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Abstract: This paper deals with the Schwab~Borchardt mean. Emphasis
is on the inequalities connecting the mean in question with other means of
two variables. For special values of its arguments, the Schwab—Borchardt
mean simplifies to known ones. Particular means reached that way include a
logarithmic mean and two means introduced recently by H.-J. Seiffert. The
Ky Fan inequalities for the logarithmic mean, Seiffert means and other means
are obtained. A sequential method of Sandor [10] is generalized to obtain
bounds for the mean under discussion. Inequalities involving the Schwab-
Borchardt mean and the Gauss arithmetic-geometric mean are also included.

1. Introduction

The Schwab—Borchardt mean of two numbers x > 0 and y > 0,
denoted by SB(z,y) = SB, is defined as
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( 2 _ 2
i 0<z<y
arccos(z/y)
(1.1) SB(z,y) = 4 2 — g2 Y <
arccosh (z/y)’
L T L=y

(see [1, Th. 8.4], [3, (2.3)]). It follows from (1.1) that SB(z,y) is not
symmetric in its arguments and is a homogeneous function of degree 1
in ¢ and y. Using elementary identities for the inverse circular function,
and the inverse hyperbolic function, one can write the first two parts
of formula (1.1) as '

2 2 2 _ 2
SB(z,y) = vy 2 = Y2

(1.2) arcsin (1/1 — (z/y)?) ~ arctan ({y/z)2-1)’
0<z<y
and

2

2 a2 2 .
SB(z,y) = vZ Y > Y

arcsinh (/(z/y)2—1)  arctanh (1/1—(y/z)?)

(1.3)
= vy y<z
1n(:c+ xz—y2)~1ny’ ’
respectively.

The Schwab—-Borchardt mean is the iterative mean i.e.,
(1.4) SB = lim z, = lim y,,
n—00 n=roo
where
(15) zo=2, Y=Y Tnt1=(Tn+Un)/2 Ynt1=Bni1ln,

n=0,1,... (see [3, (2.3)], [2]). It follows from (1.5) that the members
of two infinite sequences {z,, } and {y, } satisfy the following inequalities

(1.6) zo<z1< -+ <Tp< - <SB< - <yp<---<y1<yo (z<y)
and
(1.7) yo<yi< + <yn < <SB<- - <zp < <z1<T0  (Y< 7).

For later use, let us record the invariance formula for the Schwab—Bor-
chardt mean
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(1.8) SB(z,y) = SB ("“;y,w/’”;yo

which follows from (1.5).

This paper deals mostly with the inequalities involving the mean
under discussion and is organized as follows. Particular cases of the
Schwab-Borchardt mean are studied in Section 2. They include two
means introduced recently by H.-J. Seiffert, the logarithmic mean and
a possible new mean of two variables. The Ky Fan inequalities for these
means are also included. The main results of this paper are contained
in Section 3. Lower and upper bounds for SB, that are stronger than
those in (1.6)—(1.7) are contained in Th. 3.3. Inequalities involving the
Schwab—Borchardt mean and the Gauss arithmetic-geometric mean are
also obtained. Additional bounds for the mean under discussion are
presented in Appendix 1. Inequalities involving numbers z, and ¥,

- and those used in Th. 3.3 are presented in Appendix 2.

2. Inequalities for the particular means

Before we state and prove the main results of this section let us
introduce more notation. Let > 0 and y > 0. The following function

(2.1) Ro(z,y) = %/{J‘w(t+x)”1/2(t+y)‘l dt

plays an important role in the theory of special functions (see [5], [7]).
B. C. Carlson [3] has shown that

(2.2) - SB(z,y) = [Re(z®, 7))

(see also [2, (3.21)]). It follows from (2.2) and (2.1) that the mean
SB(z,y) increases with an increase in either z or y.

To this end we will assume that the numbers x and y are positive
- and distinct. The symbols A, L, G and H will stand for the arithmetic,

logarithmic, geometric, and harmonic mean of z and y, respectively.
Recall that

T — -y
(2.3) L(z,y) = J__

Inz—Iny 2 arctanh <:B;y>
T4y

(see, e.g., [4]-[5]). Other means used in the paper include two means
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introduced recently by H.-J. Seiffert

(2.4) P(z,y) = ———~

2 arcsin (x — y)
T+yY

(see [12]) and

; -y
(2.5) T(z,y) = py—
2arctan< )
Tty

(see [13]). For the last two means we have used notation introduced in
[10] and [11]. Several inequalities for the Seiffert means are obtained in
[8], [10]-[11]). Also, we define a possibly new mean

r—y

2 arcsinh <3: _ y)
z+y

In what follows we will write Q(z,y) = @ for the powervmean of order
two of z and y

(2.6) M(z,y) =

@) Qe -y L

It is easy to see that the means, L, P, T, and M are the Schwab—Bor-
chardt means. Use of (1.2) and (1.3) gives

L=SB(A,G), P=5B(G,A), T=8B(AQ),
M = SB(Q, A).

(2.8)

A comparison result for SB(,-) is contained in the following:
Proposition 2.1. Let z > y. Then

(2.9) SB(z,y) < SB(y, ).

Proof. Using the invariance formula (1.8) together with the mono-

tonicity property of the mean SB in its arguments, we obtain
SB(z,y) = SB(A,\/Ay) < SB(A,VAz) = SB(y,z). ¢

Inequalities connecting means L, P, M, and T with underlying
means G, A, and @ can be established easily using (2.9). We have
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(2.10) G<KL<P<A<M<T<AQ.

For the proof of (2.10) we use monotonicity of the Schwab—Bor-
chardt mean in its arguments, inequalities G < A < @, and (2.8) to
obtain

G = SB(G,G) < SB(A,G) < SB(G, A) < SB(A, A) =

=A<S5B(Q,4) <SB(4,Q) <5B(Q,Q) = Q.

The first three inequalities in (2.10) are known (see [4]-[5], [12], [14])
and the sixth one appears in [13]. (See also [11] for the proof of the last
inequality in (2.10) and its refinements.)

We shall establish now the Ky Fan inequalities involving the first
six means that appear in (2.10). For 0 <z, y < 3, let 2’ =1—z
and y' = 1 —y. In what follows we will write G’ for G(z/,y’), L' for
L(z',y"), etc.

Proposition 2.2. Let 0 < z, y < % The following inequalities
G L P A M T

(2.11) @<f<_ﬁ<Z7<M’<ﬁ

hold true.

Proof. The first inequality in (2.11) is established in [9]. For the proof
of the second one we use (2.3) and (2.4) to obtain
L arcsin z
2.12 _—
(2.12) P arctanh z’
where z = (z —y)/(x +y). Let 2/ = (¢' —y")/(2’ + ). One can easily
verify that z and 2z’ satisfy the following inequalities

(2.13) 0< 2] <|z2] <1, zz' < 0.

Let f(z) stand for the function on the right side of (2.12). The following
properties of f(z) will be used in the proof of (2.11). We have: f(z) =
= f(—2), f(2) is strictly increasing on (—1,0) and strictly decreasing
n (0,1), max{f(z) : |z| < 1} = f(0) = 1. Assume that y < z < 1.
It follows from (2.13) that 0 < —2’ < z < 1. This in turn implies that
f(=2") > f(z) or what is the same, L/P < L’/P’. One can show that
the last inequality is also valid if x < y < %— This completes the proof
of the second inequality in (2.11). The remaining three inequalities in
(2.11) can be established in the analogous manner using the formulas
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(2.14) P z A __arcsinh z M  arctanz
’ A arcsinz’ M z ’ T  arcsinh 2z

They follow from (2.4), (2.6), and (2.5). ¢
We close this section giving the companion inequalities to the in-
equalities three through five in (2.10). We have

(2.15) g—P > A > arcsinh (1)M > %T.

For the proof of (2.15) let us note that the functions on the right sides
of (2.14) share the properties of the function f(z), used above. In
particular, they attain the global minima at z = =£1. This in turn
implies that

P 2 A M T

— > = — inh (1 —_ >

AT 3 > e (L), T~ 4 arcsinh (1)
The assertion (2.15) now follows. The first inequality in (2.15) is also
established in [14] by use of different means.

3. Main results

We are in position to present the main results of this paper. Sev-
eral inequalities for the mean under discussion are obtained. New in-
equalities for the particular means discussed in the previous section are
also included.

Our first result reads as follows:

Theorem 3.1. Let z and y be positive and distinct numbers. If x < v,
then

(3.1) T(z,y) < SB(z,y)

and if x > y, then

(3.2) SB(z,y) < L(z,y).

The following inequalities

(3.3) SB(y,G) < SB(z,y) < SB(y, A)
and

(3.4) SB(x,y) > H(SB(y, z),y)
are valid.

Proof. Let z < y. For the proof of (3.1) we use (1.8), the inequality
zy > z? and (2.8) to obtain
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T+yY

SB(z,y) =SB (A, y> > SB(A,Q) =T(z,y).

Assume now that z > y. Making use of (1.8) and (2.8) together with
the application of the inequality A < z gives

SB(z,y) = SB(A, /A7) < SB(A,G) = L(z,y).
In order to establish the first inequality in (3.3) we need the following
one

[t +2")(E+y") 72 < (4GB
(see [4]). Multiplying both sides by (1/2)(t+%?)~/? and next integrat-
ing from 0 to infinity we obtain, using (2.1),
RC(xQ: y2) < Rc¢ (y27 GQ)
Application of (2.2) to the last inequality gives the desired result. The

second inequality in (3.3) follows from the first one. Substitutiony := A
together with (1.8) give

SB(A,vAz) = SB(y,z) < SB(z, A).
Interchanging z with y in the last inequality we obtain the asserted
result. For the proof of (3.4) we apply the arithmetic mean-geometric
mean inequality to [(t + 3?)(t + y?)]~/? to obtain
[t +2?)(E+ 972 < (1/2)[E+2) 7" + E+7) 7).

Multiplying both sides by (1/2)(t +?)™'/? and next integrating from
0 to infinity, we obtain

1 1

Role,1?) < 5 |Rolt, )+ 1.

" Here we have used the identity Rg(y?,4%) = 1/y. Application of (2.2)
to the last inequality gives

1 1 1 1 1
=< = |+ —| = :
SB(z,y) Q{SB@hw) y} H(SB(y,x),y)

This completes the proof. ¢
Corollary 3.2. The following inequalities

(3.5) T(A,G) <P, T(AQ) <T,

(3.6) . L<LAGR), M<L(AQ),

(3.7) L> H(P,G), P> H(L,A), M >H(T,A), T> H(M,Q)
hold true.
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Proof. Inequalities (3.5) follows from (3.1) and (2.8) by letting (z,y) :=
= (G, A) and (z,9) = (4,Q). Similarly, (3.6) follows from (3.2).
Putting (z,y) := (4,G) and (z,y) := (Q,A) we obtain the desired
result. Inequalities (3.7) follow from (3.4). The substitutions (z,y) :=
= (A) G): (Zl?)y) = (G7 A): ($7y) = (Q:A>> and (xay) = (A7 Q) to-
gether with application of (2.8) give the desired result. ¢

The first inequality in (3.6) is also established in [8].

Before we state and prove the next result, let us introduce some
notation. In what follows, the symbols a and  will stand for positive
numbers such that o+ f = 1. The weighted arithmetic mean and the
weighted geometric mean of z,, and y, (see (1.5)) with weights a and
[ are defined as

(3.8) U = QLn + BYn,  Un =ToYL

(n=0,1,...).
Theorem 3.3. In order for the sequence {un}8° ({vn}8°) to be strictly
decreasing (increasing) it suffices that o= 1/3 and 8 = 2/3. Moreover,

(3.9) nlif%o Up = nh_)rgo v = SB(z,y)
and the inequalities
(3.10) (zny2)/® < SB(z,y) < x”—g-%yﬁ

hold true for alln > 0.
Proof. For the proof of the monotonicity property of the sequence
{un}° we use (3.8), (1.5), and the arithmetic mean-geometric mean
inequality to obtain

Unt+1 = QTnt1 + OYnt1 = OTnp1 + ﬁ(%‘nﬂyn)l/g <

T +
< QTp1 + ﬁ—“—n+12 Yn =

(o B a 30
“"<§'+‘4—>$n+<5+z’>yﬂ.-

In order for the inequality un+1 < un to be satisfied it suffices that

a f a 30 _
<—5+Z>wn+<5+—4—>yn——axn+ﬁyn.

P

This implies that o = 1/3 and 8 = 2/3. For the proof of the mono-
tonicity result for the sequence {v,}5° we follow the lines introduced
above to obtain
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atfp/2
Tp + Yn

Tyl

_ B _ 2 _
Un41 = m‘(r):—}«lyn-*-l = xzﬂ(l’nﬂyn)ﬁ/ - (

> g/ B/ /2864

Y
where the last equality holds provided o = 1/3 and 8 = 2/3. The
assertion (3.9) follows from (3.8) and (1.4). Inequalities (3.10) are the
obvious consequence of (3.9) and the first statement of the theorem. ¢

Inequalities (3.10) for the Seiffert mean P are obtained in [10].
Corollary 3.4. The following inequality

(3.11) ! < L2 + !
' SB(z,y) 3\A y
holds true.
Proof. Use of the first inequality in (3.10) with n = 1 gives (4%y)'/® <

< SB(z,y). Application of the arithmetic mean-harmonic mean in-
equality with weights leads to

L (LY 2i 1n 12 1y
SB(z,y) A y 3A 3y 3\4 y/)’

Inequalities connecting the Schwab-Borchardt mean and the cele-
brated Gauss arithmetic-geometric mean AGM (z,y) = AGM are con-
tained in Th. 3.5. For the reader’s convenience, let us recall that the
Gauss mean is the iterative mean, i.e.,

AGM = lim a, = lim b,,

To = OO n—* 00

Wher<)a the sequences {a,}5° and {b,}§° are defined as
(3.12

ap = max(z,y), bp = min(z,y), dnr1 = (an +bn)/2, bpr1 = vV anbn
(n > 0). (See, e.g., [1], [5]). Clearly,
(3.13) bo<bi < <bp< - <AGM < -+ < ap < --- < ay < ao,

AGM(-,-) is a symmetric function in its arguments and

(3.14) AGM (z,y) = AGM (an, b,)
for all n > 0.

For later use, let us record two inequalities. If £ > y, then
(3.15) SB(z,y) < AGM(z,y)

and
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(3.16) AGM (z,y) < SB(z,y)

provided z < y. Inequality (3.15) follows from
SB(z,y) < L(z,y) < AGM(z,y),

where the first inequality is established in Th. 3.1 and the second one
is due to Carlson and Vuorinen [6]. Inequality (3.16) follows from

AGM (z,y) < A(z,y) < T(z,y) < SB(z,y).
The first inequality is a special case of (3.13) when n = 1, the second
one appears in [13] and [11], and the last inequality is established earlier
(see (3.1)).
We are in position to prove the following
Theorem 3.5. Let n = 0,1,... . The numbers SB(an,b,) form a

strictly increasing sequence while SB(by, a,) form a strictly decreasing
sequence. Moreover,

(3.17) SB(an,bn) < AGM < SB(by, an).

Proof. Using (1.8), (3.13), (3.15), and (3.14) we obtain

SB(an, bn) = SB(CLTH_l, 4/ an+1bn) < S’B(an+1, 2V anbn) =
= SB(an+1, bn+1) < AGM(CLn+1, bn+1) = AGM(SC,y)
Similarly, using (1.8), (3.13), (3.16), and (3.14) one obtains
SB(bn, an) = SB(CLn+1, 1/an+1an) > SB(bn+1, an+1) >
> AGM(bn+1, CLn+1) = AGM(:Z?, ’y)

The proof is complete. ¢
Corollary 3.6. Let the numbers an and b, (n > 1) be the same as in
(3.12). Ifag = A and by = G, then
(3.18) L < L(an,by) < AGM(z,y) < P(an,bn) < P
for all n > 0. Similarly, if ap = Q and by = A, then
(3.19) M < L(an,bn) < AGM(A, Q) < P(an,bn) <T
(n>0).
Proof. Inequalities (3.18) follow immediately from Th. 3.5 and from
the formulas SB(ag,bo) = SB(A,G) = L, SB(an+1,bnt1) = L(an, brn),
SB(bo,aQ) = SB(G, A) = P and SB(bn+1,an+1) - P(bn,an) =
= P(an,b,) (n > 0). Since the proof of (3.19) goes along the lines
introduced above, it is omitted. ¢
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Appendix 1. Bounds for the Schwab—Borchardt
mean

We shall prove the following:
Proposition Al. If x >y, then

2332 — y2 2.,1),2 __ y2
Al.l —_— B .
(ALL) 2z In(2z /y) < 5B(zy) < 2z In(2z/y) — (y?/z) In2
Otherwise, if y >z > 0, then
3 3
(A1.2) 4y < SB(z,y) < 4

m(z? + 2y?) — dzy — (2% /2 + 2y?) — dzy
Equalities hold in (A1.2) if and only if z = 0.
Proof. Assume that z > y. The following asymptotic expansion
Ro(z2?,4%) = 1 (m 4 N y? In 9;1:2) |
2z y? o 222 —qy? T ¢?
1 < 8 < 4, is established in [7, Eq. (23)]. Letting above § =1 and § = 4

and next using (2.2) we obtain inequalities (Al.1). Assume now that
y>x > 0. Then

9
B~ T T
| C(‘T; 7y) 2y yg + 4y3 )
where y/(x 4+ y) < 0 <1 (see [7, Eq. (22)]). This in conjunction with
(2.2) gives (A1.2). ¢
It is worth mentioning that the bounds (Al.1) are sharp when
x > y while (A1.2) are sharp if y > z.

Appendix 2. Inequalities connecting sequences (1.5)
and (3.8)

Let the numbers z,, and y,, (n > 0) be the same as in the Schwab—
Borchardt algorithm (1.5). Further, let u, and v, be defined in (3.8)
with @« = 1/3 and = 2/3, iLe.,
T + 2Yn
3
(n > 0). These numbers have been used in [10, Ths. 1 and 2] to obtain
several inequalities involving the Seiffert mean P and other means.

2

Up = Up = (mnyn)l/?)
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The following inequalities, which hold true for all n > 0, show
that the numbers u,, and v, provide sharper bounds for §B than those
obtained from x,, and y,. We have

Yn < Up and U, < Tp fy<cz
and

Tp < Up and Up < Yn ifr<uy.
We shall prove that these inequalities can be improved if z and y belong
to certain cones in the plane.
Proposition A2. Let ¢ = /5 —2=0.236... and assume that x > 0,
y>0 withx #y. If

(A2.1) cx <y < :c,‘

then

(A2.2) Yntl < Up  GNd  Up < Tppl
for all n > 0. Similarly, if

(A2.3) cy <z <y,

then '

(A2.4) Tntl < Up  and Up < yn+‘1
forn=20,1,... .

Proof of inequalities (A2.2) and (A2.4) is based upon results that
are contained in the following lemmas.
Lemma 1. Let x and y be distinct positive numbers. If cx <y < =z,
then

(A2.5) f—'é‘ifi < (@y?)V°,

If x <y, then

2
(A2.6) "”‘qu/‘”;yy.

Proof. For the proof of (A2.5) let us consider a quadratic function
p(y) =y +dzy — 2* = [y — (V5 — 2)z]ly + (V5 + 2)a].

It follows that p(y) > 0 if cz < y. Inequality p(y) > 0 can be written

as (z —1)? < 2y(z +y). Multiplying both sides by z —y > 0 we obtain

the desired result. In order to establish the inequality (A2.6) let us

introduce a quadratic function
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q(y) =y + 2y — 22 = (y — 2)(y + 22).
Clearly ¢(y) > 0 if z < y. Inequality ¢(y) > 0 is equivalent to z? <
< 3(zy+y?). Adding 4zy + 4y? to both sides of the last inequality we
obtain

x+2y2x+y
(5) <=

Hence, the assertion follows. ¢
Lemma 2. If cx < y < z, then the following inequalities

(A2.7) CTn < Yn < Tp

hold true for allm > 0. Similarly, if cy < x <y, then
(A2.8) CYn < Tn < Yn

for alln > 0. ‘

Proof. The second inequalities in (A2.7) and (A2.8) follow from (1.7)
and (1.6), respectively. For the proof of the first inequalities in (A2.7)
and (A2.8) we will use the mathematical induction on n. There is
nothing to prove when n = 0. Assume that cz, < yn, for some n > 0.
Using (1.5), the inductive assumption and (1.7) we obtain
Tn + Un n + ClYn \/g -1
CTpt1 = C 5 Y < Y 7 = 5 Yn < Yn < Ynt1-

Now let cy < z < y. Assume that cy, < z, for some n > 0. Using
(1.5), the arithmetic mean-geometric mean inequality and the inductive
assumption we obtain

Tn+1 + Yn

1 1
CYnt1l = C\/Trt1¥n < 5 < §(C2L'n+1 + Zn) < —2—(cyn + Z) <

1
< §(yn +33n) = Tntl- <>

Proof of Prop. A2. For the proof of the first inequality in (A2.2) we

use (A2.7) and (A2.5) to obtain

Tn + Yn
2

(n > 0). Making use of (1.5) and (A2.9) we obtain

mn+yn>1/2 1

(A2.9) < (zny2)t?

n

9 yn/2 < (xnyi)l/?) = Un-

4

Ynt1 = (:Bn+1yn)l/2 = (

The second inequality in (A2.2) can be established as follows. We add
to both sides of ¥, < z, (see (1.7)) 2z, + 3y, and next divide the
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resulting inequality by 6 to obtain the desired result. For the proof of
the first inequality in (A2.4) we use (A2.5) with z replaced by ¥ and y
replaced by z, the inequalities (A2.8) and z,, < y,, (see (1.6)) to obtain
Ln + Yn

2
The second inequality in (A2.4) is obtained with the aid of (A2.8),
(A2.6), and (1.5). We have

_ Znt 2y, T, + Yn

Tnt+1 = < (miyn)l/g < (Jjnyi)l/3 = Un-

Yn = Yn+1- <>
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