
MATEMATIQKI VESNIK

59 (2007), 161–170
UDK 519.24

originalni nauqni rad
research paper

CORRELATION ANALYSIS: EXACT PERMUTATION PARADIGM

Justice Ighodaro Odiase and Sunday Martins Ogbonmwan

Abstract. For a general class of problems, the permutation of observations is the only
possible method of truly constructing exact tests of significance. The exact sampling distribution
of a test statistic for an experiment compiled by the permutation approach requires no reference to
a population distribution and therefore no requirement that it should conform to a mathematically
definable frequency distribution. Algorithms for the exact permutation distribution of correlation
coefficients are presented and implemented. As an illustrative example, critical values for Pearson’s
product moment and Spearman’s rank correlation coefficients are produced for Charles Darwin’s
data on the heights of cross and self fertilized plants.

1. Introduction

There are several experimental situations in which there is only one set of n
experimental subjects and two-observations are made on each subject. The data
consists of n pairs, such as (x1, y1), (x2, y2), . . . , (xn, yn). In an attempt to ensure
that the probability of a type I error is exactly α in analyzing the linear relationship
for paired observations, an algorithm for obtaining exact permutation distribution
of paired observations is presented.

A major problem of statistical inference is to obtain an exact test of significance
when the form of the underlying probability distribution is unknown. The idea
of a general method of dealing with this problem of obtaining an exact test of
significance originated with Fisher [5]. The essential feature of the method is that
all the distinct permutations of the observations is considered, with the property
that each permutation is equally likely under the hypothesis to be tested. An exact
test on the level of significance is constructed by choosing a proportion, α, of the
permutation as critical region. It is elaborately shown in Scheffe [16] that for a
general class of problems, the permutation approach is the only possible method of
constructing exact tests of significance.

Several approaches which are computationally less demanding have been sug-
gested as alternatives to the permutation approach. Permutation tests have re-
ceived attention under the guise of bootstrap, see Efron [4]. Other approaches like
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the Bayesian and the likelihood have also been found useful in obtaining approxi-
mate permutation distribution, see Bayarri and Berger [2], Spiegelhalter [18].

Permutation tests are attractive because the distribution of the observations
under the null hypothesis need not be known to calculate the p-value. It is asymp-
totically as powerful as the best parametric test when based on the same statistic,
see Hoeffding [10]. Available permutation procedures can sample from the permu-
tation sample space rather than carrying out complete enumeration of all possible
distinct rearrangements. These available procedures can perform Monte Carlo sam-
pling without replacement within a sample, but none can avoid the possibility of
drawing the same sample more than once, thereby reducing the power of the per-
mutation test, see Opdyke [14]. This paper therefore presents an algorithm that
makes it possible to obtain all the distinct permutations of an experiment without
the problem of drawing a sample more than once.

2. Correlation analysis

Correlation coefficient has become the workhorse of quantitative research and
analysis. Relationships among things are often examined in terms of whether they
change together or separately. The world around us is understood through the
multifold and interlaced correlations it manifests.

The permutation method discussed in this paper is applied to measure linear
association in paired, exchangeable observations. Exchangeability is a generaliza-
tion of the concept of independent, identically distributed random variables. Per-
mutation analysis of correlation assumes that in the null hypothesis, two variables
X and Y (xi ∈ X; yi ∈ Y ) are independent within each individual unit and pairs
(xi, yi), i = 1(1)n are independent and identically distributed. Paired, exchange-
able observations (x1, y1) have the same distribution as (y1, x1), and the marginal
distributions of x1 and y1 are identical. A test of exchangeability of paired obser-
vations is given by Hollander [11]. Computational advances involving the use of
permutation tests are well documented in Hilton and Gee [9], Hilton [8], Good [7]
and Pesarin [15].

The two most commonly used correlation coefficients are the Pearson’s corre-
lation coefficient and the Spearman’s rank correlation coefficient. Given the obser-
vations (xi, yi), i = 1(1)n, the Pearson’s correlation coefficient is defined as

r =
n(

∑
xy)− (

∑
x)(

∑
y)√

n(
∑

x2)− (
∑

x)2
√

n(
∑

y2)− (
∑

y)2
.

When r is calculated from sample data, the obtained value is only an estimate
of a corresponding population correlation coefficient, denoted by ρ. To test the
null hypothesis of no correlation, for example, H0: ρ = 0, we assume that both
variables are measured on an interval or ratio scale. The calculation is based on
the actual values and both variables (X and Y ) have a normal distribution. If all
the assumptions are met and H0: ρ = 0 is true, then, for n pairs of observations,
t = r

√
n−1√

1−r2 has the t distribution with n − 2 degrees of freedom. A more general
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way to test H0: ρ = ρ0 or construct confidence intervals for ρ is based on Fisher Z
transformation, Z = 1

2 ln 1+r
1−r . Z is approximately normal with η = (Z−µZ)

√
n− 3

having approximately the standard normal distribution, see Freund [6].
To calculate the rank-correlation coefficient for n pairs of observations, find

the sum of the squares of the differences, d, between the ranks of the X ′s and Y ′s,
and substitute into the formula

rs = 1− 6(
∑

d2)
n(n2 − 1)

.

When there are ties, assign to each of the tied observations the mean of the
ranks which they jointly occupy. When using rs to test the null hypothesis of no
correlation between two variables X and Y , we do not have to make any assump-
tions about the nature of the populations sampled. To test the null hypothesis, the
statistic, z = rs−0

1/
√

n−1
= rs

√
n− 1 , which has approximately the standard normal

distribution is employed.

3. Methodology

The p-value of a test statistic represents the probability of obtaining values of
the test statistic that are equal to or more extreme than the observed value of the
test statistic. In this paper, consideration is given to the permutation distribution
of paired observations on which the correlation coefficient is to be computed, see
Agresti [1] for conditional permutation. Also, see Odiase and Ogbonmwan [12]
for an algorithm for generating unconditional exact permutation distribution for a
two-sample (independent samples) experiment.

In this section, we will use the techniques of Odiase and Ogbonmwan [13].
Given a bivariate sample (x1, y1), (x2, y2), . . . , (xn, yn) for which (x1, x2, . . . , xn) ∼
FX and (y1, y2, . . . , yn) ∼ FY are simultaneously tested in an experiment with R
as the test statistic. Let H0 : FX = FY against H1 : FX 6= FY or H1 : FX < FY or
H1 : FX > FY . Each of the 2n distinct permutations occurs with the probability
1
2n . For k distinct values of the test statistic R, the probability distribution of the
test statistic R = (R1, R2, . . . , Rk) under the null hypothesis H0 : FX = FY is
given by

P (Rj = R1|H0) =
fj∑

i=1

(
1
2n

)
=

fj

2n
,

where fj is the number of occurrences of Rj . Ordering all the distinct occurrences
of R in ascending order of magnitude, if g is the position of the observed value
of R, the following significance level for the left tail of the distribution of the test
statistic is obtained.

α = P (Rg ≤ c|H0) =
g∑

j=1
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i=1

(
1
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)
=

(
1
2n

)
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and for the right tail,

α = P (Rg ≥ c|H0) =
(

1
2n

)
k∑

j=g

fj .
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Let a two-sample layout with n variates in each sample be represented by


x1 y1

x2 y2
...

...
xn yn


, where xi ∈ X and yj ∈ Y in an experiment. Choose the test statistic

R, such as Spearman’s coefficient of correlation and the acceptable significance level
α. Let π1, π2, . . . , π2n be a set of all distinct permutations of the data set. The
permutation test procedure is outlined as follows:

1. Compute the test statistic R1 for the original arrangement π1.

2. Obtain a distinct permutation πi based on Algorithm 2.

3. Compute the test statistic for permutation πi, Ri = R(πi).

4. Repeat Steps 2 and 3 for i = 2, 3, . . . , 2n; n = sample size.

5. Construct an empirical cumulative distribution

p0 = p̂(R ≤ Ri) =
1
2n

2n∑
i=1

θ(R1 −Ri)

where θ is a step-function, that is, θ = 1, if R1 ≥ Ri, and θ = 0 otherwise.

6. Under the empirical distribution p̂ if p0 ≤ α, reject the null hypothesis.

The six steps compute the cumulative distribution of the test statistic R ex-
actly, under the null hypothesis. The nonparametric analogue is obtained if we
choose to use ranks in the permutations or configurations rather than the actual
observations. The number of distinct permutations is obtained as

∑n
i=0

(
n
i

)
, this

is the expression that really facilitates the distinct enumeration, see Odiase and
Ogbonmwan [13]. In a way, permutation of paired observations is a constrained
permutation since the concept of exchangeability of observations is only applicable
within pairs.

As an illustration, examine an experiment with five pairs of observations, that

is,




x1 y1

x2 y2

x3 y3

x4 y4

x5 y5


. By following the permutation procedure described so far, the ex-

periment results in 25 = 32 permutations, see Table 1.

Observe that permutation (1) is the original arrangement
(
5
0

)
, permutations

(2) to (6) are obtained by switching one pair of observations
(
5
1

)
. Permutations (7)

to (16) are obtained by switching two pairs of observations
(
5
2

)
. Permutations (17)

to (26) are obtained by switching three pairs of observations
(
5
3

)
. Permutations (27)

to (31) are obtained by switching four pairs of observations
(
5
4

)
, while permutation

(32) is obtained by switching all the five pairs of observations
(
5
5

)
in the experiment.
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Table 1. Permutations of a 2× 5 Paired Sample Experiment

4. Permutation algorithms for correlation

When implementing the Spearman’s rank correlation coefficient, the ranking
of the two samples is done independently and the ranks so obtained retain the
positions of their respective observations. Therefore, any exchange of observations
in any pair will result in a fresh ranking of the two samples. It is therefore con-
strained to a given data set. When ties exist, the mean rank of the tied observations
is assigned to each of the tied observations. Algorithm 1 depicts the procedure for
generating ranks for the tied and untied observations as required by the Spearman’s
rank correlation coefficient. After independently sorting each sample in ascending
order of magnitude, Algorithm 1 ranks the observations and also takes care of tied
observations.

Algorithm 1: Rank observations

1. Assign ranks to the variates of first sample (T )
2. Again assign ranks to the variates of second sample (S)
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3. jt ← 1
4. While jt < k do (k is sample size)
5. it ← jt
6. jt ← it + 1
7. SumRanks ← ndxit

8. Counter ← 1
9. While Tit ← Tjt do
10. SumRanks ← SumRanks + ndxjt

11. Counter ← Counter + 1
12. jt ← jt + 1
13. end while
14. if Counter > 1 then
15. RankMean ← SumRanks/Counter
16. for jj ← it, jt− 1 do
17. ndxjj ← RankMean
18. end for
19. end if
20. end while

The Algorithm(Paired-Permutation) of Odiase and Ogbonmwan [13] is adapted
for correlation coefficient in Algorithm 2.

Algorithm 2: Permutation distribution of correlation coefficient

1. Input data (Xij; i = 1(1)n, j = 1, 2)
2. i1 ← 1, 2 do
3. T1 ← X1,i1

4. if i1 ← 1 then
5. S1 ← X1,2

6. else
7. S1 ← X1,1

8. end if
9. for i2 ← 1, 2 do
10. T2 ← X2,i2

11. if i2 ← 1 then
12. S2 ← X2,2

13. else
14. S2 ← X2,1

15. end if
16. for i3 ← 1, 2 do
17. T3 ← X3,i3

18. if i3 ← 1 then
19. S3 ← X3,2

20. else
21. S3 ← X3,1

22. end if
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23. for i4 ← 1, 2 do
24. T4 ← X4,i4

25. if i4 ← 1 then
26. S4 ← X4,2

27. else
28. S4 ← X4,1

29. end if
30. for i5 ← 1, 2 do
31. T5 ← X5,i5

32. if i5 ← 1 do
33. S5 ← X5,2

34. else
35. S5 ← X5,1

36. end if
37. · · ·
38. for i15 ← 1, 2 do
39. T15 ← X15,i15

40. if i15 ← 1 do
41. S15 ← X15,2

42. else
43. S15 ← X15,1

44. end if
45. Call Algorithm1
46. Compute r and rs

47. Update Frequency Distribution of r and rs

48. end for
49. end for
50. end for
51. end for
52. end for
53. · · ·
54. end for

The algorithm presented in this paper can carry out a complete enumeration of
all the possible distinct n-paired permutations by making the necessary adjustments
to reflect the number of pairs.

5. Results

The algorithms were implemented in Intel Visual FORTRAN. The paired per-
mutation p-values generated for the Pearson’s and the Spearman’s correlation co-
efficients are presented in Table 2 along with their classical results for the heights
of cross and self fertilized plants, see Darwin [3]. The algorithms can be applied to
any sample size. The statistic of interest is computed each time a new permutation
is generated and fused into the frequency distribution of the previously computed
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values of the test statistic. These results were generated via Algorithms 1 and 2
presented in this paper.

Table 2: P-values for correlation coefficients (1-tailed)

Correlation Coefficient Asymptotic p-value Permutation p-value

Pearson −0.33518 0.11356 0.09241

Speraman rank −0.34375 0.09919 0.09308

The scatter diagram and the distribution of Spearman’s correlation coefficient
for heights of paired fertilized plants are displayed in Figures 1 and 2.

Fig. 1. Scatter diagram of the heights of paired fertilized plants

Critical values for the permutation distribution of the Pearson’s and Spear-
man’s rank correlation coefficient for the heights of paired fertilized plants are
presented in Table 3 and Table 4.

6. Conclusion

Statistical test is based on calculating the test statistic of interest, comparing
the calculated test statistic with a critical value and accepting or rejecting the null
hypothesis based on the outcome of the comparison. The critical values are usually
determined by cutting off the most extreme 100α% of the theoretical frequency
distribution of the test statistic, where α is the level of significance, see Siegel and
Castellan [17].
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Fig. 2. Distribution of Spearman’s correlation coefficient for heights of paired fertilized plants

Table 3: Lower critical values Cα for r and rs

(If α′ ≤ α, then Cα = C≥α ; if α′ > α, then Cα = C>
α )

Table 4: Upper critical values Cα for r and rs

(If α′ ≤ α, then Cα = C≥α ; if α′ > α, then Cα = C>
α )

The p-values presented in Table 2 are consistently smaller for the exact per-
mutation approach, both for the Pearson and for the Spearman, indicating that
the probability of a type I error is more than α for the classical approaches. It is
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therefore advisable that the permutation test should be employed whenever possi-
ble.

The critical values displayed in Tables 2 and 3 clearly reveal that correlation
analysis can easily be handled by the permutation approach. Without difficulty,
a nonparametric confidence interval can be constructed for the exact permutation
distribution generated. This can be obtained exactly the same way bootstrap con-
fidence intervals are obtained, see Efron [4].
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