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1. Introduction

We are concerned with systems of interacting particles in d-dimensional Eu-
clidean space Ed, d ≥ 1, with particles of one or more species. We assume the
interaction includes a hard core, which need not be spherically symmetric, so the
system is perhaps better described as interacting molecules or bodies. We will
assume fixed some Euclidean invariant interaction potential φ, which associates an
energy φ(C), in R ∪ +∞, to any finite collection C ⊂ Ed of at least two bodies,
subject to the weak conditions listed in the next section.

Heuristically, we are looking for configurations x, spatially extended throughout
Ed, which minimize a global energy H(x) which is a sum of contributions, one for
each particle/body b in x, of amount

(1) L̂(x; b) = −µ(b) +
∑

C⊂x, C3b

φ(C),

where µ(b) is the chemical potential of b. There is no direct meaning to H(x) since
in interesting cases it is infinite; instead we will use the traditional criterion for
ground state configurations based on a form of local optimality for all local regions.

To give a proper definition of ground state configurations we first need some
notation. For each particle species i, of which there are M ≥ 1, we assume given
some body bi (that is, a compact, connected set with dense interior and boundary
of zero volume, representing the hard core for that species) and chemical potential
µi. We define X as the space of all possible packings of Ed by congruent copies
of the bodies, with the usual metrizable topology in which two packings are close
if, within a large ball around the origin of Ed, the two packings are uniformly
close: that is, close in the Hausdorff metric on compact sets [Ra1]. (A collection
of bodies forms a packing if their interiors do not intersect.) X is compact in
that topology. Assume given a cube B ⊂ Ed, and two packings x, y ∈ X. Then:
Ni[B; (y, x)] will denote the sum of the relative volumes vol(b ∩ B)/vol(b) of all
those bodies b, of species i, such that either b ∈ y, or b ∈ x and the interior of
b intersects the boundary ∂B of B; N̄ [B; (y, x)] = {Ni[B; (y, x)]}; µ̄ = {µi}; and
µ̄ · N̄ [B; (y, x)] =

∑

i µiNi[B; (y, x)]. A related but more complicated quantity is
the local potential energy defined as follows, using the notation v[A] to denote the
volume, and i(A) the interior, of A ⊂ Ed:

E[B; (y, x)] =
∑

b∈y:b⊂B

∑

C3b

φ(C)

+
∑

b∈x:i(b)∩∂B 6=∅

v[b ∩B]

v[b]

∑

C′3b

φ(C ′).
(2)

We are now ready to define ground state configurations.

Definition 1. A configuration x is a ground state configuration (for given µ̄) if
for every fixed cube B ⊂ Ed

(3) inf
y
{E[B; (y, x)]− µ̄ · N̄ [B; (y, x)]} = E[B; (x, x)]− µ̄ · N̄ [B; (x, x)].
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This (traditional) criterion for a configuration x to be a minimizer for the global
H is simply that it be locally stable: no change in x in a finite region can lower the
contribution to H(x) associated with that finite region. One consequence is that a
minimizing configuration has the lowest possible energy density, as computed by
averaging over an expanding sequence of regions.

The existence of such ground state configurations x is by no means obvious, and
proof of their existence is our main result. (We compare this problem with the
parallel one for lattice gas models in Section 3.) The special cases of our result
in which φ only takes the values +∞ and 0 and the chemical potentials µi are
taken to have special values (appropriate to the bodies bi), reduces to a theorem
of Bowen [B] on completely saturated packings in Ed. One example of this type to
which we will refer is the following.

Example 1. Consider configurations in the plane of only one type of body, a unit
square, with energy function φ consisting only of the hard core, and µ = 1. For this
example it is easy to construct ground state configurations, for instance tilings of
the plane. The example will be useful below in testing general strategies of proving
the existence of ground state configurations.

2. Statement and Proof of Results

We assume our Euclidean invariant interaction potential φ satisfies the following
general properties:

i) There is some R, larger than twice the diameter of any of the bi, such that
φ(C) = 0 if there is no ball of radius R containing all the bodies of C;

ii) φ is finite and continuous when restricted to the manifold of (positions
and orientations of) packings of any given finite number, greater than 2, of
bodies of given species;

iii) For pairs of bodies, φ = +∞ if their interiors intersect, φ is finite and
continuous when the pair does not intersect, and either:
a) φ is finite and continuous on all packings of pairs; or
b) φ is bounded below, has value +∞ for touching pairs, and φ → +∞

as the separation of the pair vanishes.

Our main result is the following.

Theorem 1. For any system of interacting particles/bodies with given interaction
φ satisfying conditions i)–iii) and given chemical potentials µ̄ there exists a trans-
lation invariant probability measure m

L
, on the space X of possible packings of the

bodies, for which a set of full measure consists of ground state configurations.

Proof. First we define a function p on X by:

(4) p(x) =

{

c(x), if the interior of a body b̃(x) of x contains O

0, if no body of x contains O in its interior
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where O is the origin in Ed and c(x) = 1/volume[b̃(x)]. Then we define the function

L on X, a density for L̂ of (1), by

(5) L(x) = p(x)
[

− µ(x) +
∑

C⊂x, C3b(x)

φ(C)
]

where b(x) is any body in x nearest to O, and µ(x) is the chemical potential for
that species of particle/body. (For completeness, in case one factor in (5) is 0 and
the other is +∞ we define the product to be 0, except in those cases where O is on
a boundary of a body in x, in which case we define the product to be +∞.) Note
that although b(x) may not specify a particular body, this ambiguity, and therefore
that of µ(x), is irrelevant to L(x) because of the factor p(x); L(x) is nonzero only
if some body b of x contains O, and then represents the total energy of interaction
of b with the rest of the bodies in x. Note that if χ

B
is the characteristic function

for B

(6)

∫

χ
B
(g)L(x− g) dg = E[B; (x, x)]− µ̄ · N̄ [B; (x, x)].

LetM(X) be the set of Borel probability measures on X in the weak-∗ topology,
which makesM(X) compact, and letMI(X) be the subset of those measures which
are invariant under the natural action of the translation group Gd(≈ Rd) of Ed.
(MI(X) is easily seen to be a nonempty closed subset of M(X).)

Lemma 1. There existsm
L
inMI(X) such thatm

L
(L) = inf{m(L) |m ∈MI(X)}.

Proof. We begin by smoothing out a bit the function L. Define L̃(x) as

sup{f(x) | f continuous, and f(y) ≤ L(y), at all y ∈ X}. It follows that L̃ is
lower semicontinuous on X and bounded below. We consider Borel probability
measures as functionals on the space of continuous functions on X, which one ex-
tends (with the possible value of +∞) first to over functions and then integrable

functions in the usual way [T]. In this sense L̃ is an over function, and, as a
function on M(X), and therefore also MI(X), it is easy to see it is again lower
semicontinuous. Therefore by compactness there is some m̃ ∈ MI(X) such that

m̃(L̃) = inf{m(L̃) |m ∈MI(X)}. We claim that m(L) = m(L̃) for all m ∈ MI(X).
To see this we first note that L and L̃ only differ where L is not lower semicontin-
uous, and therefore only on the closed set K of packings x such that the origin O
lies on a boundary of a body in x. That this set K has measure zero with respect
to any m ∈MI(X) follows easily by applying Birkhoff’s pointwise ergodic theorem
[W], considered with respect to the action of the translation group on the space
X of packings, to the characteristic function of K. This proves the claim, and we
can then take m

L
= m̃ to complete the proof of Lemma 1. ¤

Let Bs, for s > 0, be the cube in Ed centered at O and with faces which are
distance s from O and perpendicular to coordinate axes.
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Lemma 2. For each j ≥ 1 there exists a function fj : X → X such that:

a) for every x ∈ X, every v ∈ Ed with integer coordinates, and with Bj,v

defined as Bj−v(2j+R), we have infy{E[Bj,v; (y, x)]− µ̄·N̄ [Bj,v; (y, x)]} =
E[Bj,v; fj(x), x]− µ̄ · N̄ [Bj,v; fj(x), x];

b) fj commutes with all translations v(2j +R), v ∈ Ed having integer coordi-
nates;

c) fj is Borel measurable.

Proof. Intuitively, what fj will do to x is replace those bodies of x which are
(fully) in any of the regions Bj,v by a collection of bodies which minimizes the
energy associated with that region, while leaving the other bodies of x as they
were. Such an energy minimum exists for a given region because of the continuity
of φ and N ; the only difficulty therefore is to ensure conditions b) and c). We can
ensure b) by simply choosing the replacement for Bj for each x and then extending
to the translated regions appropriately. It is harder to see how to ensure condition
c). An example which illustrates the essence of our difficulty with condition c) is
Example 1 above, in which the body is B1. Take the region B = B1 and let x
consist of the single body B1+(2, 0). The minimum of E[B; (y, x)]−µ̄·N̄ [B; (y, x)]
is then −µ, while for the translated packings x− (ε, 0) the minimum would be −εµ
(for arbitrarily small ε > 0). In other words, in choosing how to optimize the bodies
in B the dependence on those not in B must be taken into account and condition
c) requires that this be done measurably. This is a standard selection problem in
optimization. From the lower semicontinuity of E[B; (y, x)]− µ̄ · N̄ [B; (y, x)] as a
function of (y, x) ∈ X ×X, and the obvious fact that the equation

(7) {(y, x) |E[B; (y, x)]− µ̄ · N̄ [B; (y, x)] = inf
y
E[B; (y, x)]− µ̄ · N̄ [B; (y, x)]}

is equivalent to

(8) {(y, x) |E[B; (y, x)]− µ̄ · N̄ [B; (y, x)] ≤ inf
y
E[B; (y, x)]− µ̄ · N̄ [B; (y, x)]},

it follows that for given x

(9) {y′ |E[B; (y′, x)]− µ̄ · N̄ [B; (y′, x)] = inf
y
E[B; (y, x)]− µ̄ · N̄ [B; (y, x)]}

is closed. It then follows by the theorem of Kuratowski and Ryll-Nardzewski [Ro]
that there exists a Borel measurable function (selection) y = y(x) such that

(10) E[B; (y(x), x)]− µ̄ · N̄ [y(x), x)] = inf
y
E[B; (y, x)]− µ̄ · N̄ [B; (y, x)]},

which gives us condition c). This completes the proof of Lemma 2. ¤

Returning to the proof of Theorem 1, for each j ≥ 1 we define the measure m̃j
L
,

on continuous functions h on X, by m̃j
L
(h) = m

L
(h ◦ fj) using the composition

(h ◦ fj)[x] = h[fj(x)]. We note that m̃j
L
is invariant under the group Gd

j consisting

of translations by v(2j+R) for v ∈ Ed with integer coordinates: using the notation
hg(x) = h(x − g), m̃j

L
(hg) = m̃

L
(hg ◦ fj) = m

L
([h ◦ (fj)g]) = m

L
(h ◦ fj) = m̃j

L
(h)

for g ∈ Gd
j , where we used (fj)g[x] = (fj[x])− g from b) to get the second equality
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and the invariance of m
L
for the third. Now we define mj

L
by averaging m̃j

L
over

(the flat torus) Bj, which clearly makes mj
L
invariant under all of Gd. We then

have

mj
L
(L) =

∫

[

∫

χ
Bj
(g)Lg(x) dν(g)

∫

χ
Bj
(g) dν(g)

]

dm̃j
L
(x)

=

∫

[

∫

χ
Bj
(g)(Lg ◦ fj)(x) dν(g)
∫

χ
Bj
(g) dν(g)

]

dm
L
(x).

(11)

Let Uj,n be the set of packings x for which

(12) inf
y
{E[Bj; (y, x)]− µ̄ · N̄ [Bj; (y, x)]} ≤ E[Bj; (x, x)]− µ̄ · N̄ [Bj; (x, x)]−

1

n
.

Then

mj
L
(L) =

∫

[

∫

χ
Bj
(g)(Lg ◦ fj)(x) dν(g)
∫

χ
Bj
(g) dν(g)

]

χ
Uj,n

(x) dm
L
(x)

+

∫

[

∫

χ
Bj
(g)(Lg ◦ fj)(x) dν(g)
∫

χ
Bj
(g) dν(g)

]

χ
Uc

j,n
(x) dm

L
(x)

≤

∫

[

∫

χ
Bj
(g)Lg(x) dν(g)−

1
n

∫

χ
Bj
(g) dν(g)

]

χ
Uj,n

(x) dm
L
(x)

+

∫

[

∫

χ
Bj
(g)(Lg ◦ fj)(x) dν(g)
∫

χ
Bj
(g) dν(g)

]

χ
Uc

j,n
(x) dm

L
(x)

≤ m
L
(L)−

m
L
(χ

Uj,n
)

n
∫

χ
Bj
(g) dg

.

(13)

Therefore from the optimum property of m
L
it follows that m

L
(χ

Uj,n
) = 0. But

then m
L
(χ

U
) = 0 for U = ∪j,nUj,n, the set of configurations which are not ground

states. ¤

3. Summary

In lattice gas models the sets Sj, of configurations satisfying energy minimiza-
tion with respect to the cubes Bj, are compact, nonempty, and decreasing as j
increases, and therefore have a nonempty intersection. This is the structure of the
simple proof for the existence of ground state configurations in lattice gas models
[Sc]. However such sets Sj are not compact in some of our continuum models, for
instance Example 1. Instead (following Bowen [B]), we get existence of ground
state configurations as the countable intersection of sets which are of full measure
for m

L
.

One motivation of this paper is the analysis of the symmetry of low tempera-
ture matter, often analyzed as a perturbation of the ground state [Ru], [I], [Si].
Since the discovery of quasicrystals it has been necessary to look within a broader
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setting than the crystallographic groups for a general understanding of the geomet-
ric symmetry of solids [Ra1]-[Ra4], [BHRS]. Coupled with this is the tantalizing,
but unsatisfactory, well-known argument [Pi] to explain the experimental nonex-
istence of a critical point separating the solid and fluid phases of matter, based on
a supposed geometric symmetry for solids. There are indeed many ways in which
the symmetry of ground state configurations are significant, for which the above
existence theorem should be a useful step.
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