| ≤ k∥u∥L2(Gλ\Gλ+2) for λ > τ. (5.2.2)

For elliptic equations of the second order in divergence form with mea-
surable bounded coefficients, estimate (5.2.2) was proved by Moser [57]. To
be more precise, [57] contains an interior local estimate of the type (5.2.2).
However, its proof can be easily extended to the case under consideration.

Consider now the ordinary differential equation

ξ′′(σ)− p(σ)ξ(σ) = 0 (5.2.3)

on the half-axis (0,∞) with a nonnegative measurable function p, not van-
ishing identically. By Z we denote a solution of (5.2.3) satisfying the initial
conditions

Z(0) = 1, Z ′(0) = 0.
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Clearly, Z is a convex nondecreasing function obeying the inequalities

Z(σ) ≥ 1 and lim
σ→∞

Z(σ)

σ
> 0.

Let

z(σ) = Z(σ)

∞∫
σ

dτ

(Z(τ))2

be another solution of (5.2.3), positive for σ > 0. We have zZ ′ − z′Z = 1
and z′(0) = −1. The function z is nonincreasing because

z′(σ) = Z ′(σ)

∞∫
σ

dτ

Z(σ)2
− 1

Z(σ)
≤

∞∫
σ

Z ′(σ)

Z(σ)2
dσ − 1

Z(σ)
= 0

By (5.2.3), the function Z ′ is nondecreasing and tends to zero at infinity.
Therefore, for any a > 0,

∞∫
a

[
z′(σ)2 + p(σ)z(σ)2

]
dσ = z(σ)z′(σ)

∣∣∣∞
a

= −z(a)z′(a).

In view of this identity, the function σ → A z(σ)
z(a) provides the minimum

of the functional

ξ −→
∞∫
a

[
ξ′(σ)2 + p(σ)ξ(σ)2

]
dσ

on the set of absolutely continuous functions satisfying the condition ξ(a) =
A, and the value of this minimum is equal to −A2 z

′(a)
Z(a) . Note also that

A Z(σ)
Z(a) provides the minimum value A2 z

′(a)
Z(a) to the functional

ξ −→
a∫

0

[
ξ′(σ)2 + p(σ)ξ(σ)2

]
dσ.

Here a ∈ (0,∞) and ξ is an arbitrary absolutely continuous function sat-
isfying the condition ξ(a) = A. Information on minimum values of these
functionals implies that both |z′|

z and Z′

Z do not decrease a p grows. This
enables one to obtain estimates for solutions z and Z under additional as-
sumptions on p. For example, if p(σ) ≤ κ = const, which will take place
in what follows, then, combining (5.2.3) with the equation ξ′′ − κξ = 0, we
obtain

0 ≤ Z ′(σ)

Z(σ)
≤ κ

1
2 th(κ 1

2σ) ≤ κ
1
2 and − κ

1
2 ≤ z′(σ)

z(σ)
≤ 0.

Therefore, for any positive a and σ,

Z(σ) ≤ Z(σ + a) ≤ Z(σ)eκ
1
2 a and z(σ)e−κ

1
2 a ≤ z(σ + a) ≤ z(σ).
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5.3 Estimates for Solutions of the Zaremba Problem

We set E(σ) = cap (Fσ \ Fσ+1) and consider the ordinary differential equa-
tion

ξ′′(σ)− kE(σ)ξ(σ) = 0, σ > 0. (5.3.1)

This means that we put p(σ) = kE(σ) in (5.2.3). In the same way as in
Section 5.2, by z and Z we denote the nonincreasing and nondecreasing
solutions of (5.2.3)with that choice of p.

Given a compact set F ⊂ Rn, denote Πba = ([a, b]×Rn−1) and Φ(a, b) =
cap (Πba ∩ F ).

Lemma 5.3.1. For any compact set F ⊂ Rn, the function Φ(a, a + 1) is
Lebesgue measurable on R as a function of variable a.

Proof. For any compact set F the function Φ(a, b) is increasing in vari-
able b and decreasing in variable a. Therefore, this function is Lebesgue
measurable on R2.

By the Fubini theorem, Φ(a, a + λ) is a measurable function of a for
almost all λ ∈ R.

Consider now a δ-neighbourhood of F with δ > 0. For this domain we
use the notation Fδ. Letting

Φδ(a, b) = cap (Πba ∩ Fδ),

in the same way as above we obtain that Φδ(a, a+λ) is a measurable function
of a for almost all λ ∈ R.

Obviously, there exists λ0(δ) > 1 such that for all λ ∈ (1, λ0(δ)) we have

F ⊂ λ−1Fδ ⊂ F2δ.

Choosing now λ ∈ (1, λ0(δ)) so that Φδ(a, a + λ) is measurable, by the
scaling arguments we deduce that cap (Π

λ−1a+1

λ−1a
∩ λ−1Fδ) is a measurable

function of a. Therefore, cap (Πa+1
a ∩ λ−1Fδ) is also a measurable function

of a.
It remains to send δ → 0. Since cap (Πa+1

a ∩λ−1Fδ) converges, as δ → 0,
to cap (Πa+1

a ∩ F ) for all a, we obtain the desired measurability.

The following lemma, similar to analogous assertions related to the
Dirichlet problem in [69] and [37], is the key one.

Lemma 5.3.2. Let f = 0 on Gτ and let Gτ be the solution of the Zaremba
problem with the finite Dirichlet integral. Then∫

ω

u(x)2 dx′ ≤ z(xn)

z(yn)

∫
ω

u(y)2 dy′ for xn > yn > τ. (5.3.2)
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Proof. Let s → η(s) be a piecewise linear function given on R1, vanishing
for s < 0 and equal to unity for s > 1. Setting the function

x −→ v(x) = η
(
ξ−1(t− σ)

)
u(x), x ∈ G,

with t > σ > τ , into (5.1.4), we obtain∫
G

η
( t− σ

ε

)
(∇u)2 dx+

1

ε

∫
G

η′
( t− σ

ε

)
u(x)

∂u

∂xn
(x) dx = 0

which is equivalent to∫
G

η
( t− σ

ε

)
(∇u)2 dx+

F(σ + ε)− F(σ)

2ε
= 0,

where F(σ) = ∥u∥2L2(Sσ)
. Passing to the limit as ε→ 0, we find∫
Gσ

(∇u)2 dx = −F′(σ)

2
. (5.3.3)

Hence, for any ε ∈ (0, 1),

∫
Gσ

(∂u
∂t

)2

dx+

∞∫
σ

∫
Gt\Gt+1

(∇u)2 dx dσ ≤ −F′(σ). (5.3.4)

Combining the inequality∫
Gt\Gt+1

(∇u)2 dx ≥ kE(t)

∫
Gt\Gt+1

u2 dx

with the known estimate∫
St

u2 dx′ ≤ k

∞∫
σ

∫
Gt\Gt+1

[
(∇u)2 + u2

]
dx,

we have ∫
Gt\Gt+1

(∇u)2 dx ≥ kE(t)F(t).

Substituting it in (5.3.4), we obtain

∫
ω

dx

∞∫
G

[
u2t + kE(t)u2

]
dt ≤ −F′(σ), (5.3.5)
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where
ut(x

′, t) =
∂u(x′, t)

∂t
.

The functional

ξ −→
∞∫
0

[(dξ
dt

)2

+ kE(t)ξ2
]
dt

defined on the functions obeying the condition ξ(σ) = u(x′, σ), attains its
minimum value at the solution

t −→ u(x′, σ)
z(t)

z(σ)

of equation (5.3.1), and the value of that minimum is −u2(x′, σ) z
′(σ)
z(σ) (cf.

Section 5.2). Hence (5.3.5) implies the differential inequality(z′(σ)
z(σ)

)
F(σ) ≥ F′(σ)

which results in (5.3.2).

Corollary 5.3.1. Let f = 0 on Gτ and let u be the solution of the Zaremba
problem with the finite Dirichlet integral. Then, with y = (y′, yn),

sup
x′∈ω

u(x)2 ≤ k
z(xn)

z(yn)

∫
ω

u(y)2 dy′ for xn − 1 > yn > τ. (5.3.6)

Proof. Using (5.2.2) and the monotonicity of the function F (cf. (5.3.3)),
we have

sup
St

u2 ≤ k∥u∥L2(Gt−1\Gt+1) ≤ k
[
2F(t− a)

] 1
/2 for t− 1 > τ,

which together with (5.3.2) implies the estimate

sup
St

u2 ≤ k
[
2
z(t− 1)

z(σ)
F(σ)

] 1
2

t− 1 > σ > τ.

It remains to use the inequality

z(σ)e−κ
1
2 a ≤ z(σ + a)

(see the end of Section 5.2).
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Remark 5.3.1. If the function E is sufficiently regular at infinity or has a
regular minorant, then, using the known asymptotic formulas or estimates
for solutions of (5.3.1), one can obtain more precise information on solutions
of the Zaremba problem by (5.3.2) and (5.3.6). Roughly speaking, there
exist three alternatives:

z(t)

z(σ)
=



O

(
exp

(
− k

t∫
σ

√
E(s) ds

))
, if E(s) ≫ s−2,

O
((σ

t

)k)
, if E(s) ∼ s−2,

O

(
exp

(
− k

t∫
σ

sE(s) ds

))
, if E(s) ≪ s−2

(5.3.7)

(cf. [17, Chapter II] and [15]). In order to check this, it suffices to reduce
(5.3.1) to the Riccati equation

Y ′(σ) = Y 2(σ) = kE(σ),

where Y (σ) = ξ′(σ)
ξ(σ) , and to note that the above estimates for z are valid

for Y ′ ≪ Y 2, Y ′ ≈ Y 2 and Y ′ ≫ Y 2 at infinity. Similar estimates hold for
the increasing solution Z.

5.4 Regularity Criterion for a Point at Infinity

We say that a point at infinity is regular for the Zaremba problem if for
all f ∈ L−1

2 (G;F ) with a bounded support, the solution with the finite
Dirichlet integral tends to zero as xn → ∞ and x ∈ G. Here is the main
result.
Theorem 5.4.1. A point at infinity is regular for the Zaremba problem if
and only if the function tE(t) is not integrable on (0,∞), or equivalently,

∞∑
j=1

j cap (Fj \ Fj+1) = ∞. (5.4.1)

Consider an example of a set F for which the above regularity criterion
can be expressed explicitly. Let p be a point at ∂ω and let ψ denote a de-
creasing positive continuous function given on [0,∞] and such that ψ(0)= 1.

Let
F =

{
x ∈ ∂G :

x′ − p

ψ(xn)
∈ δ, xn ≥ 0

}
,

where δ is a domain on ∂ω. The well known estimates for the capacity of a
parallelepiped (cf. [2]) imply the inequalities

k1

log k2
ψ(j+1)

k5ψ(j + 1)n−3

 ≤ cap (Fj \ Fj+1) ≤


k3

log k4
ψ(j)

(n = 3),

k6ψ(j)
n−3 (n > 3).
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Hence (5.4.1) holds, if and only if
∞∫

s

| logψ(s)| ds = ∞ for n = 3,

∞∫
ψ(s)n−3s ds = ∞ for n > 3.

Proof of Theorem 5.4.1. Sufficiency. Let u and z be the same as in Lem-
ma 5.3.2. By Corollary 5.3.1, for x ∈ G,

u(x) → 0 as x→ ∞, if z(σ) → 0 as σ → ∞.

Suppose that the limit z(∞) is positive. Since z′(∞) = 0 and z(σ) > z(∞)
2

for large σ, we have after integrating (5.3.1) from σ to ∞ that

−z′(σ) ≥ k

2
z(∞)

∞∫
σ

cap (Fµ \ Fµ+1) dµ.

This implies the estimate

z(t)− z(σ) ≥ k

2
z(σ)

∞∫
t

dσ

∞∫
σ

cap (Fµ \ Fµ+1) dµ =

=
k0
2
z(∞)

∞∫
t

(µ− t) cap (Fµ \ Fµ+1) dµ.

Hence
∞∫
µ cap (Fµ \ Fµ+1) dµ <∞

which is equivalent to (5.4.1).
Necessity will be proved with the help of the following lemma on esti-

mates of the Neumann function N(x, y) in a cylinder.

Lemma 5.4.1. Given y ∈ G, let N(x, y) stand for the solution of the
problem

−∆xN(x, y) = δ(x− y)− λ(x) in G,

∂N(x, y)

∂νx
= 0 on ∂G \ {y},

vanishing for x→ ∞ and any fixed y. Here

λ ∈ C∞
0 (G) and

∫
G

λ(x) dx = 1.

Further, let γ21 be the first positive eigenvalue of the Laplace operator in
ω with zero Neumann condition on ∂ω and let |ω| stand for the (n − 1)-
dimensional Lebesgue measure of ω.

There exist positive constants κ and k depending on n, ω and λ such
that
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(i) |N(x, y)| ≤ ke−γ1(xn−yn) for xn − yn > κ,

(ii) |N(x, y) + xn−yn
|ω| | ≤ keγ1(xn−yn) for yn − xn > κ,

(iii) the ratio of N to the fundamental solution of the Laplace operator in
Rn is bounded from above and is separated from zero from below by
positive constants in the zone |x− y| < κ.

The proof of this lemma will be given at the end of this section, while
we turn to the necessity of the condition (5.4.1).

Let
∞∑
j=0

(j + 1) cap (Fj \ Fj+1) = ∞. (5.4.2)

Suppose that a point at infinity is regular. Since the solution of the
Zaremba problem in Gt multiplied by a smooth function in G, supported in
Gt and equal to unity in a neighborhood of infinity, becomes the solution
of a similar problem in G, it follows that a point at infinity is regular for
the cylinder Gt with any t > 0. Hence, from the very beginning, one may
assume the sum in (5.4.2) to be sufficiently small. Let

Fj \ Fj+1 =
L∪
k=1

F
(k)
j with diamF

(k)
j <

κ
4
,

F
(k1)
j ∩ F (k2)

j = ∅ for k1 ̸= k2.

Here κ is the same constant as in the statement of Lemma 5.4.1. Since

cap F
(k)
j ≤ cap (Fj \ Fj+1),

the sum
∞∑
j=0

(j + 1)
L∑
k=1

cap F
(k)
j

is sufficiently small.
Let µ(k)

j be the equilibrium measure of the set F (k)
j (cf. [29, Chapter

II]). We introduce the potential

V
(k)
j (x) =

∫
F (k)

N(x, y) dµ
(k)
j (y),

where N is the Neumann function from Lemma 5.4.1.
By the definition of the function N , the potential V (k)

j satisfies both the
equation

∆V
(k)
j (x) =

∫
Fj(k)

λ(x) dµ
(k)
j (y) = λ(x) cap F

(k)
j in G (5.4.3)
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and the boundary condition

∂V
(k)
j

∂ν
= 0 on ∂G \ F (k)

j . (5.4.4)

We restrict ourselves to the case n > 2. For n = 2, one should replace
everywhere |x− y|2−n by the fundamental solution of the operator −∆+1.
By Lemma 5.4.1,

∣∣V (k)
j (x)

∣∣ ≤ k

∫
F

(k)
j

dµ
(k)
j (y)

|x− y|n−2
, x ∈ Gj−1 \Gj .

Further, by Lemma 5.4.1(i),∣∣V (k)
j (x)

∣∣ ≤ k cap F
(k)
j x ∈ Gj+1,

and by Lemma 5.4.1(ii), the estimate∣∣V (k)
j (x)

∣∣ ≤ c

∫
F (k)

(yn + 1) dµ
(k)
j (y) ≤ k(j + 1) cap F

(k)
j , x ∈ Gj−1 \Gj

holds. Since ∫
F

(k)
j

dµ
(k)
j (y)

|x− y|n−2
≤ 1, x ∈ Rn,

(cf. [29, p. 175]), the above estimates imply

U =
∞∑
j=0

L∑
k=1

V
(k)
j ≤ k

(
1 +

∞∑
j=0

(j + 1)
L∑
k=1

cap F
(k)
j

)
.

We have∫
G

(∇U)2 dx =

∫
∂G

dµ(ξ)

∫
∂G

dξ(η)

∫
G

∇xN(x, ξ)∇xN(x, y) dx,

where µ =
∑
j,k

µ
(k)
j . By the definition of the function N ,

∫
G

∇xN(x, ξ)∇xN(x, η) dx = N(ξ, η)−
∫
G

λ(x)N(x, y) dx.

Hence ∫
G

(∇U)2 dx =

∫
∂G

U(ξ) dµ(ξ)− µ(G)

∫
G

λ(x)U(x) dx.
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Since the measure µ is finite and the function U is bounded, U has the
finite Dirichlet integral. Besides, by (5.4.3) and (5.4.4), U is a solution of
the problem

∆U(x) = λ(x)
∞∑
j=0

L∑
k=1

cap F
(k)
j in G,

∂U

∂ν
= 0 on ∂G \ F.

In view of Lemma 5.4.1(iii),

V
(k)
j (x) = k

∫
F

(k)
j

dµ
(k)
j (y)

|x− y|n−2
for ρ(x, F

(k)
j ) <

κ
2
,

where ρ stands for the distance. Therefore,

V
(k)
j (x) ≥ k0 = const > 0 quasi-everywhere in F

(k)
j . (5.4.5)

If ρ(x, F (k)
j ) ≥ κ

2 , then it follows by Lemma 5.4.1 that∣∣V (k)
j (x)

∣∣ ≤ k(j + 1)µ
(k)
j (F

(k)
j ) ≤ k(j + 1) cap F

(k)
j . (5.4.6)

Let x ∈ F
(k0)
j0

. We express U(x) as

U(x) =
∑
j,k

′
∫
F

(k)
j

N(x, y) dµ
(k)
j (y) +

∑
j,k

′′
∫
F

(k)
j

N(x, y) dµ
(k)
j (y),

where the first sum is taken over j and k such that the sets F (k)
j have a

nonempty intersection with the κ
2 -neighborhood O(k0)

j0
of the set F (k0)

j0
. We

have∑
j,k

′
∫
F

(k)
j

N(x, y) dµ
(k)
j (y) =

=

∫
F

(k0)
j0

N(x, y) dµ
(k0)
j0

(y) +
∑

(j,k)̸=(j0,k0)

′
∫

F
(k)
j ∩O(k0)

j0

N(x, y) dµ
(k)
j (y)+

+
∑

(j,k)̸=(j0,k0)

∫
F

(k)
j ∩O(k0)

j0

N(x, y) dµ
(k)
j (y).
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By (5.4.5), the first integral on the right-hand side dominates k0 and
each of the integrals over F (k)

j ∩O(k0)
j0

is nonnegative. By Lemma 5.4.1, the
inequality ∣∣∣∣ ∫

F
(k)
j ∩O(k0)

j0

N(x, y) dµ
(k)
j (y)

∣∣∣∣ ≤ k cap F
(k)
j

holds. In view of (5.4.6), the integral over F (k)
j on

∑′′ does not exceed
k(j + 1) cap F

(k)
j . Thus,

U(x) ≥ k − k
∞∑
j=0

(j + 1)
L∑
k=1

cap F (k) ≥ k0
2
, x ∈ F

(k0)
j0

.

Since j0 and k0 are arbitrary, it follows that U(x) ≥ k0
2 quasi-everywhere

on F . Let the point x′ = 0 be at the distance 1 from ∂ω. Then any point
(0, xn) with xn > 1 has the distance 1 from F . By (5.4.6),∣∣U(0, xn)

∣∣ = ∑
j,k

∣∣V (k)
j (0, xn)

∣∣ ≤ k1
∑
j,k

(j + 1) cap F
(k)
j .

From the very beginning, one may assume that the last sum is less than
k0
4k1

. Hence U(0, xn) <
k0
4 . Let ξ be an infinitely differentiable function in

G, nonnegative, equal to unity for xn ≥ 2 and vanishing for xn ≤ 1. Since∫
G

∇U∇v dx = 0, v ∈
◦
L1
2(G;F ),

it follows that the function V = (U − k0
2 ) satisfies the equality∫

G

∇U∇v dx = f(v) :=

∫
G

∇ξ(U∇v − v∇U) dx, (5.4.7)

where f is a linear functional on
◦
L1
2(G;F ) supported by the set {x ∈ G :

1 ≤ xn ≤ 2}. Let S denote a function from the space
◦
L1
2(G;F ), satisfying

(5.4.7) for all v ∈
◦
L1
2(G;F ). Since V −S is harmonic in G, satisfies the zero

Neumann condition on ∂G \ F and nonnegative quasi-everywhere on F , by
Lemma 5.2.1 we have V − S ≥ 0 on G. By the assumption, the point at
infinity is regular, hence S(x) → 0 as x→ ∞ for x ∈ G. On the other hand,
for xn > 2,

S(0, xn) ≤ V (0, xn) = U(0, xn)−
k0
2
< −k0

4
.

This contradiction proves that the point at infinity is irregular.
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Proof of Lemma 5.4.1. Let Λ be a solution of the Neumann problem

∆Λ = λ in G,
∂Λ

∂ν
= 0 on ∂G,

and
Λ(x) = O(xn) as xn → ∞.

Since ∫
G

λ dx = 1,

it follows that
Λ(x) = |ω|xn + const+O(e−γ1xn),

where |ω| is the (n− 1)-dimensional measure of ω. This known relation can
be checked either by the Fourier method or with the help of the Laplace
transform in xn. Let Γ(x, y) be the fundamental solution of the Neumann
problem in the cylinder ω × R1, i.e., the solution of the problem

−∆xΓ(x, y) = δ(x− y), x, y ∈ R1,

∂Γ(x, y)

∂νx
= 0, x ∈ ∂ω × R1, y ∈ ∂ω × R1,

such that Γ(x, y) = O(xn) for |xn| → ∞. By the Fourier method we have

Γ(x′, xn; y
′, yn) =

|xn − yn|
2|ω|

+ const+
∞∑
k=1

φk(x
′)φk(y

′)

2γ2k
e−yk|xn−yn|,

where {γ2k} and {φk} are the sequences of positive eigenvalues and orthog-
onal and normalized eigenvectors of the Laplace operator in ω with zero
Neumann condition on ∂ω. The series on the right-hand side converges in
some weak sense which we do not specify. Using the well-known estimate

|φk| ≤ k0γ
M
k

with positive constants k0 and M , we obtain∣∣∣Γ(x, y)− |xn − yn|
2ω|

− const
∣∣∣ ≤ ke−γ1|x−y| for |xn − yn| > κ.

The validity of property (iii) for Γ is practically known: the basic fact
is that the fundamental solution of the Neumann problem in the half-space
is the sum of the fundamental solution of the Laplace operator in Rn and
its reflection in the boundary hyperplane. It remains to note that

N(x, y) = Γ(x′, xn; y
′, yn) + Γ(x′,−xn; y′,−yn)− Λ(x) + const.
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5.5 Estimates for the Green Function and for the Har-
monic Measure of the Zaremba Problem

In this section we collect some quantitative information on solutions of the
Zaremba problem.

Lemma 5.5.1. Let f = 0 on G\Gτ and let u be the solution of the Zaremba
problem. Then∫

ω

u(x)2 dx′ ≥ Z(xn)

Z(yn)

∫
ω

u(y)2 dy′ for τ > xn > yn.

Proof. Our argument is close to the one used in the proof of Lemma 5.3.2,
therefore, we only outline it briefly. Setting a cut-off function into (5.1.4),
similarly to (5.3.3), we obtain∫

G\Gσ

(∇u)2 dx′ = F(σ

2
, 0 < σ < τ, F(σ) = ∥u∥2L2(Sσ)

.

In the same way as (5.3.5) follows from (5.3.3), we get the inequality∫
ω

dx′
σ∫

0

[
u2t + kE(t)u2

]
dt ≤ F′(σ), ut(x

′, t) :=
∂u(κ′, t)

∂t
.

By what we said at the end of Section 5.2 it follows that the functional

ξ −→
σ∫

0

[(dξ
dt

)2

+ kE(t)ξ2
]
dt.

defined on functions obeying the condition ξ(σ) = u(x′, σ), attains its min-
imum at the solution

t −→ u(x′, σ)
Z(t)

Z(σ)

of equation (5.3.1), and the value of that minimum is u(x′, σ) Z
′(σ)
Z(σ) . This

implies the estimate
Z ′(σ)

Z(σ)
F(σ) ≤ F′(σ).

Integrating this inequality, we complete the proof.

Corollary 5.5.1 (the Fragmen–Lindelöf principle). If u is a solution of
problem (5.5.1), where f is a function with a compact support in G, then
either u has the finite Dirichlet integral and

lim sup
xn→∞

|u(x)|
z(xn)

1
2

<∞ (5.5.1)
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or
lim inf
xn→∞

∥u( · , xn)∥L2(ω)

Z(xn)
1
2

> 0.

Proof. Relation (5.5.1) follows directly from Corollary 5.3.1. Let u be a
solution of the Zaremba problem with the infinite Dirichlet integral. Let v
stand for the solution of the same problem with the finite Dirichlet integral.
We apply Lemma 5.5.1 to the difference u − v. The result follows due to
the fact that z(xn) = o(Z(xn)), and v satisfies (5.3.2).

Let y = (y′, yn) ∈ G. By the Green function of the Zaremba problem
we mean the solution of the problem

−∆xg(x, y) = δ(x− y) for x ∈ G,

∂g

∂ν
(x, y) = 0 for x ∈ ∂G \ F, g(x, y) = 0 for x ∈ F

with the finite Dirichlet integral outside any neighborhood of the point y.
The equation and the Neumann condition on ∂G \F should be understood
in the sense of the integral identity∫

G

∇xg(x, y)∇v(x) dx = v(y), v ∈ C∞
0 (G \ F ),

and the Dirichlet condition on F should be valid quasi-everywhere. Sub-
tracting from g the fundamental solution of the laplace operator , multiplied
by a cut-off function supported near y, and using the unique solvability of
the Zaremba problem in the class

◦
L1
2(G;F ), we conclude that g exists and

is unique. Let g0 be the Green function of the Dirichlet problem in g − g0.
Since ∂g0

∂ν ≥ 0 on ∂G, we may apply Lemma 5.2.1 to the difference g − g0.
Hence g ≥ g0 on G, and thus g ≥ 0.

The following assertion contains pointwise estimates of g.

Proposition 5.5.1. The Green function of the Zaremba problem admits
the following estimates:

(i) if |xn − yn| > 1, then

g(x, y) ≤


k
(z(xn)
z(yn)

) 1
2 for xn > yn + 1,

k
( z(yn)
z(xn)

) 1
2 for yn > xn + 1.

(ii) if |xn − yn| ≤ 1, then

g(x, y) ≤

k|x− y|2−n for n > 2,

k log
( 2

|x− y|

)
for n = 2.
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Proof. Two last inequalities are well known and we won’s give their proof
based on Lemma 5.2.1. Two first inequalities follow directly from (ii) and
Corollary 5.3.1.

Remark 5.5.1. Various estimates for u follow from Proposition 5.5.1 and the
representation of the problem

−∆u = f in G,
∂u

∂ν
= 0 on ∂G \ F, u = 0 on F

with the help of the Green function. For example, it is easy to check that

|u(x)| ≤ k

(
z(xn)

1
2

τn∫
0

z(t)−
1
2F (t) dt+ z(xn)

− 1
2

∞∫
xn

z(t)
1
2F (t) dt

)
for |f(x)| ≤ F (xn).

Let
◦
C(F ) be the space of continuous functions vanishing as |x| → ∞

and endowed with the norm

∥u∥ ◦
C(F )

= sup
{
|u(x)| : x ∈ F

}
.

By
◦
C∞(F ) we denote the space of traces on F of functions from the space

◦
C∞

0 (G) of functions which are smooth on G and have compact support.
Consider the boundary value problem

∆v = 0 in G,
∂v

∂ν
= 0 on ∂G \ F, v = φ on F. (5.5.2)

Given φ ∈
◦
C∞(F ), this problem is readily reduced to that considered

in Section 5.1 and therefore it is uniquely solvable in the class of functions
with the finite norm (5.1.2). By Lemma 5.2.1 combined with the inequality
0 ≤ φ ≤ 1 on F , one has 0 ≤ u ≤ 1 on G\F . Hence the solution of problem
(5.5.2) can be represented in the form

v(x) =

∫
F

φ(y)H(x, dy), (5.5.3)

whereH(x, e) is the measure of a set e ⊂ F , and 0 ≤ H ≤ 1. Equality (5.5.3)
enables one to extend the inverse operator of problem (5.5.2) onto the space
◦
C(F ). The functions from the domain of the resulting extension of the
operator (5.5.3) will be called solutions of problem (5.5.2) with continuous
Dirichlet data.

Proposition 5.5.2. If xn > s, then

H(x, F \ Fs) ≤ k
(z(xn)
z(s)

) 1
2

. (5.5.4)
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Proof. Since 0 ≤ H ≤ 1, it suffices to show that (5.5.4) holds for xn > s+2.
Let φ be a function from the space

◦
C∞(F ) supported on F \ Fs+1. By

Corollary 5.3.1, ∣∣∣∣ ∫
F

φ(y)H(x, dy)

∣∣∣∣ ≤ k
(z(xn)
z(s)

) 1
2 max
F\Fs

|φ|,

which implies (5.5.4) due to arbitrariness of φ.

Corollary 5.5.2. Let φ ∈
◦
C(F ) and let

γ(s) = sup
{
|φ(x)| : x ∈ Fs

}
.

Then for any solution of problem (5.5.2) with continuous Dirichlet data the
estimate

|v(x)| ≤ γ(xn) + kz(xn)
1
2

xn∫
0

|dγ(s)|
z(s)

1
2

, x ∈ G \ F,

holds.

Proof. By (5.5.3),

|v(x)| ≤
∫
F

γ(yn)H(x, dy) ≤ γ(xn) +

∫
F

[
γ(yn)− γ(xn)

]
+
H(x, dy),

where ω+ stands for the positive part of ω. The last integral can be writ-
ten as

xn∫
0

[
γ(s)− γ(xn)

]
dH(x, F \ Fs).

Therefore,

|v(x) ≤ γ(xn)−
xn∫
0

H(x, F \ Fs) dγ(s).

It remains to apply inequality (5.5.4).



Chapter 6

Behavior, Near the Boundary, of
Solutions of the Dirichlet Problem for
a Second-Order Elliptic Equation

6.1 Operator with Measurable Bounded Coefficients

In the present section estimates near the boundary point and at infinity are
obtained for the solution of the Dirichlet problem, Green’s function, and
the L -harmonic measure for an elliptic operator

L u = (aijuxi)xj (aij = aji; i, j = 1, 2, . . . , n).

The coefficients aij given in Rn (n > 2) are measurable and satisfy the
condition

λξ2 ≤ aijξiξj ≤ λ−1ξ2, (6.1.1)

where ξ is an arbitrary real vector in Rn, and λ = const ≤ 1.

6.1.1 Notation and lemmas
We shall utilize the following notation: Ω is an open subset of Rn; ∂E and
CE are the boundary and complement of an arbitrary set E ⊂ Rn; f+, f−
are positive and negative parts of the function or charge f ; Sr = {x : |x| ≤
r}, Cr = Sr ∩ CΩ; (r, ω) are spherical coordinates with center at the point
O ∈ ∂Ω; c is an constant depending only on λ and n.

Let Γ(x) be the fundamental solution of the operator L in Rn with a
singularity at the point O; ρ(x) = [Γ(x)](2−n)

−1 , Tr = {x : ρ(x) ≤ r}. As
has been shown in [32, 63], there exists a constant α depending only on λ
and n such that in Rn,

2α|x| ≤ ρ(x) ≤ (2α)−1|x|, (6.1.2)

which is equivalent to the imbedding S2α r ⊂ Tr ⊂ S(2α)−1 r.
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Let us introduce additional notation:

Kr1,r2 = Sr1 \ Sr2 , Qr1,r2 = Tr1 \ Tr2 ,

Mr(u) = r−n
∫

Ka−1r,ar

u2 dx, (6.1.3)

cap (E) is the harmonic capacity of the set E, γ(r) = r2−n cap (Cr) is the
relative capacity of CΩ in the sphere Sr.

In order not to complicate the exposition, we consider the coefficients aij
and the boundary Ω, infinitely differentiable during the proofs. However,
since the constants in all the estimates are independent of this assumption,
by utilizing more or less standard approximation techniques all the funda-
mental results (Theorems 6.1.3–6.1.6) may be carried over to the general
case. The restriction n > 2 is introduced for simplicity of presentation.
Let us just note that the method applies below is applicable also to general
second order elliptic equations with divergent principal part.

In this section, u denotes a function from the space L(1)
2 (Sδ) (δ = const >

0) which satisfies the equation L u = 0 in Ω ∩ Sδ and is zero on Cδ.

Lemma 6.1.1. Let

J (r) ≡ (2− n)−1

∫
∂Tr

u2aijΓxinj dsx, (6.1.4)

where r < δ and {nj} are projections of the unit exterior normal to ∂Tr
onto the coordinate axes. Then

2r1−n
∫
Tr

aijuxiuxj dx = J ′(r). (6.1.5)

Proof. Let us set
t = r2−n.

Then

2

∫
Ω

(Γ− t)+a
ijuxiuxj dx =

∫
Ω

(Γ− t)+L (u2) dx =

= −
∫
Tr

aijΓxi(u2)xj dx = −
∫
∂Tr

u2aijΓxinj dsx.

Differentiating with respect to r, we obtain (6.1.5).

Lemma 6.1.2. For αr < δ the inequality J (r) ≤ cMr(u) is valid.



Topics on Wiener Regularity for Elliptic Equations and Systems 99

Proof. Let us note that on ∂Tr

aijΓxinj = −aijninj |∇Γ| ≤ 0

and that ∫
∂Tr

aijΓxinj dsx = −1.

Now, the required estimate follows from (6.1.2) and the inequality

max
K(2α)−1r,2αr

u2 ≤ cMr(u), (6.1.6)

which is substantially due to Moser [57].

Lemma 6.1.3. The inequality

J (r) ≤ cJ (R) exp
(
− c

R∫
r

γ(τ)
dτ

τ

)
(6.1.7)

is valid for r < R < δ.
Proof. By virtue of Lemma 6.1.1 and the estimate (6.1.2),

J ′(r) ≥ cr1−n
∫
Tr

(∇u)2 dx ≥ cr1−n
∫
Bαr

(∇u)2 dx. (6.1.8)

Multiplying the inequality

c cap (Cr)

∫
∂Sr

u2 dω ≤
∫
Sr

(∇u)2 dx, (6.1.9)

proved in [37] (see also [38, p. 48]) by rn−1 and integrating between α3r
and αr, we obtain

c cap (Cα3r)

∫
Kαr,α3r

u2 dx ≤ rn
∫
Bαr

(∇u)2 dx,

which, together with Lemma 6.1.2 and the estimate (6.1.8), yields

J ′(r) ≥ cr1−m cap (Cα3r)J (α2r).

Integrating between αr and r and using the monotonicity of J (r) (Lemma
6.1.1), we obtain

J (r) ≥ J (αr) + cJ (α3r)

r∫
αr

cap (Cα3τ )
dτ

τn−1
≥

≥ J (α3r)

[
1 + c

r∫
αr

cap (Cα3τ )
dτ

τn−1

]
.
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Let us put r = rk = α3kR (k = 0, 1, . . .) here. Then there is a constant c,
such that

J (rk) ≥ J (rk+1) exp
(
c

rk+1∫
rk+2

γ(τ)
dτ

τ

)
.

Therefore, for any k ≥ 1,

J (R) ≥ J (rk) exp
(
c

α3R∫
rk+1

γ(τ)
dτ

τ

)
.

Hence, we obtain (6.1.7) by the estimate γ(τ) ≤ 1 and the monotonicity of
J (r).

Lemma 6.1.4. Let R < δ and r ≤ α2R, where α is the constant from
(6.1.2). Then the inequality

∫
Sr

(∇u)2 dx ≤ cJ (R)rn−2 exp
(
− c

R∫
r

γ(τ)
dτ

τ

)
(6.1.10)

is valid.

Proof. By (6.1.5) and (6.1.2), we obtain

J (r) ≥ c

r∫
αr

τ1−n dτ

∫
Sατ

(∇u)2 dx ≥ cr2−n
∫

Sα3r

(∇u)2 dx.

Now (6.1.10) follows from the inequality (6.1.7).

6.1.2 Estimates of the “decreasing” solution
Theorem 6.1.1. Let the function u ∈ L

(1)
2 (Sδ) satisfy the equation L u = 0

in Ω ∩ Sδ and be equal zero on Cδ. Then for R < αδ and r < α5R, the
estimate

max
Sr

|u| ≤ cM
1
2

R (u) exp
(
− c

R∫
r

γ(τ)
dτ

τ

)
(6.1.11)

is valid.

Proof. Applying the formula of Kronrod (see [70, 14]):

∫
Ω

Φ(x)|∇u| dx =

+∞∫
−∞

dt

∫
u=t

Φ(τ) dsx,



Topics on Wiener Regularity for Elliptic Equations and Systems 101

where Φ(x) is a Borel-measurable function, and the function u(x) satisfies
the Lipschitz condition, we obtain

A ≡
∫

Q−2r,α2r

u2aijΓxiΓxj dτ =

α−2r∫
α2r

J (τ)τ1−n dτ.

Applying Lemma 6.1.3, we hence deduce

A ≤ cJ (R)r2−n exp
(
− c

R∫
r

γ(τ)
dτ

τ

)
.

According to Lemma 6.1.4, the same estimate is true for the integral

B ≡
∫

Q−2r,α2r

[
Γ− (α−2r)2−n

]2
aijuxiuxj dx.

Hence, by setting v = u[Γ− (α−2r)2−n]+, we obtain

C ≡
∫

CTα1

aijvxivxj dx ≤ 2(A+B) ≤

≤ cr2−nJ (R) exp
(
− c

R∫
r

γ(τ)
dτ

τ

)
. (6.1.12)

On the other hand, since v = 0 outside Sα−3r it follows that

C ≥ c

∫
Kα−3r,αr

(∇v)2 dx ≥ cr−2

∫
Kα−3r,αr

v2 dx ≥ c r2−nMr(u). (6.1.13)

By the maximum principle and the inequality (6.1.6), it follows from (6.1.12)
and (6.1.13) that

max
Sαr

u2 ≤ max
∂Tr

u2 ≤ cMr(u) ≤ cJ (R) exp
(
− c

R∫
r

γ(τ)
dτ

τ

)
. (6.1.14)

Finally, let us note that according to Lemma 6.1.2, the inequality J (R) ≤
cMR(u) is valid and that together with (6.1.14) it proves the theorem.

An estimate of the decrease of a solution with finite energy at infinity is
given in the following theorem.
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Theorem 6.1.2. Let the function u ∈ L
(1)
2 (CSδ) satisfy the equation L u =

0 in Ω∩CSδ and be equal zero on Cω∩CSδ. Then for r > α−1δ, R > α−5r,
the estimate

max
Ω\SR

|u| ≤ cM
1
2
r (u)

( r
R

)n−2

exp
(
− c

R∫
r

γ(τ)
dτ

τ

)
(6.1.15)

is valid.

Proof. Let E∗ denote the image of the set E under the inversion x = y|y|−2.
If u is a solution of the equation L u = 0 in ω ∩ CSδ, then, as has been
shown in [64], the function

v(x) =
u(y)

Γ(y)
(6.1.16)

satisfies some uniformly elliptic equation N v = 0 in Ω∗ ∩ Sδ with an ellip-
ticity constant depending only on λ. Moreover, from the proof presented in
[64], it immediately follows that the Kelvin transform (6.1.16) retains the
finiteness of the energy of the solution, i.e., that v ∈ L

(1)
2 (Sδ−1). According

to Theorem 6.1.1, the estimate

max
Ω∗∩SR−1

v2 ≤ cMr−1(v) exp
(
− c

r−1∫
R−1

γ∗(τ)
dτ

τ

)
,

where γ∗(τ) = τ2−n cap (CΩ∗ ∩ Sτ ), is true for the function v(y). Hence,
from (6.1.2) we obtain

max
Ω∩SR

|u| ≤ cM
1
2
r (u)

( r
R

)n−2

exp
(
− c

r−1∫
R−1

γ∗(τ)
dτ

τ

)
. (6.1.17)

Let us set ν = [log2R], µ = [log2 r]. Then

r−1∫
R−1

γ∗(τ)
dτ

τ
≥

ν∑
k=µ+1

2−k∫
2−k−1

γ∗(τ)
dτ

τ
≥ c

ν∑
k=µ+1

2k(n−2) cap (E∗
k),

where Ek = C2k+2 \ C2k+1 . But, as is known (see [29, p. 353]),

2−2(k+2)(n−2) cap (Ek) ≤ cap (E∗
k) ≤ 2−2(k+1)(n−2) cap (Ek).

Therefore,
r−1∫

R−1

γ∗(τ)
dτ

τ
≥ c

ν∑
k=µ+1

2−k(n−2) cap (Ek).
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Furthermore, using the semi-additivity of the capacities, we obtain

r−1∫
R−1

γ∗(τ)
dτ

τ
≥ c

[ ν∑
k=µ+1

γ(2k+2)− 22−n
ν∑

k=µ+1

γ(2k+1)
]
≥

≥ (1− 22−n)
ν∑

k=µ+2

γ(2k+1)− γ(2k+2) ≥ c

R∫
r

γ(τ)
dτ

τ
− c.

Hence, we obtain the inequality (6.1.15) from (6.1.17).

6.1.3 Estimates of the “growing” solution and the
Phragmen–Lindelöf principle

Theorem 6.1.3. For all δ > 0, let the function u ∈ L
(1)
2 (CSδ) satisfy

the equation L u = 0 in Ω ∩ CSδ and equal zero on CΩ ∩ CSδ. Then for
r < α5R, the estimate

M
1
2
r (u) ≥ c max

Ω\SR

|u|
(R
r

)n−2

exp
(
c

R∫
r

γ(τ)
dτ

τ

)
(6.1.18)

is valid.

This inequality follows directly from Theorem 6.1.2. Analogously, from
Theorem 6.1.1 we obtain the following assertion on the behavior of the
growing solution at infinity.

Theorem 6.1.4. For all δ > 0, let the function u ∈ L
(1)
2 (Sδ) satisfy the

equation L u = 0 in Ω ∩ Sδ and be equal zero on Cδ. Then for R > α−5r,
the estimate

M
1
2

R (u) ≥ cmax
SR

|u| exp
(
c

R∫
r

γ(τ)
dτ

τ

)
(6.1.19)

is valid.

From Theorems 6.1.1 and 6.1.4 we obtain the following modification of
the Phragmen–Lindelöf principle (compare with [27]).

Corollary 6.1.1. Let u be the solution of the equation L u = 0 which
equals zero on the portion of ∂Ω located outside some sphere and belonging
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to L(1)
2 (SR ∩Ω) for any R <∞. Then for any r > 0 one of the inequalities

lim inf
R→∞

M
1
2

R (u) exp
(
− c

R∫
r

γ(τ)
dτ

τ

)
> 0, (6.1.20)

lim sup
R→∞

max
SR

|u|Rn−2 exp
(
c

R∫
r

γ(τ)
dτ

τ

)
<∞ (6.1.21)

is satisfied.

It follows from Theorems 6.1.2 and 6.1.3 that an analogous alternative
characterizes the behavior, near the point O, of the solution of the equation
L u = 0, which equals zero on Sδ ∩ ∂Ω for some δ.

6.1.4 Inhomogeneous boundary condition
Theorem 6.1.5. Let φ ∈ C(∂Ω), and let u be the solution of the equation
L u = 0, which satisfies the condition u = φ on ∂Ω (see [32]). In addition,
by definition, let β = α−8, and

ω±(t) = max
|x|≤t

[
φ(x)− φ(0)

]
±. (6.1.22)

Then the inequality

[
u(x)− φ(0)

]
± ≤ ω±(β|x|)+ c

∞∫
β|x|

exp
(
− c

t∫
|x|

γ(τ)
dτ

τ

)
dω±(t) (6.1.23)

is valid.

Proof. Let H(x,E) be the L -harmonic measure of the set E ⊂ ∂Ω with
respect to Ω. Then

u(x)− φ(0) =

∫
∂Ω

[
φ(y)− φ(0)

]
H(x, dy).

Obviously,

[
u(x)− φ(0)

]
± ≤

∫
∂Ω

ω±(|y|)H(x, dy) ≤

≤ ω±(β|x|)+ ∫
∂Ω

[
ω±(|y|)− ω±(β|x|)]

+
H(x, dy).
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We hence obtain

[
u(x)− φ(0)

]
± ≤ ω±(β|x|)+ c

∞∫
β|x|

H(x, ∂Ω ∩ CSt) dω±(t). (6.1.24)

Now, let us note that for fixed t the function H(x, ∂Ω ∩ CSt) satisfies the
equation L u = 0 for |x| < t and the zero boundary condition. Hence, the
estimate

H(x, ∂Ω ∩ CSt) ≤ c exp
{
− c

t∫
|x|

γ(τ)
dτ

τ

}
, (6.1.25)

where β|x| < t, follows from Theorem 6.1.1 and the inequality H(x,E) ≤ 1.
There remains to substitute this inequality into (6.1.24).

Remark 6.1.1. Meanwhile, the sufficient Wiener’s condition

1∫
0

γ(τ)
dτ

τ
= ∞ (6.1.26)

for the regularity of the point O (see [32]) follows from (6.1.25) and (6.1.23).
In fact, if the integral (6.1.26) diverges, then for any ε > 0,

lim sup
x→0

[
u(x)− φ(0)

]
± ≤

≤ c lim sup
x→0

1∫
β|x|

exp
(
− c

t∫
|x|

γ(τ)
dτ

τ

)
dω±(t) ≤ cω±(ε).

Therefore, u(x) → φ(0) as x→ 0.
It also follows from Theorem 6.1.5 that the solution of the equation

L u = 0 whose boundary values satisfy the Hölder condition at the point
O, itself satisfies this condition if

lim inf
x→0

1

| ln r|

1∫
t

γ(τ)
dτ

τ
> 0. (6.1.27)

The following theorem is proved analogously to Theorem 6.1.5.
Theorem 5′. Let φ ∈ C(δΩ) and let u be a solution of the equation L u = 0
satisfying the condition u = φ on ∂Ω. Besides, let

σ±(t) ≡ max
|x|≥t

φ±(x) −→
t→∞

0.
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Then the inequality

u±(x) ≤ σ±(β−1|x|
)
+

+ c

β−1|x|∫
0

( t

|x|

)n−2

exp
(
− c

|x|∫
t

γ(τ)
dτ

τ

)
dσ±(t) (6.1.28)

is valid.
The estimate of the L -harmonic measure

H(x, ∂Ω ∩ St) ≤ c
( t

|x|

)n−2

exp
(
− c

|x|∫
t

γ(τ)
dτ

τ

)
(6.1.29)

resulting from Theorem 6.1.2, where βt ≤ |x| plays the part of the inequality
(6.1.25) in the proof of this theorem.

6.1.5 Inhomogeneous equation
Theorem 6.1.6. Let u, which equals zero on ∂Ω, be a weak solution of
the equation L u = f , where f is a finite charge with a carrier in Ω (the
existence of such a solution is proved in [32]). Then the inequality

u∓(x) ≤ c

∫
Sβ|x|

r2−nxy f±(dy)+

+ c

∞∫
β|x|

exp
(
− c

t∫
|x|

γ(τ)
dτ

τ

)
t2−n df±(St) (6.1.30)

is valid.

Proof. From the representation of the solution in terms of the Green’s func-
tion G(x, y) and from the inequality G(x, y) ≤ cr2−nxy resulting from (6.1.2),
we obtain

u∓(x) ≤ c

∫
Sβ|x|

r2−nxy f±(dy) +

∫
CSβ|x|

G(x, y)f±(dy). (6.1.31)

Since for fixed y, the function G(x, y) satisfies the conditions of Theorem
6.1.1 for |x| ≤ β|y|, it follows that

G(x, y) ≤ cM
1
2

α|y|
(
G( · , y)

)
exp

(
− c

|y|∫
|x|

γ(τ)
dτ

τ

)
.
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Applying (6.1.2) to the Green’s function, we find that the mean value of
G2( · , y) does not exceed c|y|2(2−n) on Kα2|y|. Therefore, for β|x| ≤ |y|,

G(x, y) ≤ c|y|2−n exp
(
− c

|y|∫
|x|

γ(τ)
dτ

τ

)
, (6.1.32)

which, together with (6.1.31), proves the theorem.

The following estimate of the solution of the problem L u = f , u
∣∣
∂Ω

= 0,
at infinity is obtained analogously:

u∓(x) ≤ c

∫
CSβ−1|x|

r2−nxy f±(dy)+

+ c|x|2−n
β−1|x|∫
0

exp
(
− c

|x|∫
t

γ(τ)
dτ

τ

)
df±(St). (6.1.33)

By comparing (6.1.23) and (6.1.30), as well as (6.1.28) and (6.1.33), we
obtain estimates near the point O and at infinity for the solution of the
problem L u = f , u

∣∣
∂Ω

= φ.

6.2 Modulus of Continuity of a Harmonic Function at
a Boundary Point

In this section, the results obtained in Section 6.1 are improved for harmonic
functions.

Let n > 2, y ∈ Rn, BR(y) = {x ∈ Rn : |x− y| < R}, BR = BR(0) and
Ω be a bounded domain in Rn. By c, c1, c2 we denote possibly different
positive constants which depend only on n. Further, let F be a closed
subset of the ball BR and u be a function from the Sobolev space W 1

2 (BR),
harmonic on BR \ F and equal to zero almost everywhere on F .

According to Section 6.1.1, for all ρ, ρ ∈ (0, R), one has

∫
∂B1

u2(ρ, ω) dω ≤ exp
(
− c

R∫
ρ

cap (Fr)
dr

rn−1

) ∫
∂B1

u2(R,ω) dω, (6.2.1)

where Fr = F ∩Br, cap is the Wiener capacity, c = n−2
n−1 , and dω is the area

element of the boundary ∂B1. Estimates of this type have also been proved
for solutions of linear elliptic second order equations with variable coeffi-
cients ([28, 38, 39, 61], etc), and also for certain linear equations of order
higher than two [36, 51], and quasi-linear second order equations [40, 45].
From (6.2.1) one derives pointwise estimates for the modulus of the function
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u, harmonic measure, and Green’s function. A consequence of (6.2.1) is the
sufficiency of the divergence of the Wiener series for the regularity of the
boundary point. The following sufficient condition for Hölder continuity at
the point O ∈ ∂Ω of the solution of the Dirichlet problem

∆v = 0 in Ω, v = ϕ on ∂Ω (6.2.2)

with the function ϕ Hölder continuous at the point O also follows from
(6.2.1):

lim inf
ρ∈0

1

| log ρ|

1∫
ρ

cap (Br \ Ω)
dr

rn−1
> 0. (6.2.3)

Under the additional requirement of decrease of the central projection
of the set ∂Br \ Ω onto the sphere ∂Br as r ↓ 0 the condition (6.2.3) is
equivalent to the inequality cap (Br\Ω) ≥ crn−2; according to [38], it is also
necessary. For a rather long time it has been unclear about the question of
necessity of (6.2.3) in general (cf. [45]). A negative answer to this question
follows from the theorem proved below, which strengthens (6.2.1).

In the formulation of the theorem there occurs the function r 7−→
δ(Fr,Br) defined as the infimum of those δ, δ > 0, such that for all balls
Bδ(y) with centers on ∂Br \ F one has

cap
(
Fr ∩ Bδ(y)

)
≥ γδn−2, (6.2.4)

where γ is a small positive constant, depending only on n.
If cap (Fr) ≥ γ(2r)n−2, then by definition, Fr is an essential subset of

Br, and otherwise an inessential one. Since for essential Fr, (6.2.4) holds
for all balls B2r(y), y ∈ ∂Br, one has δ(Fr,Br) ≤ 2r.

Theorem 6.2.1. For all ρ, ρ ∈ (0, R), one has∫
∂B1

u2(ρ, ω) dω ≤

≤ exp
{
− c

( ∫
I(ρ,R)

cap (Fr)
dr

rn−1
+

∫
E(ρ,R)

dr

δ(Fr,Br)

)}
×

×
∫
∂B1

u2(R,ω) dω, (6.2.5)

where E(ρ,R) = {r ∈ [ρ,R] : Fr is an essential subset of Br}, and
I(ρ,R) = [ρ,R] \ E(ρ,R).

Remark 6.2.1. The second integral in the exponential in (6.2.5) makes sense,
since the sets Ea = {r > 0 : δ(r) > a} are of type Fσ for all a ≥ 0, i.e., the
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function r 7−→ δ(r) is measurable. Indeed, fix a ≥ 0 and let r ∈ Ea. Then
there exist δ2 > δ1 > a and x ∈ ∂B(0, r) such that

cap
(
Ωc ∩ B(0, r) ∩ B(x, δ2)

)
< k0δ

n−2
1 ,

where Ωc is the complement of Ω. For |x − y| < ε = δ2 − δ1 and |y| ≤ r,
this yields

cap
(
Ωc ∩ B

(
0, |y|

)
∩ B(y, δ1)

)
< k0δ

n−2
1 ,

i.e. δ(|y|) ≥ δ1 > a. Consequently, ρ ∈ Ea for all r − ε < ρ ≤ r.
For r ∈ Ea, let εr be the largest ε such that the set Ea contains the

interval (r − ε, r]. The set

G =
∪
r∈Ea

(r − εr, r) ⊂ Ea

is open and it is easily verified that the set Ea \G is at most countable. It
follows that Ea is of type Fσ.

In the proof of theorem we have used the following assertion which con-
tains bilateral estimates of the quantity

λ(r) = inf ∥ gradu∥2L2(Br)
∥u∥−2

L2(∂Br)
,

where the infimum is taken over all u ∈ W 1
2 (Br) which vanish almost ev-

erywhere on Fr = F ∩ Br (cf. [41]).
In what follows, the relation a ∼ b means that a1a ≤ b ≤ c2a.

Proposition 6.2.1. If Fr is an inessential subset of Br, then λ(r) ∼
cap (Fr)r

1−n, and if not, λ(r) ∼ 1
δ(Fr,Br)

.

Proof. 1. The inequality

λ(r) ≥ 1

2
(n− 2)(n− 1)r1−n cap (Fr)

is proved in [37]. Let cap (Fr) < γ(2r)n−2. We denote by w the capacity
potential of the set Fr. We have

λ(r)∥1− w∥2L2(∂Br)
≤

∫
Br

(gradw)2 dx.

Consequently,

λ(r)
(
ω

1
2
n r

n−1
2 − ∥w∥L2(∂Br)

)
≤ ωn(n− 2) cap (Fr),

where ωn is the area of ∂B1. Since

∥w∥L2(∂Br) ≤ cr∥ gradω∥L2(Rn) ≤ c1r(cap Fr)
1
2 ,
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one has λ(r)r1−n(1− cγ
1
2 ) ≤ c cap Fr.

2. Let cap Fr ≥ γ(2r)n−2. We construct a finite covering of the set
∂Br \ F by balls Bδ(yi), yi ∈ ∂Br \ F , where δ = δ(Fr,Br) + ε, ε > 0.
It follows from the definition of δ(Fr,Br) that one can find a sufficiently
small number ε such that cap (Fr ∩ Bδ(yi)) ≥ γδn−2. From this and the
inequality ∫

Br∩Bδ(yi)

u2 dx ≤ cδn

cap (Fr ∩ Bδ(yi))

∫
Br∩Bδ(yi)

(gradu)2 dx

(cf., e.g., [41]) it follows that

γδ−2

∫
Br∩Bδ(yi)

u2 dx ≤ c

∫
Br∩Bδ(yi)

(gradu)2 dx.

But since

δ−1

∫
∂Br∩Bδ(yi)

u2 ds ≤ c

( ∫
Br∩Bδ(yi)

(gradu)2 dx+ δ−2

∫
∂Br∩Bδ(yi)

u2 dx

)
,

one has
γδ−1

∫
∂Br∩Bδ(yi)

u2 ds ≤ c

∫
Br∩Bδ(yi)

(gradu)2 dx.

Summing over i, we find

γ

∫
∂Br

u2 ds ≤ cδ(Fr,Br)

∫
Br∩Bδ(yi)

(gradu)2 dx,

which is equivalent to the inequality

λ(r) ≥ cγ

δ(Fr,Br)
.

3. As above, let cap Fr ≥ γ(2r)n−2. We set δ = δ(Fr,Br) − ε. Then
one can find a ball Bδ(y), y ∈ ∂Br \F such that cap (Fr ∩Bδ(y)) < γδn−2.
For any function u, u ∈W 1

2 (Br), u = 0 on Fr, we have

λ(r)

∫
∂Br

u2 ds ≤
∫

Br

(gradu)2 dx.

Let η ∈ C∞
0 (Bδ(y)), η = 1 on B δ

2
(y), | grad η| ≤ c

δ . Then

λ(r)

∫
∂Br∩B δ

2
(y)

u2 ds ≤ c

∫
Br∩Bδ(y)

[
(gradu)2 + δ−2u2

]
dx.



Topics on Wiener Regularity for Elliptic Equations and Systems 111

Since

δ−2

∫
Br∩Bδ(y)

u2 dx ≤

≤ c

( ∫
Br∩Bδ(y)

(gradu)2 dx+ δ−1

∫
∂Br∩B δ

2
(y)

u2 ds

)
,

one has

λ(r)

∫
∂Br∩B δ

2
(y)

u2 ds ≤

≤ c1

∫
Br∩Bδ(y)

(gradu)2 dx+ c2δ
−1

∫
∂Br∩B δ

2
(y)

u2 ds.

If 2c2δ
−1 ≥ λ(r), then we have obtained the upper bound needed for

λ(r). Let 2c2δ
−1 < λ(r). Then

λ(r)

∫
∂Br∩B δ

2
(y)

u2 ds ≤ 2c1

∫
Br∩Bδ(y)

(gradu)2 dx.

We denote by w the capacity potential of the set Fr ∩ Bδ(y) and by
ζ a function from C∞

0 (B δ
2
(y)) such that ζ(y) = 1, | grad ζ| ≤ c

δ . Since
(1− w)ζ = 0 on Fr, one has

λ(r)∥1− w∥2L2(∂Br∩B δ
4
(y)) ≤

≤ c

∫
Br∩B δ

2
(y)

[
(gradw)2 + δ−2(1− w)2

]
dx ≤

≤ c
(

cap (Fr ∩ Bδ(y)) + δn−2
)
≤ cδn−2. (6.2.6)

Applying the inequalities∫
∂Br∩B δ

4
(y)

w2 ds ≤ c

(
δ

∫
B δ

4
(y)

(gradw)2 dx+ δ−1

∫
B δ

4
(y)

w2 dx

)
,

δ−2

∫
B δ

4
(y)

w2 dx ≤
∫

w2(x)

|x− y|2
dx ≤ c

∫
Rn

(gradw)2 dx

successively, we conclude that∫
∂Br∩B δ

4
(y)

w2 ds ≤ cδ cap
(
Fr ∩ Bδ(y)

)
≤ cγδn−1.
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From this and (6.2.6) we get

cλ(r)(1− cγ
1
2 )2 ≤ cδn−2.

Thus the proposition is proved.

Proof of the Theorem 6.2.1. For r ∈ (0, R),∫
Br

(gradu)2 dx = rn−1

∫
∂Br

u
∂u

∂r
dω. (6.2.7)

Hence one has

2λ(r)

∫
∂Br

u2 dω ≤ d

dr

∫
∂Br

u2 dω,

which, with Proposition 6.2.1, gives (6.2.5).

From (6.2.5) we derive a pointwise estimate for the function |u|. One
verifies by integration by parts that one has

Lemma 6.2.1. Let η ∈ C∞
0 (Bρ) and r = |x− y|. For x ∈ Bρ \F , one has

u2(x)η(x)

ωn(n− 2)
+ 2

∫
Bρ\F

(gradu)2 η

rn−2
dy =

=

∫
Bρ\F

u2
(
r2−n∆η − grad r2−n · grad η

)
dy. (6.2.8)

From (6.2.8), assuming that η = 1 in a neighborhood of the ball B ρ
2
, we

deduce that one has

Corollary 6.2.1. For all x ∈ B ρ
2
\ F , we have

|u(x)| ≤ cρ−
n
2 ∥u∥L2(Bρ\B ρ

2
). (6.2.9)

Since by (6.2.7) the function ρ → ∥u(ρ, · )∥L2(∂B1) is nondecreasing,
from (6.2.8) one gets |u(x)| ≤ c∥u(ρ, · )∥L2(∂B1), where x ∈ B ρ

2
\ F . From

this and the theorem one gets

Corollary 6.2.2. For ρ ∈ (0, R) and x ∈ B ρ
2
\ F , one has

u2(x) ≤ c exp
{
− c

( ∫
I(ρ,R)

cap (Fr)
dr

rn−1
+

+

∫
E(ρ,R)

cap (Fr)
dr

δ(Fr,Br)

)} ∫
∂B1

u2(R,ω) dω. (6.2.10)



Topics on Wiener Regularity for Elliptic Equations and Systems 113

Noting that the integral over I(ρ,R) in (6.2.10) does not exceed c log(Rρ ),
we get

Corollary 6.2.3. If

lim
ρ→0

1

| log ρ|

∫
E(ρ,R)

dr

δ(Fr,Br)
= ∞, (6.2.11)

then u(x) = o(|x|N ) for any positive N .

From (6.2.10), just as from (6.2.1) in [39], one derives a variety of infor-
mation about the behavior of a harmonic function, Green’s function, and
harmonic measure at infinity and near a boundary point. Here we restrict
ourselves to the question of the Hölder continuity of a solution u of (6.2.2).

Proposition 6.2.2. Let Ω ⊂ B1, ϕ ∈ C(∂Ω) and ϕ(x)− ϕ(0) ≤ const|x|α,
where α > 0. If

lim inf
ρ→0

1

| log ρ|

( ∫
I(ρ,R)

cap (Fr)
dr

rn−1
+

∫
E(ρ,R)

dr

δ(Fr,Br)

)
= β > 0, (6.2.12)

where Fr = Br \Ω, there exists a positive constant γ depending on α, β, n
such that v(x)− ϕ(0) ≤ const|x|γ .

Proof. One can assume that ϕ(0) = 0. Let H(x,E) be the harmonic mea-
sure of the set E ⊂ ∂Ω with respect to Ω. We have

v(x) =

∫
∂Ω

Φ(x)H(x, dy) ≤

≤
∫
∂Ω

|y|αH(x, dy) ≤ c|x|α +

∫
∂Ω\B2|x|

(
|y|α − (2|x|)α

)
H(x, dy).

From this we have

|v(x)| ≤ c|x|α +

1∫
2|x|

H(x, ∂Ω \ Bt) d(t
α). (6.2.13)

Since the function x → H(x, ∂Ω \ Bt) is harmonic and satisfies the
homogeneous Dirichlet condition on Bt \ ∂Ω, by (6.2.10) for |x| < t

2 ,

H(x, ∂Ω \ Bt) ≤

≤ c exp
{
− c

( ∫
I(2|x|,t)

cap (Fr)
dr

rn−1
+

∫
E(2|x|,t)

dr

δ(Fr,Br)

)}
. (6.2.14)



114 Vladimir Maz’ya

From this estimate and (6.2.12) we find that

H(x, ∂Ω \ Bt) ≤ c
( |x|
t

)c β
.

Hence

|v(x)| ≤ c|x|α + c|x|c β
1∫

2|x|

tα−c β−1 dt.

We shell show that the domain Ω can satisfy (6.2.12), while simultane-
ously (6.2.3) does not hold.
Example 6.2.1. Let

B(ν) =
{
x ∈ Rn : |x| < ρν

}
, ν ≥ 2, log2 log2 ρ−1

ν = ν,

and let Ω be the union of spherical shells B(ν) \ B(ν+1), joined by holes in
the spheres ∂B(ν), and F = B \ Ω. The hole ρ is a geodesic ball with an
arbitrary center and radius σν = ρ1+εν+1, ε > 0. Let ρ be a small positive
number and ν be an index such that ρν ≤ ρ < ρν−1. It is clear that
cap (Br \ Ω) ∼ ρn−2

ν . Consequently,
1∫
ρ

cap (Bτ \ Ω)τ1−n dτ ∼ ν,

and since log2 ρ−1 ∼ 2ν , the domain under consideration does not satisfy
(6.2.3).

Now we note that there exists a constant c > 1 such that (6.2.4) does
not hold for ρ ∈ (c0ρk, ρk−1), 1 ≤ k ≤ ν. If now ρ ∈ (ρk, c0ρk), then for any
ball Bc(ρ−ρk+δk)(y) with center on ∂Bρ (6.2.4) holds. Hence δ(Fρ,Bρ) ≤
c(ρ− ρk + δk). From this it follows that∫
I(ρ,1)

cap (Fk)
dr

rn−1
+

∫
E(ρ,1)

dr

δ(Fr,Br)
≥

≥ c
ν∑
k=1

log ρk
δk

∼ c ε 2ν ∼ c ε| log ρ|−1.

Thus, (6.2.12) holds.
Setting log2 σν = −| log ρν |1+ε, we get

ν∑
k=1

| log1 ρk|1+ε ∼ 2k(1+ε).

Hence for such a choice of diameters of the holes ων (6.2.10) holds,
guaranteeing the superpower convergence of the function u to zero (cf. Co-
rollary 6.2.3).
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