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FINITE GROUPS ADMITTING SOME
COPRIME OPERATOR GROUPS

Enrico Jabara

Abstract. Let G be a finite group, with a finite operator group A, satisfying the following
conditions: (1) (|G|, |A|) = 1; (2) there exists a natural number m such that for any α, β ∈ A�

we have: [ CG(α), CG(β), . . . , CG(β)︸ ︷︷ ︸
m

] = {1}; (3) A is not cyclic. We prove the following: (1) If

the exponent n of A is square-free, then G is nilpotent and its class is bounded by a function
depending only on m and λ(n) (= n). (2) If Z(A) = {1} and A has exponent n, then G is
nilpotent and its class is bounded by a function depending only on m and λ(n).

1. Introduction

Let G be a finite group and A a group acting on G. Since we are not supposing
that the action is faithful, A will be referred to as an operator group on G. Giving
some conditions on A and on G, deep information about the structure of G can be
obtained. The most famous result is probably due to Thompson, who proved that
if |A| is a prime number and CG(A) = {1} then the finite group G is nilpotent (see
Theorem 10.2.1 of [5]).

The aim of this paper is to extend some results obtained in [11] and [12]. We
consider the following hypotheses:

(�) Let G be a finite group, with a finite operator group A, satisfying the following
conditions:
(1) (|G|, |A|) = 1;
(2) there exists a natural number m such that for any α, β ∈ A� we have:

[CG(α), CG(β), . . . , CG(β)︸ ︷︷ ︸
m

] = {1};

(3) A is not cyclic.

Here, if X is a group, X� denotes the set X \ {1}.
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In [11] it is proved that, under the hypotheses (�), if |A| = p2 (p a prime
number) then G is nilpotent with nilpotency class bounded by a function depending
only on m and p. In [12] the case in which A is cyclic has been studied, proving that
if A = 〈α〉 has square-free exponent n, CG(A) = {1} and the hypotheses (�1) and
(�2) are satisfied, then G is nilpotent with class bounded by a function depending
only by m and n. In the cases considered, the exponent n of A is square free, that is
n = λ(n) where λ(n) is the square free part of n defined as follows: given a natural
number n and its factorization, n = ph1

1 · ph2
2 · . . . · phr

r (pi �= pj if i �= j) we put
λ(n) = p1 · p2 · . . . · pr.

Using Lie methods, we prove:

Theorem 1. Let G and A be two groups satisfying the hypotheses (�). If the
exponent n of A is square-free, then G is nilpotent and its class is bounded by a
function depending only on m and λ(n) (= n).

Theorem 2. Let G and A be two groups satisfying the hypotheses (�). If
Z(A) = {1} and A has exponent n, then G is nilpotent and its class is bounded by
a function depending only on m and λ(n).

Theorems 1 and 2 make us conjecture that if G and A satisfy the hypotheses
(�) then only exceptionally G is not nilpotent. In fact

Theorem 3. If G and A satisfy the hypotheses (�1) and (�2) and if G is
not nilpotent, then A has the structure of the complement of some finite Frobenius
group.

Using the classification of finite simple groups, we can prove that any group
satisfying (�1) and (�2) is soluble (these hypotheses can be further weakened, see
for example [13] and [3]; if CG(A) = {1} a nice proof can be found in [10]).

Using a result of Kurzweil ([8]), it can be proved in general that if G and A
satisfy the hypotheses (�1) and (�2) then G has Fitting length at most 3 and this
bound is reached. There exists in fact a finite group G with an automorphism σ
of order a prime number p with (|G|, p) = 1, [G, 〈σ〉] = G and such that CG(σ) is
nilpotent and G has Fitting length 3 (see for example [2] and [6]).

2. Notations and preliminary results

All the groups considered in this paper are finite, even if the results of Theorems
1, 2 and 3 holds also under the weaker hypothesis that G is locally finite. We denote
by G and A a pair of groups satisfying the hypothesis (�1) and by p, q, r and s
prime numbers; the function λ has already been defined. If Γ is a set of parameters
we say that a number is Γ-bounded if it is bounded by a function depending only
on elements of Γ.

We use standard notation for groups and Lie rings (see [5], [9], [4], [7], [1]).
In particular if G is a nilpotent group and A is an operator group of G with
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(|G|, |A|) = 1, then we can associate to G a nilpotent Lie ring L of the same class
of G on which A acts (essentially) as on G.

If X and Y are subgroups of a group H (or subrings of a Lie ring L) the
subgroup (the subring) [X, mY ] is defined inductively by [X, 1Y ] = [X,Y ] and
[X, mY ] = [[X,Y ], m−1Y ].

The following result will be used without further reference in many proofs by
induction on |G|. Its proof is immediate.

Lemma 1. The hypotheses (�) are inductive on G, that is they are inherited
by A-invariant subgroups and A-invariant quotients of G.

Lemma 2. Let V be a vector space of finite dimension over a field of charac-
teristic p > 0. Let B be a non abelian group of order rs with r > s distinct prime
numbers and (p, rs) = 1. If B acts on V then:

V =
∑

β∈B�

CV (β).

Proof. Let 1 �= 〈α〉 be the normal subgroup of order r of B; then CV (α) is a
B-invariant subspace of V . By Maske Theorem (Theorem 3.3.1 of [5]) V admits a
B-invariant complement W of CV (α). We put X = B\〈α〉 and W0 =

∑
κ∈X CW (κ).

If we suppose W0 �= W , then α and any κ ∈ X act on W = W/W0 fixed points
free. In this case Theorem 5.3.14.iii of [5] shows that the group 〈α〉〈κ〉 is cyclic,
against the hypothesis.

Lemma 3. Let X be a group and assume that either
(a) X is non abelian of square-free exponent of X or
(b) Z(X) = {1}.

If X does not contain elementary abelian subgroups of order p2 for any p ∈
π(X), then X is metacyclic and it contains a non abelian subgroup of order rs with
r > s distinct prime numbers.

Proof. By hypothesis all the Sylow p-subgroups of X, p odd, are cyclic, while
the Sylow 2-subgroups are cyclic or generalized quaternion (Theorem 5.4.10.ii of
[5]).

The Sylow 2-subgroups of X cannot be generalized quaternion. This is clear
in case (a); in case (b) either
(i) O2′(X) = {1}, then for Brauer-Suzuki Theorem (see chapter 12 of [5]) Z(X)
contains an involution: a contradiction;

or
(ii) O2′(X) �= {1}; since all the Sylow subgroups of O2′(X) are cyclic, O2′(X) is
(cyclic or) metacyclic (Theorem 10.1.10 of [9]). A generalized quaternion group
cannot act faithfully on a (cyclic or) metacyclic group and therefore we should
have Z(X) �= {1} against the hypothesis.
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Therefore X is metacyclic (Theorem 10.1.10 of [9]) and X = 〈x〉〈y〉 with 〈x〉
normal in X. If Z(X) = {1} we have 〈x〉 ∩ 〈y〉 = {1} because 〈x〉 ∩ 〈y〉 ≤ Z(X)
and therefore (|〈x〉|, |〈y〉|) = 1 by hypothesis. In any case there exists an element
x0 of 〈x〉 of prime order r. Since CX(x0) �= X there exists y0 ∈ 〈y〉 of order a prime
number s �= r that does not centralize x0. Then 〈x0〉〈y0〉 is the subgroup we are
looking for.

Lemma 4. If G and A are groups satisfying the hypothesis (�1) then:
(a) if N is a normal A-invariant subgroup of G, then

CG/N (A) = CG(A)N/N ;

(b) for any p ∈ π(G), there exists an A-invariant Sylow p-subgroup of G;
(c) if A is not abelian and its exponent is square-free or if Z(A) = {1} we have

G = 〈 CG(α) | α ∈ A� 〉.

Proof. (a) and (b) are a direct consequence of Schur-Zassenhaus Theorem (see
Theorem 6.2.2 of [5]).

If A contains an elementary abelian subgroup of order p2 (p a prime number)
then the conclusion is given by Theorem 6.2.4 of [5]. Hence, by Lemma 3, A
contains a non abelian subgroup of order rs with r and s distinct prime numbers.
The conclusion can be obtained using Lemma 2 and point (a).

Lemma 5. Let B be a group of operators of the Lie ring L. If B has exponent
n and if nL = L we have:
(a) if I is a B-invariant ideal of L then CL/I(B) = (CL(B) + I)/I;
(b) if B is not cyclic and n is square-free or if Z(B) = {1} then

L =
∑

β∈B�

CL(β).

Proof. (a) is a simple extension of Lemma 2.2.1 of [11]. If C ≤ B is elementary
abelian of order p2 (p a prime number) then clearly pL = L, Lemma 2.2.2 of [11]
gives

L =
∑

γ∈C�

CL(γ)

and the conclusion. If B do not contains elementary abelian subgroups of order p2

then by, Lemma 3, B contains a non abelian subgroup of order rs. The conclusion
follows from Lemma 2 and point (a).

Lemma 6. Let L be a metabelian Lie ring and B an operator group of L
of exponent n. Suppose that nL = L and that [CL(α), mCL(β)] = {0} for any
α, β ∈ B�. If B is not cyclic and n is square-free or if Z(B) = {1} then L is
nilpotent of class {m, λ(n)}-bounded.
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Proof. Let L′ = [L,L]; by Lemma 5 (b) we have:

L =
∑

κ∈K�

CL(κ) , L′ =
∑

κ∈K�

CL′(κ).

Since L is metabelian, for any x ∈ L′ and any a, b ∈ L we have [x, a, b] =
[x, b, a]. If t = m(rs − 1) + 1, by the bilinearity of [ , ] we get [L′, tL] = {0} and
therefore L is nilpotent of class at most t + 1. It is now enough to observe that
rs ≤ n = λ(n).

Lemma 7. Let L be a soluble Lie ring and B be an operator group of L
of exponent n. Suppose that nL = L and that [CL(α), mCL(β)] = {0} for any
α, β ∈ B�. If one of the following conditions is satisfied:

(a) B is not cyclic and n is square-free,

(b) Z(B) = {1},
then L is nilpotent of class {m,λ(n)}-bounded.

Proof. Let d be the derived length of L.

It follows from Lemma 6, using Proposition 7.1.1 of [1] (or Theorem 2.4 of
[11]), that L is nilpotent of class {m,λ(n), d}-bounded. Hence the statement is
proved if we show that d is {m,λ(n)}-bounded. Let β ∈ B�, by Lemma 5 (b) we
have:

[L, mCL(β)] = [
∑

κ∈B�

CL(κ), mCL(β)] =
∑

κ∈B�

[CL(κ), mCL(β)] = 0.

Theorem 2.3 of [11] gives the conclusion.

3. Proofs of the theorems

To prove Theorems 1 and 2 it is sufficient to show that if the group G satisfies
their hypotheses, then G is nilpotent; the bound of the nilpotency class is then
a consequence of Lemma 7 and of the correspondence between (finite) nilpotent
groups and nilpotent Lie rings (described in [7] or in chapter VIII of [4]).

We suppose, by contradiction, that there exist counterexamples to Theorem 1
or Theorem 2. We choose among these counterexample, one such that |G| + |A|
is minimal. Let p ∈ π(G) be an odd prime number and P an A-invariant Sylow
p-subgroup of G. Let N = NG(Z(J(P ))). If N �= P then |N | + |A| < |G| + |A|
and N is nilpotent. By Glauberman-Thompson Theorem (Theorem 8.3.1 of [5])
we have that G has a normal p-complement, which is A-invariant. If N = G then
{1} �= Z(J(P )) is a normal, nilpotent and A-invariant subgroup of G. In both cases
we have F (G) �= {1} and since |G/F (G)| + |A| < |G| + |A|, G/F (G) is nilpotent.
With a similar argument it can be proved that G/F (G) is minimal A-invariant and
therefore there exists q ∈ π(G) such that G/F (G) is an elementary abelian q-group
(on which A acts irreducibly).
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We suppose that G admits two minimal normal A-invariant subgroups N1 and
N2, then G/N1 and G/N2 are nilpotent. Since N1 ∩N2 = {1}, the group G should
be nilpotent: a contradiction.

We only have to examine the case in which G has a unique minimal normal
A-invariant subgroup N ; in this case N , and therefore F (G), is a p-subgroup for
some p ∈ π(G), p �= q. If Φ(F (G)) �= {1} we get a contradiction, when we con-
sider G/Φ(F (G)). We can therefore suppose F (G) = P , an elementary abelian
p-subgroup of G and G = PQ with P and Q elementary abelian Sylow subgroups.
As in the proof of Lemma 3 we obtain that A contains a non abelian subgroup B
of order rs with r and s distinct prime numbers. Since the hypotheses (�) are still
valid for the non-cyclic subgroups of A, if B �= A we have |G| + |B| < |G| + |A|
and G should be nilpotent. Therefore A = B and |A| = rs. Lemma 4 (c) gives
P = 〈 CP (α) | α ∈ A� 〉 and Q = 〈 CQ(α) | α ∈ A� 〉.

Let α be an element of A with CQ(α) �= {1} and let y be a non trivial element
in CQ(α). Take x1, x2 ∈ P , and recall that [x1, y], [x2, y] ∈ P . From the fact that
P is abelian, we get [x1x2, y] = [x1, y]x2 [x2, y] = [x1, y][x2, y].

By hypothesis we have [CP (β), m〈y〉] = {1} for all β ∈ A� and therefore
[CP (β), 〈y〉] = {1} because (|P |, |〈y〉|) = 1. Since P = 〈CP (β) | β ∈ A�〉 we obtain
[P, 〈y〉] = {1}. Then 1 �= y ∈ CG(P ) ≤ P is the contradiction that concludes the
proof.

The proof of Theorem 3 holds even without the hypothesis that G is soluble
and it is therefore independent from the classification of finite simple groups.

For any p ∈ π(G), by Lemma 4 (b) there exists an A-invariant Sylow
p-subgroup of G. We can consider two cases.

� For any odd prime number p ∈ π(G) the group G has a normal p-complement.
If P is a Sylow 2-subgroup of G, then P is normal (and therefore A-invariant)
and we can choose q ∈ π(G) and a Sylow q-subgroup Q of G such that PQ is
not nilpotent.

� There exists an odd prime number p ∈ π(G) such that G has not a normal
p-complement. If T is an A-invariant Sylow p-subgroup of G then the subgroup
N = NG(Z(J(T ))) is not nilpotent. If we consider the A-invariant subgroup
P = Op(N), we can conclude that there exists q ∈ π(N) and an A-invariant
Sylow q-subgroup Q of N such that PQ is not nilpotent.
In any case G admits a non-nilpotent A-invariant {p, q}-subgroup PQ with

P normal in PQ. It is possible to choose a non-nilpotent A-invariant section S
in PQ of minimal order. It is easy to prove that S = P Q where P and Q are
respectively an A-invariant Sylow p-subgroup and q-subgroup of S and F (S) = P .
In particular, by Theorem 6.1.3 of [5], CS(P ) = P . We can consider two cases.

� Any element of A� acts fixed point free on P . Then the semidirect product
PA is a Frobenius group with complement A and the statement is proved.

� There exists α ∈ A� with CP (α) �= {1}. Let x be a non trivial element of
CP (α). By the minimality of |S| we have P = 〈x〉QA. If there exists β ∈ A�



Finite groups admitting some coprime operator groups 37

with CQ(β) �= {1} then taken y ∈ CQ(β), y �= 1, by hypothesis we have
[x, my] = 1 and therefore, since P = 〈x〉QA, [P , my] = {1} and (|P |, |Q|) = 1,
[P , y] = {1}, against the fact that CS(P ) = P . Therefore any element of A�

acts fixed points free on Q. Then the semidirect product QA is a Frobenius
group with complement A and the statement is proved.
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