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Abstract: This paper extends the work on matrix near-rings Mn(R), the
near-rings of nX n matrices over right near-rings with identity [3]. Our main
aim is to investigate matrix near-rings constructed over right near-rings, not
necessarily with identity. We show many similarities to the ring case. It is of
interest that one can find some striking contrasts as well. For example, unlike
the ring case, not all ideals of M ,,,(R) are full (Theorem 2.13), which solves
a problem posed in [3].

Introduction

Since the construction of matrix near-rings over arbitrary near-
rings by using a functional view of matrices [3], a number of very sat-
isfying structural results have been obtained ([1], [4], [5], [6], [7]). This
encourages one to believe that matrix near-rings will play a very im-
portant role in the theory of near-rings similar to the role played by
matrix rings in ring theory.

This work is divided into two sections. In Section 1 we deal with
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matrix near-rings constructed over near-rings which need not have an
identity element.

It turns out that the existence of an identity element in the base
near-ring R is an important condition (Theorem 1.19). Thus, like other
researchers in matrix near-ring theory, in Section 2 we will be studying
matrix near-rings M,(R), where R is a near-ring with identity.

1. In Meldrum and Van der Walt [3], matrix near-rings M,(R) are
defined over near-rings with identity, and without identity, separately.
We use their first definition for arbitrary near-rings, not necessarily
with identity.

Let R be a right near-ring and n € NN, the set of all natural
numbers. The direct sum of n copies of the group (R,+) is denoted
by R™. The elements of R™ are thought of as column vectors, but for
typographical reasons we write then in transposed form with pointed
brackets. We define elementary matrices

[j :R* - R™®
by
f:; :L,-f"';rj,for T ER, 1 S"’j STL

where ¢; and w; are jth coordinate injection and projection functions
and

fT(s) =rsforall s € R.

For typographical reasons, we use the symbol [r;i,j] for i
Definition 1.1. The near-ring of n X n matrices over R, denoted by
M, (R) is the subnear-ring of M(R"), the near-ring of all maps from
R™ to itself, generated by the set {[r;7,j]: 7 € R,1 <1, j <n}.

We emphasise that R need not have an identity in this definition.
We wish to carry over the additive laws of M,(R) to R.
Definition 1.2. [6] An R-module G is called a connected R-module if
for any gi1,g2 in G, there are g in G and z,y in R such that g; = zg
and g2 = yg.
Lemma 1.3. Let G be a connected R-module. If (R,+) € V, a variety
of additive groups, then G € V.
Proof. Let w(z1,...,2p) be alaw of V. If g1,...,9p, € G then there
exists g in G and z1,...,%p in R such that g; = r19,...,9, = 7,9, by
3.2 of [6]. Now w(g1,...,9p) = Og by 12.9 of [2], the hypothesis and
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2.12 of [2]. So the law w(z1,...,2z,) holds in G. This is true for all the
laws of V. Hence G € V. ¢
Theorem 1.4. Let (R,+) be a connected R-module. Then (R,+) eV
if and only if (M,(R),+) € V.
Proof. The necessary condition follows by Lemma 8 of [1] and the
converse follows from 3.3 of [6] and Lemma 1.3. ¢

The following are some immediate consequences of this result.
Corollary 1.5. Let (R,+) be a connected R-module. Then (R,+) is
in V if and only if (M,(R),+) is in V, where V is one of abelian,
nilpotent or soluble. {

We have analogous resuits to Lemma 1.3 and to Corollary 1.5 for
a monogenic K-module as every monogenic R-module is connected.

To extend Theorem 9 of [1], we first state a rewording of 12.9, [2].

Lemma 1.6. Let w(v1,...,v,) be a word in p variables Vlyeery Vp.
Then w(z1,...,2)a = w(zia,...,2,a) where T1,...,2p € Mu(R)
and a € R™. { ’

We remind the reader here that if I is an ideal of R, then It is
the ideal of M,(R) generated by {[a;%,5]; a € I, 1 < i, 7 < n} and
IM'={X e M,(R); XaecIforallzc R™} is also an ideal of M, (R).
Also, if J is an ideal of M,(R), then J, := {a € B; a = 7;Xa, for
some j,1 <j<n, X € J,a € R"} is an ideal of R. These results and
definitions come from [3].

Theorem 1.7. Let R be a near-ring and I an ideal of R. If(I,+) eV,
then (I*,+) e V.

Proof. Exactly the same method of proof as for Theorem 1.3, and
Lemma 1.6 enable us to get this result. ¢

We shall show in Theorem 2.4. that in the case of near-rings with
identity the converse of the above statement also holds.

Lemma 1.8. w([a1;4,7]),...,[ap;1,5]) = [w(ai,...,ap); i, j] where
aj,...,ap, ERand 1<, 5 <m.

Proof. By using induction on the length g of the word w(vy,...,vp),
and 3.1 (1) of (3], we get what we want. ¢

Theorem 1.9. Let R be a near-ring and I be an ideal of R. If(I,+) €
€V, then (IT,+)c V.

Proof. Immediate from Proposition 1 of [7] and Theorem 1.7. ¢

Some immediate consequences of Theorems 1.7 and 1.9 are as
follows.

Corollary 1.10. Let R be a near-ring aud I be an ideal of R. If (I,+)
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is in V, then (IT,+) and (I*,+) are in V where V is one of abelian,
nilpotent or soluble. &

The next result we aim to prove is
Theorem 1.11. If R is distributive over I, then My,(R) is distributive
over I*.

The proof will be based on the following lemmas.
Lemma 1.12. If R is distributive over I, then

za+yb=yb+ za

where z,y € R and a,b € 1.

Proof. Expand (z+y)(a+b), first using the hypothesis, then the right
distributivity of R and vice versa.

Lemma 1.13. If R is disiributive over I, then

(254, 5] + [y; &, 118 = [y; &, 1B + [=31, ja
where 2,y € R, a,f € R™ and 1 <1,3,k,l <n.
Proof. Follows from 3.1 of [2], [3], Lemma 1.12 and simple calcula-
tion. ¢

Lemma 1.14. Let R be a zero-symmetric near-ring. If R is distributive
over I, then

Xa+YB=YB+ Xa

where X,Y € Mnp(R) and a,B € I™.

Proof. Follows by induction on w(X) + w(Y), Lemma 1.13 and 2.16
of [2], 3.2 of [3] and 4.1 of [3]. ¢

Lemma 1.15. If R is distributive over I, then

[2;1,5)(a + B) = [2i4,5]a + [2;1,5]8

wherez € R, a,f € I" and 1 <14, j <m.

Proof. Simple calculation. ¢

Lemma 1.16. If R is a zero-symmetric near-ring and R is distributive
over I, then My(R) is distributive over I™.

Proof. Let X € M,(R) and a,8 € I*. By using induction on the
weight w(X) of X, Lemmas 1.15, 1.14, 2.16 of [2] and 4.1 of [3], we can
show that

X(a+B8)=Xa+XB.0

We are now able to prove Theorem 1.11.
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Proof of Theorem 1.11. Let X € Mu(R), A,B € I*, a € R™.
Then X(A + B)a = X(Aa + Ba). Now the rest of the proof follows
immediately from Lemma 1.16 and the definition of I'*. ¢
Theorem 1.17. Let R be a zero-symmetric near-ring. If R is distribu-
tive over I, then M, (R) is distributive over I.
Proof. Immediate from Proposition 1 of [7] and Theorem 1.11. ¢
Corollary 1.18. If R is distributive then M,(R) is distributive. <
We conclude this section with a result which shows the conve-
nience of considering the case in which R has an identity element. Re-
call that if R is a near-ring with identity then the map I — I* is an
injection. .
Theorem 1.19. The map I — I* need not be an injection, in general.
Proof. Let R be a zero-symmetric near-ring without identity and I be
a non-trivial proper ideal of R such that zy € I for all z,y in R; we
aim to show that R* = I*. Let X € M,(R). By using induction on
the weight w(X) of X, and 2.16 of [2], 3.2 and 4.1 of [3], we can show
that X € I*. ¢

2. We start this section with a couple of results which show the simi-
larities to the ring case. R is, henceforth, a near-ring with identity.
Theorem 2.1. Let R be a zero-symmetric near-ring. If n > 1, then
M,.(R) cannot be integral.

Proof. Assume the result to be false and choose two non-zero ele-
ments, say  and y, of R. The hypothesis and 3.1 (3) of [3] imply that
[#;4,5][y; k, 1] = 0if j # k. Therefore [z;1,5] = 0 or [y; k,1] = 0. Hence
z =0 or y = 0. This is a contradiction. ¢

Theorem 2.2. A sum of distinct matriz units Ew, 1<k <mn, isan
idempotent in M, (R).

Proof. E;; for i =1,2,...,n is an idempotent, by 3.1 (3) of [3]. By
right distributivity in My(R) and 3.1 (5) of [3], it can be seen easily
that

(Bu+...+Ey)(Euu+...+ Eu)=E; +...+ Ey.

This completes the proof. ¢

Corollary 2.3. If n > 1, then M,(R) cannot be a local near-ring.
Our next result takes Theorem 1.7 further.

Theorem 2.4. (I,+) € V if and only if (I,+)evV.

Proof. We use a technique similar to that of the proof of Lemma 1.3.
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Proposition 1 of [7], the definition of I, the hypothesis, and Lemma
1.8 give us the desired result. ¢
Theorem 2.5. (I,+) €V if and only if (I*,+) € V.
Proof. Only the converse needs a proof which is exactly the same as
that of the above result. ¢
Corollary 2.8. (I,+) is in V if and only if (I*,+) is in V, if and only
if (I*,4) is in V, where V is one of abelian, nilpotent or soluble. O

R is, henceforth, assumed to be a zero-symmetric near-ring.
Theorem 2.7. If J is an ideal of Mn(R), then R is disiribulive over
J. if and only if M,(R) is distributive over J.
Proof. Let X € M,(R) and 4,B € J. By Proposition 3 of [7],
4.6 of [3] and Theorem 1.11, we get X(A + B) = XA+ XB. To
prove the sufficiency, let z € R, a,b € J.. By 4.5 of [3], 3.1 of [3]
and the hypothesis, we get [z(a + b);1,1] = [za + zb;1,1]. Hence
z(a +b) =za+zb. ¢

" Exactly the same method of proof as for the sufficiency of the

condition of Theorem 2.7 enables us to show the converse of Theorems
1.11 and 1.17.
Theorem 2.8. R is distributive over I if and only if M,(R) is dis-
tributive over I*. §
Theorem 2.9. R is distributive over I if and only if M,(R) is dis-
tributive over IT.

To end, we answer the question posed in [3]: Does, in general,
M_.(R) possess ideals which are not full?

First we establish the following lemmas.
Lemma 2.10. If IT = I* for any ideal I of R then all ideals of M,(R)
are full.
Proof. If J is an ideal of M,(R), it can be seen easily that J = (J,)*
(by 4.6 of [3], the hypothesis and Proposition 3 of [7]). ¢

Furthermore
Lemma 2.11. It = I* for each ideal I of R if and only if all ideals of
M, (R) are full.
Proof. For sufficiency, take an ideal It of M,(R). IT = L* for
some ideal L of R. We aim to show that I = L. Let a € L, then
[a;1,1] € It = L*, therefore a € L. Now Proposition 1 of [7], the
hypothesis and Proposition 2 of [7] imply L C I. This completes the
proof. &
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Lemma 2.12. If there ezists an ideal I of R such that It # I* then
not all ideals of M,(R) are full.

Proof. Assume that all ideals of M,(R) are full. Then I+ = I* for
each ideal I of R by Lemma 2.11. This contradicts the hypothesis. ¢
Theorem 2.13. In general M, (R) possesses ideals which are not full.
Proof. Immediate from Lemma 2.12 and Example 4 of [7]. ¢
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