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Abstract

A nonlinear partial differential equation of the following form is considered:

u′ − div
(
a(u)∇u

)
+ b(u) |∇u|2 = 0,

which arises from the heat conduction problems with strong temperature-dependent
material parameters, such as mass density, specific heat and heat conductivity.
Existence, uniqueness and asymptotic behavior of initial boundary value problems
under appropriate assumptions on the material parameters are established for one-
dimensional case. Existence and asymptotic behavior for two-dimensional case are
also proved.

Keywords: Heat equation, existence, uniqueness, asymptotic behavior.
AMS Subject Classification: 35K55, 35Q80, 35B40, 35B45.

1 Introduction

Metallic materials present a complex behavior during heat treatment processes involv-
ing phase changes. In a certain temperature range, change of temperature induces a
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phase transformation of metallic structure, which alters physical properties of the mate-
rial. Indeed, measurements of specific heat and conductivity show a strong temperature
dependence during processes such as quenching of steel.

Several mathematical models, as solid mixtures and thermal-mechanical coupling,
for problems of heat conduction in metallic materials have been proposed, among them
[6, 8, 13]. In this paper, we take a simpler approach without thermal-mechanical cou-
pling of deformations, by considering the nonlinear temperature dependence of thermal
parameters as the sole effect due to those complex behaviors.

The above discussion of phase transformation of metallic materials serves only as a
motivation for the strong temperature-dependence of material properties. In general,
thermal properties of materials do depend on the temperature, and the present formu-
lation of heat conduction problem may be served as a mathematical model when the
temperature-dependence of material parameters becomes important.

More specifically, in contrast to the usual linear heat equation with constant co-
efficients, we are interested in a nonlinear heat equation with temperature-dependent
material parameters.

Existence, uniqueness and asymptotic behavior of initial boundary value problems
under appropriate assumptions on the material parameters are established. For existence,
we use particular compactness arguments for both n = 1, 2 cases succinctly. The tool
of the proof is the compactness results of Lions, but to apply this theorem we need a
series of bounds which we establish with a number of standard analytic techniques. For
uniqueness only the case n = 1 can be proved. The case of n = 2 remains open. The
asymptotic behavior in both n = 1, 2 is proved employing the arguments of Lions [9] and
Prodi [12].

2 A nonlinear heat equation

Let θ(x, t) be the temperature field, then we can write the conservation of energy in the
following form:

ρ ε′ + div q = 0, (1)

where q is the heat flux, ρ the mass density, ε the internal energy density and prime
denotes the time derivative.

The mass density ρ = ρ(θ) > 0 may depend on temperature due to possible change of
material structure, while the heat flux q is assumed to be given by the Fourier law with
temperature-dependent heat conductivity,

q = −κ∇θ, κ = κ(θ) > 0. (2)

The internal energy density ε = ε(θ) generally depends on the temperature, and the
specific heat c is assume to be positive defined by

c(θ) =
∂ε

∂θ
> 0, (3)

2



which is not necessarily a constant.

By the assumption (3), we can reformulate the equation (1) in terms of the energy ε
instead of the temperature θ. Rewriting Fourier law as

q = −κ(θ)∇θ = −α(ε)∇ε, (4)

and observing that

∇ε =
∂ε

∂θ
∇θ = c(θ)∇θ,

we have c(θ)α(ε) = κ(θ), and hence

α = α(ε) > 0.

Now let u be defined as u = ε(θ), then the equation (1) becomes

ρ(u) u′ − div(α(u)∇u) = 0.

Since ρ(u) > 0, dividing the equation by ρ, and using the relation,

1

ρ(u)
div (α(u)∇u) = div

(α(u)∇u

ρ(u)

)
−

(
∇

1

ρ(u)

)
·
(
α(u)∇u

)
,

we obtain

u′ − div
(α(u)∇u

ρ(u)

)
+

(
∇

1

ρ(u)

)
·
(
α(u)∇u

)
= 0. (5)

Since c =
∂ε

∂θ
=

du

dθ
,

(
∇

1

ρ(u)

)
= −

1

ρ(u)2

dρ(u)

du
∇u = −

1

ρ(u)2

dρ

dθ

dθ

du
∇u = −

1

ρ(u)2

dρ

dθ

1

c
∇u.

Substituting into equation (5) we obtain

u′ − div
(α(u)∇u

ρ(u)

)
−

( 1

ρ(u)2

dρ

dθ

1

c
∇u

)
·
(
α(u)∇u

)
= 0,

which is equivalent to

u′ − div (a(u)∇u) + b(u) |∇u|2 = 0, (6)

where

a(u) =
α(u)

ρ(u)
=

α(u)c(u)

ρ(u)c(u)
=

k(u)

ρ(u)c(u)
> 0 (7)

and

b(u) = −
α(u)

c ρ(u)2

dρ

dθ
> 0. (8)

The positiveness of a(u) and b(u) is the consequence of thermodynamic considerations
(see [10]), and reasonable physical experiences: the specific heat c > 0, the thermal
conductivity κ > 0, the mass density ρ > 0, and the thermal expansion dρ/dθ < 0. In
this paper we shall formulate the problem based on the nonlinear heat equation (6).
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2.1 Formulation of the Problem

Let Ω be a bounded open set of IRn, n = 1, 2, with C1 boundary and Q be the cylinder
Ω × (0, T ) of IRn+1 for T > 0, whose lateral boundary we represent by Σ = Γ × (0, T ).
We shall consider the following non-linear problem:





u′ − div
(
a(u)∇u

)
+ b(u) |∇u|2 = 0 in Q,

u = 0 on Σ,

u(x, 0) = u0(x) in Ω.

(9)

Mathematical models of semi-linear and nonlinear parabolic equations under Dirichlet
or Neumann boundary conditions have been considered in several papers, among them,
let us mention ([1, 2, 3]) and ([4, 5, 11, 14]), respectively.

Feireisl, Petzeltová and Simondon [7] prove that with non-negative initial data, the
function a(u) ≡ 1 and g(u,∇u) ≤ h(u)(1 + |∇u|2), instead of the non-linear term
b(u) |∇u|2 in (9)1, there exists an admissible solution positive in some interval [0, Tmax)
and if Tmax < ∞ then

lim
t→Tmax

‖u(t, .)‖∞ = ∞.

For Problem (9) we will prove global existence, uniqueness and asymptotic behavior for
the one-dimensional case (n = 1) and existence and asymptotic behavior for the two-
dimensional case (n = 2), for small enough initial data.

3 Existence and Uniqueness: One-dimensional Case

In this section we investigate the existence, uniqueness and asymptotic behavior of solu-
tions for the case n = 1 of Problem (9).

Let ((·, ·)), ‖ · ‖ and (·, ·), | · | be respectively the scalar product and the norms in
H1

0 (Ω) and L2(Ω). Thus, when we write |u| = |u(t)|, ‖u‖ = ‖u(t)‖ it will mean the
L2(Ω), H1

0 (Ω) norm of u(x, t) respectively.
To prove the existence and uniqueness of solutions for the one-dimensional case, we

need the following hypotheses:

H1: a(u) and b(u) belongs to C1(IR) and there are positive constants a0, a1 such that,

a0 ≤ a(u) ≤ a1 and b(u)u ≥ 0.

H2: There is positive constant M > 0 such that

max
s∈IR

{∣∣∣
da

du
(s)

∣∣∣;
∣∣∣
db

du
(s)

∣∣∣
}
≤ M.
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H3: u0 ∈ H1
0 (Ω) ∩ H2(Ω).

Remark 1. From hypothesis (H1), we have that b(u)u ≥ 0, ∀u ∈ IR. Thus from
hypothesis (H2), |b(u)| ≤ M |u|.

Theorem 1 Under the hypotheses (H1), (H2) and (H3), there exist a positive constant

ε0 such that, if u0 satisfies (|u0| + ‖u0‖ + |∆u0|) < ε0 then the problem (9) admits a

unique solution u : Q → IR, satisfying the following conditions:

i. u ∈ L2(0, T ; H1
0(Ω) ∩ H2(Ω)),

ii. u′ ∈ L2(0, T ; H1
0(Ω)),

iii. u′ − div(a(u)∇u) + b(u) |∇u|2 = 0, in L2(Q),

iv. u(0) = u0.

Proof. To prove the theorem, we employ Galerkin method with the Hilbertian basis
from H1

0 (Ω), given by the eigenvectors (wj) of the spectral problem: ((wj, v)) = λj(wj , v)
for all v ∈ V = H1

0 (Ω) ∩ H2(Ω) and j = 1, 2, · · ·. We represent by Vm the subspace of V
generated by vectors {w1, w2, ..., wm}. We propose the following approximate problem:
Determine um ∈ Vm, so that






(u′

m, v) +
(
a(um)∇um,∇v

)
+

(
b(um) |∇um|

2, v
)

= 0 ∀ v ∈ Vm,

um(0) = u0m → u0 in H1
0 (Ω) ∩ H2(Ω).

(10)

We want to get strong convergence in H1
0 (Ω) and L2(Ω) of um and ∇um, respectively as

given later in (34). To do so, we will use the compactness results of Lions applied to a cer-
tain sequence of Galerkin approximations. First we need to establish that they converge
weakly in some particular Sobolev spaces, and we do this through energy estimates.

Existence

The system of ordinary differential equations (10) has a local solution um = um(x, t) in
the interval (0, Tm). The estimates that follow permit to extend the solution um(x, t) to
interval [0, T [ for all T > 0 and to take the limit in (10).

Estimate I: Taking v = um(t) in equation (10)1 and integrating over (0, T ), we obtain

1

2
|um|

2 + a0

∫ T

0
‖um‖

2 +
∫ T

0

∫

Ω
b(um)um|∇um|

2 <
1

2
|u0|

2, (11)

where we have used hypothesis (H1). Taking â0 = min{a0,
1
2
} > 0, we obtain

|um|
2 +

∫ T

0
‖um‖

2 +
∫ T

0

∫

Ω
b(um)um|∇um|

2 <
1

2â0
|u0|

2. (12)
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Thus, applying the Gronwall’s inequality in (12) yields

(um) is bounded in L∞ (0, T ; L2(Ω)) ∩ L2 (0, T ; H1
0(Ω)) . (13)

Estimate II: Taking v = u′

m in equation (10)1 and integrating over Ω, we obtain

|u′

m|
2 +

1

2

d

dt

∫

Ω
a(um)|∇um|

2 =
1

2

∫

Ω

da

du
(um)u′

m|∇um|
2

−
∫

Ω
b(um)u′

m|∇um|
2.

(14)

On the other hand, from hypothesis (H2), we have the following inequality,

1

2

∫

Ω

da

du
(um)u′

m|∇um|
2 ≤

1

2
MC0‖u

′

m‖ ‖um‖
2, (15)

and since | · |L∞(Ω) ≤ C0‖ · ‖ and |b(um)| ≤ M |um|, we obtain

| −
∫

Ω
b(um)u′

m|∇um|
2| ≤ MC2

0‖u
′

m‖ ‖um‖
3, (16)

where C0 = C0(Ω) is a constant depending on Ω.
Substituting (15) and (16) into the right hand side of (14) we get

|u′

m|
2 +

1

2

d

dt

∫

Ω
a(um)|∇um|

2 ≤
1

2
MC0‖u

′

m‖ ‖um‖
2 + MC2

0‖u
′

m‖ ‖um‖
3

≤
1

4
(MC0)

2‖u′

m‖
2 ‖um‖

2 +
1

2
‖um‖

2 + (MC2
0 )2‖u′

m‖
2 ‖um‖

4.

(17)

Now taking the derivative of the equation (10)1 with respect to t and making v = u′

m,
we have

1

2

d

dt
|u′

m|
2 +

∫

Ω
a(um)|∇u′

m|
2 = −

∫

Ω

db

du
(um)|u′

m|
2|∇um|

2

−
∫

Ω

da

du
(um) u′

m|∇um|
2 − 2

∫

Ω
b(um)∇um∇u′

mu′

m

≤ MC2
0 (3 +

M

2
)‖u′

m‖
2‖um‖

2 +
1

2
‖um‖

2.

(18)

From the inequality (17) and (18), we have

d

dt

{
1

2
|u′

m|
2 +

1

2

∫

Ω
a(um)|∇um|

2
}

+ |u′

m|
2 +

a0

2
‖u′

m‖
2+

‖u′

m‖
2

{
a0

2
− α0‖um‖

4 − α1‖um‖
2
}
≤ ‖um‖

2,

(19)

where we have defined α0 = (MC2
0 )2 and α1 = MC0(

3
4
MC0 + 3C0).
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Now, under the condition that the following inequality,

α0‖um‖
4 + α1‖um‖

2 <
a0

4
, ∀ t ≥ 0, (20)

be valid, the coefficients of the term ‖u′

m‖ in the relation (19) is positive and we can
integrate it with respect to t,

|u′

m|
2 +

∫

Ω
a(um)|∇um|

2 + 2
∫ t

0
|u′

m|
2 +

3a0

2

∫ t

0
‖u′

m‖
2 ≤ C. (21)

Therefore, applying the Gronwall’s inequality in (21), we obtain the following estimate:

(u′

m) is bounded in L∞ (0, T ; L2(Ω)) ∩ L2 (0, T ; H1
0(Ω)) . (22)

Now we want to prove that the inequality (20) is valid if the initial data are sufficiently
small. In other words, there is some ε0 > 0 such that (|u0| + ‖u0‖+ |∆u0|) < ε0 and the
following condition holds,

α0

a2
0

{
S0 + a1‖u0‖

2 +
1

a0
|u0|

2
}2

+
α1

a0

{
S0 + a1‖u0‖

2 + |u0|
2
}

<
a0

4
(23)

and
α0‖u0‖

4 + α1‖u0‖
2 <

a0

4
, (24)

where we have denoted S0 =
(
M(‖u0‖ + |∆u0|

2 + ‖u0‖|∆u0|
2 ) + a1|∆u0|

)2
.

We shall prove this by contradiction. Suppose that (20) is false, then there is a t∗

such that
α0‖um(t)‖4 + α1‖um(t)‖2 <

a0

4
if 0 < t < t∗ (25)

and
α0‖um(t∗)‖4 + α1‖um(t∗)‖2 =

a0

4
. (26)

Integrating (19) from 0 to t∗, we obtain

1

2
|u′

m(t∗)|2 +
∫

Ω
a(um)|∇um(t∗)|2 ≤

1

2
|u′

m(0)|2 +
∫

Ω
a(um(0))|∇um(0)|2

+
∫ t∗

0
‖um‖

2 ≤
(
M( ‖u0‖ + |∆u0|

2 + ‖u0‖ |∆u0|
2 ) + a1|∆u0|

2
)2

+a1‖u0‖
2 +

1

a0
|u0|

2,

(27)

and consequently,

‖um(t∗)‖2 ≤
1

a0

S0 +
a1

a0

‖u0‖
2 +

1

a2
0

|u0|
2. (28)
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Using (23) and (24) we obtain

α0‖um(t∗)‖4 +α1‖um(t∗)‖2 ≤
α0

a2
0

{
S0 + a1‖u0‖

2 +
1

a0
|u0|

2
}2

+α1

{
1

a0
S0 +

a1

a0
‖u0‖

2 +
1

a0
|u0|

2
}

<
a0

4
,

(29)

hence, comparing with (26), we have a contradiction.

Estimate III: Taking v = −∆um(t) in the equation (10)1, and using hypothesis H1, we
obtain

d

dt
‖um‖

2 +
∫

Ω
a(um)|∆um|

2 ≤ a1‖um‖ |∆um| + b1|∆um|
2 ‖um‖,

where we have used the following inequality,
∫

Ω
b(um)|∇um|

2 |∆um| ≤ b̂1|∇um|L∞

∫

Ω
|∇um| |∆um|

≤ b̂1|∇um|H1(Ω) ‖um‖ |∆um|

≤ b̂1|∆um| ‖um‖ |∆um| = b̂1‖um‖ |∆um|
2.

In this expression we have denoted b̂1 = sup |b(s)|, for all s ∈ [−
a0

4α1
,

a0

4α1
]. Note that,

from (20), we have |um(t)| ≤ ‖um(t)‖ < a0/4α1 and b1 = b̂1 + M .

Using hypothesis (H1), we obtain

d

dt
‖um‖

2 +
a0

2
|∆um|

2 ≤ a1‖um‖ |∆um| + b1|∆um|
2 ‖um‖,

or equivalently,

d

dt
‖um‖

2 +
(

a0

2
− b1‖um‖

)
|∆um|

2 ≤ a1‖um‖ |∆um|.

Similar to the choice of ε0 for the conditions (23) and (24), ε0 will be further restricted
to guarantee that the following condition also holds,

b1

a0

(
S0 + a1‖u0‖

2 +
1

2a0

|u0|
2
)1/2

<
a0

4
(30)

and from (21) we obtain
a0

4
≤

(
a0

2
− b1‖um‖

)
, it implies that

d

dt
‖um‖

2 +
a0

4
|∆um|

2 ≤ a1‖um‖ |∆um| ≤
a0

8
|∆um|

2 + C‖um‖
2. (31)

Now, integrating from 0 to t, we obtain the estimate

‖um‖
2 +

∫ T

0
|∆um|

2 ≤ Ĉ.

8



Hence, we have

(um) is bounded in L∞ (0, T ; H1
0(Ω)) ,

(um) is bounded in L2 (0, T ; H1
0(Ω) ∩ H2(Ω)) .

(32)

Limit of the approximate solutions

From the estimates (13), (22) and (32), we can take the limit of the nonlinear system
(10). In fact, there exists a subsequence of (um)m∈N , which we denote as the original
sequence, such that

u′

m −→ u′ weak star in L∞ (0, T ; L2(Ω)) ,

u′

m −→ u′ weak in L2 (0, T ; H1
0(Ω)) ,

um −→ u weak star in L∞ (0, T ; H1
0(Ω)) ,

um −→ u weak in L2 (0, T ; H1
0(Ω) ∩ H2(Ω)) .

(33)

Thus, by compact injection of H1
0 (Ω × (0, T )) into L2(Ω × (0, T )) it follows by com-

pactness arguments of Aubin-Lions [9], we can extract a subsequence of (um)m∈N , still
represented by (um)m∈N such that

um −→ u strong in L2 (0, T ; H1
0(Ω)) and a.e. in Q,

∇um −→ ∇u strong in L2(Q) and a.e. in Q.
(34)

Let us analyze the nonlinear terms from the approximate system (10). From the first
term, we know that ∫

Ω
|a(um)∇um|

2 ≤ a2
1

∫

Ω
|∇um|

2 ≤ a2
1C, (35)

and since um → u a.e. in Q and a(x, .) is continuous, we get

a(um) −→ a(u) and ∇um −→ ∇u a.e. in Q. (36)

Hence, we also have

|a(um)∇um|
2 −→ |a(u)∇u|2 a.e. in Q. (37)

From (35) and (37), and Lions’ Lemma, we obtain

a(um)∇um −→ a(u)∇u weak in L2(Q). (38)

From the second term, we know that

∫ T

0

∫

Ω
|b(um)|∇um|

2|2 ≤ b2
1

∫ T

0
|∇um|

2
L∞(Ω)

∫

Ω
|∇um|

2

≤ b2
1C0

∫ T

0
‖um‖

2|∇um|
2
H1 ≤ b2

1C0‖um‖
2

∫ T

0
|∆um|

2 ≤ C,

(39)
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where C0 has been defined in (16).
By the same argument that leads to (37), we get

|b(um)|∇um|
2|2 −→ |b(u)|∇u|2|2 a.e. in Q (40)

Hence, from (39) and (40) we obtain the convergence,

b(um)|∇um|
2 −→ b(u)|∇u|2 weak in L2(Q). (41)

Taking into account (33), (38) and (41) into (10)1, there exists a function u(x, t) defined
over Ω × [0, T [ with value in IR satisfying (9). Moreover, from the convergence results
obtained, we have that um(0) = u0m → u0 in H1

0 (Ω) ∩H2(Ω) and the initial condition is
well defined.

Hence, we conclude that equation (9) holds in the sense of L2(0, T ; L2(Ω)).

Uniqueness

Let w(x, t) = u(x, t)−v(x, t), where u(x, t) and v(x, t) are solutions of Problem (9). Then
we have 




w′ − div (a(u)∇w) − div(a(u) − a(v))∇v

+ b(u) (|∇u|2 − |∇v|2) + (b(u) − b(v))|∇v|2 = 0 in Q,

w = 0 on Σ,

w(x, 0) = 0 in Ω.

(42)

Multiplying by w(t), integrating over Ω, we obtain

1

2

d

dt
|w|2 +

∫

Ω
a(u)|∇w|2 ≤

∫

Ω
|
da

du
(û)| |w| |∇v| |∇w|

+
∫

Ω
|b(u)|

(
|∇u| + |∇v|

)
|∇w| |w| +

∫

Ω
|∇v|2| |

∂b

∂u
(u)| |w|2

≤ M
∫

Ω
|∇w| |w| |∇v| + C0

∫

Ω

(
|∇u| + |∇v|

)
|∇w| |w| + M

∫

Ω
|∇v|2 |w|2

≤ M |∇v|L∞(Ω) ‖w‖ |w| + C0

(
|∇u|L∞(Ω) + |∇v|L∞(Ω)

)
‖w‖ |w|

+M |∇v|2L∞(Ω) |w|2 ≤
a0

2
‖w‖2 + C(|∆u|2 + |∆v|2)|w|2,

(43)

where we have used

(a) The generalized mean-value theorem, i.e.,

|a(u) − a(v)| = |
da

du
(û)(u − v)| ≤ |

da

du
(û)| |w|, u ≤ û ≤ v,

(b)
∣∣∣b(u) (|∇u|2 − |∇v|2)

∣∣∣ ≤ |b(u)| |∇w|
(
|∇u| + |∇v|

)
,
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(c) |∇v|L∞(Ω) ≤ ‖∇v‖H1(Ω) ≤ ‖v‖H2(Ω) ≤ |∆v|L2(Ω).

The last inequality is valid only for one-dimensional case.
Integrating (43) from 0 to t, we obtain

1

2
|w|2 +

a0

2

∫ t

0
‖w‖2 ≤

1

2
|w(0)|2 + C

∫ t

0
(|∆u|2 + |∆v|2)|w|2,

where C denotes a different positive constant. Since w(0) = u0 − v0 = 0, using the
Gronwall’s inequality, we obtain

|w|2 +
∫ t

0
‖w‖2 = 0,

which implies the uniqueness, w(x, t) = u(x, t) − v(x, t) = 0 and the theorem is proved.
tu

Asymptotic behavior

In the following we shall prove that the solution u(x, t) of Problem (9) decays exponen-
tially when time t → ∞, using the same procedure developed in Lions [9] and Prodi
[12]. Thus, we will initially show the exponential decay of the energy associated with the
approximate solutions um(x, t) of Problema (10).

Theorem 2 Let u(x, t) be the solution of Problem (9). Then there exist positive constants

ŝ0 and Ĉ = Ĉ{‖u0‖, |∆u0|} such that

‖u‖2 + |u′|2 ≤ Ĉ exp−ŝ0 t . (44)

Proof. To prove the theorem, complementary estimates are needed.

Estimate I′: Consider the approximate system (10). Using the same argument as
Estimate I, i.e, taking v = um(t), we have

d

dt
|um|

2 +
∫

Ω
a(um)|∇um|

2 +
∫

Ω
b(um)um|∇um|

2 = 0. (45)

Integrating (46) from (0, T ), we obtain

1

2
|um|

2 + a0

∫ T

0
‖um‖

2 +
∫ T

0

∫

Ω
b(um)um|∇um|

2 <
1

2
|u0|

2. (46)

From H1 hypothesis, (45) and (46) we conclude

a0‖um‖
2 ≤ 2|u′

m| |um| ≤ 2|u′

m| |u0|. (47)

11



Estimate II′: Taking derivative of the system (10) with respect to t and making v = u′

m,
we obtain

d

dt
|u′

m|
2 + a0‖u

′

m‖
2 ≤ M

( ∫

Ω
|u′

m|
2|∇um| +

∫

Ω
|u′

m|
2 |∇um|

2
)

+2M
∫

Ω
|∇um||∇u′

m||u
′

m| ≤ C1

(
‖u′

m‖
2‖um‖ + ‖u′

m‖
2‖um‖

2
)
,

(48)

where C1 = C1(M, Ω).
Hence,

d

dt
|u′

m|
2 +

a0

2
‖u′

m‖
2 + ‖u′

m‖
2

(
a0

2
− C1‖um‖ − C1‖um‖

2
)
≤ 0. (49)

Using (47) then we can write the inequality (49) in the form,

d

dt
|u′

m|
2 +

a0

2
‖u′

m‖
2 + ‖u′

m‖
2
(a0

2
− C1

(2|u0|

a0

)1/2
|u′

m|
1/2 − C1

2|u0|

a0

|u′

m|
)
≤ 0 (50)

Let v = u′

m(0) in (10). Then

|u′

m(0)|2 ≤ C
(
‖u0‖ + |∆u0| + |∆u0|

2 + |∆u0|
3
)
|u′

m(0)|,

where C = C(a1, M, Ω), and

|u′

m(0)|2 ≤
(
C

(
‖u0‖ + |∆u0| + |∆u0|

2 + |∆u0|
3
) )2

. (51)

We define the operator

J(u0) =

(
2|u0|

a0

)1/2 (
C (‖u0‖ + |∆u0| + |∆u0|

2 + |∆u0|
3)

)1/2
+

2|u0|

a0
C

(
‖u0‖ + |∆u0| + |∆u0|

2 + |∆u0|
3
)

.

(52)

Then we have shown that
(

2|u0|

a0

)1/2

|u′

m(0)|1/2 +
2|u0|

a0

|u′

m(0)| ≤ J(u0). (53)

If we choose C1 a positive constant and u0 small enough, so that

C1J(u0) <
a0

4
, (54)

the following inequality holds,

C1

(
2|u0|

a0

)1/2

|u′

m|
1/2 + C1

2|u0|

a0

|u′

m| <
a0

4
, ∀ t ≥ 0. (55)
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Indeed, we can prove this by contradiction. Suppose that there is a t∗ such that

C1

(2|u0|

a0

)1/2
|u′

m(t∗)|1/2 + C1
2|u0|

a0
|u′

m(t∗)| =
a0

4
. (56)

Integrating (50) from 0 to t∗, we obtain |u′(t∗)|2 ≤ |u′(0)|2.
From (54) and (55), we conclude that

C1

(2|u0|

a0

)1/2
|u′

m(t∗)|1/2 + C1
2|u0|

a0
|u′

m(t∗)|

≤ C1

(2|u0|

a0

)1/2
|u′

m(0)|1/2 + C1
2|u0|

a0
|u′

m(0)| ≤ C1J(u0) <
a0

4
.

(57)

Therefore, we have a contradiction by (56).
From (50), (55) and using the Poincaré inequality, we obtain

d

dt
|u′

m|
2 + s0|u

′

m|
2 ≤ 0 (58)

where s0 = (a0c0)/2 and c0 is a positive constant such that ‖ · ‖H1

0
(Ω) ≥ c0| · |L2(Ω).

Consequently, we have
d

dt

{
exps0t |u′

m|
2
}
≤ 0 (59)

and hence

|u′

m|
2 ≤ |u′

m(0)|2 exp−s0t ≤
(
C (‖u0‖ + |∆u0| + |∆u0|

2 + |∆u0|
3)

)2
exp−s0t

≤ C̃
(
‖u0‖, |∆u0|

)
exp−s0t,

(60)

where we have used the inequality (51).
We also have from (47) that

‖um‖
2 ≤

2

a0
|u0| |u

′

m| ≤
2

a0
C

(
‖u0‖, |∆u0|

)
|u0| exp−s0t/2 . (61)

Defining ŝ0 = s0/2 and Ĉ = C̃ +
2

a0

C then the result follows from (60), (61) inequality

and of the Banach-Steinhaus theorem. tu

4 Existence: Two-dimensional Case

In this section we investigate the existence and asymptotic behavior of solutions for
the case n = 2 of Problem (9). In order to prove these results we need the following
hypotheses:
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H1: Let a(u) belongs to C2[0,∞) and b(u) belongs to C1[0,∞) and there are positive
constants a0, a1 such that,

a0 ≤ a(u) ≤ a1 and b(u)u ≥ 0.

H2: There is a positive constant M > 0 such that

max
s∈IR

{∣∣∣
da

du
(s)

∣∣∣;
∣∣∣
db

du
(s)

∣∣∣;
∣∣∣
d2a

du2
(s)

∣∣∣
}
≤ M.

H3:
da

du
(0) = 0.

H4: u0 ∈ H1
0 (Ω) ∩ H3(Ω).

Theorem 3 Under the hypotheses (H1) - (H4), there exists a positive constant ε0 such

that, if u0 satisfies (|∆u0|+ ‖u0‖H3(Ω)) < ε0, then Problem (9) admits a solution u : Q →
IR, satisfying the following conditions:

i. u ∈ L∞(0, T ; H1
0(Ω) ∩ H2(Ω)),

ii. u′ ∈ L2(0, T ; H1
0(Ω) ∩ H2(Ω)),

iii. u′ − div(a(u)∇u) + b(u) |∇u|2 = 0 in L2(Q),

iv. u(0) = u0.

Proof. To prove the theorem, we employ Galerkin method with the Hilbertian basis from
H1

0 (Ω), given by the eigenvectors (wj) of the spectral problem: ((wj, v)) = λj(wj, v), for
all v ∈ V = H1

0 (Ω) ∩ H2(Ω)) and j = 1, 2, · · ·. We represent by Vm the subspace
of V generated by vectors {w1, w2, ..., wm}. Let um(x, t) be the local solution of the
approximate problem (10). With similar arguments for the one-dimensional case, in
order to extend the local solution to the interval (0, T ) independent of m, the following
a priori estimates are needed.

Estimate I: Taking v = um(t) in the equation (10)1 and integrating over (0, T ), we
obtain

1

2
|um|

2 + a0

∫ T

0
‖um‖

2 +
∫ T

0

∫

Ω
b(um)um|∇um|

2 <
1

2
|u0|

2. (62)

Using the hypothesis (H1), we have

(um) is bounded in L∞ (0, T ; L2(Ω)) ∩ L2 (0, T ; H1
0(Ω)) . (63)

Estimate II: Taking v = −∆um(t) in (10)1, we obtain

1

2

d

dt
‖um‖

2 +
∫

Ω
a(um)|∆um|

2 = −
∫

Ω
b(um)|∇um|

2∆um +
∫

Ω

da

du
|∇um|

2∆um (64)
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From hypothesis (H1) and using Sobolev embedding theorem we have the inequality
∣∣∣
∫

Ω
b(um)|∇um|

2∆um

∣∣∣ ≤ M
∫

Ω
|um||∇um|

2|∆um|

≤ M |um|L6(Ω) |∇um|L6(Ω) |∇um|L6(Ω) |∆um|L2(Ω)

≤ MC3
1‖um‖ ‖um‖

2
H2(Ω) |∆um| ≤ C0|∆um|

4,

(65)

where C0 = MC3
1C2C3 > 0, since C1, C2, C3 are positive constants satisfying the

following inequalities:

|um|L6 ≤ C1‖um‖H1 , ‖um‖H2 ≤ C2|∆um| and ‖um‖H1 ≤ C3|∆um|. (66)

We also have that
∣∣∣
∫

Ω

da

du
|∇um|

2∆um

∣∣∣ ≤ M
∫

Ω
|∇um|

2|∆um| ≤ M |∇um|L4(Ω)|∇um|L4(Ω)|∆um|

≤ MC2
4‖um‖H2(Ω) ‖um‖H2(Ω) |∆um| ≤ MC2

4C
2
2 |∆um|

3

≤ C5|∆um|
3 ≤

C2
5

a0
|∆um|

4 +
a0

4
|∆um|

2.

(67)

where C5 = MC2
4C2

2 > 0 and C4 is a positive constant satisfying the inequality: |um|L4(Ω) ≤
C4‖um‖H1(Ω).

Substituting (65) and (67) in the equality (64) and using the hypothesis (H1), we
obtain

1

2

d

dt
‖um‖

2 +
3a0

4
|∆um|

2 ≤
(
C0 +

C2
5

a0

)
|∆um|

4. (68)

Consider now v = −∆u′

m in (10)1. Integrating in Ω, we obtain

‖u′

m‖
2 +

1

2

d

dt

∫

Ω
a(um)|∆um|

2 = −
∫

Ω
b(um)|∇um|

2∆u′

m

+
∫

Ω

da

du
|∇um|

2∆u′

m +
1

2

∫

Ω

da

du
u′

m|∆um|
2.

(69)

In the following, we shall get estimates for the first, the second and the third terms on
the hand right side of (69).

For the first term, from hypothesis (H2) and using Sobolev embedding theorem, we
obtain

∣∣∣
∫

Ω
b(um)|∇um|

2∆u′

m

∣∣∣ ≤ M
∫

Ω
|um||∇um|

2|∆u′

m|

≤ M |um|L6(Ω)|∇um|L6(Ω) |∇um|L6(Ω) |∆u′

m|L2(Ω)

≤ MC3
1‖um‖ ‖um‖

2
H2(Ω) |∆u′

m| ≤ C0|∆um|
3 |∆u′

m|

≤
C2

0

2
|∆um|

4 +
1

2
|∆um|

2 |∆u′

m|
2,

(70)
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where C0 = MC3
1C2C3 > 0, was defined in (65).

For the second term on the hand right side of (69), we have

∣∣∣
∫

Ω

da

du
|∇um|

2∆u′

m

∣∣∣ ≤ M
∫

Ω
|∇um|

2 |∆u′

m|

≤ M |∇um|
2
L4(Ω) |∆u′

m|L2(Ω)

≤ MC2
4‖um‖

2
H2(Ω) |∆u′

m|L2(Ω) ≤ C5|∆um|
2 |∆u′

m|

≤
2C2

5

a0
|∆um|

4 +
a0

8
|∆u′

m|
2,

(71)

where C4 and C5 are positive constants defined in (66) and (67).
For the third term on the hand right side of (69), we have

1

2

∣∣∣
∫

Ω

da

du
u′

m|∆um|
2
∣∣∣ ≤

M

2

∫

Ω
|u′

m||∆um|
2 ≤

M

2
|u′

m|C0(Ω) |∆um|
2

≤
M

2
C6|u

′

m|H2(Ω) |∆um|
2 ≤

M

2
C6C2|∆u′

m| |∆um|
2

≤ C7|∆u′

m| |∆um|
2 ≤

2C2
7

a0
|∆um|

4 +
a0

8
|, ∆u′

m|
2,

(72)

where C6 is the positive constant of embedding between spaces, H2(Ω) ↪→ C0(Ω), i.e,

‖u‖C0(Ω) ≤ C6‖u‖H2(Ω) and C7 =
M

2
C6C2 > 0. Substituting (70), (71) and (72) in

(69), we obtain

‖u′

m‖
2 +

1

2

d

dt

∫

Ω
a(um)|∆um|

2 ≤
(C2

0

2
+

2C2
5 + 2C2

7

a0

)
|∆um|

4 +
a0

4
|∆u′

m|
2

+
1

2
|∆um|

2|∆u′

m|
2.

(73)

On the other hand, taking derivative in the equation (10)1 with respect to t and taking
v = −∆u′

m and integrating in Ω, we have

1

2

d

dt
‖u′

m‖
2 +

∫

Ω
a(um)|∆u′

m|
2 = −

∫

Ω

da

du
u′

m∆um∆u′

m

−
∫

Ω

d2a

du2
u′

m|∇um|
2∆u′

m − 2
∫

Ω

da

du
∇um∇u′

m∆u′

m

−
∫

Ω

db

du
u′

m|∇um|
2∆u′

m − 2
∫

Ω
b(um)∇um∇u′

m∆u′

m.

(74)

Again, we shall estimate the five terms on the hand right side of (74) individually. For
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the first term, from hypothesis (H2) and using Sobolev embedding theorem we obtain

∣∣∣
∫

Ω

da

du
u′

m∆um∆u′

m

∣∣∣ ≤ M |u′

m|C0(Ω)|∆um| |∆u′

m| ≤ MC6C2|∆um| |∆u′

m|
2

≤
2M2C2

6C
2
2

a0

|∆um|
2|∆u′

m|
2 +

a0

8
|∆u′

m|
2.

(75)

For the second term, we have

∣∣∣
∫

Ω

d2a

du2
u′

m|∇um|
2∆u′

m

∣∣∣ ≤ M |u′

m|L6(Ω)|∇um|
2
L6(Ω)|∆u′

m|L2(Ω)

≤ MC2
2C1C3|∆um|

2|∆u′

m|
2.

(76)

For the third term,

∣∣∣
∫

Ω

da

du
∇um∇u′

m∆u′

m

∣∣∣ ≤ M |∇um|L4(Ω)|∇u′

m|
2
L4(Ω)|∆u′

m|L2(Ω)

≤ MC2
4C

2
2 |∆um| |∆u′

m|
2 ≤

a0

16
|∆u′

m|
2 +

4M2

a0
C4

4C
4
2 |∆um|

2|∆u′

m|
2.

(77)

For the fourth term,

∣∣∣
∫

Ω

db

du
u′

m|∇um|
2∆u′

m

∣∣∣ ≤ MC2
2C1C3|∆um|

2|∆u′

m|
2. (78)

For the last term of (74), we have

∣∣∣
∫

Ω
b(um)∇um∇u′

m∆u′

m

∣∣∣ ≤ MC2
4C

2
2 |∆um| |∆u′

m|
2

≤
a0

16
|∆u′

m|
2 +

4M2

a0

C4
4C

4
2 |∆um|

2 |∆u′

m|
2.

(79)

Substituting the estimates (75)-(79) in (74), we obtain

1

2

d

dt
‖u′

m‖
2 +

∫

Ω
a(um)|∆u′

m|
2 ≤ C8|∆um|

2|∆u′

m|
2 +

3a0

8
|∆u′

m|
2, (80)

where C8 = 2
(M2C2

6C
2
2

a0
+ MC2

2C1C3 +
8M2C4

4C
4
2

a0

)
.

Adding the estimates (68), (73) and (80), we obtain

1

2

d

dt

(
‖um‖

2 + ‖u′

m‖
2 +

∫

Ω
a(um)|∆um|

2
)

+
3a0

4
|∆um|

2 +
3a0

8
|∆u′

m|
2

≤ C9|∆um|
4 + C8|∆um|

2|∆u′

m|
2,

(81)

where C9 =
(3C2

5 + 2C2
7

a0
+

C2
0

2
+ C0

)
.
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From estimate (81), we obtain

1

2

d

dt

(
‖um‖

2 + ‖u′

m‖
2 +

∫

Ω
a(um)|∆um|

2
)

+
a0

2
|∆um|

2

+|∆um|
2
(a0

4
− C9|∆um|

2
)
+

a0

8
|∆u′

m|
2+ |∆u′

m|
2
(a0

4
− C8|∆um|

2
)
≤ 0.

(82)

On the other hand, making t = 0 in the equation (10)1, taking v = −∆u′

m(0), integrating
in Ω and using the hypothesis (H3), we have

‖u′

m(0)‖2 = −
∫

Ω
a (u0m) ∆u0m∆u′

m(0) +
∫

Ω

da

du
(u0m)(∇u0m)2∆u′

m(0)

−
∫

Ω
b (u0m) |∇u0m|

2∆u′

m(0) =
∫

Ω

da

du
(u0m)∇u0m∆u′

m(0)∇u′

m(0)

+
∫

Ω
a (u0m)∇ (∆u0m)∇u′

m(0) −
∫

Ω

d2a

du2
(u0m|∇u0m|

2∇u0m∇u′

m(0)

−
∫

Ω

da

du
(u0m)∇(|∇u0m|

2)∇u′

m(0)−
∫

Ω

db

du
(u0m) |∇u0m|

2∇u0m∇u′

m(0)

−
∫

Ω
b(u0m)∇

(
|∇u0m|

2
)
∇u′

m(0).

(83)

From (83), we obtain the following estimate for the u′

m(0) term,

‖u′

m(0)‖2 ≤ C10

(
‖u0m‖H3(Ω) |∆u0m| + ‖u0m‖H3(Ω) + |∆u0m|

3
)
‖u′

m(0)‖.

Or equivalently

‖u′

m(0)‖2 ≤ C2
10

(
‖u0m‖H3(Ω) |∆u0m| + ‖u0m‖H3(Ω) + |∆u0m|

3
)2

, (84)

where C10 = max
{
MC2

4C2 + 2MC4C2 + MC2
1C3C2, M, 2MC1C2

}
.

There is ε0 > 0 such that for (|∆u0| + ‖u0‖H3(Ω)) < ε0, we have

|∆u0|
2 <

1

(C8 + C9)

a0

4
,

‖u0‖ + C2
10

(
‖u0‖H3(Ω) |∆u0| + ‖u0‖H3(Ω) + |∆u0|

3
)2

+ a1|∆u0|
2

< a0
1

(C8 + C9)

a0

4
.

(85)

Therefore, we can confirm that

|∆um|
2 <

1

(C8 + C9)

a0

4
, ∀ t ≥ 0. (86)
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Indeed, by presuming absurdity, there is a t∗ by (86) such that

|∆um(t)|2 <
1

(C8 + C9)

a0

4
, if 0 < t < t∗ and

|∆um(t∗)|2 =
1

(C8 + C9)

a0

4
.

(87)

Then, by integrating (82) from 0 to t∗ and using hypothesis (H1), we obtain

‖um(t∗)‖2 + ‖u′

m(t∗)‖2 + a0|∆um(t∗)|2 ≤ ‖u0m‖
2 + ‖u′

m0‖2 + a1|∆u0m|
2. (88)

From (84), (85) and (88) we obtain

1

2

(
‖um(t∗)‖2 + ‖u′

m(t∗)‖2 + a0|∆um(t∗)|2
)

<
a0

2

1

(C8 + C9)

a0

4
. (89)

Therefore, we conclude that

|∆um(t∗)|2 <
1

(C8 + C9)

a0

4
.

This leads to a contradiction by (87)2.

Since (86) is valid, the terms
(a0

4
− C8|∆um|

2
)

and
(a0

4
− C9|∆um|

2
)

on the left

hand-side of (82) are also positive. Hence, by integrating (82) from 0 to T , we obtain

1

2
‖um‖

2 + ‖u′

m‖
2 +

a0

2
|∆um|

2 +
a0

2

∫ T

0
| ∆um|

2 +
a0

8

∫ T

0
|∆u′

m|
2 ≤ C. (90)

Therefore,

(um) is bounded in L∞ (0, T ; H1
0(Ω) ∩ H2(Ω)) ,

(u′

m) is bounded in L2 (0, T ; H1
0(Ω) ∩ H2(Ω)) ∩ L∞ (0, T ; H1

0(Ω)) .
(91)

The limit of the approximate solutions can be obtained following the same arguments for
(33), (34), (38) and (41), i.e, we obtain the solution in L2(Q).tu

Asymptotic behavior

In the following we shall prove that the solution u(x, t) of Problem (9), in the case n = 2,
also decays exponentially when time t → ∞.

Theorem 4 Let u(x, t) be the solution of Problem (9). Then there exist positive constants

S0 and C = C{‖u0‖, |∆u0|, ‖u0‖H3(Ω)} such that

‖u‖2 + ‖u′‖2 +
∫

Ω
a(u)|∆u|2 ≤ C exp−S0 t . (92)
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Proof. Let H(t) =
1

2

(
‖um‖

2 + ‖u′

m‖
2 +

∫

Ω
a(um)|∆um|

2
)
.

From (82), we obtain

d

dt
H(t) + a0|∆um|

2 +
a0

4
|∆u′

m|
2 ≤ 0. (93)

We also have

H(t) ≤
1

2
C2

3

(
|∆um|

2 + |∆u′

m|
2
)

+
a1

2
|∆um|

2

≤ Ĉ1

(
|∆um|

2 + |∆u′

m|
2
)
≤ Ĉ2

(a0

2
|∆um|

2 +
a0

8
|∆u′

m|
2
)
,

(94)

where Ĉ1 = max
{
C2

3 ,
a1

2

}
and Ĉ2 =

8Ĉ1

a0
. Using (93) and (94), we conclude that

1

2

d

dt
H(t) + Ĉ2H(t) ≤ 0,

which implies that
H(t) ≤ C exp−S0 t,

where S0 = −2Ĉ2 and the positive constant C = C{‖u0‖, |∆u0|, ‖u0‖H3(Ω)} is determined
by (84). The result follows from the Banach-Steinhaus theorem. tu
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