COVERING OF CURVES, GONALITY, AND SCROLLAR INVARIANTS

E. Ballico

Abstract. Let $f: X \rightarrow Y$ be a degree k covering of smooth and connected projective curves with $p_{a}(Y)>0$. Here we continue the study of the Brill-Noether theory of divisors on X.

1. Introduction

Let X (resp. Y) be a smooth and connected curve of genus g (resp. genus q) and $f: X \rightarrow Y$ a degree k covering, $k \geqslant 2$. Thus $g \geqslant k q-k+1$ (Riemann-Hurwitz). Let $u: X \rightarrow \mathbf{P}^{1}$ be a degree z morphism computing the gonality gon (X) of X. We always have $z \leqslant k \cdot \operatorname{gon}(Y)$ and if $z=k \cdot \operatorname{gon}(Y)$, then at least one degree z pencil $X \rightarrow \mathbf{P}^{1}$ factors through f. By Brill-Noether theory we have gon $(X) \leqslant\lfloor(g+3) / 2\rfloor$ and $\operatorname{gon}(Y) \leqslant\lfloor(q+3) / 2\rfloor$. Hence $z \leqslant \min \{\lfloor(g+3) / 2\rfloor, k \cdot\lfloor(q+3) / 2\rfloor\}$. If $z \leqslant$ $(g-k q) /(k-1)$, then u factors through f by Castelnuovo-Severi inequality [5]. In the first part we will consider several examples in which u does not factor through f and study their scrollar invariants in the sense of [3]. To state our first result we need the following notation/observation.

Remark 1. Let $f: X \rightarrow Y$ be a finite morphism between smooth and connected projective curves and $D=\sum n_{i} P_{i}$ any divisor on X. Set $f_{!}(D):=\sum n_{i} f\left(P_{i}\right)$. A key property of rational equivalence says that if D and D^{\prime} are linearly equivalent divisors on X, then $f_{!}(D)$ and $f_{!}\left(D^{\prime}\right)$ are linearly equivalent divisors on Y; here the smoothness of Y is essential, because it implies that rational equivalence and linear equivalence are the same on Y. Hence for any $d \in \mathbf{Z}$ the map $f_{!}$induces a $\operatorname{map} f_{!}: \operatorname{Pic}^{d}(X) \rightarrow \operatorname{Pic}^{d}(Y)$ such that $h^{0}\left(Y, f_{!}(L)\right) \geqslant h^{0}(X, L)$ for all $L \in \operatorname{Pic}^{d}(X)$. Furthermore, if L is base point free, then $f_{!}(L)$ is base point free.

A modification of the proof of [2], Th. 1, (see section 2) will give the following result.

[^0]Theorem 1. Fix integers d, q, k, g such that $q>0, k \geqslant 2, g \geqslant k q-k+1$ and $k d-d-k+k q+1-(\lfloor d / 2\rfloor+1-q) \cdot(\lfloor k / 2\rfloor+1) \leqslant g \leqslant k d-d-k+k q+1$. Set $a:=k d-d-k+k q+1-g$ and let $\delta(a)$ be the maximal integer t such that $(k-1-t)(d+q-1) \geqslant a$. Let Y be a smooth and connected curve of genus q such that there is a base point free $M \in \operatorname{Pic}^{d}(Y)$. Then there exist a smooth and connected genus g curve X, a degree k covering $f: X \rightarrow Y$ and a base point free $L \in \operatorname{Pic}^{d}(X)$ such that $f_{!}(L) \cong M$ and there is no base point free $R \in \operatorname{Pic}(Y)$ such that $f^{*}(R)=L$ and $h^{0}(Y, R)=h^{0}(X, L)$. Furthermore, $e_{d-1}(L) \geqslant \max \left\{e_{d-1}(M), \delta(a)+1\right\}$. If $(d+k-1)(t+1-k)>(t+1) q$, then $e_{d-1}(L) \leqslant k-2$.

Obviously, in the statement of Theorem 1 we have $\delta(a) \leqslant k-1$. Notice that $\delta(a)=k-1$ if $a=0$ and that $\delta(a)=k-2$ if $a \leqslant d+q-1$.

Remark 2. Take the notation of the statement of Theorem 1. Obviously, we have $\operatorname{gon}(X) \leqslant d$ and $\operatorname{gon}(Y) \leqslant d$. Hence, if $\operatorname{gon}(Y)>d / k$, then the gonality of X is computed by a pencil not coming from Y, while if $\operatorname{gon}(Y)=d / k$, then there is at least one pencil on X computing gon (X), but not coming from Y. If either $1 \leqslant q \leqslant 2$ or $q \geqslant 3$ and Y has general moduli, then $\operatorname{gon}(Y)=\lfloor(q+2) / 2\rfloor$. Hence if $\lfloor(g+3) / 2\rfloor<k \cdot\lfloor(q+3) / 2\rfloor\}$ (resp. $\lfloor(g+3) / 2\rfloor=k \cdot\lfloor(q+3) / 2\rfloor\}$, then we may apply the first part of this remark. Hence either $1 \leqslant q \leqslant 2$ or $q \geqslant 3$ and Y has general moduli, then there is a small, but non empty, interval of integers g for which both Theorem 1 and the first part of this remark may be applied.

In section 3 we will continue [1] and study the rank $k-1$ vector bundle $E_{f}:=$ $f_{*}\left(\mathcal{O}_{X}\right) / \mathcal{O}_{Y}$.

We work over an algebraically closed field \mathbf{K} with $\operatorname{char}(\mathbf{K})=0$.

2. Proof of Theorem 1

Remark 3. Let Y be a smooth and connected projective curve. Set $q:=p_{a}(Y)$ and $S:=Y \times \mathbf{P}^{1}$. Hence $h^{1}\left(S, \mathcal{O}_{S}\right)=q$. Let $\pi_{1}: S \rightarrow Y$ and $\pi_{2}: S \rightarrow \mathbf{P}^{1}$ denote the two projections. For any $R \in \operatorname{Pic}(S)$ there are unique $M \in \operatorname{Pic}(Y)$ and $k \in \mathbf{Z}$ such that $R \cong \pi_{1}^{*}(M) \otimes \pi_{2}^{*}\left(\mathcal{O}_{\mathbf{P}^{1}}(k)\right)$. Set $\mathcal{O}_{S}(M, k):=\pi_{1}^{*}(M) \otimes \pi_{2}^{*}\left(\mathcal{O}_{\mathbf{P}^{1}}(k)\right)$. If $k<0$, then $h^{0}\left(S, \mathcal{O}_{S}(M, k)\right)=0$ and $h^{1}\left(S, \mathcal{O}_{S}(M, k)\right)=(-k-1) \cdot h^{0}(Y, M)$ (Künneth formula). If $k \geqslant 0$, then $h^{0}\left(S, \mathcal{O}_{S}(M, k)\right)=(k+1) \cdot h^{0}(Y, M)$ and $h^{1}\left(S, \mathcal{O}_{S}(M, k)\right)=(k+1) \cdot h^{1}(Y, M)$ (Künneth formula). Furthermore, if M is spanned and $k \geqslant 0$, then $\mathcal{O}_{S}(M, k)$ is spanned, while if M is (birationally) very ample and $k>0$, then $\mathcal{O}_{S}(M, k)$ is (birationally) very ample. Fix integers $k \geqslant 2$ and $d>0$ and $M \in \operatorname{Pic}^{d}(Y)$ such that $|M|$ has no base point. Let $C \subset S$ be an integral curve in the linear system $\left|\mathcal{O}_{S}(M, k)\right|$ and $\nu: X \rightarrow C$ the normalization map. Set $A(C):=\operatorname{Sing}(C)$ and let $B(C) \subset S$ the conductor of ν. We recall that $B(C)_{\text {red }}=A(C)$ and that $B(C)=A(C)$ if each singular point of C is either an ordinary double point or an ordinary cusp. For any $A \in \operatorname{Pic}(Y)$ and any integer x set $\mathcal{O}_{C}(A, x):=\mathcal{O}_{S}(A, x) \mid C$ and $\mathcal{O}_{X}(A, x):=\nu^{*}\left(\mathcal{O}_{C}(A, x)\right)$. We will also write $\mathcal{O}_{C}(0, x)$ (resp. $\mathcal{O}_{X}(0, x)$, resp. $\left.\mathcal{O}_{S}(0, x)\right)$ instead of $\mathcal{O}_{C}\left(\mathcal{O}_{Y}, x\right)$ (resp. $\mathcal{O}_{X}\left(\mathcal{O}_{Y}, x\right)$, resp. $\left.\mathcal{O}_{S}\left(\mathcal{O}_{Y}, x\right)\right)$. Notice that $\mathcal{O}_{C}(A, x)$ is a line bundle of degree $k \cdot \operatorname{deg}(A)+x$.
$\operatorname{deg}(M)$. The morphism $\pi_{1} \circ \nu: X \rightarrow Y$ is a degree k covering between smooth and projective curves. Since $\omega_{S} \cong \mathcal{O}_{S}\left(\omega_{Y},-2\right)$, then $\omega_{C} \cong \mathcal{O}_{C}\left(M \otimes \omega_{Y}, k-2\right)$ (adjunction formula). Thus $p_{a}(C)=k d-d-k+k q+1$.

Remark 4. Use the set-up of Remark 3. Notice that $h^{0}\left(S, \omega_{S}\left(\mathcal{O}_{Y},-t\right)\right)=0$ for all $t \geqslant 0$ and $h^{1}\left(S, \omega_{S}\left(\mathcal{O}_{Y},-t\right)\right)=h^{1}\left(S, \mathcal{O}_{S}\left(\mathcal{O}_{Y}, t\right)=q(t+1)\right.$ for all $t \geqslant-1$. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{S}(-M, t-k) \rightarrow \mathcal{O}_{S}(0, t) \rightarrow \mathcal{O}_{C}(0, t) \rightarrow 0 \tag{1}
\end{equation*}
$$

Since $\mathcal{O}_{S}(M, k-t)$ is ample for all $t<k$, we have $h^{1}\left(S, \mathcal{O}_{S}(-M,-k+t)=0\right.$ for all $t<k$ (Kodaira's vanishing). Obviously, $h^{0}\left(S, \mathcal{O}_{S}(-M,-k+t)=0\right.$ for all $t<k$. Hence from (1) we get $h^{0}\left(C, \mathcal{O}_{C}(0, t)=t+1\right.$ for $-1 \leqslant t<k$. Now assume $t \geqslant k$. Since $h^{1}\left(S, \mathcal{O}_{S}(0, t)\right)=(t+1) q$ and $h^{1}\left(S, \mathcal{O}_{S}(-M, t-k)=h^{1}\left(S, \mathcal{O}_{S}(M+\right.\right.$ $\left.\left.\omega_{Y}, k-t-2\right)\right)=(d+q-1)(t+1-k)$ (Riemann-Roch and Serre duality), the long cohomology exact sequence of the exact sequence (1) gives $h^{0}\left(C, \mathcal{O}_{C}(0, t)\right) \geqslant$ $t+1+(d+q-1)(t+1-k)-(t+1) q$. Hence if $(d+k-1)(t+1-k)>(t+1) q$, then $e_{d-1}\left(\mathcal{O}_{C}(0,1)\right)=k$ and hence $e_{d-1}(L) \leqslant k-2$, where $L:=\nu^{*}\left(\mathcal{O}_{C}(1,0)\right) \in \operatorname{Pic}^{d}(X)$.

Remark 5. Take the set-up of Remarks 1 and 3. Notice that $f_{!}(L) \cong M$. Let $e_{i}(M), 1 \leqslant i \leqslant d-1$ (resp. $e_{i}(L), 1 \leqslant i \leqslant d-1$) denote the scrollar invariants of M (resp. L) [3]. Thus $e_{1}(L) \geqslant \cdots \geqslant e_{d-1}(L) \geqslant 0, e_{1}(M) \geqslant \cdots \geqslant e_{d-1}(M) \geqslant 0$, $e_{1}(L)+\cdots+e_{d-1}(L)=g-d+1$, and $e_{1}(M)+\cdots+e_{d-1}(M)=q+d-1$. We only need that the integer $m:=e_{d-1}+2$ is characterized by the property $h^{0}\left(X, R^{\otimes(m-1)}\right)=m$ and $h^{0}\left(X, R^{\otimes m}\right) \geqslant m+2$. Fix any integer $t \geqslant 1$ such that $h^{0}\left(Y, M^{\otimes t}\right)=t+1$. Hence $h^{0}\left(X, L^{\otimes t}\right) \leqslant h^{0}\left(Y, f_{!}\left(L^{\otimes t}\right)\right)=h^{0}\left(Y, M^{\otimes t}\right)=t+1$. Hence $h^{0}\left(X, L^{\otimes t}\right)=t+1$. Thus $e_{d-1}(L) \geqslant e_{d-1}(M)$.

Remark 6. Take the set-up of Remarks 3 and 5 , but assume that C is nodal (and hence $B(C)=A(C)$) and that its singular points are general in S. Set $A:=\operatorname{Sing}(C)$ and $a:=\sharp(A)$. Thus $a=p_{a}(C)-p_{a}(X)=k d-d-k+k q+1-g$. Let $\delta(a)$ be the maximal integer t such that $h^{0}\left(S, \mathcal{O}_{S}\left(M+\omega_{Y}, k-2-t\right)\right) \geqslant a$, i.e. $(k-1-t)(d+q-1) \geqslant a$. Obviously, $\delta(a)$ only depends from Y, M, k, a. By the generality of A we have $h^{0}\left(S, \mathcal{I}_{A}\left(M+\omega_{Y}, k-2-t\right)\right)=h^{0}\left(S, \mathcal{O}_{S}(M+\right.$ $\left.\left.\omega_{Y}, k-2-t\right)\right)-a$ for all $t \leqslant \delta(a)$. Thus by adjunction theory and RiemannRoch we have $h^{0}\left(X, L^{\otimes t}\right)=h^{0}\left(C, \mathcal{O}_{C}(0, t)\right)$ for all $t \leqslant \delta(a)$. By Remark 4 we get $e_{d-1}(L) \geqslant \min \{\delta(a)-1, k-2\}$.

Proof of Theorem 1. Set $a:=k d-d-k+1-g$. Let $A \subset S:=Y \times \mathbf{P}^{1}$ be a general subset with $\sharp(A)=a$. The proof of [2], Th. 1, gives the existence of an integral nodal curve $C \in\left|\mathcal{O}_{S}(M, k)\right|$ such that $A=\operatorname{Sing}(C)$. Let $\nu: X \rightarrow C$ be the normalization map. Apply Remarks 3,5 and 6.

3. The vector bundle $\boldsymbol{E}_{\boldsymbol{f}}:=\boldsymbol{f}_{*}\left(\mathcal{O}_{\boldsymbol{X}}\right) / \mathcal{O}_{\boldsymbol{Y}}$

In this section we fix the following set-up. Fix positive integers k, d. Let Y be a smooth and connected projective curve, C an integral projective curve and
$u: C \rightarrow Y$ a degree k morphism. Let $\nu: X \rightarrow C$ be the normalization map. Set $f: u \circ \nu, q:=p_{a}(Y), \gamma:=p_{a}(C)$, and $g:=p_{a}(X)$. Since Y is smooth, C and X are locally Cohen-Macaulay and u, f are finite, u and f are flat ([4], Prop. III.9.7). Furthermore, every torsion free finite rank sheaf on a one-dimensional regular local ring is free. Thus $u_{*}\left(\mathcal{O}_{C}\right)$ and $f_{*}\left(\mathcal{O}_{X}\right)$ are locally free. Since char $(\mathbf{K})=$ 0 , the trace map shows that \mathcal{O}_{Y} is in a natural way a direct factor of $u_{*}\left(\mathcal{O}_{C}\right)$ and $f_{*}\left(\mathcal{O}_{X}\right)$. Hence there are rank k locally free sheaves E_{u} and E_{f} on Y such that $u_{*}\left(\mathcal{O}_{C}\right) \cong \mathcal{O}_{Y} \oplus E_{u}$ and $f_{*}\left(\mathcal{O}_{X}\right) \cong \mathcal{O}_{Y} \oplus E_{f}$. Following [1] we will say that E_{u} (resp. E_{f}) is the bundle associated to u (resp. f). Since X and C are integral, we have $h^{0}\left(X, \mathcal{O}_{X}\right)=h^{0}\left(C, \mathcal{O}_{C}\right)=1$. Since f and u are finite, we have $R^{1} f_{*}\left(\mathcal{O}_{X}\right)=R^{1} u_{*}\left(\mathcal{O}_{C}\right)=0$. Thus the Leray spectral sequences of f and u give $\chi\left(E_{u}\right)=\chi\left(u_{*}\left(\mathcal{O}_{C}\right)\right)-\chi\left(\mathcal{O}_{Y}\right)=q-\gamma$ and $\chi\left(E_{f}\right)=\chi\left(f_{*}\left(\mathcal{O}_{X}\right)\right)-\chi\left(\mathcal{O}_{Y}\right)=q-g$. Thus by Riemann-Roch we have $\operatorname{deg}\left(E_{u}\right)=\chi\left(E_{u}\right)+(k-1)(q-1)=k q-k-\gamma+1$ and $\operatorname{deg}\left(E_{f}\right)=\chi\left(E_{f}\right)+(k-1)(q-1)=k q-k-g+1$.

Castelnuovo-Severi inequality gives a strong restriction on the cohomological properties of the associated bundle E_{f} when f does not factor non-trivially through another smooth curve, i.e. when there are no $\left(Y^{\prime}, f_{1}, f_{2}\right)$ such that Y^{\prime} is a smooth curve, $f_{1}: X \rightarrow Y^{\prime}, f_{2}: Y^{\prime} \rightarrow Y, f=f_{2} \circ f_{1}$ and $1<\operatorname{deg}\left(f_{1}\right)<k$. Notice that this is always the case if k is prime.

Theorem 2. Let $f: X \rightarrow Y$ be a degree $k \geqslant 2$ covering between smooth projective curves which does not factor non-trivially through another smooth curve. Set $g:=p_{a}(X)$ and $q:=p_{a}(Y)$. Then there exists no effective divisor D on Y such that $\operatorname{deg}(D) \leqslant(g-k q) / k(k-1), h^{0}\left(Y, \mathcal{O}_{Y}(D)\right)=1$, and $h^{0}\left(Y, E_{f}(D)\right)>0$.

Proof. Set $L:=f^{*}\left(\mathcal{O}_{Y}(D)\right)$. By the projection formula we have $h^{0}(X, L)=$ $h^{0}\left(Y, \mathcal{O}_{Y}(D)\right)+h^{0}(Y, E(D)) \geqslant 2$. Let B the base point of $|L|$. Hence $\operatorname{deg}(L(-B)) \leqslant$ $\operatorname{deg}(L)<(g-k q) /(k-1)$. Hence the morphism induced by $|L(-B)|$ factors through f. Hence $L(-B) \cong f^{*}\left(\mathcal{O}_{Y}\left(D^{\prime}\right)\right)$ for some $D^{\prime} \subseteq D$ such that the linear system $\left|D^{\prime}\right|$ induces a non-constant morphism. Since $h^{0}\left(Y, \mathcal{O}_{Y}(D)\right)=1$, this is absurd.

Motivated by Theorem 2 we now introduce the following invariants of a covering $f: X \rightarrow Y$ of smooth curve. Fix an integer $z \geqslant 1$. Let $\epsilon(f, z)$ denote the minimal integer $t \geqslant 0$ such that $h^{0}\left(Y, E_{f}(D)\right) \geqslant z$ for some effective degree t divisor D on Y. Set $\epsilon(f):=\epsilon(f, 1)$. Let $\eta(f, z)$ denote the minimal integer t such that that $h^{0}\left(Y, E_{f} \otimes R\right) \geqslant z$ for some $R \in \operatorname{Pic}^{t}(Y)$. Set $\eta(f):=\eta(f, 1)$. Hence $\eta(f, z) \leqslant \epsilon(f, z)$. The connectedness of X is equivalent to the inequality $\epsilon(f)>0$. In many cases of coverings consideeed in [1] it is quite easy to compute these invariants and the divisors D (resp. line bundles R) which are "extremal", i.e. which compute $\epsilon(f, z)$ (resp. $\eta(f, z)$). For instance, in the case considered in [1], Th. 1.4, we have $\eta(f)=\eta(f, k-1)=\epsilon(f)=\epsilon(f, k-1)=b(\gamma-k+1) /(k-1)$.

REFERENCES

[1] E. Ballico, Cohomological properties of multiple coverings of smooth projective curves, Rocky Mountain J. Math. 33, 4 (2003), 1205-1222.
[2] E. Ballico, C. Keem and D. Shin, Pencils on coverings of a given curve whose degree is larger than the Castelnuovo-Severi lower bound, preprint.
[3] M. Coppens, Existence of pencils with prescribed scrollar invariants of some general type, Osaka J. Math. 36, 4 (1999), 1049-1057.
[4] R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.
[5] E. Kani, On Castelnuovo's equivalent defect, J. Reine Angew. Math. 352 (1984), 24-70.
(received 08.09.2005, in revised form 12.11.2005)
Dept. of Mathematics, University of Trento, 38050 Povo (TN), Italy
E-mail: ballico@science.unitn.it

[^0]: AMS Subject Classification: 14 H 51; 14 H 50
 Keywords and phrases: Covering of curves; gonality; scrollar invariant; hyperelliptic curve; Brill-Noether theory; ruled surface.

 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

