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ALGORITHMS FOR TRIANGULATING POLYHEDRA
INTO A SMALL NUMBER OF TETRAHEDRA

Milica Stojanović

Abstract. Two algorithms for triangulating polyhedra, which give the number of tetrahedra
depending linearly on the number of vertices, are discussed. Since the smallest possible number of
tetrahedra necessary to triangulate given polyhedra is of interest, for the first–“Greedy peeling”
algorithm, we give a better estimation of the greatest number of tetrahedra (3n − 20 instead of
3n − 11), while for the second one–“cone triangulation”, we discuss cases when it is possible to
improve it in such a way as to obtain a smaller number of tetrahedra.

1. Introduction

It is known that it is possible to divide any polygon with n − 3 diagonals into
n − 2 triangles without gaps and overleaps. This division is called triangulation.
Many different practical applications require computer programs, which solve this
problem. Examples of such algorithms are given by Seidel [8], Edelsbrunner [4] and
Chazelle [2]. The most interesting aspect of the problem is to design algorithms,
which are as optimal as possible.

The generalization of this process to higher dimensions is also called a trian-
gulation. It consists of dividing polyhedra (polytope) into tetrahedra (simplices).
Besides fastness of algorithm, there are new problems in higher dimensions. It is
proved that it is impossible to triangulate some of nonconvex polyhedra [7, 9] in
a three-dimensional space, and it is also proved that different triangulations of the
same polyhedron may have different numbers of tetrahedra. Considering the small-
est and the greatest number of tetrahedra in triangulation (the minimal and the
maximal triangulation), these authors obtained values, which linearly, resp. square-
ly depend on the number of vertices. Interesting triangulations are described in the
papers of Edelsbrunner, Preparata, West [5] and Sleator, Tarjan, Thurston [10].
Some characteristics of triangulation in a three-dimensional space are given by Lee
in [6] and this problem is also related to the problems of triangulation of a set of
points in a three-dimensional space [1, 5] and rotatory distance (in a plane) [10].

AMS Subject Classification: 52C17, 52B05, 05B40
Keywords and phrases: Triangulation of polyhedra, minimal triangulation.

1



2 M. Stojanović

In this paper in Section 2 we describe some polyhedra with n vertices, which
are possible to triangulate into n − 3 or n − 2 tetrahedra. In Sections 3 and 4 we
give some observations about two algorithms for triangulation of polyhedra, which
can give the number of tetrahedra that linearly depends on the number of vertices.
We consider convex polyhedra in which each 4 vertices are noncoplanar and all
faces are triangular. Furthermore, all considered triangulations are face to face.
The number of edges from the same vertex will be called the order of vertex. For
triangulation in an n-dimensional space we will also use the term n-triangulation.

2. Some examples of polyhedra and their triangulations

It is possible to triangulate all convex
polyhedra, which is not the case with non-
convex ones. An example of a nonconvex
polyhedron, which is impossible to triangu-
late, was given by Schonhardt [9] and re-
ferred to in [7]. This polyhedron is obtained
in the following way: triangulate the lateral
faces of a triangular prism A1B1C1A2B2C2

by the diagonals A1C2, B1A2 and C1B2

(Fig. 1.). Then “twist” the top face A2B2C2

by a small amount in the negative direction.
In such a polyhedron none of tetrahedra with
vertices in the set {A1, B1, C1, A2, B2, C2} is
inner, so the triangulation is not possible.

Fig. 1

Let us now consider triangulations of a bipyramid with a triangular basis ABC
and apices V1 and V2 (Fig. 2.). There are two different triangulations of this kind.
The first one is into two tetrahedra V1ABC and V2ABC, and the second one is
into three: V1V2AB, V1V2BC and V1V2CA.

It is proved that the smallest possible number of tetrahedra in the triangulation
of a polyhedron with n vertices is n − 3. But, it is not possible to triangulate
each polyhedron into n − 3 tetrahedra. For example, all the triangulations of an
octahedron (6 vertices) give 4 tetrahedra, what is the reason to mention examples
of polyhedra for which triangulation with n − 3 vertices is possible.

The pyramids with n − 1 vertices in the basis (i.e., a total of n vertices) are
triangulable by doing any 2-triangulation of the basis into (n − 1) − 2 = n − 3
triangles. Each of these triangles makes with the apex one of tetrahedra in 3-
triangulation. If the basis of a “pyramid” is a space polygon, then it is possible to
triangulate it in a similar way without taking care about convexity and this will be
used in the algorithm in Section 3.

Let us return to the two methods of triangulating a bipyramid, but this time
with n − 2 vertices in the basis (which can also be a space polygon). If we divide
it into two pyramids and triangulate each of them with taking care of a common
2-triangulation of the basis, then we will obtain 2(n− 4) tetrahedra. In the second
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Fig. 2

method each of n − 2 tetrahedra has a common edge joining the apices of the
bipyramid and, moreover, each of them contains a pair of the neighbour vertices
of the basis (i.e., one of the edges of the basis). For n = 5 (a bipyramid with a
triangular basis) it has been found that the first method is “better”, i.e., it gives
a smaller number of tetrahedra. For n = 6 (the octahedron) both methods give 4
tetrahedra and for n � 7 the second method is “better”.

3. The “Greedy Peeling” triangulation

The “Greedy Peeling” (GP) algorithm for triangulating a given polyhedron P
is iterative and is described below.

Take a vertex of the smallest order (an arbitrary one in the case that there
are more such vertices) and discard the triangulated “pyramid” which consists of
the mentioned vertex and its neighbour vertices. 2-triangulate the new surface of
the remaining polyhedron in such a way that the whole triangulation would be face
to face. All this has to be done in such a way to get a new polyhedron, which
is convex. Then repeat everything with the new polyhedron. At the end of such
triangulation there remains only one tetrahedron.

This algorithm is described in [5] for a more general case of triangulating a set
of n points in the space. It is estimated that in the GP triangulation of a polyhedron
with n vertices there are no more than 3n − 11 tetrahedra. This value is obtained
on the basis of a consequence of Euler’s theorem [3, 4], by which each polyhedron
contains at least one vertex of order not greater than 5. Since discarding a vertex
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of order k gives k − 2 tetrahedra and the last four vertices make one tetrahedron,
the upper bound of the number of tetrahedra in this triangulation is 3n − 11.

For getting a better estimation, let us observe that it is possible to determine
the smallest order of vertex more precisely.

Lemma 3.1. Polyhedra with 5 vertices have at least one vertex of order 3;

polyhedra with n vertices, 6 � n � 11 have at least one vertex of order not
greater than 4;

polyhedra with n � 12 vertices have at least one vertex of order not greater
than 5.

Proof. Let n be the number of vertices, e of edges and f of faces. Then, by
Euler’s theorem [3, 4] for a polyhedron whose faces are triangular, e = 3n−6 holds.

The mean number of edges in each vertex is m =
2e

n
=

6n − 12
n

= 6 − 12
n

. Since
for n = 5, it is m < 4, for 6 � n � 11, it is m < 5, and for n � 12, it is m < 6, our
statement follows.

Lemma 3.2. Each polyhedron with 13 vertices has at least one vertex of order
not greater than 4.

Proof. If we suppose the opposite, then the polyhedron has one vertex V of
order 6 and 12 vertices of order 5. This vertex V is connected with vertices A,
B, C, D, E, F (of order 5). Besides being connected with V , these 6 vertices
are interconnected so as to form a space hexagon, i.e., each is connected with 2
further vertices. For each of these vertices there are 2 edges more joining it with
new vertices. Since the faces are triangular, those 12 edges build 6 new faces with
vertices A, B, C, D, E, F and 6 vertices more—A1, B1, C1, D1, E1, F1. After the
application of any 2-triangulation of the (space) hexagon A1B1C1D1E1F1, some of
vertices A1, B1, C1, D1, E1, F1 will be left as a 4-order vertex.

With the previous we have proved the following

Theorem 3.1. The greatest number of tetrahedra in a GP triangulation of a
polyhedron with n vertices is not greater than Tn where:

• Tn = n − 3 for n = 4, 5;

• Tn = 2n − 8 for 6 � n � 11;

• T12 = 17;

• Tn = 3n − 20 for n � 13.

If there are more vertices of the same, the smallest order, then by a suitable
choice of the order of vertices to be discarded in the steps of the GP algorithm,
it is possible to get a smaller number of tetrahedra. But, the previous estimation
cannot be better, since for the given n there exists a polyhedron with n vertices,
such that for its GP triangulation Tn is tight. According to this, let us prove:
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Theorem 3.2. (1) There is a GP triangulation of icosaedron into 17 tetrahe-
dra;

(2) There is such a series of polyhedra with n � 14 vertices of order not less
than 5 and such a GP triangulation of these polyhedra, which in each iteration gives
the polyhedron from the same series, but with one vertex less.

Fig. 3

Proof. (1) Denote by V1 and V2 the opposite vertices of an icosaedron and
by A1, B1, C1, D1, E1 and A2, B2, C2, D2, E2 the vertices of space pentagons
connected with V1, resp. V2, and chosen in such a way that the icosaedron contains
edges A1A2 and A1B2. We obtain a GP triangulation into 17 tetrahedra if we dis-
card the vertices in the following order and add new edges denoted in parentheses:



6 M. Stojanović

A1 (V1A2, V1B2), B1 (V1C2), C1 (V1D2), D1 (D2E1), E1 (V1E2), E2 (A2D2), V1

(A2C2), B2. There remains the tetrahedron A2C2D2V2.
(2) First we will introduce the basic series of polyhedra with n = 6k+2 (k � 2)

vertices of order not less than 5 and then add, according to the GP algorithm,
polyhedra with n vertices, 6(k − 1) + 2 < n < 6k + 2 (k � 3), with the same
property.

The polyhedra from the basic series are obtained as follows: k space hexagons
AiBiCiDiEiFi (1 � i � k) are connected in such a way that the polyhedron
contains edges AiAi+1 and AiFi+1 (1 � i � k − 1) and vertices of hexagons
A1B1C1D1E1F1 and AkBkCkDkEkFk with two additional vertices V1 and Vk. The
vertices A1, B1, C1, D1, E1, F1, Ak, Bk, Ck, Dk, Ek, Fk are of order 5 and the
others are of order 6.

Other polyhedra from the whole series can be obtained by GP algorithm by
discarding vertices in the following order and adding new edges as it is indicated
in parentheses (Fig. 3.): Ek (DkFk−1, DkFk), Fk (Fk−1V2, Fk−1Ak), Dk (Ek−1V2,
Ek−1Ck), Ck (Dk−1V2, Dk−1Bk), Ak (Ak−1V2, Ak−1Bk), Bk (V2Bk−1, V2Ck−1).
The last iteration gives a polyhedron from the basic series. The vertices of new
polyhedra are of order 5 or 6 except the vertex Fk−1 for n = 6k (i.e., the polyhedron
obtained after discarding vertex Fk) which is of order 7.

4. The cone triangulation

A much better estimation of the minimal number of tetrahedra is obtained by
the cone triangulation [10]. One of the vertices is the common apex, which builds
one tetrahedron with each of (triangular) faces of the polyhedra, except with these
containing it. By Euler’s theorem, a polyhedron with n vertices has 2n − 4 faces
if all of them are triangular. So, the number of tetrahedra in triangulation is at
most 2n − 10, since, for n � 12, each polyhedron has at least one vertex of order
6 or more. Sleator, Tarjan and Thurston in [10] considered some cases of “bad”
polyhedra, which need a great number of tetrahedra for triangulation. It is proved,
using hyperbolic geometry, that the minimal number of tetrahedra, necessary for
triangulating such polyhedra, is close to 2n− 10. That value is tight for one series
of polyhedra, which exists for a sufficiently great n. Computer investigation of the
equivalent problem of rotatory distance confirms, for 12 � n � 18, that there exist
polyhedra, with the smallest necessary number of tetrahedra equal to 2n−10. This
was the reason why the authors gave a hypothesis that the same statement is true
for any n � 12. To prove this hypothesis, it would be good to check when the
cone triangulation of polyhedra gives the smallest number of tetrahedra and how
it is possible to improve it in other cases. With this aim, the authors gave in [10]
an example of polyhedron, which had vertices of great order and for which there
existed a triangulation better than the cone one. They also gave an advice on how
to improve the method in this and some similar cases. The polyhedra with vertices
of great order give less than 2n − 10 tetrahedra in the cone triangulation anyway,
so, it is better to consider vertices of small order—3 or 4 if given polyhedra contain
them.
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Theorem 4.1. Let V be one of the vertices of a polyhedron P whose order is
maximal. If the polyhedron P has a vertex of order 3 different and not connected
with V , or a sequence of at least 2 vertices of order 4 connected between them-
selves into a chain, each of them different and not connected with V , then the cone
triangulation of P with apex V will not give the smallest number of tetrahedra.

Proof. It is useful to apply the iterations of GP algorithm to the polyhedron
as long as it has vertices of order 3, because each iteration gives then only one
tetrahedron. Cone triangulation gives the same effect only for vertices connected
with apex V . Otherwise, the vertex of order 3, neighbour vertices and apex V build
a triangular bipyramid, which, by cone triangulation, gives 3 tetrahedra.

Suppose that a polyhedron P with n vertices has a sequence of k < n−6 vertices
A1, A2, . . . , Ak of order 4 connected by edges AiAi+1 (i = 1, . . . , k−1), AjT1, AjT2

(j = 1, . . . , k), A1R, AkS, RT1, RT2, ST1, ST2, where R and S are of order greater
than 4. Similarly as for the bipyramid, the best way to triangulate the part of P
containing vertices R, S, A1, A2, . . . , Ak, T1, T2 is to use tetrahedra surrounding
T1T2: RA1T1T2, AiAi+1T1T2 (i = 1, . . . , k − 1), and AkST1T2. Let us call a
triangulation of P “bipyramidal” if it contains the mentioned tetrahedra, and the
remaining part P ∗ of polyhedron P (with faces RT1T2 and ST1T2) is triangulated
by cone triangulation with apex V . If the order of vertex V of polyhedron P is v,
then the cone triangulation of P gives 2n − 4 − v tetrahedra and the bipyramidal
one, when V differs from the vertices R, S, T1, T2, Aj (j = 1, . . . , k), gives [k +1]+
[2(n − k) − 4 − v] = 2n − 4 − v − k + 1 tetrahedra. Since k � 2, the bipyramidal
triangulation gives a smaller number of tetrahedra. Even when V coincides with
R or S, the bipyramidal triangulation gives good results for k � 3, since after
discarding tetrahedra around T1T2, vertex V is of order v − 1, this triangulation
gives 2n − 4 − v − k + 2 tetrahedra. If the part P ∗ of polyhedron P has a vertex
V1 of order greater than v − 1, it is also possible to divide P ∗ by a better cone
triangulation with apex V1 (with 2n − 4 − v − k + 1 tetrahedra).

Remarks. 1. Each of the vertices Aj (j = 1, . . . , k) is of order 4 and it is
not suitable to use it as the apex of cone triangulation, since there are vertices of
greater order.

2. If V coincides with T1 or T2, the two mentioned triangulations are the same.
3. In order to triangulate a given polyhedron P , it is obviously good to apply

the previous whenever there exists any vertex of order 3 and 4 and, if it is necessary,
more times.

From everything mentioned before, it is clear that candidates for the minimal
triangulation into a great number of tetrahedra (near or equal to 2n − 10) are
polyhedra with all vertices of order 5 or 6. So, the following theorem is significant:

Theorem 4.2. For n � 14 there exists a polyhedron with n vertices which are
either of order 5 or 6.

Proof. In the proof of Theorem 3.2.(2), the basic series was described for
n = 6k + 2 (k � 2) which fulfilled the condition of the theorem. For other values
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Fig. 4

of n, vertices will be added one by one. The first three vertices of order 5 can be
added around vertex V1 in the following way (Fig. 4.): vertex P is connected with
V1, A1, B1, C1, D1 (edges V1B1 and V1C1 vanish); vertex Q is connected with V1,
F1, A1, B1, P (edges A1V1 and A1P vanish); vertex R is connected with V1, P ,
C1, D1, E1 (edges D1V1 and D1P vanish). A similar procedure can be repeated
around vertex Vk. Since all these polyhedra fulfill the condition of the theorem, the
theorem is proved for all values of n.
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