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Abstract

In this paper we study the heat trace of the magnetic Schrödinger operator
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on the hyperbolic plane H = {z = (x, y)|x ∈ R, y > 0}. Here a = (a1, a2) is a
magnetic vector potential and V is a scalar potential on H. Under some growth
conditions on a and V at infinity, we derive an upper bound of the difference
Tr e−tHV (0) − Tr e−tHV (a) as t→ +0.

As a byproduct, we obtain the asymptotic distribution of eigenvalues less than
λ as λ → +∞ when V has exponential growth at infinity (with respect to the
Riemannian distance on H). Moreover, we obtain the asymptotics of the logarithm
of the eigenvalue counting function as λ→ +∞ when V has polynomial growth at
infinity. In both cases we assume that a is weaker than V in an appropriate sense.
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1 Introduction and Results

We study the short time asymptotics of the trace of the heat semi-group for the magnetic
Schrödinger operator

HV (a) =
1

2
y2

(

1√
−1

∂

∂x
− a1(x, y)

)2

+
1

2
y2

(

1√
−1

∂

∂y
− a2(x, y)

)2

+ V (x, y) (1.1)

on the hyperbolic plane H = {z = (x, y)|x ∈ R, y > 0}, and we obtain the asymptotic
distribution of large eigenvalues ofHV (a) under some growth conditions on V and a. Here,
V is a scalar potential and a = (a1, a2) is a magnetic vector potential on H. Throughout
this paper we identify the vector potential a with the 1-form a1dx+ a2dy on H.

The Riemannian measure m(dz) on H is given by m(dz) = dxdy/y2 and the Rieman-
nian distance d(z, z′) between z = (x, y) and z′ = (x′, y′) is given by

cosh(d(z, z′)) =
(x− x′)2 + y2 + (y′)2

2yy′
.

In what follows we canonically identify H with the complex upper-half plane via the
correspondence (x, y)↔ x+ y

√
−1.

In what follows we write ∂x for ∂/∂x, etc., and we use the multi-index notation like
∂αf(z) to denote ∂α1

x ∂α2
y f(z) for any multi-index α = (α1, α2) ∈ N×N. Here, N stands for

the set of non-negative integers. We denote by Ck(M,N) the space of all N -valued, Ck-
functions on M for k ∈ N ∪ {∞}, and by C(M,N) the space of all N -valued, continuous
functions onM . We denote by C∞0 (M,N) the space of all smooth functions with compact
support, etc. When N = C, we write Ck(M) for Ck(M,C), etc. The notation A1 + . . .+
An = : B1+. . .+Bn means thatB1, . . ., Bn stand for A1, . . ., An, respectively. Throughout
the paper we use the symbol | · | to denote the Euclidean norms.

To formulate the results, we introduce a class of functions. For a continuous function
ã defined on [0,∞), we say that ã belongs to the class G if, for any δ satisfying 0 < δ < 1,
there exists a positive number Cδ such that

ã(ρ + ρ′) ≤ Cδã ((1 + δ)ρ) exp
(

Cδ(ρ
′)2
)

(1.2)

holds for any positive ρ and ρ′.
For example, if c ≥ 0, C ≥ 0 and 0 < β ≤ 2, the polynomials ã(ρ) = Cρc and the

exponentials ã(ρ) = C exp (cρβ) belong to G. We note that if ã belongs to G, the functions
C ã(cρ)α also belong to G for any c, C > 0 and α > 0. We also note that if ã ∈ G then ã
has a Gaussian bound ã(ρ) ≤ C exp (cρ2) for some c, C > 0.

We now make the following conditions (A) for vector potentials and (V) for scalar
potentials.

(A) The vector potential a = (a1, a2) belongs to C
2(H,R2). Moreover, there exists ã ∈ G

such that
∑

0≤|α|≤2

(

y|α|+1|∂αa1(z)|+ y|α|+1|∂αa2(z)|
)

≤ ã(d(z,
√
−1)) (1.3)

holds for all z ∈ H.
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(V) The scalar potential V belongs to C(H,R). Moreover, there exist ε > 0 and C > 0
such that

C−1d(z,
√
−1)1+ε ≤ V (z) ≤ C exp (Cd(z,

√
−1)2)

holds outside some compact subset of H.

It is known that the operator HV (a) is essentially self-adjoint on C∞0 (H) and has the
unique self-adjoint realization acting on L2(H) under the conditions (A) and (V) (See
Shubin [15]). In what follows we identify any essentially self-adjoint operator with its
operator closure.

Theorem 1.1 Assume (A) and (V). Then the operator e−tHV (a) is of trace class for all
t > 0. Moreover, for any δ satisfying 0 < δ < 1, there exists Cδ > 0 such that

0 ≤ Tr e−tHV (0) − Tr e−tHV (a)

≤ Cδ t

∫

H

ã
(

(1 + δ)d(z,
√
−1)

)2
e−tV

−

δ (z)m(dz) + Cδt
11/8

holds if 0 < t ≤ 1/Cδ. Here, we set

V −δ (z) = inf{V (z′)|d(z, z′) ≤ δd(z,
√
−1)}.

Remark 1.2 The base point z =
√
−1 in (V) and (A) can be replaced by any fixed point

z0 ∈ H by the homogeneity of H.
The condition (A) is described in terms of the magnetic vector potential a = a1dx +

a2dy, which can be regarded as a connection 1-form on (the trivial Hermitian line bundle
over) H. From a physical view point, we prefer to make assumptions for the corresponding
magnetic field ω = da = (∂xa2 − ∂ya1)dx ∧ dy rather than for a itself, where d stands for
the usual exterior derivative. In Appendix, we give a condition on the magnetic field ω
which implies the existence of a vector potential a satisfying (A).

As a byproduct of Theorem 1.1, the standard Tauberian argument yields the asymp-
totic distribution of the number of large eigenvalues of HV (a) under some restrictive con-
dition on the growth of V at infinity. We denote by N(T < λ) the number of eigenvalues
(counting multiplicities) of a self-adjoint operator T less than λ.

Corollary 1.3 Let V belong to C(H,R). Assume that there exist positive constants A
and α such that

lim
d(z,
√
−1)→∞

V (z)

A exp (αd(z,
√
−1))

= 1. (1.4)

Assume that there exist positive numbers C and β satisfying β < α such that the condition
(A) holds for ã(ρ) = C exp (βρ). Then we have the eigenvalue asymptotics

lim
λ→∞

N(HV (a) < λ)/λ1+1/α = lim
λ→∞

N(HV (0) < λ)/λ1+1/α

=
1

2

α

α + 1
A−1/α.
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If the scalar potential V has polynomial growth (with respect to the Riemannian
distance) at infinity, we can obtain the asymptotics of the logarithm of the eigenvalue
counting function N(HV (a) < λ) as λ→∞.

Corollary 1.4 Let V belong to C(H,R). Assume that there exist A > 0 and α > 1 such
that

lim
d(z,
√
−1)→∞

V (z)

Ad(z,
√
−1)α

= 1. (1.5)

Assume that (A) holds with ã(ρ) = C(ρβ+1) for some C > 0 and β satisfying 0 < 2β < α.
Then we have the asymptotic relation

lim
λ→∞

λ−1/α logN(HV (a) < λ) = lim
λ→∞

λ−1/α logN(HV (0) < λ)

= A−1/α.

Remark 1.5 In [12] and [13], Matsumoto studied the short time asymptotics of the (dif-
ference of) heat traces for the magnetic Schrödinger operators. In particular, Matsumoto
[13] established the short time asymptotics of heat trace even in the case where the strength
of magnetic fields is “stronger” than the scalar potential. (As a byproduct, the large eigen-
value asymptotics is also obtained by Tauberian argument. )

However, the hyperbolic spaces are not included in the class of Riemannian manifolds
under Matsumoto’s consideration.

The organization of this paper is as follows: In Section 2, we recall some basic facts
from stochastic analysis and introduce the Brownian motion on H. Also we formulate
some preparatory results on the pinned Wiener measures. In Section 3, we give proofs of
theorem 1.1, Corollary 1.3 and Corollary 1.4, accepting two propositions (Proposition 4.1
and Proposition 3.6). In Section 4 and Section 5, we give a proof of Proposition 3.6 and
of Proposition 4.1, respectively. In Appendix we rewrite the condition (A) for the vector
potential a to the condition for the corresponding magnetic field.

Acknowledgment. The authors thank Professor Yuji KASAHARA for his advice on
Tauberian theorems of exponential type.

2 Results from stochastic analysis

2.1 Generalized expectations

In this subsection we recall some basic definitions and results from the Malliavin calculus
along the line of Ikeda and Watanabe [8], Chapter V, Sections 8 and 9. For any non-
negative integer d, we denote by (W (d), H(d), P (d)) the d-dimensional Wiener space. Let
W (d) = {w ∈ C([0,∞),Rd)|w(0) = 0} be the d-dimensional Wiener space. Let

H(d) = {h ∈ W (d)|h is absolutely continuous and ‖h‖2
H(d) =

∫∞
0
|ḣ(s)|2ds <∞}
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be the Cameron-Martin subspace, where ḣ denotes the derivative of h, and let P (d) be
the Wiener measure on W (d). As usual we denote by E(d)[ · ] the integration with respect
to P (d). We denote by wt = (w1

t , . . . , w
d
t ) (t ≥ 0) the canonical realization of the Wiener

process. (We often drop the superscript (d) if there is no fear of confusion.)

For any h ∈ H, we define the measurable linear functional [h](w) =
∑d

i=1

∫∞
0
ḣi(s) ·

dwi
s. The law of [h] is the Gaussian measure with mean 0 and variance ‖h‖2

H . For any
orthonormal elements h1, . . . , hn ∈ H and f ∈ S(Rd), a function of the form F (w) =
f([h1](w), . . . , [hn](w)) is called a cylindrical function. The Ornstein-Uhlenbeck operator
L is defined by

LF (w) =

n
∑

i=1

(

∂2f

∂x2
i

(

[h1](w), . . . , [hn](w)
)

− [hi](w) ·
∂f

∂xi

(

[h1](w), . . . , [hn](w)
)

)

on the space of all cylindrical functions, which is a core for L. For any p ∈ (1,∞) and
r ∈ R, the Sobolev space Dp,r is the completion of the space of cylindrical functions on
W with respect to the norm ‖F‖p,r = ‖(I−L)r/2F‖Lp(W,P ). The spaces of test functionals
and of generalized Wiener functionals are defined by D∞ = ∩p>1,r∈RDp,r and D−∞ =
∪p>1,r∈RDp,r, respectively. (For a separable Hilbert space K, the Sobolev spaces of K-
valued function(al)s are defined in a similar way. In that case we write Dp,r(K), D∞(K),
H(K), etc.) Note that for any non-negative integer r and for any p > 1 there exists a
positive constant Cp,r such that Meyer’s equivalence

C−1
p,r‖F‖p,r ≤

r
∑

j=0

‖DjF‖Lp ≤ Cp,r‖F‖p,r

holds for all F ∈ D∞. Here D denotes the H-derivative, i.e., the Gâtaux derivative in
H-direction.

The paring of F ∈ D∞ and Ψ ∈ D−∞ is defined in a canonical way and is denote by
E[Ψ ·F ]. (We often write as E[Ψ(w)F (w)].) The pairing E[Ψ · 1] is often denoted simply
by E[Ψ] or formally by

∫

W
Ψ(w)P (dw). We call E[ · ] the generalized expectation.

For any F = (F 1, . . . , F d) ∈ D∞(R
d), we say that F is non-degenerate in the sense of

Malliavin if

det
(

〈DF i, DF j〉H
)−1

i,j=1,...,d

belongs to ∩p>1L
p(W,P ). If F is non-degenerate in the sense of Malliavin, then, for any

Schwartz distribution ψ ∈ S ′(Rd), the composition ψ ◦ F is well-defined and belongs to
D−∞. In fact, the mapping ψ 7→ ψ◦F is bounded from S−2k to Dp,−2k for every p ∈ (1,∞)
and k = 1, 2, . . . (See [8], Chapter V, Section 9, for detailed information on the pullback
of the Schwartz distributions).

It is known (See Sugita [16]) that, for every positive generalized Wiener functional Ψ,
there exists a unique positive finite measure µΨ on W such that

E[Ψ · F ] =

∫

W

F̃ (w)µΨ(dw)
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holds for any F ∈ D∞, where F̃ stands for the D∞-quasi continuous modification of F
(See Malliavin [10] Chapter IV, Section 2, p.94). Note the F̃ (w) is uniquely defined up
to the measure µΨ.

2.2 Brownian motion on the hyperbolic plane

In this subsection we introduce the Brownian motion on H and the heat kernel forH0(0) =
−4H/2. In what follows we identify z = (x, y) ∈ H with z = x + y

√
−1 the inclusion

H ↪→ C ∼= R
2.

Let w = (w1, w2) ∈ W (2). We consider the following stochastic differential equation
on H:

dX(t) = Y (t)dw1
t , dY (t) = Y (t)dw2

t , (2.1)

with the initial condition (X(0), Y (0)) = z = (x, y). The solution is explicitly written as
follows (See Ikeda and Matsumoto [7], p. 69):

X(t, z, w) = x+ y

∫ t

0

exp(w2
s − s/2)dw1

s,

Y (t, z, w) = y exp(w2
t − t/2). (2.2)

We write Z(t, z, w) = (X(t, z, w), Y (t, z, w)) and write Z(t, w) = (X(t, w), Y (t, w)) when
z =

√
−1. Using Itô’s formula, one can find that {Z(t, z, w)}t≥0 is the Brownian motion on

H, i.e., a diffusion process whose generator is 4H/2. One can easily to see that Z(t, z, w)
is non-degenerate in the sense of Malliavin (See also [9]).

The integral kernel p00(t, z, z
′) of e−t4H/2 is given by

p00(t, z, z
′) =

√
2e−t/8

(2πt)3/2

∫ ∞

d

be−b
2/2t

√
cosh b− cosh d

db (2.3)

with d = d(z, z′) (See, e.g., Terras [17]), and we have the following estimate

ck(t, z, z′) ≤ p00(t, z, z
′) ≤ Ck(t, z, z′) (2.4)

holds for some constants c, C > 0 independent of z, z′, t, where

k(t, z, z′) =
1

2πt

1 + d(z, z′)
√

1 + d(z, z′) + t/2
exp

(

−t/8− d(z, z′)/2− d(z, z′)2/(2t)
)

(See Theorem 5.7.2 in Davies [5]).
It is well-known (See [8], Chapter 5, Section 3) that p00(t, z, z

′) = E[δ̃z′(Z(t, z, ·))] and
the law of Z(t, z, w) on H is given by p00(t, z, z

′)m(dz). Here δ̃ denotes the Dirac delta
function on H with respect to the Riemannian measure m(dz), i.e., δ̃z′(z) = y2δ(x′,y′)(x, y).
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2.3 Pinned Wiener measures

In this subsection we introduce the pinned Wiener measure on H and recall some ba-
sic properties. Let T > 0 and z, z′ ∈ H. Set WT (H) = C([0, T ],H) and Lz,z′

T (H) =
{l ∈ WT (H)|l0 = z, lT = z′}. We equip the space WT (H) with the distance d̃(l, l′) =
sup{d(ls, l′s)|0 ≤ s ≤ T}. Here d is the distance on H. Then WT (H) is a complete separa-

ble metric space and Lz,z′

T (H) is a closed subspace. The pinned Wiener measure P z,z′

T on

H is defined by the probability measure on Lz,z′

T (H) which satisfies

∫

Lz,z′T (H)

n
∏

i=1

fi(lti)P
z,z′

t (dl) = p0(t, z, z
′)−1

∫

Hd

n
∏

i=1

(m(dzi)fi(zi))

n+1
∏

i=1

p0(ti − ti−1, zi−1, zi)

(2.5)
for any partition 0 = t0 < t1 < . . . < tn < tn+1 = T of [0, T ] and any f1, . . . , fn ∈ C∞0 (H).
Here we set z0 = z and zn+1 = z′.

We denote by µz,z′

T the probability measure which corresponds to the Wiener functional
δ̃z′(Z(T, z, w))/p00(T, z, z

′) by Sugita’s theorem. It follows from Theorem 4.2 and Corol-
lary 4.3 in Malliavin and Nualart [11] that there exists a process {Z̃(t, z, w)}t≥0 which
satisfies the following property: There exists a decreasing sequence Oj (j = 1, 2, . . .) of
open subsets of W such that

1. For each j = 1, 2, . . ., (t, w) 7→ Z̃(t, z, w) is continuous on [0, T ]×Oc
j .

2. For each p ∈ (1,∞) and r > 0, capp,r(Oj) → 0 as j → ∞. Here capp,r denotes the
(p, r)-capacity.

3. For each t ∈ [0, T ], Z(t, z, w) = Z̃(t, z, w) outside a set of zero Wiener measure.

In particular, {Z̃(t, z, w)}0≤t≤T is a well-defined WT (M)-valued random variable on the

measure space (W,µz,z′

T ). By using the Chapman-Kolmogorov formula, we can easily

see that the image measure of µz,z′

T induced by the WT (M)-valued Wiener functional

{Z̃(t, z, w)}0≤t≤T is the pinned Wiener measure P z,z′

T . That is, for any bounded Borel
function F on WT (M),

∫

W

F (Z̃(·, z, w))µz,z′

T (dw) =

∫

Lz,z′T (H)

F (l)P z,z′

T (dl)

holds. Note that this fact can also be regarded as an existence theorem of the pinned
Wiener measure on H.

In what follows we denote by Ez,z′

T the expectation with respect to the pinned Wiener

measure P z,z′

T . Also we denote by Ez the expectation with respect to the Wiener measure
P z on the space of all continuous paths starting at z.

We shall often use the fact that, for any s, T satisfying 0 < s < T ,

P z,z′

T |Bs =
p00(T − s, ls, z

′)

p00(T, z, z′)
P z|Bs (2.6)

holds, where B∗ stands for the natural filtration of WT (H).
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3 Preliminary estimates

In this section we obtain some preliminary estimates concerning the pinned Wiener mea-
sure on H.

Lemma 3.1 Assume that ã belongs the class G defined in Section 1. Then, for any δ
satisfying 0 < δ < 1, there exists Cδ > 0 such that the following assertions hold:

1. The estimate

Ez[ã(d(ls,
√
−1))] ≤ Cδã

(

(1 + δ)d(z,
√
−1)

)

(3.1)

holds for all s satisfying 0 < s ≤ 1/Cδ and for all z ∈ H.

2. The estimate

Ez,z
t [ã(d(ls,

√
−1))] ≤ Cδã

(

(1 + δ)d(z,
√
−1)

)

(3.2)

holds for all s, t with 0 < s < t ≤ 1/Cδ and for all z ∈ H.

Proof. Using the relation (2.6) with s = t/2, we find that the left-hand side (lhs) of (3.2)
is equal to

Ez[ã
(

d(ls,
√
−1)

) p00(t/2, lt/2, z)

p00(t, z, z)
]

≤ Ez[ã
(

d(ls,
√
−1)

) p00(t/2, z, z)

p00(t, z, z)
]

≤ CEz[ã
(

d(ls,
√
−1)

)

]

where we used the facts that p00(t, z, z
′) ≤ p00(t, z, z) and that

p00(t, z, z) = p00(t,
√
−1,

√
−1) = (2πt)−1(1 + o(1)) as t→ +0

in the first and second inequality, respectively.
Thus it is enough to show only the assertion (3.1). By (1.2), for any δ satisfying

0 < δ < 1, there exists Cδ > 0 such that

Ez[ã
(

d(ls,
√
−1)

)

]

=

∫

H

m(dz′)ã
(

d(z′,
√
−1)

)

p00(s, z, z
′)

≤ Cδã
(

(1 + δ)d(z,
√
−1)

)

∫

H

m(dz′) exp (Cδd(z, z
′)2)p00(s, z

′, z)

= Cδã
(

(1 + δ)d(z,
√
−1)

)

∫

H

m(dz) exp (Cδd(z,
√
−1)2)p00(s, z,

√
−1)

≤ Cδs
−1ã

(

(1 + δ)d(z,
√
−1)

)

×
∫

H

m(dz) exp (Cδd(z,
√
−1)2) exp (−d(z,

√
−1)2/(2s)) (3.3)

8



holds, where we used the SL(2,R)-invariance of d and m(dz) in the third equality and
used (2.4) in the last inequality.

Since m(dz) is expressed as sinh ρ dρdθ in the geodesic polar coordinates (ρ, θ) ∈
[0,∞)× [0, 2π) (See, e.g., Terras [17]), we have

∫

H

m(dz) exp
(

Cδd(z,
√
−1)2

)

exp (−d(z,
√
−1)2/(2s))

= 2π

∫ ∞

0

exp
(

−ρ2/(2s) + Cδρ
2
)

sinh ρ dρ

= 2π
√
2s

∫ ∞

0

exp
(

−y2 + Cδ(
√
2sy)2

)

sinh (
√
2sy)dy

≤ 2πs1/2

∫ 1/
√

2s

0

exp
(

−y2 + 2Cδsy
2
)sinh (

√
2sy)√

2sy

√
2sydy

+2πs1/2

∫ ∞

1/
√

2s

exp
(

−y2 + 2Cδsy
2
)

e
√

2sydy

≤ Cs

∫ 1/
√

2s

0

exp
(

−(1− 2Cδs)y
2
)

ydy

+Cs1/2e2s

∫ ∞

1/
√

2s

exp

(

−
(

3

4
− 2Cδ s

)

y2

)

dy

≤ Cs

∫ 1/
√

2s

0

ydy

+Cs1/2e2s exp

(

−
(

3

4
− 2Cδ s

)

1

4s

)
∫ ∞

1/
√

2s

exp

(

−
(

3

4
− 2Cδ s

)

y2/2

)

≤ C ′δ s (3.4)

holds for some C ′δ > 0 if 0 < s < 1/(8Cδ), where we changed the variable y = ρ/
√
2s in

the second equality and used the elementary facts that sinh x/x is bounded if 0 < x ≤ 1
and that

√
2sy ≤ 2s+ y2/4 holds, in the second inequality.

Then we can derive the estimate (3.2) from (3.3) and (3.4) by choosing Cδ larger, so
(3.1) also follows as we mentioned above.

Remark 3.2 The above proof shows that the assertion of Lemma 3.1 is still valid for
δ = 0 if ã(ρ) = C ′ecρ at infinity.

Lemma 3.3 Let t > 0, z, z′ ∈ H and N > 0. Then there exists a positive number
C = C(t, z, z′, N) such that

Ez,z′

t [d(ls, z)
2N ] ≤ CsN (3.5)

holds for all s with 0 ≤ s ≤ t.
Moreover, if z = z′, the constant C is bounded uniformly in z ∈ H and t satisfying

0 < t ≤ 1.
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Proof. First, we consider the case 0 < s ≤ t/2. As in the proof of Lemma 3.1, using (2.6)
with s = t/2, we see that the lhs of (3.5) is less than or equal to

Ez[d(ls, z)
2N p00(t/2, ls, z

′)

p00(t, z, z′)
]

≤ p00(t/2, z
′, z′)

p00(t, z, z′)

∫

H

m(dζ)d(ζ, z)2Np00(s, z, ζ)

≤ p00(t/2, z
′, z′)

p00(t, z, z′)
sN
∫

H

m(dζ)
(

d(ζ, z)2/s
)N

p00(s, z, ζ). (3.6)

By the same argument as in the proof of Lemma 3.1, we can deduce that the integral on
the right-hand side (rhs) of (3.6) is bounded uniformly in s, z. Moreover, it follows from
(3.2) that

p00(t/2, z
′, z′)

p00(t, z, z′)
≤ C exp

(

d(z, z′)/2 + d(z, z′)2/(2t)
)

.

Then, taking the obvious fact d(z, z) = 0 into account, we deduce the assertion when
0 < s ≤ t/2.

Next, we consider the case of t/2 < s < t. Using the triangle equality d(ls, z) ≤
d(ls, z

′) + d(z, z′) and the fact that t− s ≤ t/2 if t/2 < s < t, we find that the lhs of (3.5)
is less than or equal to

CN

(

Ez,z′

t [d(ls, z
′)2N ] + d(z, z′)2N

)

≤ CNC
(

(t− s)2N + d(z, z′)2N
)

= CNC

(

1 +
d(z, z′)2N

(t/2)N/2

)

(t/2)N

= C ′N

(

1 +
d(z, z′)2N

(t/2)N/2

)

sN , (3.7)

where we used the fact that l̂u = lt−u is the law of P z′,z
t and the assertion for the case

0 < s < t/2 in the second inequality. Note that the coefficient of sN on the rhs of (3.7)
has the desired boundedness. Thus the lemma obeys.

Lemma 3.4 Let α > 0, z ∈ H and 0 < t ≤ 1. Then

Ez,z
t [|l2s|α] = yαE

√
−1,
√
−1

t [|l2s|] (3.8)

is finite and bounded uniformly in s with 0 < s ≤ t. Here we write z = (x, y) and
ls = (l1s , l

2
s).
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Proof. For each z0 ∈ H, the map g : z = (x, y) → (x0 + y0y, y0y) defines an isometric
isomorphism on H. Then by considering the finite dimensional distribution, we can deduce
that

Ez,z′

t [f(l)] = E
g(z),g(z′)
t [f(g−1(l))]

holds for any nice function f and for any z, z′ ∈ H. Setting z = z′ =
√
−1 and f(z) = yα,

we have the equality (3.8) since g(
√
−1) = z0.

Since elementary calculation shows that y+ 1/y ≤ C exp (Cd(z,
√
−1)), the finiteness

of the integral follows from Lemma 3.1.

Lemma 3.5 We set

Ωε,t,z = {l ∈ Lz,z
t (H)| sup

0≤s≤t
d(ls, z) ≥ ε}.

There exist positive constants c, C ′ such that

P z,z
t (Ωε,t,z) ≤ C ′t−1/4 exp (−cε2/t)

holds for any z ∈ H, ε > 0 and t > 0 satisfying the relations 0 < t < 1 and ε2/t ≥ 1.

Proof. The estimate has been shown by Eberle [6], Proposition 3.1 (i) in the case of t = 1.
Replacing the partition i2−k (0 ≤ i ≤ 2k) of [0, 1] used in [6] by i2−kt (0 ≤ i ≤ 2k) of
[0, t], one can show the assertion for general t and ε in a similar way.

The following result is crucial for the proof of the main theorem. We give a proof in
Section 5.

Proposition 3.6 Assume (A). Then for any t > 0, the Stratonovich integral

∫ t

0

a(ls) ◦ dls =
∫ t

0

a1(ls) ◦ dl1s +
∫ t

0

a2(ls) ◦ dl2s

defines a well-defined random variable on Lz,z
t . Moreover, for any δ satisfying 0 < δ < 1,

there exists Cδ > 0 such that

Ez,z
t [

∣

∣

∣

∣

∫ t

0

a(ls) ◦ dls
∣

∣

∣

∣

4

] ≤ Cδ t
4ã
(

d(z,
√
−1)

)4

holds for all z ∈ H and all t > 0 satisfying 0 < t < 1/Cδ. Here ã is as in (A).
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4 Proof of the main results

4.1 Proof of Theorem 1.1

In this section we give a proof of the main theorem, following the line of argument as in
the proof of Theorem 1 in Matsumoto [12].

We need the Feynman-Kac-Itô representation for the heat kernel of HV (a) (We give
a proof in Section 4 below):

Proposition 4.1 Assume (A) and (V). For any t > 0, the operator e−tHV (a) has the
continuous integral kernel paV (t, z, z

′). Moreover, paV (t, z, z
′) has the Feynman-Kac-Itô

expression

paV (t, z, z
′) = p00(t, z, z

′)Ez,z′

t [exp

(

−
√
−1
∫ t

0

a(ls) ◦ dls −
∫ t

0

V (ls)ds

)

]. (4.1)

Then we can deduce from a result by Brislawn [4] that the heat trace of HV (a) is given
by the integration of paV (t, z, z) with respect to z, as in Inahama and Shirai [9].

Lemma 4.2 We set

V −(ε)(z) = inf{V (z′)|d(z, z′) ≤ ε}.

Then there exist positive constants C ′, c such that

p0V (t, z, z) ≤ C ′t−1(t−1/4e−cε
2/t + e−tV

−

ε (z))

for any z ∈ H, ε > 0 and t > 0 satisfying 0 < t < 1 and ε2/t ≥ 1.

Proof. We use the Feynman-Kac representation (See [9]):

p0V (t, z, z) = p00(t, z, z)E
z,z
t [exp

(

−
∫ t

0

V (ls)ds

)

]. (4.2)

Let Ωε,t,z be the set as in Lemma 6 and in this proof we denote simply by Ω. Then it
follows that

Ez,z
t [exp (−

∫ t

0

V (ls)ds)] =

(
∫

Ω

+

∫

Ωc

)

exp

(

−
∫ t

0

V (ls)ds

)

P z,z
t (dl)

≤ P z,z
t (Ω) +

∫

Ωc

exp (−tV −(ε)(z))P
z,z
t (dl)

≤ C ′t−1/4 exp (−cε2/t) + exp (−tV −(ε)(z)), (4.3)

where we used Lemma 3.5 in the last inequality. Then the lemma follows from (4.2) and
(4.3) since p00(t, z, z) = O(1/t) holds as t→ +0 uniformly in z.
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Lemma 4.3 Let ã be any continuous function satisfying the condition (A). We set

V −κ (z) = inf{V (z′)|d(z, z′) ≤ κd(z,
√
−1)}.

Then there exists C > 0 such that, for any δ satisfying 0 < δ < 1,

∫

H

ã
(

d(z,
√
−1)

)

p0V (t, z, z)
1/2m(dz)

≤ Ct−1/2

∫

H

ã
(

d(z,
√
−1)

)

e−tV
−

κ (z)/2m(dz) + Ct−1/8

holds if 0 < t ≤ δ2.

Proof. Let 0 < δ < 1. Applying Lemma 4.2 with ε = δd(z,
√
−1), we find that

p0V (t, z, z)
1/2 ≤ Ct−1/2

(

t−1/8 exp
(

−cδ2d(z,
√
−1)2/(2t)

)

+ exp
(

−tV −(ε)(z)/2
))

holds if ε2/t = δ2d(z,
√
−1)2/t ≥ 1, where we used the inequality (a+ b)1/2 ≤ a1/2 + b1/2.

Then we find that
∫

H

ã(d(z,
√
−1))p0V (t, z, z)1/2m(dz)

=

∫

d(z,
√
−1)≥

√
t/δ

+

∫

d(z,
√
−1)≤

√
t/δ

≤ Ct−5/8

∫

H

exp
(

Cd(z,
√
−1)2

)

exp
(

−cδ2d(z,
√
−1)2/(2t)

)

m(dz)

+Ct−1/2

∫

H

ã(d(z,
√
−1))e−tV

−

(ε)
(z)/2m(dz)

+

∫

d(z,
√
−1)≤

√
t/δ

ã(d(z,
√
−1))p0V (t, z, z)1/2m(dz) (4.4)

holds for any t > 0, where we used the Gaussian bound for ã ∈ G in the inequality.
Then we find that the first term on the rhs of (4.4) is less than or equal to

Ct−5/8

∫ ∞

0

exp
(

Cρ2 − cρ2/(2t)
)

sinh ρ dρ

≤ C ′t−5/8

∫ ∞

0

exp
(

−(c/(2t)− C − 1)ρ2
)

dρ

= C ′t−5/8(c/(2t)− C − 1)−1/2

∫ ∞

0

e−y
2

dy

≤ C ′′t−1/8

holds if 0 < t < c/(4(C + 1)), where we changed the variable y = (c/(2t)− C − 1)1/2ρ.
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Since ã is continuous near ρ = 0, we find that the third term on the rhs of (4.4) is less
than or equal to

Ct−1/2

(

sup
0≤ρ≤1

ã(ρ)

)
∫

√
t/δ

0

sinh ρ dρ

≤ C ′
(

sup
0≤ρ≤1

ã(ρ)

)

δ−2t1/2

holds if 0 < t < δ2, where we used the fact that p0V (t, z, z) ≤ p00(t, z, z) = O(t−1) holds
as t→ +0 by the Feynman-Kac formula. This completes the proof.

Using the continuity and the reality of the kernel paV (t, z, z), which follows from
Proposition 4.1 and the self-adjointness of HV (a), respectively, we obtain

paV (t, z, z) = p00(t, z, z)E
z,z
t [cos

(
∫ t

0

a(ls) ◦ dls
)

exp

(

−
∫ t

0

V (ls)ds

)

]

as in the proof of Theorem 1 in Matsumoto [12]. This expression of the kernel leads us to
the trace version dia-magnetic inequality Tr e−tHV (a) ≤ Tr e−tHV (0). Then, using Schwarz’
inequality, we have, for any δ satisfying 0 < δ < 1,

|paV (t, z, z)− p0V (t, z, z)|

≤ p00(t, z, z)E
z,z
t [

1

2

∣

∣

∣

∣

∫ t

0

a(ls) ◦ dls
∣

∣

∣

∣

2

exp (−
∫ t

0

V (ls)ds)]

≤ 1

2
p00(t, z, z)

(

Ez,z
t [

∣

∣

∣

∣

∫ t

0

a(ls) ◦ dls
∣

∣

∣

∣

4

]

)1/2
(

Ez,z
t [exp

(

−
∫ t

0

2V (ls)ds

)

]

)1/2

=
1

2
p00(t, z, z)

1/2

(

Ez,z
t [

∣

∣

∣

∣

∫ t

0

a(ls) ◦ dls
∣

∣

∣

∣

4

]

)1/2

p0,2V (t, z, z)
1/2

≤ Cδt
3/2ã

(

(1 + δ)d(z,
√
−1)

)2
p0,2V (t, z, z)

1/2 (4.5)

for some Cδ > 0, where we used the estimate | cos x − 1| ≤ |x|2/2 in the first inequality
and used Proposition 3.6 and the estimate p00(t, z, z) = O(t−1) in the third inequality.

Since the function ã(cρ)2 belongs to the class G, it follows from Lemma 4.3 (replaced
ã(ρ) and V by ã((1 + δ)ρ)2 and 2V , respectively) that, for any δ satisfying 0 < δ < 1,
there exist Cδ > 0 such that

∫

H

|paV (t, z, z)− p0V (t, z, z)|m(dz)

≤ Cδt
3/2

∫

H

ã
(

(1 + δ)d(z,
√
−1)

)2
p0,2V (t, z, z)

1/2m(dz)

≤ (Cδ)
2t3/2

(

t−1/2

∫

H

ã
(

(1 + δ)d(z,
√
−1)

)2
e−tV

−

δ (z)m(dz) + t−1/8

)

holds if 0 < t < 1/(Cδ)
2. Then we complete the proof of Theorem 1.1 by choosing Cδ

larger.
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4.2 Proof of Corollary 1.3

Before proceeding to the proof, we make a reduction. The condition (1.4) implies that,
for any ε > 0, there exists Cε > 0 such that

(1− ε)A exp (α d(z,
√
−1))− Cε ≤ V (z) ≤ (1 + ε)A exp (α d(z,

√
−1)) + Cε

holds for all z ∈ H. We set W α
A(z) = A exp (α d(z,

√
−1)) for any A > 0 and α > 0.

Then the min-max principle (Reed and Simon [14]) yields that, for any ε > 0, there exists
Cε > 0 such that

N(HWα
(1+ε)A

(a) < λ− Cε) ≤ N(HV (a) < λ) ≤ N(HWα
(1−ε)A

(a) < λ+ Cε) (4.6)

holds for any vector potentials a satisfying the condition (A). If we assume that Corollary
1.3 holds for V = A exp (α d(z,

√
−1)) for any A > 0 and α > 1, it follows from (4.6) that,

for any ε > 0,

N(HWα
(1+ε)A

(a) < λ− Cε)/(λ− Cε)
1+1/α · (λ− Cε)

1+1/α

λ1+1/α

≤ N(HV (a) < λ)/λ1+1/α

≤ N(HWα
(1−ε)A

(a) < λ+ Cε)/(λ+ Cε)
1+1/α · (λ+ Cε)

1+1/α

λ1+1/α

holds, from which we obtain the results for general V s by taking a limit ε → +0 af-
ter λ → ∞. Therefore, in the rest of this subsection, we may assume that V (z) =
A exp (α d(z,

√
−1)) for all z.

One can also verify that the assumptions (A.1) and (A.2) of the main theorem in
Inahama and Shirai [9] are fulfilled in our situation (by a direct computation, or see
Section 7 in [9]). So, the main theorem in [9] tells us that

lim
λ→∞

N(HV (0) < λ)/λ1+1/α =
1

2

α

α + 1
A−1/α,

or equivalently, by Karamata’s Tauberian theorem,

lim
t→+0

t1+1/αTr e−tHV (0) = lim
λ→∞

1

(2π)2λ1+1/α

∣

∣{(z, ξ) ∈ T∗H|y2|ξ|2/2 + V (z) < λ}
∣

∣

=
1

2

α

α + 1
A−1/αΓ(2 +

1

α
), (4.7)

where | · | denotes the four dimensional Lebesgue measure and Γ is the Gamma function.
By Remark 3.2 after the proof of Lemma 3.1 and Theorem 1.1 with ã(ρ) = Ceβρ, we

find that, for any δ > 0 satisfying 0 < δ < 1, there exists Cδ > 0 such that

0 ≤ Tr e−tHV (0) − Tr e−tHV (a)

≤ Cδt

∫

H

exp
(

2βd(z,
√
−1)

)

e−tV
−

δ (z)m(dz) + Cδt
11/8 (4.8)
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if 0 < t < 1/Cδ.
Using the triangle inequality, we observe that the condition d(z, z ′) ≤ δd(z,

√
−1)

implies that d(z′,
√
−1)≥d(z,

√
−1)− d(z, z′)≥ (1− δ)d(z,

√
−1), so we obtain the lower

bound V −δ (z)≥A exp
(

(1− δ)αd(z,
√
−1)

)

. Then it follows that, forN > 0 suitably chosen
below, the first term on the rhs of (4.8) is less than or equal to

Cδt

∫ ∞

0

exp (2βρ) exp (−tA exp ((1− δ)αρ)) sinh ρ dρ

= Cδt

∫ ∞

0

exp (2βρ) (tA exp ((1− δ)αρ))−N

× (tA exp ((1− δ)αρ))N exp (−tA exp ((1− δ)αρ)) sinh ρ dρ

≤ CδA
−N
(

sup
0≤X

XNe−X
)

t1−N
∫ ∞

0

exp
[

(2β + 1−N(1− δ)α) ρ
]

dρ.

The last integral converges if we set N = 2β+1
(1−δ)α

+ δ. Then, since

1−N = −
(

1 +
1

α

)

+
2(α− β)

(1− δ)α
−
(

2α+ 1

(1− δ)α
+ 1

)

δ,

we can choose δ > 0 so small that 1−N > −(1 + 1/α) because of the assumption α > β.
Then we conclude that the rhs of (4.8) is of order o(t−1−1/α) as t → +0 for any fixed δ.
Hence, by Karamata’s Tauberian theorem and (4.7), we completes the proof of Corollary
1.3.

4.3 Proof of Corollary 1.4

We may assume that V (z) = Ad(z,
√
−1)α for all z ∈ H without loss of generality. To see

this, we observe that the condition (1.5) implies that, for any ε > 0, there exists Cε > 0
such that

(1− ε)Ad(z,
√
−1)α − Cε ≤ V (z) ≤ (1 + ε)Ad(z,

√
−1)α + Cε

holds for all z ∈ H. Then we can show the claim by the min-max argument as in the
reduction at the beginning of the preceding subsection.

We formulate Kohlbecker’s Tauberian theorem following Bingham, Goldie and Teugels
[3]. For any ρ ≥ 0 and any positive function f on [0,∞), we say that f belongs to the
class Rρ if limx→∞ f(λx)/f(x)=λ

ρ holds for each λ > 0. For any locally bounded function
on [0,∞) satisfying the condition limx→∞ f(x)=∞, we set f←(x)=inf{y ≥ 0|f(y) > x}.
We write f(x) ∼ g(x) as x → ∞ if limx→∞ f(x)/g(x)=1 holds. For any f ∈ Rρ, there
exists g ∈ R1/ρ such that f(g(x)) ∼ g(f(x)) ∼ x holds as x →∞, and g is unique in the
sense of the asymptotic equivalence ∼. Moreover, f← is one version of g (See Theorem
1.5.12 in [3]). Then Kohlbecker’s Tauberian theorem ([3], Theorem 4.12.1) is formulated
as follows.

Theorem 4.4 Let µ be a measure on [0,∞), which is finite on every compact sets. Let
α > 1, c > 0 and φ ∈ Rα. We set ψ(x) = φ(x)/x. The the following two statements 1
and 2 are equivalent.
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1. log µ([0, λ)) ∼ cφ←(λ) holds as λ→∞.

2. logLµ(t) ∼ (α− 1)(c/α)α/(α−1)ψ←(1/t) holds as t→ +0.

Here, Lµ(t) =
∫∞

0
e−tλµ(dλ) is the Laplace transform of µ.

Lemma 4.5 Let α > 0. Then

∫ R

0

ρα sinh ρ dρ = Rα coshR − α

2
Rα−1eR(1 + o(1))

holds as R→∞.
In addition, if α > 1, we have

∫ R

0

ρα cosh ρ dρ = Rα sinhR − α

2
Rα−1eR(1 + o(1))

as R→∞.

Proof. Using integration by parts, we find that

∫ R

0

ρα sinh ρ dρ = ρα cosh ρ|R0 − α

∫ R

0

ρα−1 cosh ρ dρ

= Rα coshR− αRα−1 sinhR + α(α− 1)

∫ R

0

ρα−2 sinh ρ dρ. (4.9)

We note that the last integral is finite since α > 0. The last integral in (4.9) is equal to

∫ R/2

0

ρα−2 sinh ρ dρ+

∫ R

R/2

ρα−2 sinh ρ dρ

≤ sinh (R/2)

∫ R/2

0

ρα−2dρ + ρα−2 cosh ρ
∣

∣

R

R/2
− (α− 2)

∫ R

R/2

ρα−3 cosh ρ dρ

≤ O(Rα−2eR) + |α− 2| coshR
∫ R

R/2

ρα−3dρ

= O(Rα−2eR)

as R→∞, where we used an integration by parts in the first inequality. Note that all the
integrals above are finite since α > 0 and sinh ρ = O(ρ) near ρ = 0. The rest of assertion
follows from the relation

∫ R

0

ρα cosh ρ dρ = ρα sinh ρ|R0 − α

∫ R

0

ρα−1 sinh ρ dρ

and the first assertion.
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We introduce the volume function

µsc(λ) =
1

(2π)2

∣

∣

{

(z, ξ) ∈ T∗H|y2|ξ|2/2 + V (z) < λ
}
∣

∣ .

Here | · | stands for the four dimensional Lebesgue measure.

Lemma 4.6 Let α > 1 and V (z) = Ad(z,
√
−1)α. Then we have

lim
λ→∞

λ−1/α log µsc(λ) = A−1/α

and

lim
t→+0

t1/(α−1) logLµsc(t) = (α− 1)α−α/(α−1)A−1/(α−1).

Proof. A direct computation leads us to

µsc(λ) =
1

2π

∫

{V <λ}
(λ− V (z))m(dz). (4.10)

Thus we may assume that A = 1 considering the scaling λ → λ/A. Then it follows that
the rhs of (4.10) is equal to

∫ λ1/α

0

(λ− ρα) sinh ρ dρ =
α

2
λ(α−1)/αeλ

1/α

(1 + o(1))

as λ → ∞, where we used Lemma 4.5 with R = λ1/α. The first assertion follows just by
taking logarithm.

The second assertion follows from Kohlbecker’s Tauberian theorem 4.4 with µ = µsc,
c = A−1/α, φ(x) = xα, φ←(x) = x1/α, ψ(x) = xα−1 and ψ←(x) = x1/(α−1).

For any ε > 0, we introduce the auxiliary potential

V +
(ε)(z) = sup{V (z′)|d(z, z′) ≤ ε}

and the associated volume function

µsc,ε(λ) =
1

(2π)2

∣

∣

∣

{

(z, ξ) ∈ T∗H|y2|ξ|2/2 + V +
(ε)(z) < λ

}
∣

∣

∣
.

Lemma 4.7 Let µsc,ε be as above. Under the same assumption as in Lemma 4.6, we have

lim
ε→+0

lim
t→+0

t1/(α−1) logLµsc,ε(t) = (α− 1)α−α/(α−1)A−1/(α−1).
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Proof. We first show that limλ→∞ λ
−1/α log µsc,ε(λ) exists for all ε > 0, and

lim
ε→+0

lim
λ→∞

λ−1/α log µsc,ε(λ) = A−1/α.

We may consider the case of A = 1 by considering the scaling λ→ λ/A. By the triangle
inequality, one can find that V +

(ε)(z)=inf{d(z′,
√
−1)α|d(z, z′) ≤ ε}=(d(z,

√
−1) + ε)α for

large z and small ε > 0. Then we have

µsc,ε(λ) =

∫ λ1/α−ε

0

(λ− (ρ + ε)α) sinh ρdρ

=

∫ λ1/α

ε

(λ− ρα) sinh (ρ− ε)dρ

=

∫ λ1/α

0

(λ− ρα) sinh (ρ− ε)dρ

−
∫ ε

0

(λ− ρα) sinh (ρ− ε)dρ, (4.11)

where we changed the variable ρ+ ε→ ρ in the second inequality. The second integral on
the rhs of (4.11) is of order O(λ) as λ→∞. Using the elementary relation sinh (x + y) =
sinh x cosh y + cosh x sinh y, by Lemma 4.5, we find that the first integral on the rhs of
(4.11) is equal to

cosh ε

∫ λ1/α

0

(λ− ρα) sinh ρdρ− sinh ε

∫ λ1/α

0

(λ− ρα) cosh ρdρ

= cosh εµsc(ε)− sinh ε ·O(λ(α−1)/αeλ
1/α

)

as λ→∞.
Finally, Kohlbecker’s Tauberian theorem 4.4 completes the proof as in the proof of

Lemma 4.6.

Lemma 4.8 Let V (z) ∈ C(H,R). Assume that there exists f ∈ C([0,∞),R) such that
limρ→∞ f(ρ) = ∞ holds and V (z) ≥ d(z,

√
−1)f(d(z,

√
−1)) holds for all z ∈ H. Then

the integral
∫

H
e−tV (z)m(dz) if finite for any t > 0.

Proof. We put Rt = inf{ρ > 0|f(ρ) > 2/t} for any t > 0. Using the expression m(dz) =
sinh ρ dρdθ in the geodesic polar coordinate, we have

∫

H

e−tV (z)m(dz) ≤ 2π

∫ ∞

0

e−tρf(ρ) sinh ρ dρ

≤ π

∫ ∞

0

e−tρf(ρ)+ρ dρ

= π

∫ Rt

0

e−tρf(ρ)+ρ dρ+ π

∫ ∞

Rt

e−tρf(ρ)+ρ dρ

≤ C eRt +

∫ ∞

Rt

e−ρ dρ

≤ C eRt + C ′
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for some C,C ′ > 0 independent of t > 0.

The conclusion of the above lemma is identical to the condition (A.1) in [9], in partic-
ular, the assumption (A.1) in [9] is fulfilled for V (z) = Ad(z,

√
−1)α if α > 1. Then we

can deduce that, for any δ > 0, there exists Tδ > 0 such that the inequality

Lµsc,ε(t)(1− δ) ≤ Tr e−tHV (0) ≤ Lµsc(t)(1 + δ) (4.12)

holds if 0 < t ≤ Tδ. In fact, this has been proven in subsections 5.2 and 5.3 in [9] (See
Lemma 5.2, Lemma 5.3, Lemma 5.5 and Lemma 5.6 in [9]) with no assumption but (A.1).

Lemma 4.9 Under the same assumption as in Lemma 4.6, we have the asymptotics

lim
t→+0

t1/(α−1) log Tr e−tHV (0) = (α− 1)α−α/(α−1)A−1/(α−1),

or equivalently,

lim
λ→∞

λ−1/α logN(HV (0) < λ) = A−1/α.

Proof. We take logarithm of (4.12) and take a limit ε→ +0 after a limit t→ +0. Then
the first asymptotic formula follows from Lemma 4.6 and Lemma 4.7. The second formula
is a consequence of Kohlbecker’s theorem.

Lemma 4.10 Assume that ã belongs to the class G and ã is sub-exponential, i.e., for any
δ > 0, there exists Cδ > 0 such that ã(ρ) ≤ Cδ e

δρ holds for any ρ > 0. Then, for any δ
satisfying 0 < δ < 1, there exists Cδ > 0 such that

0 ≤ Tr e−tHV (0) − Tr e−tHV (a) ≤ Cδ(At)
−1/α exp

(

C(α, δ)(1− δ)
1+α
1−α (At)−1/(α−1)

)

holds if 0 < t ≤ 1/Cδ, where we set

C(α, δ) = (α− 1)

(

1 + δ

α

)α/(α−1)

.

Proof. Let V −δ be as above. Using the triangle inequality, one can observe that

V −δ ≥ inf{A
(

d(z,
√
−1)− d(z, z′)

)α |d(z, z′) ≤ δ d(z,
√
−1)}

≥ A(1− δ)αd(z,
√
−1)α.

By Theorem 1.1 and the assumption on ã(ρ), we find that, for any δ satisfying 0 < δ < 1,

0 ≤ Tr e−tHV (0) − Tr e−tHV (a)

≤ Cδ

∫ ∞

0

ã((1 + δ)ρ)2e−tA(1−δ)αρα sinh ρ dρ

≤ Cδ

∫ ∞

0

exp (−tA(1− δ)αρα + (1 + δ)ρ)dρ (4.13)
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holds for small t > 0, where we used the fact that the sub-exponential property of ã yields
that ã((1 + δ)ρ) ≤ Cδe

δρ holds, in the second inequality.
We use the following elementary inequality

(1 + δ)ρ ≤ ερα + (α− 1)

(

1 + δ

α

)α/(α−1)

ε−1/(α−1)

for any ρ > 0, ε > 0, δ > 0 and α > 1. We can show this by considering the minimum of
the function f(ρ) = ερα − (1 + δ)ρ. Then it follows that, for small ε > 0 suitably chosen
below, the first integral on the rhs of (4.13) is less than or equal to

Cδ exp
(

C(α, δ)ε−1/(α−1)
)

∫ ∞

0

exp (−tA(1− δ)αρα + ερα)dρ

= Cδ exp
(

C(α, δ)ε−1/(α−1)
)

(tA(1− δ)α − ε)−1/α

(
∫ ∞

0

e−y
α

dy

)

,

where the constant C(α, δ) is as above and we changed the variable yα = (tA(1−δ)α−ε)ρα
in the second equality. Finally we have the lemma by setting ε = tA(1− δ)α+1.

Lemma 4.11 Let V and a satisfy the same assumption as in Corollary 1.4. Then, for
any small ε > 0, there exists Cε > 0 such that the inequality Tr e−(1+ε)tHWε (0) ≤ Tr e−tHV (a)

holds for any t > 0, where the potential Wε is given by Wε(z) = Ad(z,
√
−1)α + Cε.

Proof. Because of the min-max theorem, it suffices to show that

(f,HV (a)f) ≤ (1 + ε)(f,HWε(0)f)

holds for any f ∈ C∞0 (H).
We denote −

√
−1∂x and −

√
−1∂y by Dx and Dy, respectively. Let a = (a1, a2) as

before. In this proof we often use the fact that, for any ε > 0, there exists Cε > 0 such
that |XY | ≤ εX2 + CεY

2 holds for all X, Y ∈ R.
We first claim that, for any small ε > 0, there exists Cε > 0 such that

|(f, y2a1Dxf)| ≤ ε(f, y2D2
xf) + Cε‖ya1f‖2, (4.14)

|(f, y2a2Dyf)| ≤ ε(f, y2D2
yf) + Cε‖ya2f‖2 + Cε‖f‖2 (4.15)

hold for any f ∈ C∞0 (H). Indeed, writing |(f, y2a1Dxf)| ≤ ‖yDxf‖‖ya1f‖ =: XY , we
can obtain (4.14) by the elementary inequality stated above. Similarly, for any ε > 0, we
have

‖yDyf‖2 = (f,Dyy
2Dyf) ≤ 2|(f, yDyf)|+ (f, y2D2

yf)

≤ ε‖yDyf‖2 + (f, y2D2
yf) + Cε‖f‖2
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for some Cε > 0, from which we have

‖yDyf‖2 ≤ 1

1− ε
(f, y2D2

yf) +
Cε

1− ε
‖f‖2. (4.16)

Then we obtain that

|(f, y2a2Dyf)| ≤ ‖ya2f‖‖yDyf‖
≤ ε‖yDyf‖2 + Cε‖ya2f‖2

≤ ε

1− ε
(f, y2D2

yf) +
εCε

1− ε
‖f‖2 + Cε‖ya2f‖2,

where we used (4.16) in the last inequality. Thus, by setting ε(1 − ε)−1 = ε′, we have
shown the claim.

If we denote by < the real part of a complex number, then

(f,HV (a)f) = <(f,HV (a)f)

= −1

2
(f,4Hf)−<(f, y2a1Dxf)− <(f, y2a2Dyf)

−1

2
<(f, y2 ((Dxa1) + (Dya2)) f) +

1

2
(f, y2

(

a2
1 + a2

2

)

f) + (f, V f)

= −1

2
(f,4Hf)−<(f, y2a1Dxf)− <(f, y2a2Dyf)

+
1

2
(f, y2

(

a2
1 + a2

2

)

f) + (f, V f)

holds for any f ∈ C∞0 (H). Then it follows from (4.14), (4.15) that

HV (a) ≤ −(1 + ε)
1

2
4H + V (z) + Cε

(

y2(a2
1 + a2

2) + 1
)

≤ −(1 + ε)
1

2
4H + Ad(z,

√
−1)α + Cε

(

d(z,
√
−1)2β + 1

)

≤ −(1 + ε)
1

2
4H + (1 + ε)Ad(z

√
−1)α + Cε

holds on C∞0 (H), since the assumption 2β < α implies that, for any ε > 0, there exists
Cε > 0 such that ρ2β ≤ ερα + Cε holds for any ρ ≥ 0. This completes the proof.

By the same argument at the beginning of this subsection, one can observe that Lemma
4.9 holds also for the potential of the form V (z) = Ad(z,

√
−1)α + C for any C > 0. We

set C(α, 0) = (α − 1)α−α/(α−1). Let Wε be as in the previous lemma. Applying Lemma
4.9 to V =Wε, we find that, for any small δ > 0, ε > 0 fixed,

Tr e−(1+ε)tHWε ≥ e−t(1+ε)Cε exp
(

C(α, 0) (A(1 + ε)t)−1/(α−1) (1− δ)
)

holds for small t > 0. Then it follows from Lemma 4.10 and Lemma 4.11 that, for any
small δ > 0 and ε > 0 fixed,

∣

∣

∣

∣

Tr e−tHV (0) − Tr e−tHV (a)

Tr e−(1+ε)tHWε (0)

∣

∣

∣

∣

≤ et(1+ε)CεCδ(At)
−1/α exp

((

C(α, δ)

(1− δ)
1+α
α−1

− (1− δ)C(α, 0)

(1 + ε)1/(α−1)

)

(At)−1/(α−1)

)

(4.17)
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holds for small t > 0.
Then, using the inequality log (1 +X) ≤ log 2 + | logX| for any X > 0, we find that,

for any small δ > 0 and ε > 0 fixed,

0 ≤ log Tr e−tHV (0) − log Tr e−tHV (a)

= log

(

1 +
Tr e−tHV (0) − Tr e−tHV (a)

Tr e−tHV (a)

)

≤ log

(

1 +
Tr e−tHV (0) − Tr e−tHV (a)

Tr e−(1+ε)tHWε (0)

)

≤ log 2 +

∣

∣

∣

∣

log

(

Tr e−tHV (0) − Tr e−tHV (a)

Tr e−(1+ε)tHWε (0)

)
∣

∣

∣

∣

≤ O(| log t|) +
∣

∣

∣

∣

∣

C(α, δ)

(1− δ)
1+α
α−1

− (1− δ)C(α, 0)

(1 + ε)1/(α−1)

∣

∣

∣

∣

∣

(At)−1/(α−1) (4.18)

holds for all small t > 0, where we used Lemma 4.11 in the second inequality and used
(4.17) in the last inequality. Then we conclude that

lim
t→+0

t1/(α−1)
∣

∣log Tr e−tHV (0) − log Tr e−tHV (a)
∣

∣ = 0

by taking a limit δ, ε → +0 after taking lim supt→+0, since the coefficient of t−1/(α−1)

on the rhs of (4.18) tends to zero as δ, ε → +0. Hence, by Lemma 4.9, we obtain the
asymptotic relation

lim
t→+0

t1/(α−1) logTr e−tHV (a) = (α− 1)α−α/(α−1)A−1/(α−1),

from which Corollary 1.4 follows via Kohlbecker’s theorem.

5 Proof of Proposition 3.6

In this section we give a proof of Proposition 3.6 accepted in Section 3 and Section 4.
To the end of this section, we write p(t, z, z′) for the heat kernel p00(t, z, z

′) for sim-
plicity. The notation ∇ log p(t, z0, z

′) stands for
(∂x log p(t, ·, z′)dx+ ∂y log p(t, ·, z′)dy) |z=z0, i.e., the exterior differentiation with respect
to the second variable of p. We shall use the notations ∂x log p(t, z, z

′), ∂y log p(t, z, z
′) in

a similar manner.

Lemma 5.1 Let T > 0. Then there exists CT > 0 such that

‖∇ log p(t, z, z′)‖ ≤ CT (1 + d(z, z′)/t)

holds for any (t, z, z′) ∈ (0, T ]×H×H. Here ‖ · ‖ is the norm on T∗zH as in Section 1.

Proof. This is a special case of Theorem 4.4 (1) in Aida [1].
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We consider H as the upper-half space of R2. Let z, z′ ∈ H, T > 0 and let w =
(w1, w2) ∈ W (2). We consider the following SDE on R2 for {ζt}0≤t<T={(ξt, ηt)}0≤t<T :

(SDE)

{

dξt = ηt (dw
1
t + ηt∂x log p(T − t, ζt, z

′)dt) ,
dηt = ηt (dw

2
t + ηt∂y log p(T − t, ζt, z

′)dt)

with initial condition ζ0 = z.

Lemma 5.2 The following assertions hold:

1. The solution {ζt}0≤t<T exists as a stochastic process on H.

2. We have the limit limt↗T ζt = z′ a.s.

3. The law of {ζt}0≤t≤T is P z,z′

T .

Proof. Let z, z′ ∈ H. Up to the explosion time τ∞ = limN→∞ inf{t|0 ≤ t ≤ T, d(ζt,
√
−1) ≥

N}, the above (SDE) has the existence and uniqueness of solutions, since the coefficients
of (SDE) are locally Lipschitz. Now we show that τ∞ ≥ T ′ for any positive T ′(< T ) given,

and the law of {ζt}0≤t≤T ′ is P
z,z′

T |BT ′ .
Let Zt = (Xt, Yt) = Z(t, z, w) be the solution of the SDE (2.1). Put et = p(T −

t, Zt, z
′)/p(T, z, z′) and

Kt =

∫ t

0

Ys∂x log p(T − s, Zs, z
′)dw1

s +

∫ t

0

Ys∂y log p(T − s, Zs, z
′)dw2

s .

We use Girsanov’s theorem. Recall that P (2) is the Wiener measure on W (2). We define
a new measure P̂ by P̂ = eT ′P

(2). Applying Itô’s formula to log et = log p(T − t, Zt, z
′)−

log p(T, z, z′), we have

d log et = Yt∂x log p(T − t, Zt, z
′)dw1

t + Yt∂y log p(T − t, Zt, z
′)dw2

t

−1

2
‖∇ log p(T − t, Zt, z

′)‖2dt

= dKt −
1

2
d〈K〉t,

where we used the easily verified formula

∂t log p =
1

2
4H log p+

1

2
‖∇p‖2

for the heat kernel p. Then we conclude that et = exp (Kt − 〈K〉t/2) since log e0 = 0. We
note that since {et}0≤t≤T ′ is a bounded, local martingale, so {et}0≤t≤T ′ is a martingale.
Then Girsanov’s theorem says that the process {w̃t}0≤t≤T ′ defined by

{

dw̃1
t = dw1

t − Yt∂x log p(T − t, Zt, z
′)dt,

dw̃2
t = dw2

t − Yt∂y log p(T − t, Zt, z
′)dt
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is a two dimensional Brownian motion under P̂ . Hence it follows from the SDE (2.1) that
{Zt}0≤t≤T ′ is a solution to (SDE) under P̂ . This shows that τ∞ ≥ T ′, and it is well-known

that, under P̂ , the law of {Zt}0≤t≤T ′ is P
z,z′

T |BT ′ . In particular, the solution {ζt}0≤t<T

exists since τ∞ also has the unique law.
To complete the proof, it is suffice to show that the assertion 2, from which the

assertion 3 obeys because of the above argument. This follows from the facts that the map
(w → limt↗T ζt(w)) is σ(ζt|t < T )-measurable and that we have the limit limt↗T lt = z′

a.s. under P z,z′

T .

Lemma 5.3 Let {ζt}0≤t≤T be the solution to (SDE) as above. Let a ∈ C1(H,R2). Then
we have the following assertions:

1. The Stratonovich integral
∫ T

0
a(ζt)◦dζt is a well-defined, real-valued random variable,

or equivalently,
∫ T

0
a(lt) ◦ dlt is well-defined under P z,z′

t .

2. Let {aj}∞j=1 ⊂ C∞0 (H,R2). Assume that aj → a and ∇aj → ∇a as j → ∞
uniformly on every compact subsets. Then

∫ T

0
aj(ζt) ◦ dζt converges to

∫ T

0
a(ζt) ◦ dζt

in probability as j →∞.

Proof. Since the well-definedness of the Stratonovich integral
∫ T ′

0
a(ζt) ◦ dζt follows from

Lemma 5.2 as long as 0 < T ′ < T , it suffice to show the well-definedness near t = T .
Recall that the law of {ζt}0≤t≤T is P z,z′

T by Lemma 5.2, and note that the law of the time-

reverse process {lT−t}0≤t≤T is P z′,z
T because of the anti-symmetricity of the Stratonovich

integral with respect to the time-reversal. Then this time-reverse t→ T − t transfers the
problem near t = T to that near t = 0, so the assertion 1 obeys.

We show the assertion 2. Using (SDE), we find that
∫ T

0

a1(ζt) ◦ dξt =

∫ T

0

a1(ζt)dξt +
1

2

∫ T

0

η2
t (∂xa1)(ζt)ds

=

∫ T

0

ηta1(ζt)dw
1
t +

∫ T

0

a1(ζt)(ηt)
2∂x log p(T − t, ζt, z

′)dt

+
1

2

∫ T

0

η2
t (∂xa1)(ζt)dt (5.1)

for any a1 ∈ C2(H,R2). We consider the first term on the rhs of (5.1) since a similar
argument works for the second and third terms.

Let δ > 0. We introduce a first exit time τN = inf{t|0 ≤ t ≤ T, d(ζt,
√
−1) ≥ N}.

Then for any ε > 0 there exists N0 > 0 such that P ({w|τN0 < T}) ≤ ε, since the image
{ζt}0≤t≤T on H is compact a.s. by Lemma 5.2. So, it follows that

P

(

{w|
∣

∣

∣

∣

∫ T

0

ηta1(ζt)dw
1
t −

∫ T

0

ηta1,j(ζt)dw
1
t

∣

∣

∣

∣

> δ}
)

≤ P

(

{w|
∣

∣

∣

∣

∫ T

0

ηta1(ζt)dw
1
t −

∫ T

0

ηta1,j(ζt)dw
1
t

∣

∣

∣

∣

> δ, τN0 ≥ T}
)

+ ε, (5.2)
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where a1,j stands for the first component of aj.
On the other hand, for any ε > 0, there exists j0 > N such that

sup{|ya1(z)− ya1,j(z)||d(z,
√
−1) ≤ N0} ≤ ε.

Then Burkholder’s inequality yields that

E[

∣

∣

∣

∣

∫ T∧τN0

0

(ηta1(ζt)− ηta1,j(ζt)) dw
1
t

∣

∣

∣

∣

2

]

≤ E[

∫ T∧τN0

0

|ηta1(ζt)− ηta1,j(ζt)|2 dt]

≤ ε2T

for all j ≥ j0. Hence, Chebyshev’s inequality yields that

P

(

{w|
∣

∣

∣

∣

∫ T

0

ηta1(ζt)dw
1
t −

∫ T

0

ηta1,j(ζt)dw
1
t

∣

∣

∣

∣

> δ, τN0 ≥ T}
)

= P

(

{w|
∣

∣

∣

∣

∫ T∧τN0

0

ηta1(ζt)dw
1
t −

∫ T∧τN0

0

ηta1,j(ζt)dw
1
t

∣

∣

∣

∣

2

> δ2, τN0 ≥ T}
)

≤ ε2T/δ2 (5.3)

for all j ≥ j0. Finally it follows from (5.2) and (5.3) that, for any ε > 0, there exists j0

such that

P

(

{w|
∣

∣

∣

∣

∫ T

0

ηta1(ζt)dw
1
t −

∫ T

0

ηta1,j(ζt)dw
1
t

∣

∣

∣

∣

> δ}
)

≤ ε2T/δ2 + ε

holds for all j ≥ j0. Then the arbitrariness of ε > 0 shows that
∫ T

0
a1,j(ζt)dξt converges

to
∫ T

0
a1(ζt)dξt in probability as j → ∞. The same conclusion holds for the case of

∫ T

0
a2(ζt) ◦ dζt. We completes the proof.

Let 0 < ε ≤ 1 and z ∈ H. We consider the following SDE for ζ εt = (ξεt , η
ε
t ):

(SDE)ε

{

dξεt = ηεt (εdw
1
t + ε2ηεt∂x log p(ε

2(1− t), ζεt , z)dt) ,
dηεt = ηεt (εdw

2
t + ε2ηεt∂y log p(ε

2(1− t), ζεt , z)dt)

with initial condition ζε0 = z.

Lemma 5.4 Let {ζt}0≤t≤ε2 be the solution to (SDE) with z′ = z and T = ε2. Then we
have the following assertions:

1. The process {ζε2t}0≤t≤1 has the same law as {ζεt }0≤t≤1. In particular, the condition
ζε0 = ζε1 = z is fulfilled.
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2. Let a ∈ C1(H,R2). Then
∫ ε2

0
a(ζt) ◦ dζt and

∫ 1

0
a(ζεt ) ◦ dζεt have the same law. In

particular, we have

E[

∣

∣

∣

∣

∣

∫ ε2

0

a(ζt) ◦ dζt

∣

∣

∣

∣

∣

4

] = Ez,z
ε2 [

∣

∣

∣

∣

∣

∫ ε2

0

a(lt) ◦ dlt

∣

∣

∣

∣

∣

4

] = E[

∣

∣

∣

∣

∫ 1

0

a(ζεt ) ◦ dζεt
∣

∣

∣

∣

4

].

Proof. The pathwise uniqueness of solutions to (SDE)ε can be verified as in the case of
(SDE). Applying the Brownian scaling property t→ ε2t to (SDE), we have the assertion
1.

We show the assertion 2. Let P stand for the partition 0 = t0 < T1 < . . . < tn = ε2 of
[0, ε2] and |P| the size of mesh of P. Obviously, P ′ = (0 = t0/ε

2 < t1/ε
2 . . . < tn/ε

2 = 1)
is a partition of [0, 1]. Then we find that

∫ ε2

0

a(ζt) ◦ dζt = lim
|P|→+0

∑

P

a(ζti) + a(ζti−1
)

2
(ζti − ζti−1

)

= lim
|P ′|→+0

∑

P ′

a(ζε2(ti/ε2)) + a(ζε2(ti−1/ε2))

2
(ζε2(ti/ε2) − ζε2(ti−1/ε2))(5.4)

is well-defined by Lemma 5.3. Here, lim above denotes limit in probability.
On the other hand, it follows from the assertion 1 that the law of the rhs of (5.4)

coincides with that of
∫ 1

0

a(ζεt ) ◦ dζεt = lim
|P ′|→+0

∑

P ′

a(ζεti) + a(ζεti−1
)

2
(ζεti − ζεti−1

).

Here, lim above denotes limit in probability. This proves the assertion 2.

Lemma 5.5 Let z = (x, y) ∈ H and let {ζεt }0≤t≤1 be the solution to (SDE)ε as above.
Let ã be as in Section 1. Assume that b ∈ C(H) and the estimate y|b(z)| ≤ ã(d(z,

√
−1))

holds for all z. Then, for any δ satisfying 0 < δ < 1 and for any n ∈ N, there exists
Cδ > 0 independent of z such that

E[

∫ 1

0

|b(ζεt )|ndt] ≤ Cδy
−nã((1 + δ)d(z,

√
−1))n

holds if 0 < ε < 1/Cδ.

Proof. Let 0 ≤ t ≤ 1, n ∈ N and 0 < δ < 1. By Schwarz’ inequality, we find that

E[|b(ζεt )|n] = E[|ηεt b(ζεt )|n(ηεt )−n]
≤ E[|ηεt b(ζεt )|2n]1/2E[(ηεt )

−2n]1/2

≤ Cy−nE[ã(d(ζεt ,
√
−1)2n]1/2

≤ Cδy
−nã((1 + δ)d(z,

√
−1))n,

where we used the assumption on b and Lemma 3.4 in the second inequality and used
Lemma 3.1 in the last inequality. This shows the lemma.
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Lemma 5.6 Let n ∈ N and let ζεt be as above. Assume that a stochastic process {bt}0≤t≤1

satisfies the condition sup0≤t≤1 E[|bt|2n] <∞. Then

E[

∣

∣

∣

∣

∫ 1

0

dt bt η
ε
t∂ log p(ε

2(1− t), ζεt , z)

∣

∣

∣

∣

n

] ≤ Cε−n sup
0≤t≤1

E[|bt|2n]1/2 (5.5)

holds for some C > 0, independent of z, ε. Here ∂ stands for ∂x or ∂y.

Proof. By Lemma 5.1, we have

|ηεt∂ log p(ε2(1− t), ζεt , z)| ≤ ‖∇ log p(ε2(1− t), ζεt , z)‖

≤ C

(

1 +
d(ζεt , z)

ε2(1− t)

)

.

Then

the lhs of (5.5) ≤ CE[

∣

∣

∣

∣

∫ 1

0

|bt|dt
∣

∣

∣

∣

n

] + Cε−2nE[

∣

∣

∣

∣

∫ 1

0

dt|bt|
d(ζεt , z)

1− t

∣

∣

∣

∣

n

]

≤ C

∫ 1

0

dt E[|bt|n] + Cε−2nE[

∣

∣

∣

∣

∫ 1

0

dt|bt|
d(ζεt , z)

1− t

∣

∣

∣

∣

n

], (5.6)

where we used Jensen’s inequality in the second inequality. The first term on the rhs of
(5.6) is bounded uniformly in ε by the assumption of the lemma.

We consider the second term on the rhs of (5.6). Hölder’s inequality with exponents
p = n, q = n/(n− 1) yields that

∫ 1

0

dt|bt|
d(ζεt , z)

1− t
=

∫ 1

0

dt|bt|
d(ζεt , z)

(1− t)
n+1
2n

1

(1− t)
n−1
2n

≤
(

∫ 1

0

dt|bt|n
d(ζεt , z)

n

(1− t)
n+1

2

)1/n
(
∫ 1

0

dt

(1− t)1/2

)(n−1)/n

≤ C

(

∫ 1

0

dt|bt|n
d(ζεt , z)

n

(1− t)
n+1

2

)1/n

.

Then it follows that the second term on the rhs of (5.6) is less than or equal to

Cε−2n

∫ 1

0

dt E[|bt|nd(ζεt , z)n](1− t)−(n+1)/2

≤ Cε−2n

∫ 1

0

dt E[|bt|2n]1/2E[d(ζεt , z)
2n]1/2(1− t)−(n+1)/2

≤ Cε−2n

∫ 1

0

dt E[|bt|2n]1/2
(

ε2(1− t)
)n/2

(1− t)−(n+1)/2

= Cε−n
∫ 1

0

dt E[|bt|2n]1/2(1− t)−1/2,
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where we used Schwarz’ inequality in the second inequality and used Lemma 3.3, Lemma
5.4 and the invariance of the pinned Brownian motion with respect to time reversal
t→ 1− t in the third inequality. This completes the proof.

To prove Proposition 3.6, it is enough to consider E[
∣

∣

∣

∫ 1

0
a(ζεt ) ◦ dζεt

∣

∣

∣

4

] because of

Lemma 5.4 (2). Moreover, we consider only the integral E[
∣

∣

∣

∫ 1

0
a1(ζ

ε
t ) ◦ dξεt

∣

∣

∣

4

] in the fol-

lowing, since a(ζεt ) ◦ dζεt = a1(ζ
ε
t ) ◦ dξεt + a2(ζ

ε
t ) ◦ dηεt by definition and the same argument

works for E[
∣

∣

∣

∫ 1

0
a2(ζ

ε
t ) ◦ dηεt

∣

∣

∣

4

].

Itô’s formula yields that

a1(ζ
ε
t ) = a1(z) +

∫ t

0

(∂xa1)(ζ
ε
s)dξ

ε
s +

∫ t

0

(∂ya1)(ζ
ε
s)dη

ε
s +

ε2

2

∫ t

0

(4Ha1)(ζ
ε
s)ds

= : a1(z) +D1(t) +D2(t) +D3(t).

Lemma 5.7 Let ã be as in Section 1. For any small ε > 0 and δ > 0, there exists Cδ > 0
such that

E[

∣

∣

∣

∣

∫ 1

0

D3(t) ◦ dξεt
∣

∣

∣

∣

4

] ≤ Cδ ε
12ã
(

(1 + δ)d(z,
√
−1)

)4

holds for all z ∈ H. Here, Cδ is independent of ε, z.

Proof. Using (SDE)ε, we find that the integral
∫ 1

0
D3(t) ◦ dξεt is equal to

∫ 1

0

D3(t)dξ
ε
t =

ε3

2

∫ 1

0

(
∫ t

0

(4Ha1)(ζ
ε
s)ds

)

ηεtdw
1
t

+
ε4

2

∫ 1

0

(
∫ t

0

(4Ha1)(ζ
ε
s)ds

)

(ηεt )
2∂x log p(ε

2(1− t), ζεt , z) dt. (5.7)

Then it follows that

E[|the first term on the rhs of (5.7)|4]

≤ ε12E[

∣

∣

∣

∣

∫ 1

0

(
∫ t

0

(4Ha1)(ζ
ε
s)ds

)

ηεt dw
1
t

∣

∣

∣

∣

4

]

≤ C ε12E[

∣

∣

∣

∣

∣

∫ 1

0

(
∫ t

0

(4Ha1)(ζ
ε
s)ds

)2

(ηεt )
2dt

∣

∣

∣

∣

∣

2

]

≤ C ε12E[

∫ 1

0

(
∫ t

0

(4Ha1)(ζ
ε
s)ds

)4

(ηεt )
4dt]

≤ C ε12

∫ 1

0

dtE[

∫ 1

0

|(4Ha1)(ζ
ε
s)|8ds]1/2E[(ηεt )

8]1/2

≤ Cδ ε
12ã
(

(1 + δ)d(z,
√
−1)

)

, (5.8)

29



where we used Burkholder’s inequality in the second inequality, Jensen’s in the third
inequality, Schwarz’ and Jensen’s in the fourth inequality and used Lemma 3.4 with
α = 8, Lemma 5.5 with b = 4Ha1, n = 8 in the fifth inequality.

Applying Lemma 5.6 to the case of bt = (
∫ t

0
(4Ha1)(ζ

ε
s)ds)η

ε
t and n = 4, we obtain

E[the second term on the rhs of (5.7)] ≤ Cε12 sup
0≤t≤1

E[|bt|8]1/2.

On the other hand, the same argument we have used to prove (5.8) shows that, for small
δ > 0, E[|bt|8]1/2 ≤ Cδã((1 + δ)d(z,

√
−1))4 holds for some Cδ > 0. This completes the

proof.

Lemma 5.8 Let ã be as in Section 1. Let j = 1, 2. For any small ε > 0 and δ > 0, there
exists Cδ > 0 such that

E[

∣

∣

∣

∣

∫ 1

0

Dj(t) ◦ dξεt
∣

∣

∣

∣

4

] ≤ Cδ ε
8ã
(

(1 + δ)d(z,
√
−1)

)4

holds for all z ∈ H. Here, Cδ is independent of ε, z.

Proof. We show the assertion only for the case j = 1 since the proof is similar in the case
of j = 2. Using (SDE)ε, we find that

∫ 1

0

D1(t) ◦ dξεt

=

∫ 1

0

(
∫ t

0

(∂xa1)(ζ
ε
s)dξ

ε
s

)

dξεt +
ε2

2

∫ 1

0

(∂xa1)(ζ
ε
t )(η

ε
t )

2 dt

= ε2

∫ 1

0

(
∫ t

0

(∂xa1)(ζ
ε
s)η

ε
sdw

1
s

)

ηεtdw
1
t

+ε3

∫ 1

0

(
∫ t

0

(∂xa1)(ζ
ε
s)η

ε
sdw

1
s

)

(ηεt )
2∂x log p(ε

2(1− t), ζεt , z)dt

+ε3

∫ 1

0

(
∫ t

0

(∂xa1)(ζ
ε
s)(η

ε
s)

2∂x log p(ε
2(1− s), ζεs , z)ds

)

ηεtdw
1
t

+ε4

∫ 1

0

(
∫ t

0

(∂xa1)(ζ
ε
s)(η

ε
s)

2∂x log p(ε
2(1− s), ζεs , z) ds

)

× (ηεt )
2∂x log p(ε

2(1− t), ζεt , z) dt

+
ε2

2

∫ 1

0

(∂xa1)(ζ
ε
s)(η

ε
t )

2 dt

= : J1 + J2 + J3 + J4 + J5. (5.9)
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We estimate J1. By Burkholder’s inequality, we obtain

E[|J1|4] ≤ C ε8E[

∣

∣

∣

∣

∣

∫ 1

0

(
∫ 1

0

(∂xa1)(ζ
ε
s)η

ε
sdw

1
s

)2

(ηεt )
2dt

∣

∣

∣

∣

∣

2

]

≤ C ε8

∫ 1

0

dt E[

(
∫ 1

0

(∂xa1)(ζ
ε
s)η

ε
sdw

1
s

)4

(ηεt )
4]

≤ C ε8

∫ 1

0

dt E[

(
∫ 1

0

(∂xa1)(ζ
ε
s)η

ε
sdw

1
s

)8

]1/2E[(ηεt )
8]1/2

≤ C ε8y4 E[

∣

∣

∣

∣

∫ 1

0

|(∂xa1)(ζ
ε
s)η

ε
s|2ds

∣

∣

∣

∣

4

]1/2

≤ Cδ ε
8ã
(

(1 + δ)d(z,
√
−1)

)4
, (5.10)

where we used Jensen’s inequality in the second inequality, Schwarz’ in the third inequal-
ity, Burkholder’s and Lemma 3.4 with α = 8 in the fourth inequality, and used Jensen’s
and Lemma 5.5 with b(z) = y∂xa1(z), n = 8 in the last inequality.

We estimate J2. We use Lemma 5.6 with bt = (
∫ t

0
(∂xa1)(ζ

ε
s)η

ε
sdw

1
s)η

ε
t and n = 4. First

we find that

E[|bt|8] ≤ E[

∣

∣

∣

∣

∫ 1

0

(∂xa1)(ζ
ε
s)η

ε
sdw

1
s

∣

∣

∣

∣

16

]1/2E[(ηεt )
16]1/2

≤ Cy8E[

∫ 1

0

|(∂xa1)(ζ
ε
s)η

ε
s|16ds]1/2

≤ Cδã
(

(1 + δ)d(z,
√
−1)

)8
,

where we used Schwarz’ inequality in the first inequality, Burkholder’s, Jensen’s and
Lemma 3.4 with α = 16 in the second and used Lemma 5.5 with b(z) = y(∂xa1)(z) and
n = 16 in the last. Next we apply Lemma 5.6 and obtain

E[|J2|4] ≤ Cε8 sup
0≤t≤1

E[|bt|8]1/2

≤ Cδ ε
8ã
(

(1 + δ)d(z,
√
−1)

)4
. (5.11)

We estimate J3. By Burkholder’s inequality, we have

E[|J3|4] ≤ Cε12E[

∣

∣

∣

∣

∣

∫ 1

0

(
∫ t

0

(∂xa1)(ζ
ε
s)(η

ε
s)

2∂x log p(ε
2(1− s), ζεs , z)ds

)2

(ηεt )
2dt

∣

∣

∣

∣

∣

2

]

≤ Cε12

∫ 1

0

dt E[

(
∫ t

0

(∂xa1)(ζ
ε
s)(η

ε
s)

2∂x log p(ε
2(1− s), ζεs , z)ds

)8

]1/2E[(ηεt )
8]1/2

≤ Cε8y4 sup
0≤t≤1

E[|bt|16]1/4,

where we used Jensen’s and Schwarz’ inequality in the second inequality, and used Lemma
3.4 with α = 8 and Lemma 5.6 with bt = (∂xa1)(ζ

ε
t )η

ε
t , n = 8 in the third inequality. Using
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Lemma 5.5 with b(z) = y(∂xa1)(z) and n = 16, we obtain

E[|bt|16]1/4 ≤ Cδy
−4ã

(

(1 + δ)d(z,
√
−1)

)4
,

hence we have

E[|J3|4] ≤ Cδ ε
8ã
(

(1 + δ)d(z,
√
−1)

)4
. (5.12)

We estimate J4. By Lemma 5.6 with

bt =

(
∫ t

0

(∂xa1)(ζ
ε
s)(η

ε
s)

2∂x log p(ε
2(1− s), ζεs , z)ds

)

ηεt

and n = 4, we obtain

E[|J4|4] ≤ Cε12 sup
0≤t≤1

E[|bt|8]1/2

≤ Cε12E[

∣

∣

∣

∣

∫ t

0

(∂xa1)(ζ
ε
s)(η

ε
s)

2∂x log p(ε
2(1− s), ζεs , z)ds

∣

∣

∣

∣

16

]1/4E[(ηεt )
16]1/4

≤ Cε8y−4 sup
0≤t≤1

E[|(∂xa1)(ζ
ε
s)(η

ε
s)|32]1/8

≤ Cδ ε
8ã
(

(1 + δ)d(z,
√
−1)

)4
, (5.13)

where we used Schwarz’ inequality in the second inequality, Lemma 3.4 with α = 16,
Lemma 5.6 with n = 16 in the third and used Lemma 5.5 with b(z) = y(∂xa1)(z), n = 32
in the last.

We estimate J5. Similarly we have

E[|J5|4] ≤ Cε8

∫ 1

0

dt E[|(∂xa1)(ζ
ε
t )|4(ηεt )8]

= Cε8

∫ 1

0

dt Ez,z
ε2 [|(∂xa1)(lε2t)|4(l2ε2t)8]

≤ Cδ ε
8ã
(

(1 + δ)d(z,
√
−1)

)4
, (5.14)

where we used Lemma 3.1 and the assumption on ε in the last inequality.
Then the lemma follows from (5.9)–(5.14) since

∫ 1

0
a1(z) ◦ dξεt = a1(z)(ξ

ε
1 − ξε0) = 0.

Thus we have proved the following assertion: For δ > 0 small enough, there exists
Cδ > 0 such that

E[

∣

∣

∣

∣

∫ 1

0

a1(ζ
ε
t ) ◦ dξεt

∣

∣

∣

∣

4

] ≤ Cδ ε
8ã
(

(1 + δ)d(z,
√
−1)

)4

holds for all z ∈ H and all ε > 0 satisfying 0 < ε ≤ 1/Cδ.
Then we can deduce Proposition 3.6 as we mentioned after the proof of Lemma 5.6

above.
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6 Continuity of the heat kernel of HV (a)

In this section we give a proof of Proposition 4.1 accepted in Section 3. We follow the
same argument as in the proof of Proposition 6.1 in Broderix, Hundertmark and Leschke
[2].

We introduce some notations. Let WT (H) be the space of all continuous paths from
[0, T ] to H. Define a transformation ·̂ by l̂s = lT−s for any l ∈ WT (H). Let P z be the
diffusion measure corresponding to 4H/2 with starting point z ∈ H. Then {P z}z∈H is
reversible with respect to m(dz), i.e.,

∫

H

m(dz)

∫

WT (H)

P z(dl)F (l) =

∫

H

m(dz)

∫

WT (H)

P z(dl)F (l̂) (6.1)

for all non-negative Borel function F on WT (H), from which it follows that m(dz) is
invariant measure for {P z}z∈H, i.e.,

∫

H

m(dz)

∫

WT (H)

P z(dl)g(lt) =

∫

H

g(z)m(dz) (6.2)

for all t ≥ 0 and all bounded Borel function g on H. In the following we refer the words
’reversibility’ and ’invariance’ to the facts (6.1) and (6.2), respectively.

For any t, s > 0 and z ∈ H, we define the functionals

S(s, t; z, w) = −
√
−1
∫ t

s

a(Z(u, z, w)) ◦ dZ(u, z, w)−
∫ t

s

V (Z(u, z, w))du

on (W (2), P (2)) and

S(s, t; l) = −
√
−1
∫ t

s

a(lu) ◦ dlu −
∫ t

s

V (lu)du (6.3)

on (WT (H), P z) or on (WT (H), P z,z′

t ).
Let the potentials a and V satisfy the assumptions (A) and (V), respectively. For any

t > 0, we define an operator Tt by

(Ttf)(z) = E(2)[eS(0,t;z,w)f(Z(t, z, w))]

on L2(H).

Lemma 6.1 Let a and V be as above. For any t ≥ 0, the inequality ‖Ttf‖ ≤ ‖f‖ for all
L2(H). Moreover, limt→+0 ‖Ttf − f‖ = 0 and

lim
t→+0

∥

∥

∥

∥

Ttf − f

t
+HV (a)f

∥

∥

∥

∥

= 0 (6.4)

hold for all f ∈ Dom(HV (a)).
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Proof. The well-definedness of Tt on L
2(H) follows from Proposition 3.6. The first asser-

tion of the lemma follows from a simple dia-magnetic argument. We show (6.4). The rest
of the assertion follows in a similar way. It follows from Itô’s formula that

eS(0,t;z,w)f(Z(t, z, w)) = f(z) +

∫ t

0

eS(0,s;z,w)(−HV (a)f)(Z(s, z, w))ds

+ a martingale

for all f ∈ C∞0 (H). In the rest of the proof we denote −HV (a)f simply by g. Note that
g ∈ C∞0 (H). Then we have

∥

∥

∥

∥

Ttf − f

t
− g

∥

∥

∥

∥

=

∫

H

m(dz)

∣

∣

∣

∣

Ttf(z)− f(z)

t
− g(z)

∣

∣

∣

∣

2

≤
∫

H

m(dz)

∣

∣

∣

∣

E(2)[
1

t

∫ t

0

ds(eS(0,s;z,w) − 1)g(Z(s, z, w))]

∣

∣

∣

∣

2

+

∫

H

m(dz)

∣

∣

∣

∣

E(2)[
1

t

∫ t

0

ds(g(Z(s, z, w))− g(z))]

∣

∣

∣

∣

2

≤
∫

H

m(dz)E(2)[
1

t

∫ t

0

|eS(0,s;z,w) − 1|2|g(Z(s, z, w))|2]

+

∫

H

m(dz)E(2)[
1

t

∫ t

0

ds|g(Z(s, z, w))− g(z)|2] (6.5)

Then the first term of the rhs of (6.5) is equal to

1

t

∫ t

0

ds

∫

H

m(dz)Ez
[

|eS(0,s;l) − 1|2|g(ls)|2
]

=
1

t

∫ t

0

ds

∫

H

m(dz)Ez
[

|eS(0,s;l̂) − 1|2|g(l̂s)|2
]

=
1

t

∫ t

0

ds

∫

H

m(dz)Ez
[

|eS̃(0,s;l) − 1|2|g(z)|2
]

=
1

t

∫ t

0

ds

∫

H

m(dz)|g(z)|2Ez
[

|eS̃(0,s;l) − 1|2
]

, (6.6)

where we used the invariance in the second equality and we set

S̃(s, t; l) =
√
−1
∫ t

s

a(lu) ◦ dlu −
∫ t

s

V (lu)du. (6.7)

Since |eS̃(0,s;l)− 1| → 0 as s→ +0 a.s. l for each z, by Lebesgue’s dominated convergence
theorem, we deduce that (6.6) tends to zero as t→ +0.
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The second term of the rhs of (6.5) is equal to

1

t

∫ t

0

ds

∫

H

m(dz)Ez
[

|g(ls)− g(l0)|2
]

=
1

t

∫ t

0

ds

∫

H

m(dz)Ez
[

(g(ls)− g(l0)) g(ls)− (g(ls)− g(l0)) g(l0))
]

=
1

t

∫ t

0

ds

∫

H

m(dz)Ez
[

−2 (g(ls)− g(l0)) g(l0)
]

= −2

t

∫ t

0

ds

∫

H

m(dz)g(z)Ez [(g(ls)− g(l0))] , (6.8)

where we used the reversibility in the second inequality, the invariance in the third equality.
By Lebesgue’s theorem, (6.8) tends to zero as t→ +0. Then the assertion follows from a
simple density argument.

Lemma 6.2 Let a and V be as above. For any t ≥ 0, the operator Tt is self-adjoint.
Moreover, the family of operators {Tt}t≥0 defines a semigroup, i.e., TtTs = Tt+s holds for
all t, s ≥ 0.

Proof. First we show the self-adjointness. The reversibility implies that
∫

H

m(dz)Ttf(z)g(z) =

∫

H

m(dz)Ez[eS(0,t;l)f(lt)g(l0)]

=

∫

H

m(dz)Ez[eS(0,t;l̂)f(l̂t)g(l̂0)]

=

∫

H

m(dz)f(z)Ttg(z)

for any f, g ∈ C∞0 (H).
Next, using the Markov property of the diffusion, we have

Tt+sf(z) = Ez
[

eS(0,t+s;l)f(lt+s)
]

= Ez
[

Ez[eS(0,t+s;l)f(lt+s)|Bt](l̃)
]

= Ez
[

eS(0,t;l̃)Ez[eS(t,t+s;l)f(lt+s)|Bt](l̃)
]

= Ez
[

eS(0,t;l)E l̃t[eS(0,s;l)f(ls)]
]

= Ez
[

eS(0,t;l̃)(Tsf)(l̃t)
]

= TtTsf(z)

for all f ∈ C∞0 (H), where we used the fact that E[E[f |Bt]] = E[f ] in the second equality.
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Lemma 6.3 Let a and V be as above. The operator Tt coincides with the heat operator
e−tHV (a) for any t ≥ 0 and the integral kernel of e−tHV (a) is given by

paV (t, z, z
′) = p00(t, z, z

′)Ez,z′

t [eS(0,t;l)]. (6.9)

Proof. By Lemmas 6.1 and 6.2, the domain of the infinitesimal generator of the contraction
semigroup {Tt} contains C∞0 (H) and the generator is given by −HV (a) on C

∞
0 (H). Since

the operator −HV (a) is essentially self-adjoint on C∞0 (H), we see that Tt = e−tHV (a).
We first assume that a ∈ C∞0 (H,R2) and V ∈ C∞0 (H,R). We note that the superpo-

sition f =
∫

H
δ̃zf(z)m(dz) holds for any f ∈ S ′(R) with supp (f) ⊂ H (⊂ R

2). Then we
can deduce from the same argument as in Ikeda and Watanabe [8], p.414 that

paV (t, z, z
′) = E(2)[eS(0,t;z,w)δ̃z′(Z(t, z, w))]

= p00(t, z, z
′)

∫

W (2)

eS̃(0,t;z,w)µz,z′

t (dw)

= p00(t, z, z
′)Ez,z′

t [eS(0,t;l)], (6.10)

where S̃(0, t; z, ·) stands for a quasi-continuous modification of S(0, t; z, ·) and µz,z′

t is as
in Subsection 2.3. Here, we used also the facts that, when the size of mesh of partition
of [0, t] tends to zero, 2−1(a(Zti) + a(Zti−1

))(Zti − Zti−1
) converges to

∫ t

0
a(Zs) ◦ dZs in

D∞ and that 2−1(a(lti) + a(lti−1
))(lti − lti−1

) converges to
∫ t

0
a(ls) ◦ dls in probability with

respect to P z,z′

t in the second equality. Hence the assertion holds if a, V ∈ C∞0 . Next
we consider the general case. Given a, V , we can find a sequences aj ∈ C∞0 (H,R2), Vj

∈ C∞0 (H,R) so that aj, ∂aj and Vj converge to a, ∂a and V on every compact subset of H

as j →∞, respectively. Then we can deduce from Lemma 5.3 and Lebesgue’s dominated
convergence theorem that the rhs of (6.10) for aj and Vj converges the one for a and V as

j →∞. On the other hand, HVj(aj) converges to HV (a) strongly, so e
−tHVj

(aj) converges

to e−tHV (a) strongly. Hence, we deduce that the equality (6.10) is still valid for the case
of general a, V .

Lemma 6.4 Let K be a compact subset of H, The following two assertions hold:
(1) Assume (V). Then we have

lim
t→+0

sup
z∈K

Ez[

∣

∣

∣

∣

∫ t

0

V (ls)ds

∣

∣

∣

∣

] = 0. (6.11)

(2) Assume (A). Then we have

lim
t→+0

sup
z∈K

Ez[

∣

∣

∣

∣

∫ t

0

a(ls) ◦ dls
∣

∣

∣

∣

] = 0. (6.12)
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Proof. First we show the assertion (1), which is equivalent to

lim
t→+0

sup
z∈K

E(2)[

∣

∣

∣

∣

∫ t

0

V (Z(s, z, w))ds

∣

∣

∣

∣

].

For any small t > 0 and any z ∈ H, the lhs of (6.11) is less than or equal to

lim
t→+0

sup
z∈K

∫ t

0

dsE(2)[|V (Z(s, z, w))|]

= lim
t→+0

sup
z∈K

∫ t

0

ds

∫

H

m(dz′)|V (z′)|p00(s, z, z
′)

≤ lim
t→+0

Ct1/2 sup
z∈K

exp (cd(z,
√
−1)2).

Here we can show the last estimate above as in the proof of Lemma 3.1 2, replaced ã by
C exp (cd(z,

√
−1)).

Next we show the assertion (2). It is enough to show that

lim
t→+0

sup
z∈K

E(2)[

∣

∣

∣

∣

∫ t

0

a(Z(s, z, w)) ◦ dZ(s, z, w)ds
∣

∣

∣

∣

] = 0.

Taking (2.1) into account, using Itô’s formula, we see that for j = 1, 2

daj(Z(s, z, w)) = ∂xaj(Z(s, z, w))dX(s, z, w) + ∂yaj(Z(s, z, w))dY (s, z, w)

+
1

2
4R2aj(Z(s, z, w))Y (s, z, w)2ds.

Thus we have
∫ t

0

a(Z(s, z, w)) ◦ dZ(s, z, w)

=

∫ t

0

a1(Z(s, z, w))dX(s, z, w) +

∫ t

0

a2(Z(s, z, w))dY (s, z, w)

+
1

2

∫ t

0

∂xa1(Z(s, z, w))d〈X(s, z, w), X(s, z, w)〉

+
1

2

∫ t

0

∂ya2(Z(s, z, w))d〈Y (s, z, w), Y (s, z, w)〉

=

∫ t

0

a(Z(s, z, w))dZ(s, z, w) +
1

2

∫ t

0

Y (s, z, w)2(∂xa1 + ∂ya2)(Z(s, z, w))ds.
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Finally, Burkholder’s inequality yields that

E(2)[

∣

∣

∣

∣

∫ t

0

a(Z(s, z, w)) ◦ dZ(s, z, w)
∣

∣

∣

∣

]

≤ E(2)[

∣

∣

∣

∣

∫ t

0

a(Z(s, z, w))dZ(s, z, w)

∣

∣

∣

∣

]

+
1

2
E(2)[

∣

∣

∣

∣

∫ t

0

Y (s, z, w)2(∂xa1 + ∂ya2)(Z(s, z, w))ds

∣

∣

∣

∣

]

≤ C E(2)[

∫ t

0

Y (s, z, w)2|a(Z(s, z, w))|2ds]

+
1

2
E(2)[

∫ t

0

Y (s, z, w)2|(∂xa1 + ∂ya2)(Z(s, z, w))|ds]

≤ C ′
∫ t

0

ds

∫

H

m(dz′)
(

(y′|a(z′)|)2
+ (y′)2|(∂xa1 + ∂ya2)(z

′)|
)

p00(s, z, z
′)

= C ′
∫ t

0

ds Ez[ã(ls)
2 + ã(ls)],

where ã is as in (A). Then the assertion follows from (3.1) since if ã ∈ G then ã2 ∈ G as
we mentioned in Section 1.

Lemma 6.5 Let z, z′′ ∈ H and s, t > 0. Let K be a compact subset of H. Then we have

lim
d(z′,z′′)→0

sup
z∈K

∫

H

m(dz0)|p00(s, z0, z
′)− p00(s, z0, z

′′)|p00(t, z, z0) = 0. (6.13)

Proof. Fix t, s > 0. For any R > 0, we denote by BR(z
′′) the geodesic ball centered

at z′′ of radius R. We may assume that z′ ∈ B1(z
′′). By (2.3) and (2.4), the value of

p00(s, z, z
′) tends to zero as d(z, z′) → 0. Thus, for any a > 0, there exists R > 0 such

that |p00(s, z, z
′)| ≤ ε for any z, z′ ∈ H satisfying d(z, z′) ≥ R. If d(z′′, z0) ≥ R + 1, then

d(z′, z0) ≥ R. Hence we have
∫

BR+1(z′′)c
m(dz0)|p00(s, z0, z

′)− p00(s, z0, z
′′)|p00(t, z, z0)

≤ 2ε

∫

BR+1(z′′)c
m(dz0)p00(t, z, z0) ≤ 2ε. (6.14)

Here we used the fact that p00(t, z, z0)m(dz0) is a probability measure.
Since the function BR+1(z

′′)×B1(z
′′) 3 (z0, z

′) 7→ p00(s, z0, z
′) is uniformly continuous

we see that, for any ε > 0, there exists δ > 0 such that |p00(s, z0, z
′) − p00(s, z0, z

′′)| ≤ ε
if d(z′, z′′) ≤ δ. Hence, we have

∫

BR+1(z′′)

m(dz0)|p00(s, z0, z
′)− p00(s, z0, z

′′)|p00(t, z, z0)

≤ ε

∫

BR+1(z′′)

m(dz0)p00(t, z, z0) ≤ ε (6.15)
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if d(z′, z′′) ≤ min{δ, 1}, where we used the fact that p00(t, z, z0)m(dz0) is a probability
measure.

Then the result follows from (6.15) and (6.14).

Lemma 6.6 Let z′′ ∈ H and let K be a compact subset of H. Then we have

lim
z′→z′′

sup
z∈K

|paV (t, z, z′)− paV (t, z, z
′′)| = 0

holds for each t > 0.

Proof. We take and fix any compact set K and t > 0. For any s > 0 small enough, by
(6.9), we calculate

paV (t, z, z
′)− paV (t, z, z

′′)

= p00(t, z, z
′)Ez,z′

t [
(

eS(0,t;l) − eS(0,t−s;l)
)

]

+p00(t, z, z
′′)Ez,z′′

t [
(

eS(0,t;l) − eS(0,t−s;l)
)

]

+
(

p00(t, z, z
′)Ez,z′

t [eS(0,t−s;l)]− p00(t, z, z
′′)Ez,z′′

t [eS(0,t−s;l)]
)

= : I1 + I2 + I3. (6.16)

First, we consider the integral I1 and I2. Taking the form (6.3) and (6.7) into account,
we estimate

|I1| ≤ p00(t, z, z
′)Ez,z′

t [
∣

∣eS(t−s,t;l) − 1
∣

∣]

= p00(t, z, z
′)Ez′,z

t [
∣

∣

∣
eS̃(0,s;l̂) − 1

∣

∣

∣
]

≤ Cp00(t, z, z
′)Ez′,z

t [
∣

∣

∣
S̃(0, s; l)

∣

∣

∣
]

= CEz′[|S̃(0, s; l)|p00(t− s, ls, z)]

≤ Cp00(t− s, z, z)Ez′ [|S̃(0, s; l)|]

≤ Cp00(t− s, z, z)Ez′ [

∣

∣

∣

∣

∫ s

0

a(lu) ◦ dlu
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s

0

V (lu)du

∣

∣

∣

∣

]

≤ Cp00(t− s,
√
−1,

√
−1) sup

z′∈K
Ez′[

∣

∣

∣

∣

∫ s

0

a(lu) ◦ dlu
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s

0

V (lu)du

∣

∣

∣

∣

], (6.17)

where we used the fact that
∫ t

t−s
V (lu)du =

∫ s

0

V (l̂u)du,

∫ t

t−s
a(lu) ◦ dlu = −

∫ s

0

a(l̂u) ◦ dl̂u
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in the second equality and used the elementary inequality |ex − 1| ≤ C|x| if <x ≤ 0 in
the second inequality and used (2.6) in the fourth equality. Note that the rhs of (6.17) is
independent of z′ and z. In the case of I2, we can find a similar estimate.

Next we consider I3. Then it follows from (2.6) that

|I3| = |Ez[eS(0,t−s;l)(p00(s, lt−s, z
′)− p00(s, lt−s, z

′′))]|
≤ Ez[|p00(s, lt−s, z

′)− p00(s, lt−s, z
′′)|]

= E[|p00(s, Z(t− s, z, w), z′)− p00(s, Z(t− s, z, w), z′′)|]

=

∫

H

m(dz0)|p00(s, z0, z
′)− p00(s, z0, z

′′)|p00(t− s, z, z0). (6.18)

Hence it follows from (6.17) and (6.18) that

lim
z′→z′′

sup
z∈K

|I1 + I2 + I3|

≤ 2Cp00(t− s,
√
−1,

√
−1) sup

z′∈K
Ez′[

∣

∣

∣

∣

∫ s

0

a(lu) ◦ dlu
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s

0

V (lu)du

∣

∣

∣

∣

]

+ lim
z′→z′′

sup
z∈K

∫

H

m(dz0)|p00(s, z0, z
′)− p00(s, z0, z

′′)|p00(t− s, z, z0). (6.19)

The first and the second terms of the rhs of (6.19) tend to zero as s→ +0 by Lemma 6.4
and by Lemma 6.5, respectively. This completes the proof.

Lemma 6.7 For each t > 0, the kernel paV (t, z, z
′) is continuous in (z, z′) ∈ H×H.

Proof. We consider the continuity at (z0, z
′
0). Using the self-adjointness of e−tHV (a), we

have

paV (t, z, z
′)− paV (t, z0, z

′
0)

= (paV (t, z, z
′)− paV (t, z, z

′
0)) + (paV (t, z

′
0, z)− paV (t, z

′
0, z0))

for all z, z′ and t > 0. Then, for any (z, z′) near (z0, z
′
0), the estimate

|paV (t, z, z′)− paV (t, z0, z
′
0)|

≤ sup
z∈B1(z0)

|paV (t, z, z′)− paV (t, z, z
′
0)|

+|paV (t, z′0, z)− paV (t, z
′
0, z0)|,

where we denote the compact set {z ∈ H|d(z, z0) ≤ 1} by B1(z0). Then the lemma follows
from (6.16) and Lemma 6.6.

Then Proposition 4.1 follows from Lemmas 6.1, 6.2, 6.3, 6.6 and 6.7.
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7 Appendix

In this appendix we show the condition (B) below on the magnetic field ω implies the
existence of a magnetic vector potential a = a1dx + a2dy satisfying the condition (A) in
Section 1. (See Proposition 7.6).

As before we identify a = (a1, a2) with the 1-form a1dx + a2dy. For the notational
simplicity, we use the symbol ∇ to denote not only the Levi-Civita connection on TH

but also to denote the induced connections on the tensor bundles. We denote by ‖ · ‖ the
norms on the tensor bundles induced from the metric g = y−2dx⊗ dx+ y−2dy⊗ dy on H.
We denote by 〈·, ·〉 the natural pairing between T∗zH and TzH, etc. For any vector bundle
E over H, we denote by Ck(E) the set of all Ck-sections of E. We adopt a convention
that a connection on E is a map from Ck+1(E) to Ck(E ⊗ T∗H).

Lemma 7.1 The condition (A) in Section 1 is equivalent to the following condition (A)’:

(A)’ The vector potential a = a1dx + a2dy belongs to C2(ΛT∗H). Moreover, there exists
ã ∈ G such that

‖a(z)‖+ ‖∇a(z)‖ + ‖∇2a(z)‖ ≤ ã(d(z,
√
−1))

holds for all z ∈ H.

Remark 7.2 We can choose ã in condition (A)’ above so that it is a constant multiple of
ã on the rhs of (1.3) in condition (A). We can easily check this from the proof of Lemma
7.1 below.

Proof of Lemma 7.1. Note that if we write ∇∂i∂j = Γk
ij∂k for i, j, k = 1, 2, all the

non-zero Christoffel symbols are Γ1
12 = Γ1

21 = −1/y, Γ2
11 = 1/y and Γ2

22 = −1/y.
We fix a orthonormal basis e1 = y∂x, e2 = y∂y for TzH and the dual basis e∗1 = dx/y,

e∗2 = dy/y for T∗zH. Then we find that

∇a = y(a2 + y∂xa1)e
∗
1 ⊗ e∗1 + y(a1 + y∂xa2)e

∗
2 ⊗ e∗1

+y(a1 + y∂ya1)e
∗
1 ⊗ e∗2 + y(a2 + y∂ya2)e

∗
2 ⊗ e∗2,

so we have

‖∇a‖2 = y2
(

(a2 + y∂xa1)
2 + (a1 + y∂xa2)

2

+(a1 + y∂ya1)
2 + (a2 + y∂ya2)

2) .

If we define fij by ∇2a =
∑2

i,j=1 fij ⊗ e∗i ⊗ e∗j , we have fij = ∇2
ei⊗eja = 〈∇ej∇a, ei〉 =

∇ej∇eia− 〈∇a,∇ejei〉. By a direct computation shows that

f11 = y(2y∂xa2 − y∂ya1 + y2∂2
xa1)e

∗
1 + y(2y∂xa1 − y∂ya2 + y2∂2

xa2)e
∗
2

= : f 1
11e
∗
1 + f 2

11e
∗
2,

f12 = y(a2 + y∂xa1 + y∂ya2 + y2∂x∂ya1)e
∗
1 + y(a1 + y∂ya1 + y∂xa2 + y2∂x∂ya2)e

∗
2

= : f 1
12e
∗
1 + f 2

12e
∗
2,

f21 = f12 = : f 1
21e
∗
1 + f 2

21e
∗
2,

f22 = y(a1 + 3y∂ya1 + y2∂2
ya1)e

∗
1 + y(a2 + 3y∂ya2 + y2∂2

ya2)e
∗
2

= : f 1
22e
∗
1 + f 2

22e
∗
2,
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so we have ‖∇2a(z)‖2 =
∑2

i,j,k=1 |fk
ij|2.

Hence. one can observe that the lhs of (1.3) defines a norm on TzH equivalent to the
norm ‖a(z)‖ + ‖∇a(z)‖ + ‖∇2a(z)‖. This proves the lemma

In what follows we consider the problem in the geodesic (polar) coordinate X =
r cos θ, Y = r sin θ (r ≥ 0, 0 ≤ θ < 2π) at the base point

√
−1, which is linked z = (x, y)

via z = tanh (r/2) e
√
−1θ. In this coordinate the Riemannian metric is expressed as g =

dr ⊗ dr + sinh2 rdθ ⊗ dθ.
In this coordinate, we write ω = B(X, Y )dX∧dY = B(r, θ)rdr∧dθ (Precisely, B(r, θ)

on the rhs stands for B(r cos θ, r sin θ)). We may assume that B is real.
We introduce the following functions

R(r, θ) =
∑

0≤α+β≤2

|∂α
r ∂

β
θ (rB)(r, θ)|
sinhβ+1 r

and

Rαβ(r, θ) =
|∂α

r ∂
β
θ (rB)(r, θ)|
sinhβ+1 r

for any α, β.

Lemma 7.3 Assume that ω = Brdr ∧ dθ belongs to C2(Λ2T∗H). Let R be as above and
we write z = tanh (r/2)e

√
−1θ as before. Then there exists C > 0 such that the estimate

R(r, θ) ≤ C(‖ω(z)‖+ ‖∇ω(z)‖+ ‖∇2ω(z)‖) holds for any z with r ≥ 1.

Proof. Note that all the nonzero Christoffel symbols in the geometric polar coordinate are
Γr
θθ = − sinh r cosh r and Γθ

rθ = Γθ
θr = 1/ tanh r, so we find that∇dr = sinh r cosh rdθ⊗dθ,

∇dθ = −(1/ tanh r)(dθ ⊗ dr + dr ⊗ dθ), which follows from the fact that 〈∇V ω,W 〉 =
〈d〈ω,W 〉, V 〉 − 〈ω,∇VW 〉 holds for all V,W ∈ C1(TH) and ω ∈ C1(T∗H).

Then, differentiating ω = Brdr ∧ dθ, we can obtain

∇ω = (∂r −
1

tanh r
)(Br)(dr ∧ dθ)⊗ dr + ∂θ(Br)(dr ∧ dθ)⊗ dθ,

∇2ω = (∂r −
1

tanh r
)2(Br)(dr ∧ dθ)⊗ dr ⊗ dr

+(∂r −
2

tanh r
)(∂θBr)(dr ∧ dθ)⊗ (dr ⊗ dθ + dθ ⊗ dr)

+

(

sinh r cosh r(∂r −
1

tanh r
)(Br) + ∂2

θ (Br)

)

(dr ∧ dθ)⊗ dθ ⊗ dθ, (7.1)

after straightforward calculations using the Leibniz formula ∇X(Y1⊗Y2) = (∇XY1)⊗Y2+
Y1 ⊗ (∇XY2).

Up to a constant multiple, the norm ‖ω1(z) ∧ ω2(z)‖ is given by ‖ω1(z)‖‖ω2(z)‖ for
any ω1, ω2 ∈ T∗H. In the following we assume that ‖ω1(z) ∧ ω2(z)‖ = ‖ω1(z)‖‖ω2(z)‖.
This does not cause any problem.
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Since ‖dr(z)‖ = 1 and ‖dθ(z)‖ = 1/ sinh r (z = tanh (r/2) e
√
−1θ as before), it follows

from (7.1) that ‖ω(z)‖ = |Br|/ sinh r,

‖∇ω(z)‖2 =

∣

∣(∂r − 1
tanh r

)(Br)
∣

∣

2

sinh2 r
+
|∂θ(rB)|2
sinh4 r

,

‖∇2ω(z)‖2 =

∣

∣(∂r − 1
tanh r

)2(Br)
∣

∣

2

sinh2 r
+

∣

∣(∂r − 2
tanh r

)∂θ(Br)
∣

∣

2

sinh4 r

+

∣

∣

∣

∣

∣

sinh r cosh r

(

∂r −
1

tanh r

)2

(Br) + ∂2
θ (Br)

∣

∣

∣

∣

∣

2
1

sinh6 r
.

Hence, we find that R00 = |rB(r, θ)| = ‖ω(z)‖,

R10 =
|∂r(rB)|
sinh r

≤
∣

∣(∂r − 1
tanh r

)(Br)
∣

∣

sinh r
+

|Br|
tanh r sinh r

≤ ‖∇ω(z)‖+ C‖ω(z)‖,

R01 =
|∂θ(rB)|
sinh2 r

≤ ‖∇ω(z)‖,

R11 =
|∂r∂θ(rB)|
sinh2 r

≤
∣

∣

(

∂r − 2
tanh r

∂θ(Br)
)
∣

∣

sinh2 r
+

2

tanh r

|∂θ(Br)|
sinh2 r

≤ ‖∇2ω(z)‖+ C‖∇ω(z)‖

for all r ≥ 1, where the constant C > 0 is independent of z, ω. Similar calculations show
that R20 ≤ ‖∇2ω(z)‖ + C‖∇ω(z)‖ + C‖ω(z)‖ and R02 ≤ ‖∇2ω(z)‖ + ‖∇ω(z)‖ hold for
some C > 0. This proves the lemma.

Lemma 7.4 Let ω = Brdr ∧ dθ ∈ C2(Λ2T∗H) and let R be as above. Then there exists
a ∈ C2(ΛT∗H) such that da = ω holds and the following estimate

‖a(z)‖ + ‖∇a(z)‖ + ‖∇2a(z)‖ ≤ Cr

∫ 1

0

R(tr, θ)dt (7.2)

holds for any z ∈ H, where C > 0 is independent of z = tanh (r/2)e
√
−1θ.

Proof. Given ω, we take a =
(

∫ 1

0
B(tr, θ)r2tdt

)

dθ. Then, by an integration by parts,

one can observe that da = ∂r(
∫ 1

0
B(tr, θ)r2tdt)dr ∧ dθ = B(r, θ)rdr ∧ dθ = ω holds.

We show (7.2). In this proof we denote the function
∫ 1

0
B(tr, θ)trdt by b for simplicity.
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Direct calculations show that

∇a =

(

r

(

∂r −
1

tanh r

)

b+ b

)

dθ ⊗ dθ + r(∂θb)dθ ⊗ dθ,

∇2a =

(

r

(

∂r −
1

tanh r

)2

b + 2

(

∂r −
1

tanh r

)

b

)

dθ ⊗ dr ⊗ dr,

−
(

r(∂rb)

tanh r
− 2rb

tanh2 r
+

b

tanh r

)

dr ⊗ dr ⊗ dθ

−
(

r

(

∂r −
1

tanh r

)(

b

tanh r

)

+
b

tanh r

)

dr ⊗ dθ ⊗ dr

−2r(∂θb)

tanh r
dr ⊗ dθ ⊗ dθ

+

(

r

(

∂r −
2

tanh r

)

(∂θb) + (∂θb)

)

dθ ⊗ (dr ⊗ dθ + dθ ⊗ dr)

+ sinh r cosh r

(

r

(

∂r −
2

tanh r

)

b+ b

)

dθ ⊗ dθ ⊗ dθ.

Hence it follows from the fact that ‖dr(z)‖ = 1 and ‖dθ(z)‖ = 1/ sinh r that

‖a(z)‖ ≤ r|b|
sinh r

≤ r

∫ 1

0

|trB(tr, θ)|
sinh r

dt ≤ r

∫ 1

0

R00(tr, θ)dt ≤ r

∫ 1

0

R(tr, θ)dt,

‖∇a(z)‖2 =

∣

∣

∣

∣

(

r

(

∂r −
1

tanh r

)

b+ b

)

1

sinh r

∣

∣

∣

∣

2

+

∣

∣

∣

∣

r∂θb

sinh2 r

∣

∣

∣

∣

2

≤ C

∣

∣

∣

∣

r

∫ 1

0

(R01(tr, θ) +R00(tr, θ))dt

∣

∣

∣

∣

2

+ C

∣

∣

∣

∣

r

∫ 1

0

R01(tr, θ)dt

∣

∣

∣

∣

2

≤ C

(

r

∫ 1

0

R(tr, θ)dt

)2

holds for some C > 0. Similarly we can show that ‖∇2a(z)‖ ≤ Cr
∫ 1

0
R(tr, θ)dt holds for

some C > 0. This proves the lemma.

Lemma 7.5 Let G be the class as in Section 1. Assume that R ∈ C([0,∞)) and there

exists ã ∈ G such that 0 ≤ R(r) ≤ ã(r) holds for all ρ ≥ 0. Set R̃(r) =
∫ 1

0
R(tr)dt. Then

there exists c̃ ∈ G such that |R̃(r)| ≤ c̃(r) holds for all r ≥ 0.

Proof. If we set c̃(r) =
∫ 1

0
ã(tr)dt, then we have the estimate |R̃(r)| ≤ c̃(r) by definition.

Moreover, it follows that c̃ ∈ G since ã ∈ G.

Now we introduce the following condition (B) and we show the claim at beginning at
Appendix.
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(B) ω belongs to C2(Λ2T∗H) and moreover, there exists c̃ ∈ G such that ω satisfies the
estimate

d(z,
√
−1)

(

‖ω(z)‖+ ‖∇ω(z)‖+ ‖∇2ω(z)‖
)

≤ c̃(d(z,
√
−1))

for any z ∈ H.

Proposition 7.6 Assume that the 2-form ω satisfies the condition (B). Then, there exists
a 1-form a such that da = ω and the condition (A) holds. Moreover, as ã ∈ G in (A), we
may choose a function of the following form:

ã(r) = Cr

∫ 1

0

R(tr)dt+ C,

where C is a positive constant, R(r) = c̃(r)/r except in a neighborhood of r = 0 and c̃ is
as in (B).

Proof. By Lemma 7.3, the function rR(r, θ) is dominated by some ã ∈ G, from which
we can deduce that R(r, θ) is also dominated by some element of G if r ≥ 1 since any
continuous function defined on [0,∞) which coincides with 1/r except near r = 0 belongs
to G, and the class G is closed under multiplication. Finally the claim obeys from Lemmas
7.1, 7.4 and Lemma 7.5 with R(r) = R(r, θ).
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