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SPACE AVERAGES AND HOMOGENEOUS FLUID FLOWS

GEORGE ANDROULAKIS AND STAMATIS DOSTOGLOU

Abstract. The relation between space averages of vector fields in L1loc(R3) and averages
with respect to homogeneous measures on such vector fields is examined. The space
average, obtained by integration over balls in space, is shown to exist almost always and,
whenever the measure is ergodic or the correlation decays, to equal the ensemble average.

1. Introduction

In statistical theories of turbulence the velocity vector field u(t, x) of a fluid is taken for
each t > 0, x ∈ R3 to be a random variable on some (usually unspecified) probability space,
see [McC] for example. u(t, x) is also required to solve the Navier-Stokes equations in t and
x. In more mathematical formulations, the flow is described by a measure on a function
space, the support of the measure consisting of solutions of the Navier-Stokes equations,
see [VF] or [FT].

Of particular interest are homogeneous flows: Flows with statistical properties indepen-
dent of shifts in the x argument, alternatively flows described by measures that are invariant
under shifts of the argument.

In his “Theory of Homogeneous Turbulence,” G.K. Batchelor considers for fixed time the
space average of a quantity F depending on the velocity field u of a homogeneous flow

lim
|A|→∞

1

|A|

∫

A
F (u(t, x)) dx,(1.1)

claims that this average is the same for almost all realizations of the field, and equals the
probability average at (any) x:

(1.2)

∫

F (u(t, x)) du,

see [B], page 16. This note is motivated by Batchelor’s claim and provides rigorous proofs
of his claim within the setting of homogeneous measures on function spaces. It adopts the
point of view of [VF], [FT], [FMRT], in particular their definition of averages at a point in
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2 GEORGE ANDROULAKIS AND STAMATIS DOSTOGLOU

space over all flow realizations. The conditions on F will always be compatible with this
definition.

It is first shown that the space average exists for almost all realizations of the flow u
(Theorem 3.1) with respect to a homogeneous measure. This follows from the standard
ergodic theorem after (3.4) has expressed space averages as averages of a 3-dimensional
family of measure-preserving transformations. Then yet another application of the ergodic
theorem and a factorization lemma (Lemma 4.3) show that the limit of the space averages
equals the probability average at a point in space, as defined in [VF], [FT], [FMRT], provided
that the homogeneous measure is also ergodic (Theorem 4.4).

Since it is not clear that Batchelor was assuming ergodicity of measure, but he certainly
argued later that correlations decay, it is also shown here that the space average equals
the probability average at a point in space if the correlation function with respect to a
homogeneous measure decays as the distance of separation increases (Theorem 4.6).

The main results, Theorems 3.1, 4.4 and 4.6, follow from classical ergodic theorems as in
[Kh], [Ko], [P], and [W]. They are discussed in the setting of homogeneous flows in section
5.

2. Background

Throughout, BR denotes the ball in R3 of center 0 and radius R, |BR| its volume, and
dx or dλ the Lebesgue measure on R3. (Everything that follows applies equally well on any
Rn.)

The Ergodic Theorem for continuous, 3-dimensional families of measure preserving trans-
formations, cf. [P], [W], will be used repeatedly as follows:

Theorem 2.1. For (X , µ) a probability space, F a µ-integrable function on X , and {Tλ, λ ∈
R3} a 3-dimensional family of measure-preserving transformations on X such that TλTh =
Tλ+h for all λ, h ∈ R3, the limit

(2.1) F1(u) := lim
R→∞

1

|BR|

∫

BR

F (Tλu) dλ

exists for almost all u in X , and F1(u) is invariant under Tλ: If F1(u0) exists, then F1(Tλu0)
exists for any λ and equals F1(u0). F1 is integrable with respect to µ, and

(2.2)

∫

X
F1(u) dµ(u) =

∫

X
F (u) dµ(u).

Moreover, if F ∈ Lp(µ) for some 1 ≤ p < ∞ then F1 ∈ Lp(µ) and the convergence (2.1)
holds in Lp(µ) as well.

It is also standard that if µ is ergodic with respect to the Tλ’s (i.e. the only invariant
subsets are either of full or zero measure) then (2.1) is constant, therefore (2.2) becomes

(2.3) lim
R→∞

1

|BR|

∫

BR

F (Tλu) dλ =

∫

X
F (u) dµ(u).

Now for a vector field u = (u1, u2, u3) on R3 whose components ui are distributions in
L1

loc(R
3), Tλ will be the translation operation defined by

∫

R3
(Tλu)(x)φ(x) dx =

∫

R3
u(x)φ(x − λ) dx(2.4)

for all φ : R3 → R smooth and with compact support.
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Definition 2.2. Let X be a space of vector fields with Tλ : X → X for each λ. A measure
µ on X is homogeneous if it is translation invariant: For any µ-integrable F on X and λ
in R3,

∫

X
F (u) dµ(u) =

∫

X
F (Tλu) dµ(u),(2.5)

for all λ.

Assumptions 2.3. For the rest of this note the following will hold:

(1) X will be a subspace of the Fréchet space of vector fields u on R3 such that u and
∇u belong to L1

loc(R
3).

(2) The measure µ will be a homogeneous Borel measure on X .
(3) For any λ in R3 and u in X , Tλ(u) will also be in X .

(4) f̂(v0, v1, v2, v3), vi ∈ R3, will satisfy the following:

f(u(x)) = f̂(u(x),∇u(x)) ∈ Lploc(R
3),

∫

X

∫

BR

|f(u(x))|p dx dµ(u) <∞
(2.6)

for some p, 1 ≤ p <∞, all u ∈ X , and all R > 0.

Example: Of interest are probability spaces X with a Banach space structure and µ a
Borel measure on X . Lp spaces do not support homogeneous measures other than the
Dirac measure at 0, see [VF]. However, X = H0(r), the space of vector fields on R3 with
finite (0, r)-norm

‖u‖2
0,r =

∫

R3

(

1 + |x|2
)r
|u(x)|2 dx, r < −

3

2
,(2.7)

supports homogeneous measures. See [VF] or section 5 below for more.

Example: Functions usually studied in stochastic turbulence are products of components
of u and its derivatives: (f ◦ u)(x) = ∂k1j1 ui1(x) · · · ∂

kn

jn
uin(x).

3. An Ergodic Theorem

Theorem 3.1. Let (X , µ) and f satisfy the assumptions 2.3. Then for µ-almost all u in X

S(u) = lim
R→∞

1

|BR|

∫

BR

f(u(λ)) dλ(3.1)

exists, defines a function in Lp(µ), and is translation invariant:

S(u) = S(Th(u)) for all h ∈ R3.(3.2)

Moreover, (3.1) holds in Lp(µ) as well.

Similar results appear in [T] (Theorems 6.1, 6.9 and Corollary 8.1)and [NZ] (Corollary
4.9, Proposition 4.23). The (short, direct) proof here appeals only on the classical Ergodic
Theorem as in [P] and [W].

Proof of Theorem 3.1. Let (X , µ) and f : R3 → R as in the statement of the theorem.
Writing f as f = f+−f−, it suffices to prove the result for f : R3 → [0,∞) satisfying (2.6).

Notice that in Theorem 2.1 the function F is defined on the probability space X , but in
Theorem 3.1 the function f is defined on the values of u for any u ∈ X . Define therefore
F : X → R by

(3.3) F (u) := lim inf
n→∞

n3

∫

[0, 1
n

]3
f(u(x))dx.
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Since for every u ∈ X , f ◦ u ∈ L1
loc(R3), the Lebesgue differentiation theorem implies that

for almost all λ ∈ R3,

F (Tλ(u)) = lim inf
n→∞

n3

∫

[0, 1
n

]3
f(u(x+ λ))dx = f(u(λ))

where Tλ is defined in (2.4). Thus for R > 0,

(3.4)
1

|BR|

∫

BR

f(u(λ))dλ =
1

|BR|

∫

BR

F (Tλu)dλ.

Since the transformations Tλ (λ ∈ R3) are measure preserving, Theorem 2.1 finishes the
proof once it is shown that F ∈ Lp(µ) for the same p that (2.6) holds. In order to show
that F ∈ Lp(µ),

‖F‖pp =

∫

X

(

lim
n→∞

inf
m≥n

m3

∫

[0, 1
m

]3
f(u(x))dx

)p

dµ(u)

=

∫

X
lim
n→∞

inf
m≥n

(

m3

∫

[0, 1
m

]3
f(u(x))dx

)p

dµ(u) (since f ≥ 0)

≤ lim inf
n→∞

∫

X
inf
m≥n

(

m3

∫

[0, 1
m

]3
f(u(x))dx

)p

dµ(u) (by Fatou’s lemma)

≤ lim inf
n→∞

∫

X

(

n3

∫

[0, 1
n

]3
f(u(x))dx

)p

dµ(u)

≤ lim inf
n→∞

∫

X

∫

[0, 1
n

]3
f(u(x))p

dx

n−3
dµ(u)(3.5)

where the last inequality holds by Jensen’s inequality since the function [0,∞) 3 x 7→ xp is
convex and dx

n−3
is a probability measure on [0, 1

n ]
3. Fix n ∈ N and let I = {(i/n, j/n, k/n) :

i, j, k ∈ {0, 1, . . . , n− 1}}. Notice that for every (a, b, c), (a′, b′, c′) ∈ I,
∫

X

∫

(a,b,c)+[0, 1
n

]3
f(u(x))pdxdµ(u) =

∫

X

∫

(a′ ,b′,c′)+[0, 1
n

]3
f(u(x))pdxdµ(u)

by the homogeneity of µ. Hence, since #I = n3,
∫

X

∫

[0, 1
n

]3
f(u(x))pdxdµ(u) =

1

n3

∑

(a,b,c)∈I

∫

X

∫

(a,b,c)+[0, 1
n

]3
f(u(x))pdxdµ(u)

=
1

n3

∫

X

∫

[0,1]3
f(u(x))pdxdµ(u).(3.6)

Equation (3.6) gives that the right hand side of (3.5) is bounded by a constant independent
of n, which implies that F ∈ Lp(µ). ¤

4. Establishing Batchelor’s Claim

Batchelor claims that (under appropriate assumptions on the measure µ or the function f)
for µ-almost all realizations u in the probability space, the ensemble average of f equals the
limit of the space averages of f ◦ u (see equation (4.11)). In the present section Batchelor’s
claim is established. The main results are Theorems 4.4 and 4.6.

First recall from [VF] or [FMRT] the definition of the ensemble average for homogeneous
measures at any point in space. Let (X,µ) and f satisfy the assumptions 2.3 for some
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1 ≤ p < ∞. Note that after applying Hölder and Jensen’s inequalities f satisfies (2.6) for
p = 1, too. Then the linear functional I defined by

I(φ) :=

∫

X

∫

R3
f(u(λ))φ(λ) dλ dµ(u) for any φ ∈ C∞0 (R3,R),(4.1)

is a continuous distribution on C∞0 (R3,R) and invariant under translations of the φ’s:

I(Txφ) =

∫

X

∫

R3
f(u(λ))φ(λ + x)dλdµ(u) =

∫

X

∫

R3
f((T−xu)(λ))φ(λ)dλ

=

∫

X

∫

R3
f(u(λ))φ(λ)dλ (since µ is homogeneous)

= I(φ).

Since there is only one translation invariant measure on R3 up to a multiplicative constant,
there is a constant E(f) such that for all φ ∈ C∞0 (R3,R) and for all x ∈ R3,

∫

X

∫

R3
f(u(λ))φ(λ + x) dλ dµ(u) = E(f)

∫

R3
φ(λ)dλ.(4.2)

By homogeneity, the constant E(f) does not depend on x ∈ R3. Then use
∫

X f(u(x))dµ(u)
as an alternative notation for E(f).

Definition 4.1. The ensemble average of f at (any) x ∈ R3 is
∫

X
f(u(x))dµ(u).(4.3)

When µ is ergodic, the following proposition gives that the ensemble average of f can be
computed as the limit of the spatial averages of f ◦ u for almost all u’s:

Proposition 4.2. Let (X , µ) and f satisfy the assumptions 2.3. Let φ : R3 → R be a fixed
smooth function with compact support. Then

(4.4) Sφ(u) = lim
R→∞

1

|BR|

∫

BR

∫

R3
f(u(x+ λ))φ(x) dx dλ

exists for almost all u. Sφ is translation invariant and in L1(X ). In addition, if µ is ergodic
then for almost all u

(4.5) Sφ(u) =

∫

X

∫

R3
f(u(x))φ(x) dx dµ.

Proof. After noticing again that if (2.6) is valid for some 1 ≤ p < ∞ then it is valid for
p = 1, this is an immediate application of the standard multidimensional ergodic Theorem
2.1 for the integrable function

(4.6) u 7→

∫

R3
f(u(x))φ(x) dx

and the one 3-dimensional family of measure preserving transformations Tλ defined in (2.4).
¤

Lemma 4.3. Let (X , µ) and f satisfy the assumptions 2.3. Let φ be in C∞0 (R3) with φ ≥ 0.
Then for µ almost every u ∈ X ,

lim
R→∞

1

|BR|

∫

BR

∫

R3
f(u(x+ λ))φ(x)dx dλ

= lim
R→∞

1

|BR|

∫

BR

f(u(λ))dλ

(∫

R3
φ(x) dx

)

.

(4.7)
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Proof. Fix φ ∈ C∞0 with φ ≥ 0. Writing again f = f+ − f−, assume that f : R3 → [0,∞)
and satisfies (2.6). Notice that the limits in the left and right hand side of (4.7) exist and
are finite for µ almost all u ∈ X by Proposition 4.2 and Theorem 3.1 respectively.

Since f ≥ 0 and φ ≥ 0 Fubini’s theorem applies:

(4.8) lim
R→∞

1

|BR|

∫

BR

∫

R3
f(u(x+λ))φ(x) dxdλ = lim

R→∞

∫

R3

1

|BR|

∫

BR

f(u(x+λ))φ(x)dλ dx

and Fatou’s lemma on any sequence of R’s going to infinity estimates the right hand side
of (4.8) as:

lim
R→∞

∫

R3

1

|BR|

∫

BR

f(u(x+ λ))φ(x)dλ dx ≥

∫

R3
lim
R→∞

1

|BR|

∫

BR

f(u(x+ λ))φ(x)dλ dx

=

∫

R3
lim
R→∞

1

|BR|

∫

BR

f(u(x+ λ))dλφ(x) dx

=

∫

R3
lim
R→∞

1

|BR|

∫

BR

f(u(λ))dλφ(x) dx(4.9)

(by Theorem 3.1)

= lim
R→∞

1

|BR|

∫

BR

f(u(λ))dλ

∫

R3
φ(x) dx.

On the other hand, since φ has compact support, assume that x ∈ BR0 for some R0 > 0
and change variable to x+ λ = y. Then estimate the right hand side of (4.8) as:

lim
R→∞

∫

BR0

1

|BR|

∫

x+BR

f(u(y))φ(x)dy dx ≤ lim
R→∞

∫

BR0

1

|BR|

∫

BR+R0

f(u(y))φ(x)dy dx

(since f ≥ 0 and φ ≥ 0)

= lim
R→∞

1

|BR|

∫

BR+R0

f(u(y))dy

∫

BR0

φ(x) dx

= lim
R→∞

|BR+R0 |

|BR|

1

|BR+R0 |

∫

BR+R0

f(u(y))dy

∫

BR0

φ(x) dx(4.10)

= lim
R→∞

1

|BR|

∫

BR

f(u(y))dy

∫

R3
φ(x) dx

(since lim
R→∞

|BR+R0 |

|BR|
= 1.)

¤

The following is precisely Batchelor’s claim for an ergodic measure µ.

Theorem 4.4. Let (X , µ) and f satisfy the assumptions 2.3. If µ is an ergodic probability
measure then for almost all u in X the following holds:

lim
R→∞

1

|BR|

∫

BR

f(u(x+ λ)) dλ =

∫

X
f(u(x)) dµ(u)(4.11)

for all x in R3.

Proof. Fix φ ∈ C∞0 (R3,R) with φ ≥ 0 and
∫

R3 φ(x)dx = 1. Then by Proposition 4.2, since

µ is ergodic, the ensemble average of f (at any x ∈ R3) is given by

(4.12) E(f) =

∫

X
f(u(x))dx = lim

R→∞

1

|BR|

∫

BR

∫

R3
f(u(x+ λ))φ(x)dxdλ.
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By Lemma 4.3 since φ ≥ 0 and
∫

R3 φ(x)dx = 1, one obtains that for µ almost every u ∈ X ,

(4.13) lim
R→∞

1

|BR|

∫

BR

∫

R3
f(u(x+ λ))φ(x)dxdλ = lim

R→∞

1

|BR|

∫

BR

f(u(λ))dλ.

Theorem 3.1 implies that for every x ∈ R3 and µ almost all u ∈ X ,

(4.14) lim
R→∞

1

|BR|

∫

BR

f(u(λ))dλ = lim
R→∞

1

|BR|

∫

BR

f(u(x+ λ))dλ.

Thus (4.11) follows from (4.12), (4.13) and (4.14). ¤

Batchelor has not explicitly indicated the existence of an ergodic measure in [B]. However,
it is likely that he was assuming decay of correlations. In fact, [BP] argues that correlations
should decay with rate r−5, where r is the distance of separation. The following shows that
the original claim in [B] is correct when correlations decay.

Define correlations following [VF] as follows: Let (X , µ) and f satisfy the assumptions
2.3 for p = 2. Then use Definitions (2.4) and (4.1) to define the correlation Rf : R3 → R of
the function f by

(4.15) Rf (h) = E((f −E(f))((f ◦ Th)−E(f ◦ Th))).

Since E(f ◦ Th) = E(f) for all h ∈ R3,

Rf (h) = E(f(f ◦ Th))− (E(f))2.

Notice that if f satisfies (2.6) for p = 2, then for every h ∈ R3 and for every φ ∈ C∞0 (R3,R),
Hölder’s inequality gives that

∫

X

∫

R3
|f(u(x))f(u(x+ h))φ(x)|dxdµ(u) ≤

[∫

X

∫

R3
|f(u(x))|2|φ(x)|dxdµ(u)

]1/2 [∫

X

∫

R3
|f(u(x+ h))|2|φ(x)|dxdµ(u)

]1/2

<∞.

The following is needed in the proof of the main result of this section, Theorem (4.6):

Lemma 4.5. There exists a constant C > 0 such that if g on (X , µ) satisfies the assumptions
2.3 for p = 2, then for every R ≥ 1,

(4.16)

∫

X

1

|BR|

∫

BR

g(u(x))2dxdµ(u) ≤ C

∫

X

∫

[0,1]3
g(u(x))2dxdµ(u).

Proof. Fix R > 0 and let CR to denote the smallest set C = ∪{(a, b, c)+[0, 1)3 : (a, b, c) ∈ F}
such that F is a finite subset of Z3 and BR ⊆ C. Then

∫

X

1

|BR|

∫

BR

g(u(x))2dxdµ(u) ≤

∫

X

1

|BR|

∫

CR

g(u(x))2dxdµ(u)

=
1

|BR|

∫

X

∑

(a,b,c)∈F

∫

(a,b,c)+[0,1]3
g(u(x))2dxdµ(u)

≤
1

|BR|

∑

(a,b,c)∈F

∫

X

∫

(a,b,c)+[0,1]3
g(u(x))2dxdµ(u).

Notice that for every (a, b, c), (a′, b′, c′) ∈ F ,
∫

X

∫

(a,b,c)+[0,1]3
g(u(x))2dxdµ(u) =

∫

X

∫

(a′ ,b′,c′)+[0,1]3
g(u(x))2dxdµ(u)
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by the homogeneity of µ. Hence

1

|BR|

∑

(a,b,c)∈F

∫

X

∫

(a,b,c)+[0,1]3
g(u(x))2dxdµ(u) =

#F

|BR|

∫

X

∫

[0,1]3
g(u(x))2dxdµ(u)

=
|CR|

|BR|

∫

X

∫

[0,1]3
g(u(x))2dxdµ(u).

Now set C := sup{ |CR|
|BR|

: R ≥ 1} to obtain (4.16). This finishes the proof of Lemma 4.5. ¤

The next result establishes Batchelor’s claim when the correlation of f tends to zero at
infinity, cf. [Kh], p. 68.

Theorem 4.6. Let (X , µ) and f satisfy the assumptions 2.3 for p = 2. Assume that

(4.17) Rf (h)→ 0 as |h| → ∞.

Then for almost all u in X the following holds:

lim
R→∞

1

|BR|

∫

BR

f(u(x+ λ)) dλ =

∫

X
f(u(x)) dµ(u)(4.18)

for all x in R3.

Proof. Recall that

S(u) := lim
R→∞

1

|BR|

∫

BR

f(u(λ))dλ

exists for µ almost all u ∈ X by Theorem 3.1. To show that S(u) = E(f) for µ almost all
u ∈ X , it will be shown that

(4.19) ‖S −E(f)‖2 = 0.

(Notice that S ∈ L2(µ) by Theorem 3.1, since f satisfies (2.6) for p = 2). For R > 0 let

SR(u) :=
1

|BR|

∫

BR

f(u(λ))dλ.

Then

(4.20) ‖S −E(f)‖2 ≤ ‖S − SR‖2 + ‖SR −E(f)‖2.

By Theorem 3.1,

(4.21) ‖S − SR‖2 → 0 as R→∞.

To estimate ‖SR−E(f)‖2, let ε > 0 and choose Λ > 0 such that |Rf (λ)| < ε for all |λ| > Λ.
For R > max(Λ/2, 1) use Fubini’s Theorem and change the variable λ to x+ λ to obtain
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‖SR −E(f)‖2
2

=

∫

X

(

1

|BR|

∫

BR

f(u(x))−E(f)dx

)2

dµ(u)

=
1

|BR|2

∫

X

∫

R3

∫

R3
(f(u(x))−E(f))χBR

(x)(f(u(λ)) −E(f))χBR
(λ)dxdλdµ(u)

=
1

|BR|2

∫

X

∫

R3

∫

R3
(f(u(x))−E(f))χBR

(x)(f(u(x + λ))−E(f))χBR
(x+ λ)dxdλdµ(u)

=
1

|BR|2

∫

X

∫

BΛ

∫

R3
(f(u(x))−E(f))χBR

(x)(f(u(x+ λ))−E(f))χBR
(x+ λ)dxdλdµ(u)

(4.22)

+
1

|BR|2

∫

X

∫

Bc
Λ

∫

R3
(f(u(x))−E(f))χBR

(x)(f(u(x+ λ))−E(f))χBR
(x+ λ)dxdλdµ(u).

Notice that χBR
(x)χBR

(x+ λ) = 0 if |λ| > 2R, thus the last term of (4.22) is equal to
(4.23)

1

|BR|2

∫

X

∫

B2R\BΛ

∫

R3
(f(u(x))−E(f))χBR

(x)(f(u(x+ λ))−E(f))χBR
(x+ λ)dxdλdµ(u).

Notice that for every fixed λ ∈ B2R\BΛ the function

φλ(x) =
χBR

(x)χBR
(x+ λ)

|BR ∩ (BR − λ)|

is integrable and
∫

R3 φλ(x)dx = 1. Since the function φλ can be perturbed to be equal to
a smooth function except on a set of arbitrarily small measure, the correlation of f can be
expressed as

Rf (λ) =

∫

X

∫

R3
(f(u(x)) −E(f))(f(u(x+ λ))−E(f))φλ(x)dxdµ(u).

Hence after applying Fubini’s theorem, and multiplying and dividing by |BR ∩ (BR − λ)|,
(4.23) can be rewritten as:

1

|BR|2

∫

B2R\BΛ

|BR ∩ (BR − λ)|

∫

X

∫

R3
(f(u(x)) −E(f))(f(u(x+ λ))−E(f))φλ(x)dxdµ(u)dλ

=
1

|BR|2

∫

B2R\BΛ

|BR ∩ (BR − λ)|Rf (λ)dλ.(4.24)
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By the choice of Λ, the last integral of (4.24) can be estimated by

∣

∣

∣

∣

∣

1

|BR|2

∫

B2R\BΛ

|BR ∩ (BR − λ)|Rf (λ)dλ

∣

∣

∣

∣

∣

≤
1

|BR|2

∫

B2R\BΛ

|BR ∩ (BR − λ)||Rf (λ)|dλ

≤
1

|BR|2

∫

B2R\BΛ

|BR|εdλ

≤
|B2R|

|BR|
ε

= 8ε.(4.25)

Putting equations (4.22) and (4.23)-(4.25) together,

‖SR −E(f)‖2
2 ≤ 8ε +

1

|BR|2

∫

X

∫

BΛ

∫

R3
(f(u(x))−E(f))χBR

(x)

(f(u(x+ λ))−E(f))χBR
(x+ λ)dxdλdµ(u).(4.26)

To estimate the last term of (4.26) use first Hölder and then Fubini’s once again to obtain

1

|BR|2

∣

∣

∣

∣

∫

X

∫

BΛ

∫

R3
(f(u(x))−E(f))χBR

(x)(f(u(x + λ))−E(f))χBR
(x+ λ)dxdλdµ(u)

∣

∣

∣

∣

≤
1

|BR|2

∫

X

∫

BΛ

∫

BR

|(f(u(x))−E(f))(f(u(x+ λ))−E(f))|dxdλdµ(u)

≤
1

|BR|2

[∫

X

∫

BΛ

∫

BR

|(f(u(x))−E(f))|2dxdλdµ(u)

]1/2

[∫

X

∫

BΛ

∫

BR

|(f(u(x+ λ))−E(f))|2dxdλdµ(u)

]1/2

(4.27)

=
|BΛ|

1/2

|BR|2

[∫

X

∫

BR

|(f(u(x))−E(f))|2dxdµ(u)

]1/2

[
∫

BR

∫

X

∫

BΛ

|(f(u(x+ λ))−E(f))|2dλdµ(u)dx

]1/2

.

Now there exists a constant C which does not depend on R ≥ 1 such that

(4.28)

∫

X

∫

BR

|(f(u(x))−E(f))|2dxdµ(u) ≤ C|BR|

∫

X

∫

[0,1]3
|(f(u(x)) −E(f))|2dxdµ(u).

(4.28) follows when Lemma 4.5 is applied to g(·) = |f(·)−E(f)|. Now, (4.28) and (2.6) for
p = 2 imply that there exists a constant D which does not depend on R such that

∫

X

∫

BR

|(f(u(x)) −E(f))|2dxdµ(u) ≤ C|BR|

∫

X

∫

[0,1]3
|(f(u(x))−E(f))|2dxdµ(u)

≤ D|BR|.

(4.29)
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Also the homogeneity of µ implies that (perhaps by increasing D which still does not depend
on R) for every x,

∫

X

∫

BΛ

|(f(u(x+ λ))−E(f))|2dλdµ(u)

=

∫

X

∫

BΛ

|(f(u(λ)) −E(f))|2dλdµ(u) ≤ D.

(4.30)

By equations (4.29) and (4.30) the right hand side of (4.27) is less than or equal to

(4.31)
|BΛ|

1/2

|BR|2
D1/2|BR|

1/2

[
∫

BR

Ddx

]1/2

=
D|BΛ|

1/2

|BR|
→ 0 as R→∞.

Thus the right hand side of (4.26) tends to 8ε as R → ∞. Since ε > 0 is arbitrary, this
finishes the proof of Theorem 4.6. ¤

5. Application to Homogeneous Flows

For homogeneous fluid flows apply the results of the previous sections when X = H0(r),
r < − 3

2 . Families of homogeneous measures on such spaces (measures supported on
solenoidal trigonometric polynomials and Gaussian measures), are given in [VF] (p. 209
and p. 210 respectively). These include examples satisfying condition (2.6) for p = 2.

The choice of space is justified by the following from [VF] which shows that, for almost
all initial conditions, weak solutions of the Navier-Stokes equations stay in H0(r):

Theorem 5.1. ( cf. [VF], p. 260) For any homogeneous probability measure µ0 on the
divergence-free elements of H0(r), r < − 3

2 , such that
∫

H0(r)
|u(x)|2 dµ0(u) <∞,

there is a set V of µ0(V ) = 1, such that for any u0 in V there is u(t, x) in L2(0, T ;H0(r)),
satisfying for any φ in C∞0

(

(0, T )× R3
)

∩ C((0, T );H0(r))

(5.1) < u(t, .), φ >2 − < u0, φ >2=

∫ t

0



< u(τ, .),∆φ >2 +
3
∑

j=1

< uju,
∂φ

∂xj
>2



 dτ

for almost all t in [0, T ].

[VF] also produce a family of homogeneous measures µt, supported for each t by the
restrictions at time t of the solutions of (5.1) satisfying condition (2.6) for p = 2 whenever
µ0 does. Therefore, whenever µt is ergodic or its correlation decays, Batchelor’s claim will
hold. In work currently in progress, the authors investigate conditions for the ergodicity of
the µt’s and rigorous decay estimates for their correlation functions.
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