Mathematica Pannonica

7/1 (1996), 97 — 111

ON COVERING PROPERTIES BY
REGULAR CLOSED SETS

Dragan Jankovié

Department of Mathematics, East Central Unwversity, Ada, Okla-
homa 74820, USA

Chariklia Konstadilaki

Department of Mathematics, Faculty of Sciences, Aristotle Uni-
versity of Thessaloniky, 54006 Thessaloniki, Greece

Received June 1994

MSC 1991: 54 D 20, 54 G 05.

Keywords: rc-compact, rc-Lindelof, countably re-compact, perfectly xk-normal,
Luzin space, generalized ordered space.

Abstract: A topological space X is [countably] rc-compact (rc-Lindelof)
if every [countable] cover of X by regular closed sets has a finite (countable)
subcover. It is established, among other results, that 1. A space is rc-compact
iff its semiregularization is an extension of a compact extremally disconnected
space; 2. An uncountable T3 first countable crowded space is re-Lindelof iff
it is a Luzin space, and 3. A countably rc-compact T3 first countable or
generalized ordered space is finite.

0. Introduction

In this paper separation axioms are not assumed without explicit
mention. A topological space X is defined to be rc-compact (re-Lindelof)
if every cover of X by regular closed sets has a finite (countable) sub-
cover. In [22] re-compact spaces were introduced and studied under the
name of S-closed spaces. In order to have a uniform terminology for cov-
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ering properties by regular closed sets we have adopted the prefix re- for
obvious reasons. The concept of rc-compactness is related to extremal
disconnectedness since regular or Hausdorff re-compact spaces are ex-
tremally disconnected. These results due to T. Thompson [22] were
strengthened by R. Hermann [10] who showed that rc-compact spaces
with regular or Ty semiregularzations are extremally disconnected. In
Section 2 we exhibit the “real” nature of rc-compact spaces by showing
that rc-compact spaces are precisely spaces whose semiregularizations
possess a dense compact extremally disconnected subspace, or equiva-
lently, a dense compact set consisting of points of extremal disconnect-
edness. Now it is not surprising that imposing a very weak separation
property Ro (a common generalization of regularity and T;) on the
semiregularization of an rc-compact space will force extremal discon-
nectedness. On the other hand, there are T; rc-compact spaces which

are not extremally disconnected as shown by D. Cameron [4].
In Section 3 re-discrete sets are introduced as an important tool in

investigating re-Lindelof spaces. We point out that rc-discrete sets are
independent interest. A collection of re-discrete sets in a T (i.e., regular
T1) space includes a collection of discrete sets and in T crowded spaces
(i.e., without isolated points) is included in the collection of nowhere
dense sets. We show that in T3 first countable spaces nowhere dense
sets are re-discrete and use this result to establish, via the existence of
Luzin spaces, that the statement that there exists an uncountable T
first countable rc-Lindelof space with countably many isolated points is
independent of ZFC. The same conclusion is true in case of uncountable

re-Lindelof generalized ordered spaces.
In the last section we study countably rc-compact spaces which

are defined as spaces whose countable covers by regular closed sets
have finite subcovers. It turns out that the intersection of this class of
spaces whith the class of T3 first countable spaces as well as the class
of generalized ordered spaces is percisely the class of finite spaces.

1. Definitions and notations

Throughout, X or (X, 7) will denote a topological space and CIA
(Int A,Bd A) will denote the closure (interior, boundary) of a subset
A of a space. A set A in a space is regular open (regular closed) if

A =IntCIA (A = ClInt A). We denote by RO (X)(RC (X)) the fam-

ily of regular open (regular closed) sets in a space X. The family of
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regular open sets in (X,7) is a base for a topology 75 on X coarser
than 7. The space (X,7s) is called the semiregularization of (X, 1)
and (X, 7) is called semiregular if 7 = 75. A topological property P is
said to be semiregular if a space (X, 7) has P iff the space (X, 7s) has
P. Since RC (X, 7) = RC(X, 75), it is clear that both rc-compactness
and rc-Lindelofness are semiregular properties. Another example of a
semiregular property is extremal disconnectedness. A space X is ez-
tremally disconnected if every open set in X has an open closure, or
equivalently if RO (X) = RC(X). A “pointed” version of extremal
disconnectedness introduced in [7] may be described in the following
way: A point z in a space X is a point of extremal disconnectedness
(shortly, an e.d. point) if « ¢ BAdU for every U € RO (X ). Note that
boundaries of regular open sets in (X, 7) and (X, 7s) coincide. There-
fore, # € X is an e.d. point in (X, 7) iff it is an e.d. point in (X, 7g).
We denote the set of e.d. points of a space X or its semiregularization
by ED (X). Interesting examples of extremally disconnected spaces are
obtained by absolutes of spaces. Recall that with every Tj space X
we associate the space EX | called the Iliadis absolute, which is unique
(up to homeomorphism) with respect to having these properties: EX is
Tychonoff extremally disconnected and there exists a perfect continuous

irreducible surjection kx : EX — X.

We denote by Z(X )(Coz (X)) the family of zero sets (cozero sets) in
a space X. 3X is the Stone-Cech compactification of a Tychonoff space
X, X* denotes the Stone-Cech remainder 3X — X, and N, Q, R and I
denote the sets of natural numbers, rationals, reals and the unit interval
usually equipped with the euclidean (subspace) topology. Cardinals are
initial ordinals, w is the first infinite ordinal and the cardinality of a set
A is denoted by |A|. We refer the reader to [16] for undefined terms and

notation.

2. rc-compact spaces

A set A in a space X is said to be locally dense if it is dense in an
open set in X, or equivalently, if A C Int Cl1A. The proof of our first
result is left to the reader.

Lemma 2.1. Let (X, 7) be a space and Y a locally dense set in (X, 7).
Then
(a) ROY)={ANY : A€ RO(X)};
(b) RC(Y)={ANY : A€ RC(X)}

;
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(c) (7]Y)s = 75|V,

(d) ED(Y)=Y NnED (X);

() Y s extremally disconnected iff Y C ED (X).

Note that locally dense sets in (X, 7) are locally dense in (X, 7g)
while the converse is not true in general.

The following characterizations of rc-compact spaces are obtained
in a standard way so we omit the proofs. A regular open filter base
(filter, ultrafilter) in a space X is a filter base (filter, ultrafilter) in the
lattice of regular open subsets of X.

Theorem 2.2. A space X 1is rc-compact iff every reqular open filter
base (filter, wltrafilter) in X has a nonempty intersection.

The fact that regular open ultrafilters in an re-compact space have
nonempty intersection shows how strong this property must be. This
observation is better reflected in our main result in this section.
Theorem 2.3. A space (X, 7) is re-compact iff (X, 7s) is an extension
of a compact extremally disconnected space.

Proof. The “if” part follows from the following facts: (1) compact ex-
tremally disconnected spaces are re-compact; (2)  if a space has a dense
re-compact subspace, then it is re-compact; and (3) re-compactness is
a semiregular property. Now, in showing the “only if” part we shall
assume that (X, 7) is a semiregular in order to simplify the notation.
There is no loss of generality in light of Lemma 2.1 and the fact that
the semiregularization of a space is semiregular. Let Y = U{NU : U €
€ S(X)}, where S(X) denotes the set of regular open ultrafilters on
X. We first show tha Y is dense in X. Let G € RO (X) and G # 0.
Then {U : U € RO(X) and G C U} is regular open filter and hence
is contained in some U € S(X). This gives G € U, and consequently
NU C G By Th. 2.2 U #0. So, GNY # () and Y is dense in X. We
now show that ¥ C ED (X). Let € Y and suppose that + € Bd G for
some G € RO (X). Then « € NU for some U € S(X). Since x € CIG,
UNG # 0 for every U € U. Hence G € Y and NU C G. This contra-
dicts ¢ G and establishes that  is an e.d. point. By Lemma 2.1, Y is
extremally disconnected subspace of X. To show that Y is compact, let
Y CU{V,: Vo, € RO(X) and o € A}. We claim that X = U{CLV}, :
ca € A}, Let 2 € X and U € S(X) such that ¢ converges to x. Clearly,
there is an o € A such that "W NV, # (). Since V,, meets every member
of U, Vo € U and hence = € ClV,, as U converges to x. So, we have
that {C1V, : a € A} is a cover of X by regular closed sets. Since
X is rce-compact there exist a(1),a(2),...,a(n) € A such that X =
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= U{ClV,() ¢ =1,2,...,n}. Now each point of Y is an e.d. point so
it must belong to some V, ;). Therefore, Y C U{Vy;) 10 =1,2,...,n}
and the proof is complete. ¢

By Th. 2.3 it follows at once that rc-compact Hausdorfl spaces are
extremally disconnected since Hausdorfiness is a semiregular property.
To see how regularity type separation axioms produce the same effect
and at the same time to extend the previous result we need the following
common generalization of regularity and T;. A space X is called Rq [5]
if every open set in X contains the closure of each of its points. A useful
characterization of spaces having Ry semiregularizations is obtained by
use of rc-closure. For a set A in a space X, the rc-closure of A, denote
by Cl,c A, is N{U € RO(X)|A C U}. This concept was inroduced in
[6] under the name of s-closure. Note that for a space (X, 7), (X, 7g) is
Ro iff for every F' € RC(X) whenever © € F then Cl,.{z} C F and

that extremally disconnected spaces have regular semiregularizations.
Theorem 2.4. An rc-compact space (X, 7) is extremally disconnected
iff (X, 7s) 1s Ro.

Proof. We show that (X, 7s) is extremally disconnected. By Th. 2.3
there exists a dense compact set D in (X, 7s) consisting of e.d. points.
Let © € X — D and suppose that x is not an e.d. point. Then there
exists a V € RO (X) with « € BdV. (Note that 7¢ — BdV = 7 —
— BdV and 79 — C1V = 7 — ClV for V € RO (X)). Since (X,75)
is Rg, Cl,c{z} C BdV. Also, BAV N D = () since D consists of e.d.
points. Therefore, Cl,. {z} N D = (. On the other hand, U N D # { for
every U € RO (X) with @ € U. Since CLUND =UND, {UNDJU €
€ RO(X) and « € U} is a closed filter base in D. The compactness
of D implies N{U N D|U € RO (X) and @ € U} # (), and consequently
Clic{z} N D # 0. This contradiction completes the proof. ¢

Remark 2.5. In [14] T. Noiri defined locally S-closed spaces in a way
which differs from a usual way of localizing a global property. A space X
is locally S-closed if every x € X has an open S-closed neighbourhood.
It is left to the reader to show tha in Th. 2.4 “rc-compactness” may be
replaced by “locally S-closed”.

3. rc-Lindelof spaces

In this section we study the class of rc-Lindelof spaces. The fact
that this natural generalization of rc-compactness implies perfect k-
normality, or equivalently, that rc-Lindelof spaces are in the class Oz,
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and the following observation have motivated our study of rc-Lindelof

spaces.
In [22] it was observed that N* is not re-compact since under the

Continuum Hypothesis there exist P-points in N*. Clearly, the fact
that N* is not extremally disconnected suffices. On the other hand,
one may exhibit a regular closed cover of N having no finite, moreover
countable, subcover. We employ the well known facts that there is a
continuous surjection from N* to the unit interval I and that N* is a P’-
space (i.e., its zero sets are regular closed). Now, consider the partition
P = {f~1(x)]xz € I} of N*. Obviously, P does not have a countable

subcover, otherwise |I]| < w.
The previous observation that N* is not re-Lindelof may be gener-

alized by showing in the same way that the remainder of the Stone-Cech
compactification of a Ty locally compact Lindelof non countably com-
pact space is not re-Lindelof. We will see later that this result general-

izes further.
It is clear that regular re-Lindelof spaces are Lindelof and also that

countable as well as extremally disconnected Lindelof spaces are rc-
Lindelof. As we have already seen a compact space is not necessarily

rce-Lindelof. Th. 3.8 implies that the unit interval is not re-Lindelof.
We first give a characterization of rc-Lindelof spaces. A standard

proof is omitted. Recall that a filter in a space has the countable inter-
section property if every countable family of elements of the filter has a

nonempty intersection.
Theorem 3.1. A space X 1is re-Lindelof off every reqular open filter in

X with the countable intersection property has a nonempty intersection.
We show next that re-Lindelofness is inherited by certain subspaces.
Proposition 3.2. In a reqular rc-Lindelof space both reqular open and

reqular closed sets are re-Lindelof.

Proof. Let U € RO (X) andU = {F,|a € A} be a cover of U by regular
closed sets in U. It is easy to see that there exists an F! € RC (X) such
that F, = U N F), for each o € A. Now, {F,la € AJU{X —U} is a
cover of X by regular closed sets and the result follows. Note that we
did not use the assumption that X is regular. Now let F' € RC (X)) and
U = {F,|a € A} be a cover of F by regular closed sets in F. Then U is
a cover of F' by regular closed sets in X. For each x € X — F let V. be
an open set withz € V, CClV, C X —F. Then UU{ClV, |z € X — F}

is a cover of X by regular closed sets in X and the result follows. ¢
Since N* is closed in the rc-compact space SN, rc-Lindelofness is

not inherited by closed subspaces. Also, an uncountable discrete set
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D is open and dense in the rc-compact space 3D but not re-Lindelof.
Therefore rc-Lindelofness is not inherited neither by open nor dense sub-
spaces. Finally, rc-Lindelofness is not contagious, namely there are non
rc-Lindelof spaces with re-Lindelof dense subspaces. A non re-Lindelof
extension of N with the discrete topology suffices and also witnesses that
there is no result analogous to Th. 2.3. So called anti-Michael line, R
with the usual topology and rational points declared open, is a non re-
Lindelof (by Th. 3.8) metric separable, moreover hereditarily Lindel6f,
space where Q is a dense rc-Lindelof subspace.

The following important class of spaces was introduced indepen-
dently by R. Blair and E. Séepin. A space X is said to be in the class
Oz [3] or X is called perfectly k-normal [19] if regular closed sets in
X are zero sets, or equivalently, if (i) disjoint regular closed sets are
separated by open sets, and (ii) regular closed sets are intersections of
countably many regular open sets. Perfectly x-normal spaces generalize
perfectly normal spaces, extremally disconnected spaces and products
of metric separable spaces. Also, compact Hausdorff topological groups
are perfectly k-normal and perfectly x-normal uncountable products of
compact Hausdorfl spaces satisfy countable chain condition [18]. Sev-
eral useful characterizations of spaces in the class Oz are given in [3].
R. Blair also showed that many important classes of spaces are not
included in the class Oz. The following result enables us to use the
known facts about perfectly x-normal spaces. In the terminology of [3]
it states that regular re-Lindelof spaces are regularly normal i.e., normal
with regular closed sets being Gs-sets.

Theorem 3.3. Regular rc-Lindelof spaces are perfectly k-normal.
Proof. Let X be a regular rc-Lindelof space. Then X is Lindelof and
hence normal. Let U € RO(X). For each # € U there is an U, €
€ RO(X) such that + € U, C ClU, C U. Clearly, C1U, € RC(U).
By Prop. 3.2, U is rc-Lindelof and hence a countable union of regular
closed sets in X. Therefore U is an open Fj-set in the normal space X.
So U € Coz(X) and the result follows. ¢

By Th. 3.8, R with the usual topology is an example of perfectly
k-normal but not rc-Lindelof space.

In [2] it is shown that X* ¢ Oz if X is a Tychonoff locally compact
non pseudocompact space. This generalizes our observation from Intro-
duction that X* is not re-Lindelof if X is a Tychonoff locally compact
Lindelof non pseudocompact space.

Note also that none of the familiar spaces of ordinals is in the
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class Oz [3]. R. Blair [3] also improved the well known result that
BN x BN is not extremally disconnected by showing that SN x N ¢
¢ Oz. This shows that re-Lindeléfness is not productive and also that
the inverse image of rc-Lindelof, moreover rc-compact, spaces under
continuous open perfect surjections are not necessaily rc-Lindelof as the
projection p : [N x ON — [N witnesses. The last observation also
answers a question posed by T. Noiri [15] whether re-compactness is
inversely preserved under continuous open perfect surjections. A dif-
ferent example answering Noiri’s question is given in [21]. It is easily
seen that rc-Lindelofness is preserved under continuous open surjections
since under these mappings the preimages of regular closed sets are reg-
ular closed. On the other hand, rc-Lindelofness is not preserved by
continuous surjections as the following example shows. Let D be a dis-
crete space with |D| = 2. Then there exists a continuous surjection
from 6D to D*. As we have already observed, D* is not rc-Lindelof.
We turn now our attention to rc-discrete sets. A point x in a subset
A of a space X is called an rc-discrete point of A if there exists an
F € RC(X) such that FN A = {x}. A set A is re-discrete if each of
its points is rc-discrete. It is clear that in a regular space an isolated
point of A is an rc-discrete point of A. Therefore, discrete subspaces
of regular spaces are rc-discrete. On the other hand, in an extremally
disconnected space re-discrete points of a set are isolated and re-discrete
sets are discrete. Prop. 3.4 below shows that the crowded Cantor set
C' in R with the usual topology is rc-discrete. Moreover, by Prop. 3.4
and Lemma 4.7 of [§] in any crowded T3 first countable space there
exist a countably infinite crowded rc-discrete subset. Our next result
generalizes, in case of Ty spaces, the well known fact that in T crowded
spaces discrete sets are nowhere dense.
Proposition 3.4. In a crowded Ty space rc-discrete sets are nowhere
dense.
Proof. Let A be an rc-discrete set in a crowded Ty space X and U be
a nonempty open set in X. We show that there exists a nonempty set
V such that V. C U and VN A = (). Assume that U N A # () and let
x € UN A. Since z is an re-discrete point of A there exists an open set
W such that CLW N A = {z}. Now V=WnNU — {z} # 0, otherwise
would be an isolated point in X. Clearly, V' is the desired open set. {
To see that nowhere dense sets in crowded Ty spaces are not nec-

essarily rc-discrete consider the following example.
Example 3.5. Let I be the unit interval, C' the Cantor set in I, and
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X = EI the Iliadis absolute of I. Since kx : X — I is continuous
closed irreducible surjection, f~1(C) is a closed nowhere dense set in
the crowded compact Hausdorff extremally disconnected space X. Ob-
viously, f~1(C) is not re-discrete, otherwise it would be discrete and
finite, implying |C| < w.

Our next result is not only important in the present setting, but
also in relation to cardinal functions.
Lemma 3.6. In T3 first countable spaces nowhere dense sets are re-
discrete.
Proof. Let A be a closed nowhere dense set in a T3 first countable
space X and let © € A. We show that = is an rc-discrete point of
A. Obviously, we may assume that = is a limit point of A. Choose a
decreasing open base U, = {Uy|n € N} at x. Since X is T3 and A is
nowhere dense there exists a nonempty open set Vi such that C1V; C U,
and C1V; N A = 0. Let Un(2) € Uy and U9y C Uy — C1 V4. Tt is clear
that with recursion on n € N we can construct a decreasing sequence
{Unty|Un(ry € Uy and k € N} (n(1) = 1 and n(k) is increasing) and a
sequence of nonempty open sets {Vi|k € N} so that Uy, g41) C Upr) —
— ClVi, C1Vi C Uyy and C1Vi N A = (. Clearly, + € C1V where
V = U{Vk|k € N}. We claim that C1V N A = {z}. Let y € A and
y # x. There are disjoint open sets W and U,, € U, such that y € W.

k—1
Let k € N with Upx) C Up and let W' =W — | J C1V;. Clearly, W' is
=1

(3
open and W' NV ={. So,y ¢ C1V. {

Recall that a Ts sace X is called an accessibility space [23] if for
every limit point = of a set A there exists a closed set € such that x
is a limit point of C and C C A U {z}. Note that T; first countable,
moreover Frechét-Urysohn spaces, are accessibility spaces.

Lemma 3.7. Nowhere dense sets in normal T accessibility spaces
with Gs-points are rc-discrete.

Proof. Let A be a closed nowhere dense set in a space X satisfying
the conditions and let & be a limit point of A. Then x is a limit point
of (X — A) U{z}, otherwise there would exist an open neighbourhood
U of = contained in A contradicting the assumption that A is nowhere
dense. Since X is an accessibility space, there exists a closed set C'
such that x is a limit point of C' and C N A = {a}. Therefore, A — {x}
and C — {z} are disjoint closed sets in the subspace X — {x}. Since
{x} is a Gs-set, X — {«} is an F,-set and hence normal as a subspace
of a normal space. There exist disjoint open sets U and V in X — {z}
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having disjoint closures in X — {z} such that A — {2} C U and C —
— {2} C V. Clearly U and V are open in X and C1U N ClV = {a}.
So, C1V N A = {«} and the result follows. ¢

We are now ready for main results in this section. Recall that a
Hausdorff space X is called a Luzin space [12] if (a) Every nowhere
dense set in X is countable, (b) X has at most countably many isolated
points, and (¢) X is uncountable. As shown in [12], Luzin spaces are
zero dimensional and hereditarily Lindelof. It is well known that the
Continuum Hypothesis (CH ) implies that R with the usual topology is
an extension of a Luzin space. On the other hand, Martin’s axiom plus

—CH implies that there are no Luzin spaces [12].
Theorem 3.8. Let X be an uncountable first countable T3 space with

at most countably many isolated points. Then X s rc-Lindelof off X 1s

a Luzin space.
Proof. The necessity follows from Lemma 3.6 and the simple fact that

closed rc-discrete sets in T3 re-Lindelof spaces are countable. To estab-
lish sufficiency let &4 = {F, € RC(X)|a € A} be a cover of a Luzin
space X. By Zorn’s lemma there exists a pairwise disjoint open refine-
ment V of Int U = {Int F,,|a € A} such that NV is dense in UInt ¢ and
consequently dense in X. Hence X — UV is nowhere dense and | X —
— UY| <w. Also, since X is hereditarily Lindel6f, |V| < w. Now, it is

easy to see that there is a countable subcover of U. ¢
Since T3 rc-Lindelof spaces are normal, by Lemma 3.7 we have the

following generalization of the previous result.
Theorem 3.9. Let X be an uncountable T3 accessibility space with

Gs-points and at most countably many isolated points. Then X 1is rc-

Lindelof 1ff X 1s a Luzin space.

It would be of interest to find an example of a T3 uncountable

crowded rc-Lindelof space with Gs-points.
We next consider linearly ordered topological spaces (LOTS) and

generalized ordered spaces (GO -spaces). Recall that a GO -space is a
space which can be embedded in a LOTS. We assume that GO -spaces
are T1. In proving that the statement that there exists an uncountable
re-Lindelof GO -space is independent of ZFC the crucial part is played
by a result due to H. Bennett and D. Lutzer [1], namely, perfectly x-

normal GO -spaces are perfectly normal.
Theorem 3.10. Let X be an uncountable GO-space. Then X s rc-

Lindelof 1ff X 1s a Luzin space.

Proof. Since X is perfectly k-normal, X is perfectly normal and hence
first countable [1]. Being perfect and Lindelof, X is hereditarily Lindel6f
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and thus has at most countably many isolated points. By Th. 3.8, X is

a Luzin space. {
Our next result gives a sufficient condition for a closed subset of a

T3 re-Lindelof space to be re-Lindelof. In the proof we use the following
interesting characterization of hereditarily normal spaces [17]. A space
X 1is hereditarily normal iff whenever U is an open set in A C X there
exists an open set V(U) such that U = AN V(U) and Cl,U = AN
N Cl XV(U).
Proposition 3.11. Let X be a Ty hereditarily normal rc-Lindelof
space. If A C X 1s closed, then A is re-Lindelof.
Proof. Let & = {F, € RC(A)|a € A} be a regular closed cover of A.
Clearly, F, = Cl 4U, for some open U, in A. Since X is hereditarily
normal V = {ClxV(U,)|a € A} is a regular closed cover of A in X.
For each * € X — A let V. be an open set in X with « € V,, and C1V, N
NA=10. Then VU{ClV,|z € X — A} is a cover of X by regular closed
sets in X and thus the result follows because X is re-Lindeldf. O

Since perfect k-normality is implied both by T3 re-Lindelofness and
perfect normality it is of interest to consider T3 rc-Lindelof perfect
spaces. In this direction we have the following theorem.
Theorem 3.12. In Ty perfectly normal rc-Lindelof spaces compact
sets are countable.
Proof. It is enough to show that compact Ty perfectly normal rc-
Lindelof spaces are countable. Let X be such a space. Suppose that X
is not scattered (i.e., X possesses a nonempty crowded subset). This
implies that there exists a continuous surjection from X to the unit in-
terval I [20]. Obviously, f is closed. Now there exists a closed subset
A of X such that f(A) =1 and ¢ = f|A is irreducible [16]. Let C be
the Cantor set in I and set B = ¢~!(C). Since ¢ is continuous closed
and irreducible, B is closed and nowhere dense in A. Note that A is
compact and perfectly normal and hence first countable. Therefore,
B is rc-discrete by Lemma 3.6. From Prop. 3.11 it follows that A is
re-Lindelof and hence |B| < w. This contradicts |C'] = 2% and we con-
clude that X is scattered. But it is well known that compact Hausdorff
scattered spaces with Gg-points are countable. ¢

4. Countably rc-compact spaces

In [22] T. Thompson proved that T3 first countable rc-compact
spaces are finite. As we will see this result holds if rc-compactness
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is replaced by countable re-compactness. Countably rc-compact spaces
are also finite in some other important cases. A space X is defined to be
countably rc-compact if every countable cover of X regular closed sets
has a finite subcover. First of all, we observe that countable T3 count-
ably rc-compact spaces are finite. In case that a T3 countable infinite
space X is countably rc-compact it would be re-compact since it is re-
Lindelof. Therefore, X would be compact and extremally disconnected
and consequently would contain a copy of N contradicting |X| = w.
This observation easily follows from a generalization of the mentioned
Thompson’sresult. Recall now that a space X is feebly compact if every
countable open cover of X has a finite subfamily whose union is dense in
X and that a Tychonoff space is feebly compact iff it is pseudocompact
[16]. It is evident that countably re-compact spaces are feebly compact.
The unit interval with the usual topology shows that the converse does
not hold. On the other hand, extremally disconnected feebly compact
spaces are countably rc-compact but not necessarily countably compact.
As shown in [11] the Iliadis absolute of the deleted Tychonoff plank is
such a space.

The proofs of the following two useful results are left to the reader.
Theorem 4.1. A space X 1s countably rc-compact iff every countable
reqular open filter base in X has a nonempty intersection.
Proposition 4.2. (a) In countably rc-compact spaces, reqular open
sets and reqular closed sets are countably rc-compact.

(b) Countable rc-compactness is contagious.

(c) A finite union of reqular open countably rc-compact subspaces is
countably rc-compact.

(d) Countable rc-compactness is not productive.

(e) Countable re-compactness is preserved under continuous open
surjections but not under continuous surjections. Also, countable rec-
compactness 1s not inversely preserved under continuous open perfect
surjections.

Now we extend and prove differently Th. 3 from [22].

Theorem 4.3. T3 countably rc-compact spaces with Gg-points are
finate.

Proof. Let X be a T3 countably rc-compact space with Ggs-points.
Since X is T3 feebly compact, X is first countable. We will show that
X is extremally disconnected and since Ty extremally disconnected first
countable spaces are discrete the result will follow. Suppose that there

exist a U € RO(X) and « € BdU. Let U, = {Uy|n € N} be a
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decreasing base of regular open sets at x. Since F = {U,, N U|n € N}
is a countable filter base of regular open sets in U and U is countably
re-compact by Prop. 4.2 (a), it follows from Th. 4.1 that U N N{U,|n €
€ N} = (). This contradicts the assumption that x ¢ U. ¢

As a consequence of Th. 4.3 we have the mentioned result that
countable T3 countably rc-compact spaces are finite because every sub-
set of a Ty countable space is a Gs-set.
Theorem 4.4. Let X be a Tychonoff countably rc-compact space. Then
X s extremally disconnected ioff it 1s perfectly k-normal.
Proof. Assume that X is perfectly x-normal and let U € RO (X). Then
U € Coz(X) and hence U is a countable union of regular closed sets in
X. Clearly, these sets are also regular closed in U. Since U is count-
ably rc-compact by Prop. 4.2 (a), U is a finite union of regular closed
sets in X. Therefore, U is closed and consequently X is extremally
disconnected. ¢

In Section 3 we have observed that N* is not re-Lindelof. Since there
is a continuous surjection from N* to the one point compactification of
N and N* is a P'-space, similar arguments show that N* is not countably
rc-compact. Our next result generalizes this observation.
Theorem 4.5. Tychonoff countably rc-compact P’-spaces are finite.
Proof. Let X be a Tychonoff countably rc-compact space and let U €
€ Coz(X). Since X is P, U € RO (X)) and hence by Prop. 4.2 (a), U is
countably re-compact. By the same argument as in the proof of Th. 4.4,
U is closed. Therefore, X is a P-space i.e., cozero sets are closed. But
T feebly compact P-spaces are finite [16]. ¢

In order to establish our final result we need a useful concept of a
7-set in a space. A set A in a space X is called a w-set [24] if it is
an intersection of finitely many regular closed sets. In [9] V. Fedorcuk
showed that closed Gg-sets in LOTS are w-sets.
Theorem 4.6. Countably rc-compact GO-spaces are finite.
Proof. First, we establish the result for LOTS. Let X be a countably
re-compact LOTS and let U € Coz (X). Since U is a complement of a
m-set, U is a finite union of regular open sets and hence U is countably
re-compact by Prop. 4.2 (a) and (c¢). By the same argument as in the
proof of Th. 4.4, U is closed and thus X is a P-space. By Th. 4.5, X is
finite. Now, the well known result that a GO -space is densily embedded
in a LOTS [13] and Prop. 4.2 (b) imply the result. ¢

Finally we remark that in [9] it is shown that some other classes
of spaces have a property that closed Gs-sets are w-sets. The same
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argument as in the proof of Th. 4.6 shows that these spaces are finite if

countably rc-compact.
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