WEYL'S AND BROWDER'S THEOREM FOR AN ELEMENTARY OPERATOR

F. Lombarkia and A. Bachir

Abstract. Let \mathcal{H} be a separable infinite dimensional complex Hilbert space and let $B(\mathcal{H})$ denote the algebra of bounded operators on \mathcal{H} into itself. The generalized derivation $\delta_{A,B}$ is defined by $\delta_{A,B}(X) = AX - XB$. For pairs $C = (A_1, A_2)$ and $D = (B_1, B_2)$ of operators, we define the elementary operator $\Phi_{C,D}$ by $\Phi_{C,D}(X) = A_1XB_1 - A_2XB_2$. If $A_2 = B_2 = I$, we get the elementary operator $\Delta_{A_1,B_1}(X) = A_1XB_1 - X$. Let $d_{A,B} = \delta_{A,B}$ or $\Delta_{A,B}$. We prove that if A, B^* are log-hyponormal, then $f(d_{A,B})$ satisfies (generalized) Weyl's Theorem for each analytic function f on a neighborhood of $\sigma(d_{A,B})$, we also prove that $f(\Phi_{C,D})$ satisfies Browder's Theorem for each analytic function f on a neighborhood of $\sigma(\Phi_{C,D})$.

1. Introduction

Let $B(\mathcal{H})$ denote the algebra of bounded linear operators acting on infinite dimensional separable Hilbert space \mathcal{H} . If $A \in B(\mathcal{H})$ we shall write ker(A) and ran(A) for the null space and the range of A, respectively. By $\alpha(A)$ and $\beta(A)$ we denote the dimension of the kernel of A and the codimension of the range of A, respectively. Also write $\sigma(A)$, $\sigma_a(A)$, iso $\sigma(A)$ for the spectrum, approximate point spectrum and the set of the isolated points of the spectrum of A, respectively. If $A \in B(\mathcal{H})$, we say that A has the single-valued extension property at λ_0 , SVEP (for short), if for every open disk D_{λ_0} centered at λ_0 the only analytic function $f : D_{\lambda_0} \to \mathcal{H}$ which satisfies the equation $(\lambda I - A)f(\lambda) = 0$ for all $\lambda \in D_{\lambda_0}$ is the function $f \equiv 0$.

Let A be a bounded linear operator on a Hilbert space \mathcal{H} and 0 . $A is called a p-hyponormal operator if <math>(AA^*)^p \leq (A^*A)^p$. Especially, A is called a hyponormal operator if p = 1 and semi-hyponormal if $p = \frac{1}{2}$. A is called a log-hyponormal operator if A is invertible and $\log(AA^*) \leq \log(A^*A)$. Since log : $(0, \infty) \rightarrow (-\infty, \infty)$ is operator monotone, every invertible p-hyponormal operator is log-hyponormal. But the converse is not true [7]. However it is interesting to regard log-hyponormal operators as 0-hyponormal operators [7, 21]. The idea

AMS Subject Classification: 47B47, 47A30,47B20

 $Keywords\ and\ phrases:$ Elementary Operators, $p\-hyponormal, log-hyponormal, Weyl's Theorem, single valued extension property.$

¹³⁵

of log-hyponormal operator is due to Ando [3] and the first paper in which loghyponormality appeared is [13]. See [3, 7, 21] for properties of log-hyponormal operators. An operator $A \in B(\mathcal{H})$ has a unique polar decomposition A = U|A|, where $|A| = (A^*A)^{\frac{1}{2}}$ and U is a partial isometry. If A = U|A|, then the Aluthge transform of A is defined by $\widetilde{A} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$.

The class of operators A, B^* such that $\ker(d_{A,B}) \subseteq \ker(d_{A^*,B^*})$ is large and includes in particular the class of log-hyponormal operators [17]. It is well known that if A, B^* are log-hyponormal operators, then $\ker(d_{A,B}) \subseteq \ker(d_{A^*,B^*})$ and $\operatorname{asc}(d_{A,B}) \leq 1$; this implies that $d_{A,B}$ has the single valued extension property and hence satisfies Browder's Theorem [11]. Here $\operatorname{asc}(d_{A,B})$ denote the *ascent* of $d_{A,B}$.

The plan of this paper is as follows. In section 2 we prove that if $C = (A_1, A_2)$ and $D = (B_1, B_2)$ are pairs of operators and A_1, A_2, B_1^*, B_2^* are log-hyponormal such that A_1 doubly commutes with A_2 and B_1 doubly commutes with B_2 , then $\operatorname{asc}(\Phi_{C,D}) \leq 1$. In section 3 we shall prove that if $A, B^* \in B(\mathcal{H})$ are loghyponormal, then $d_{A,B}$ is isoloid and the range of $d_{A,B} - \lambda$ is closed for each isolated point λ in the spectrum of $d_{A,B}$. In section 4 we shall show that if $A, B^* \in B(\mathcal{H})$ are log-hyponormal, then the Weyl's Theorem holds for $f(d_{A,B})$ for every analytic function f defined on a neighborhood U of $\sigma(d_{A,B})$. Finally we shall prove the Browder's Theorem for the elementary operator $\Phi_{C,D}$.

2. The ascent of an elementary operator

Recall that the finite ascent property implies SVEP. In the following we prove that if $C = (A_1, A_2)$ and $D = (B_1, B_2)$ are pairs of operators and A_1, A_2, B_1^*, B_2^* are log-hyponormal such that A_1 doubly commutes with A_2 and B_1 doubly commutes with B_2 , then $\operatorname{asc}(\Phi_{C,D}) \leq 1$.

LEMMA 2.1. Let $A, B \in B(\mathcal{H})$ be log-hyponormal operators such that A doubly commutes with B. Then AB is log-hyponormal.

Proof. If A and B are log-hyponormal, then A and B are invertible and

$$\log |A|^2 \ge \log |A^*|^2, \ \log |B|^2 \ge \log |B^*|^2.$$

Since AB = BA and $AB^* = B^*A$ it follows that $|AB|^2 = |A|^2|B|^2 = |B|^2|A|^2$, and

$$|(AB)^*|^2 = |A^*|^2 |B^*|^2 = |B^*|^2 |A^*|^2.$$

Hence

$$\log |AB|^{2} = \lim_{p \to 0^{+}} \frac{\left(|AB|^{2}\right)^{p} - 1}{p} = \lim_{p \to 0^{+}} \frac{\left(|A|^{2}\right)^{p} \left(|B|^{2}\right)^{p} - 1}{p}$$
$$= \lim_{p \to 0^{+}} \frac{\left(\left(|A|^{2}\right)^{p} - 1\right) \left(\left(|B|^{2}\right)^{p} - 1\right) + \left(|A|^{2}\right)^{p} + \left(|B|^{2}\right)^{p} - 2}{p}$$
$$= \log |A|^{2} + \log |B|^{2}.$$

Similarly we have $\log |(AB)^*|^2 = \log |A^*|^2 + \log |B^*|^2$. Hence *AB* is invertible and

$$\log |AB|^2 - \log |(AB)^*|^2 = \log |A|^2 - \log |A^*|^2 + \log |B|^2 - \log |B^*|^2 \ge 0$$

Thus AB is log-hyponormal.

LEMMA 2.2. If A and B^* are log-hyponormal, then $\operatorname{asc}(\Delta_{A,B}) \leq 1$.

Proof. It is known that if A and B^* are log-hyponormal, then $\ker(d_{A,B}) \subseteq \ker(d_{A^*,B^*})$ [17] and this by [10] implies that $\ker(\Delta_{A,B}) \subseteq \ker(\Delta_{A^*,B^*})$ and the result follows by [10].

THEOREM 2.3. Let $C = (A_1, A_2), D = (B_1, B_2)$ be pairs of operators in $B(\mathcal{H})$. If A_1, B_1^*, A_2, B_2^* are log-hyponormal operators such that A_1 doubly commutes with A_2 and B_1 doubly commutes with B_2 , then $\operatorname{asc}(\Phi_{C,D}) \leq 1$.

Proof. We have

$$\Phi_{C,D} = A_2 \left(\Delta_{(A_2^{-1}A_1), (B_1 B_2^{-1})} \right) B_2$$

Since A_2^{-1} and $(B_2^{-1})^* = (B_2^*)^{-1}$ are log-hyponormal [3, Lemma 1.1] and $A_2^{-1}A_1$ and $B_1B_2^{-1}$ are log-hyponormal by Lemma 2.1, then by applying Lemma 2.2 we obtain

$$\operatorname{asc}\left(\Delta_{(A_2^{-1}A_1),(B_1B_2^{-1})}\right) \le 1.$$

Since

$$\ker \Phi_{C,D}^n = A_2^n \left(\ker \Delta_{(A_2^{-1}A_1),(B_1B_2^{-1})}^n \right) B_2^n$$
$$= A_2 \left(\ker \Delta_{(A_2^{-1}A_1),(B_1B_2^{-1})} \right) B_2 = \ker \Phi_{C,D},$$

it is $\operatorname{asc}(\Phi_{C,D}) \leq 1.$

COROLLARY 2.4. Let $C = (A_1, A_2), D = (B_1, B_2)$ be pairs of operators in $B(\mathcal{H})$. If A_1, B_1^*, A_2, B_2^* are log-hyponormal operators such that A_1 doubly commutes with A_2 and B_1 doubly commutes with B_2 , then $\Phi_{C,D}$ has the single valued extension property.

Proof. The proof follows from Theorem 2.3 and [18, Proposition 1.8]. ■

COROLLARY 2.5. Let $C = (A_1, A_2), D = (B_1, B_2)$ be pairs of operators in $B(\mathcal{H})$ and A_1, B_1^*, A_2, B_2^* be log-hyponormal operators such that A_1 doubly commutes with A_2 and B_1 doubly commutes with B_2 . A necessary and sufficient condition for ran $(\Phi_{C,D})$ to be closed is that ran $(\Phi_{C,D})$ + ker $\Phi_{C,D}$ is closed.

Proof. Since $\operatorname{asc}(\Phi_{C,D}) \leq 1$, the proof follows from [18, Proposition 4.10.4].

3. The range of an elementary operator

Recall that $A \in B(\mathcal{H})$ is said to be isoloid if $\lambda \in \text{iso } \sigma(A)$ implies $\lambda \in \sigma_p(A)$. In this section, we prove that if A and B^* are log-hyponormal, then $d_{A,B}$ is isoloid and $\operatorname{ran}(d_{A,B} - \lambda)$ is closed for each $\lambda \in \operatorname{iso} \sigma(d_{A,B})$. We denote by L_A the operator of left multiplication by A and by R_B the operator of right multiplication by B.

LEMMA 3.1. If A = U|A| is the polar decomposition of A and $\widetilde{A} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$ its Aluthge transform, then

$$|A|^{\frac{1}{2}}A = \widetilde{A}|A|^{\frac{1}{2}}$$
 and $A(U|A|^{\frac{1}{2}}) = (U|A|^{\frac{1}{2}})\widetilde{A}$

LEMMA 3.2. Let $A, B \in B(\mathcal{H})$. If A, B are invertible, then $L_A R_B$ is invertible.

Proof. Since $\sigma(L_A R_B) = \bigcup \{ \sigma(zA) : z \in \sigma(B) \}$ by [12, Theorem 3.2] we deduce that $L_A R_B$ is invertible.

It is well known that $d_{A,B}$ is isoloid when A and B^* are hyponormal [11, Theorem 2.7]. The following theorem says that $d_{A,B}$ retains this property in the case in which A and B^* are log-hyponormal.

THEOREM 3.3. If A and B^* are log-hyponormal, then $d_{A,B}$ is an isoloid.

Proof. The case $d_{A,B} = \Delta_{A,B}$.

Let $\lambda \in \operatorname{iso} \sigma(\Delta_{A,B})$ such that $\lambda \neq -1$, then $(\Delta_{A,B} - \lambda)(X) = AXB - (1+\lambda)X$ and it follows from [12, Theorem 3.2] that $\sigma(\Delta_{A,B} - \lambda) = \bigcup \{ \sigma((-(1+\lambda)+zA) : z \in \sigma(B) \}$. Since $\operatorname{iso} \sigma(A) = \operatorname{iso} \sigma(\widetilde{A}) = \operatorname{iso} \sigma(\widetilde{A})$ and $\operatorname{iso} \sigma(B) = \operatorname{iso} \sigma(\widetilde{B}) = \operatorname{iso} \sigma(\widetilde{B})$ by [2, Corollary 2.3], we deduce that $\operatorname{iso} \sigma(\Delta_{A,B}) = \operatorname{iso} \sigma(\Delta_{\widetilde{A},\widetilde{B}}) = \operatorname{iso} \sigma(\Delta_{\widetilde{A},\widetilde{B}})$. The operators A and B^* being log-hyponormal, it follows from [21] that \widetilde{A} (resp. $\widetilde{B^*}$)

is semi-hyponormal and from [2] that $\widetilde{\widetilde{A}}$ (resp. $\widetilde{\widetilde{B}^*}$) is invertible and hyponormal, and the result follows from [11, Theorem 2.7] since $\sigma_p(\Delta_{\widetilde{A}} \underset{\widetilde{B}}{\simeq}) = \sigma_p(\Delta_{A,B})$.

Let $\lambda = -1$,

$$\lambda \in iso \sigma(\Delta_{A,B}) \Rightarrow 0 \in iso \sigma(\Delta_{A,B} - \lambda) \Rightarrow 0 \in iso \sigma(L_A R_B)$$

This is a contradiction with Lemma 3.2.

The case $d_{A,B} = \delta_{A,B}$.

Let $\lambda \in iso \sigma(\delta_{A,B})$. Then $0 \in iso \sigma(\delta_{A,B} - \lambda)$, where $\sigma(\delta_{A,B} - \lambda) = \sigma(A) - \sigma(B - \lambda)$ [12]. Hence $iso \sigma(\delta_{A,B}) = iso \sigma(\delta_{\widetilde{A},\widetilde{B}}) = iso \sigma(\delta_{\widetilde{A},\widetilde{B}})$. The same arguments cited above guarantees that $\sigma_p(\Delta_{\widetilde{A},\widetilde{B}}) = \sigma_p(\Delta_{A,B})$.

REMARK 3.4. Note that in the above theorem we utilize the fact that $\widetilde{A^*}$ is *p*-hyponormal if and only if $(\widetilde{A})^*$ *p*-hyponormal.

THEOREM 3.5. If A, B^* are log-hyponormal, then $d_{A,B} - \lambda$ has closed range for each $\lambda \in iso \sigma(d_{A,B})$.

<u>Proof.</u> Let $d_{A,B} = \Delta_{A,B}$ and $\lambda \in \operatorname{iso} \sigma(\Delta_{A,B})$ such that $\lambda \neq -1$. Let $Y \in \overline{\operatorname{ran}(\Delta_{\widetilde{A},\widetilde{B}} - \lambda)}$ for all $\lambda \in \operatorname{iso} \sigma(\Delta_{\widetilde{A},\widetilde{B}})$. Then there exists (X_n) in $B(\mathcal{H})$ such that

$$AX_nB - (1+\lambda)X_n \longrightarrow Y.$$

Let $\widetilde{B} = \widetilde{U}|\widetilde{B}|$ be the polar decomposition of \widetilde{B} . Then

$$\widetilde{A}|^{\frac{1}{2}}\widetilde{A}X_{n}\widetilde{B}\widetilde{U}|\widetilde{B}|^{\frac{1}{2}} - (1+\lambda)|\widetilde{A}|^{\frac{1}{2}}X_{n}\widetilde{U}|\widetilde{B}|^{\frac{1}{2}} \longrightarrow |\widetilde{A}|^{\frac{1}{2}}Y\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}$$

From Lemma 3.1 we have $|\widetilde{A}|^{\frac{1}{2}}\widetilde{A} = \widetilde{\widetilde{A}}|\widetilde{A}|^{\frac{1}{2}}$ and $\widetilde{B}(\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}) = (\widetilde{U}|\widetilde{B}|^{\frac{1}{2}})\widetilde{\widetilde{B}}$. Hence

$$\begin{split} &\widetilde{\widetilde{A}}|\widetilde{A}|^{\frac{1}{2}}X_{n}\widetilde{B}\widetilde{U}|\widetilde{B}|^{\frac{1}{2}} - (1+\lambda)|\widetilde{A}|^{\frac{1}{2}}X_{n}\widetilde{U}|\widetilde{B}|^{\frac{1}{2}} \longrightarrow |\widetilde{A}|^{\frac{1}{2}}Y\widetilde{U}|\widetilde{B}|^{\frac{1}{2}} \\ &\widetilde{\widetilde{A}}|\widetilde{A}|^{\frac{1}{2}}X_{n}\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}\widetilde{\widetilde{B}} - (1+\lambda)|\widetilde{A}|^{\frac{1}{2}}X_{n}\widetilde{U}|\widetilde{B}|^{\frac{1}{2}} \longrightarrow |\widetilde{A}|^{\frac{1}{2}}Y\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}. \end{split}$$

Since the operators A and B^* are log-hyponormal, it follows from [21] that \widetilde{A} (resp. $\widetilde{B^*}$) is semi-hyponormal and from [2] that $\widetilde{\widetilde{A}}$ (resp. $\widetilde{\widetilde{B^*}}$) is invertible and hyponormal, and so from [11, Theorem 2.7] ($\Delta_{\widetilde{A},\widetilde{B}} - \lambda$) has closed range for each $\lambda \in iso \sigma(\Delta_{\widetilde{A},\widetilde{B}}) = iso \sigma(\Delta_{\widetilde{A},\widetilde{B}})$. Hence there exists $Z \in B(\mathcal{H})$ such that

$$\widetilde{\widetilde{A}}|\widetilde{A}|^{\frac{1}{2}}X_n\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}\widetilde{\widetilde{B}} - (1+\lambda)|\widetilde{A}|^{\frac{1}{2}}X_n\widetilde{U}|\widetilde{B}|^{\frac{1}{2}} \longrightarrow \widetilde{\widetilde{A}}Z\widetilde{\widetilde{B}} - (1+\lambda)Z$$

Since $|\widetilde{A}|^{\frac{1}{2}}$ and $\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}$ are invertible, from Lemma 3.2 $L_{|\widetilde{A}|^{\frac{1}{2}}}R_{\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}}$ is invertible. So there exists $X \in B(\mathcal{H})$ such that $Z = |\widetilde{A}|^{\frac{1}{2}}X\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}$. Hence

$$\widetilde{\widetilde{A}}Z\widetilde{\widetilde{B}} - (1+\lambda)Z = \widetilde{\widetilde{A}}|\widetilde{A}|^{\frac{1}{2}}X\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}\widetilde{\widetilde{B}} - (1+\lambda)|\widetilde{A}|^{\frac{1}{2}}X\widetilde{U}|\widetilde{B}|^{\frac{1}{2}}.$$

From the uniqueness of the limit we obtain

$$\begin{split} \widetilde{\widetilde{A}} |\widetilde{A}|^{\frac{1}{2}} X \widetilde{U} |\widetilde{B}|^{\frac{1}{2}} \widetilde{\widetilde{B}} - (1+\lambda) |\widetilde{A}|^{\frac{1}{2}} X \widetilde{U} |\widetilde{B}|^{\frac{1}{2}} &= |\widetilde{A}|^{\frac{1}{2}} Y \widetilde{U} |\widetilde{B}|^{\frac{1}{2}} \\ |\widetilde{A}|^{\frac{1}{2}} \widetilde{A} X \widetilde{B} \widetilde{U} |\widetilde{B}|^{\frac{1}{2}} - (1+\lambda) |\widetilde{A}|^{\frac{1}{2}} X \widetilde{U} |\widetilde{B}|^{\frac{1}{2}} &= |\widetilde{A}|^{\frac{1}{2}} Y \widetilde{U} |\widetilde{B}|^{\frac{1}{2}}. \end{split}$$

Then $\widetilde{A}X\widetilde{B} - (1+\lambda)X = Y$, and hence $Y \in \operatorname{ran}(\Delta_{\widetilde{A},\widetilde{B}} - \lambda)$, and thus $\Delta_{\widetilde{A},\widetilde{B}} - \lambda$ has closed range for $\lambda \in \operatorname{iso} \sigma(\Delta_{\widetilde{A},\widetilde{B}})$. The same argument implies that $(\Delta_{A,B} - \lambda)$ has closed range for each $\lambda \in \operatorname{iso} \sigma(\Delta_{A,B})$ such that $\lambda \neq -1$.

The case $d_{A,B} = \delta_{A,B}$.

Let $\lambda \in iso \sigma(\delta_{A,B})$. Then $0 \in iso \sigma(\delta_{A,B} - \lambda)$. The same arguments implies that $(\delta_{A,B} - \lambda)$ has closed range for each $\lambda \in iso \sigma(\delta_{A,B})$.

4. Weyl's and Browder's Theorem

An operator $A \in B(\mathcal{H})$ is called Fredholm if it has closed range, finite dimensional null space, and its range has finite co-dimension. The index of a Fredholm operator is given by

$$I(A) := \alpha(A) - \beta(A).$$

A bounded operator A is said to be a Weyl operator if it is Fredholm of index 0. Recall that the ascent of an operator A, denoted by $\operatorname{asc}(A)$, is the smallest nonnegative integer n such that $\operatorname{ker}(A^n) = \operatorname{ker}(A^{n+1})$. Analogously, the descent of

an operator A, denoted by des(A), is the the smallest nonnegative integer n such that ran $(A^n) = \operatorname{ran}(A^{n+1})$. It is well known that if asc(A) and des(A) are both finite then asc $(A) = \operatorname{des}(A)$ [16]. $A \in B(\mathcal{H})$ is said to be a Browder operator if A is Fredholm with asc $(A) = \operatorname{des}(A) < \infty$. Note that if A is Browder then A is Weyl, (see [15]). The essential spectrum $\sigma_e(A)$, the Weyl spectrum $\sigma_w(A)$ and the Browder spectrum $\sigma_b(A)$ are defined by (see [14])

$$\sigma_e(A) := \{ \lambda \in \mathbf{C} : A - \lambda \text{ is not Fredholm} \}$$

$$\sigma_w(A) := \{ \lambda \in \mathbf{C} : A - \lambda \text{ is not Weyl} \}$$

$$\sigma_b(A) := \{ \lambda \in \mathbf{C} : A - \lambda \text{ is not Browder} \}.$$

Let $\sigma_0(A)$ denote the set of Riesz points of A and $\sigma_{00}(A) = \{\lambda \in iso \sigma(A) : 0 < \dim \ker A < \infty\}$. Then

iso
$$\sigma(A) \setminus \sigma_e(A) = \operatorname{iso} \sigma(A) \setminus \sigma_w(A) = \sigma_0(A) \subseteq \sigma_{00}(A)$$

Note that $A \in B(\mathcal{H})$ satisfies Weyl's Theorem (resp. Browder's Theorem) if $\sigma_w(A) = \sigma(A) \setminus \sigma_{00}(A)$ (resp. $\sigma_w(A) = \sigma(A) \setminus \sigma_0(A)$). A generalization of these notions are given in [4]; precisely, $A \in B(\mathcal{H})$ is said to be generalized Fredholm or B-Fredholm, if there exists a positive integer n for which the induced operator $A_n : \operatorname{ran}(A^n) \to \operatorname{ran}(A^n)$ is Fredholm in the usual sense, and generalized Weyl, if in addition A_n has index zero. The generalized Weyl's spectrum $\sigma_{Bw}(A)$ of A is defined to be the set

$$\{\lambda \in \mathbf{C} : (A - \lambda) \text{ is not generalized Weyl} \},\$$

and we say that A satisfies generalized Weyl's Theorem if $\sigma_{Bw}(A) = \sigma(A) \setminus E(A)$, where E(A) is the set of all isolated eigenvalues of A. Note that if A satisfies generalized Weyl's Theorem then A satisfies generalized Browder's Theorem, see [4, Corollary 2.6]. Moreover, in [6] it is shown that if A satisfies generalized Weyl's Theorem, then A satisfies Weyl's Theorem, but the reverse implication in general fails [4, Example 4.1], and if A satisfies generalized Browder's Theorem, then A satisfies Browder's Theorem.

Let $A, B^* \in B(\mathcal{H})$ be log-hyponormal. Then the SVEP of $d_{A,B}$ implies that the Browder's Theorem holds for $d_{A,B}$. Recall [9, Theorem 2.5] that if an operator $A \in B(\mathcal{H})$ has SVEP, then A satisfies Weyl's Theorem if and only if ran $(A - \lambda)$ is closed for every $\lambda \in \sigma_{00}(A)$. Hence in view of Theorem 3.2, $d_{A,B}$ satisfies Weyl's Theorem.

THEOREM 4.1. Let $A, B^* \in B(\mathcal{H})$ be log-hyponormal. If f is analytic on a neighbourhood of $\sigma(d_{A,B})$, then $f(d_{A,B})$ satisfies Weyl's Theorem.

Proof. SVEP being stable under the functional calculus [18], $d_{A,B}$ has SVEP $\implies f(d_{A,B})$ has SVEP for each f analytic in a neighbourhood of $\sigma(d_{A,B})$. This implies that $\sigma_b(f(d_{A,B})) = \sigma_w(f(d_{A,B}))$ [14]. Since the spectral mapping theorem holds for σ_b , we have

$$\sigma_w\left(f\left(d_{A,B}\right)\right) = \sigma_b\left(f\left(d_{A,B}\right)\right) = f\left(\sigma_b\left(d_{A,B}\right)\right) = f\left(\sigma_w\left(d_{A,B}\right)\right).$$

140

To complete the proof we have to show that

$$f(\sigma_w(d_{A,B})) = \sigma(f(d_{A,B})) \setminus \sigma_{00}(f(d_{A,B})).$$

This follows from Theorem 3.1 and a limit argument applied to [20, Proposition 1].

THEOREM 4.2. Let $C = (A_1, A_2)$, $D = (B_1, B_2)$ be pairs of operators in $B(\mathcal{H})$ and A_1, B_1^*, A_2, B_2^* be log-hyponormal operators such that A_1 doubly commutes with A_2 and B_1 doubly commutes with B_2 . If f is analytic on a neighborhood of $\sigma(\Phi_{C,D})$, then $f(\Phi_{C,D})$ satisfies Browder's Theorem.

Proof. From Corollary 2.2 $\Phi_{C,D}$ has the single valued extension property. This implies that $\Phi_{C,D}$ satisfies Browder's Theorem [10]. SVEP being stable under the functional calculus [18], $\Phi_{C,D}$ has SVEP $\implies f(\Phi_{C,D})$ has SVEP for each f analytic in a neighborhood of $\sigma(\Phi_{C,D})$. Hence $f(\Phi_{C,D})$ satisfies Browder's Theorem.

The operator A is said to be *Drazin invertible* if there is an operator T and a nonnegative integer $n \in \mathbf{N}$ such that

 $A^nTA = A^n, TAT = T$ and TA = AT.

It is known that A is Drazin invertible if and only if both $\operatorname{asc}(A)$ and $\operatorname{des}(A)$ are finite [19].

THEOREM 4.3. Let $A, B^* \in B(\mathcal{H})$ be log-hyponormal. If f is analytic on a neighborhood of $\sigma(d_{A,B})$, then $f(d_{A,B})$ satisfies generalized Weyl's Theorem.

Proof. Let $\lambda \in \sigma(d_{A,B}) \setminus \sigma_{Bw}(d_{A,B})$. Since $d_{A,B}$ has SVEP, it follows upon arguing as in the proof of [4, Theorem 3.12] and an application of Theorem 3.1 that $\lambda \in \text{iso } \sigma(d_{A,B}) = E(d_{A,B})$. Conversely, if $\lambda \in E(d_{A,B})$, then $d_{A,B} - \lambda$ is Fredholm of index 0 by Theorem 3.1 and Theorem 3.2. Hence $d_{A,B}$ satisfies generalized Weyl's Theorem. Let f be analytic on a neighborhood of $\sigma(d_{A,B})$, and let $\sigma_D(d_{A,B}) = \{\lambda \in \mathbb{C} : (d_{A,B} - \lambda) \text{ is not Drazin invertible}\}$ denote the Drazin spectrum of $d_{A,B}$. Then $\sigma_D(f(d_{A,B})) = f(\sigma_D(d_{A,B}))$ [4, Corollary 2.4]. Since $d_{A,B}$ and $f(d_{A,B})$ have SVEP, $\sigma_D(d_{A,B}) = \sigma_{Bw}(d_{A,B})$ and $\sigma_D(f(d_{A,B})) = \sigma_{Bw}(f(d_{A,B}))$ [4, Theorem 3.12]. Hence

$$f(\sigma_{Bw}(d_{A,B})) = f(\sigma(d_{A,B}) \setminus E(d_{A,B})) = \sigma_{Bw}(f(d_{A,B})).$$

The isoloid property of $d_{A,B}$, Theorem 3.1 implies that

$$\sigma_{Bw}\left(f\left(d_{A,B}\right)\right) = \sigma\left(f\left(d_{A,B}\right)\right) \setminus E\left(f\left(d_{A,B}\right)\right)$$

[5, Lemma 2.9], and the proof is complete. \blacksquare

ACKNOWLEDGMENT. The authors would to thank the referee for his thorough reading of the paper, his valuable suggestions, critical remarks, and incisive comments.

F. Lombarkia, A. Bachir

REFERENCES

- [1] A. Aluthge, On p-hyponormal operators for 0 , w-hyponormal operators, Integral Equations Operator Theory,**13**(1990), 307–315.
- [2] A. Aluthge and D. Wang, w-hyponormal operators, Integral Equations Operator Theory, 36 (2000), 1–10.
- [3] T. Ando, Operators with a norm condition, Acta. Sci. Math. (Szeged), 33 (1972), 169–178.
- [4] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appli., 272 (2002), 596–603.
- [5] M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Aust. Math. Soc., 76 (2004), 291–302.
- [6] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta. Sci. Math. (Szeged), 69 (2003), 359–376.
- [7] M. Cho and K. Tanahashi, Isolated point of spectrum of p-hyponormal operators, loghyponormal opertors, pre-print.
- [8] R.E. Curto and Y.M. Han, Weyl's theorem, a-Weyl's theorem and local spectral theory, J. London Math. Soc. 67 (2003), 499–509.
- B.P. Duggal, A remark on generalized Putnam-Fuglede theorem, Proc. Amer. Math. Soc. 129 (2000), 83–87.
- [10] B.P. Duggal and S.V. Djordjević, Dunford's property (C) and Weyl's Theorem, Integral Equations Operator Theory, 43 (2002), 290–297.
- [11] B.P. Duggal, Weyl's Theorem for generalized derivation and an elementary operator, Math. Vesnik 54 (2002), 71–81.
- [12] M.R. Embry and M. Rosemblum, Spectra, tensor product and linear operator equation, Pac. J. Math. 53 (1974) 95–107.
- [13] M. Fujii, C. Hemeji and A. Matsumoto, Theorems of Ando and Saito for p-hyponormal operators, Math. Japonica 39 (1994), 595–598.
- [14] R.E. Harte, Fredholm, Weyl and Browder theory, Proc. Irish Acad. A 85(2) (1985), 151–176.
- [15] R.E. Harte and W.Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115–2124.
- [16] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982.
- [17] I.H. Jeon, K. Tanahashi and A. Uchiyama, On quasisimilarity for log-hyponormal operators, Glasgow Math. J., 46 (2004), 169–176.
- [18] K.B. Laursen, Operators with finite ascent, Pacific J. Math. 152, 2(1992), 323–336.
- [19] D.C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197–214.
- [20] K.K. Oberai, On the Weyl spectrum II, Illinois J. Math. 21, 84–90.
- [21] K. Tanahashi, On log-hyponormal operators, Integral Equations Operator Theory, 34 (1999), 364–372.

(received 19.03.2007, in revised form 14.09.2007)

Department of Mathematics, Faculty of Science, University of Batna, 05000, Batna, Algeria. *E-mail*: lombarkiafarida@yahoo.fr

Department of Mathematics, Faculty of Science, King Khalid University, Abha, P.O.Box 9004, Saudi Arabia.

E-mail: bachir_ahmed@hotmail.com