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GENERALIZED COHERENT RINGS BY
GORENSTEIN PROJECTIVE DIMENSION

Linlin Li and Jiaqun Wei

Abstract. In this paper, we introduce a new generalization of coherent rings using the
Gorenstein projective dimension. Let n be a positive integer or n = ∞. A ring R is called a
left Gn-coherent ring in case every finitely generated submodule of finitely generated free left
R-modules whose Gorenstein projective dimension ≤ n− 1 is finitely presented. We characterize
Gn-coherent rings in various ways, using Gn-flat, Gn-injective modules and cotorsion theory.

1. Introduction

A ring R is called left coherent if every finitely generated left ideal of R is
finitely presented. Recently, various generalizations of coherent rings were studied
in [1, 9, 19] etc. Among them, Lee [19] introduced the class of left n-coherent rings:
a ring is said to be left n-coherent, provided every finitely generated submodule of
a finitely generated free left module whose projective dimension (denoted by pd)
≤ n− 1 is finitely presented. It is easy to see that all rings are left 1-coherent and
left ∞-coherent rings are just left coherent rings. Many characterizations of left
coherent rings were successfully extended to left n-coherent rings in [19].

On the other hand, as a natural refinement of the projective dimension, the
Gorenstein projective dimension, originally from the G-dimension in Auslander and
Bridger[15], was now studied extensively, especially over commutative algebras and
n-Gorenstein rings(see [6, 8] and their references). Following [8] a left module M
is called Gorenstein projective, if M is an image of a homomorphism in a complete

projective resolution, i.e., there exists an infinite exact sequence · · · → P−1
f−1→

P0
f0→ P1

f1→ · · · (∗), with each Pi projective, such that HomR(∗, P ) is exact for
all projective modules P and M ∼= Im(fi) for some i. A left module M is called
Gorenstein projective dimension≤ n (denoted by Gpd (M) ≤ n), if there is an exact
sequence 0 → Gn → · · · → G0 → M → 0 with each Gi Gorenstein projective. If
no such exact sequence exists, then denote Gpd (M) = ∞. It is easy to see that
all projective modules are Gorenstein projective. Since the projective resolution
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exists for all modules, so does the Gorenstein projective resolution. Also it is easy
to see that pdM ≤ n implies Gpd (M)≤ n. The converse does not hold in general.
To see this, consider modules over a QF ring which is not semisimple. Then all
modules are Gorenstein projective, while all non-projective modules have projective
dimension ∞.

In view of the above observations, it is then a question if we can study the
generalizations of coherency by the Gorenstein projective dimension, using the idea
of defining left n-coherent ring in [19]. We introduce here left Gn-coherent rings: a
ring R is called left Gn-coherent if every finitely generated submodule of a finitely
generated free module whose Gorenstein projective dimension is ≤ n−1, is finitely
presented. Note left coherent rings are just left G∞-coherent and left Gn-coherent
rings are left n-coherent rings in [19]. However, as contrast to left n-coherent rings
in [19], we do not know if all rings are left G1-coherent, since it is an open ques-
tion whether a finitely generated Gorenstein projective module is finitely presented
see [17], while a finitely generated projective module is always finitely presented.
Because of the differences between Gorenstein projective dimension and projective
dimension, we cannot yet expect all left n-coherent rings are left Gn-coherent rings.
Thus the left Gn-coherent rings lie between left coherent rings and left n-coherent
rings.

The aim of the paper is to extend characterizations of left coherent rings to left
Gn-coherent rings. To this end, Gn-injective and Gn-flat modules are introduced
and their properties are studied in section 3. In particular, we show that (⊥In, In)
is a complete cotorsion theory and (Fn,F⊥n ) is a perfect cotorsion theory, where
In denotes the class of all Gn-injective left R-modules and Fn denotes the class of
all Gn-flat right R-modules. Then, in section 4, we extend successfully characteri-
zations of left coherent rings to left Gn-coherent rings. Especially, we show that a
ring is left Gn-coherent if and only if any direct product of R has a right R-module
is Gn-flat, if and only if every right R-module has an Fn-preenvelope, if and on-
ly if (⊥In, In) is a hereditary cotorsion theory, if and only if In is a coresolving
subcategory.

2. Notations

Throughout this paper, all rings are associative with identity, all left modules
are unitary and all modules without explicit mentions will always mean left mod-
ules. In this section we recall some known notions and definitions needed in the
sequel. Let R be a ring. A left R-module M is called n-presented if it has a finite
n-presentation, i.e., there is an exact sequence Fn → Fn−1 → · · · → F1 → F0 →
M → 0 where every Fi is finitely generated free left R-module.

Let C be a class of R-modules and M an R-module. Following [2], we say
that a homomorphism φ : M → C is a C-preenvelope if C ∈ C and the abelian
group homomorphism HomR(φ,C ′) : HomR(C, C ′) → HomR(M, C ′) is surjective
for each C ′ ∈ C. A C-preenvelope φ : M → C is said to be a C-envelope if every
endomorphism g : C → C ′ such that gφ = φ is an isomorphism.
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Given a class L of R-modules, we will denote by L⊥ = {C : Ext1R(L,C) = 0
for all L ∈ L} the right orthogonal class of L, and by ⊥L = {C : Ext1R(C, L) = 0
for all L ∈ L} the left orthogonal class of L. Following [4, Definition 7.1.6], a
monomorphism α : M → C with C ∈ C is said to be a special C-preenvelope of
M if coker(α) ∈ ⊥C. Dually, we have the definitions of a (special) C-precover
and a C-cover. Special C-preenvelope (resp. special C-precovers) are obviously C-
preenvelopes (resp. C-precovers). C-envelopes (C-covers) may not exist in general,
but if they exist, they are unique up to isomorphism.

A pair (F , C) of classes of R-modules is called a cotorsion theory [4] if F⊥ = C
and ⊥C = F . A cotorsion theory (F , C) is said to be complete (resp. pefect) if every
R-module has a special C-preenvelope and a special F-precover (resp. C-envelope
and F-cover) (see [5, 11]). A cotorsion theory (F , C) is called hereditary [5] if
whenever 0 → L′ → L → L′′ → 0 is exact with L,L′′ ∈ F , then L′ is also in F .
Note (F , C) is hereditary if and only if whenever 0 → C ′ → C → C ′′ → 0 is exact
with C, C ′ ∈ C, then C ′′ is also in C.

3. Gn-injective and Gn-flat modules

Definition 3.1. Let R be a ring, n a non-negative integer. A left R-module A
is said to be Gn-injective if Ext1R(N, A) = 0 for any finitely presented left R-module
N with Gpd (N) ≤ n. A right R-module M is said to be Gn-flat if TorR

1 (M,N) = 0
for any finitely presented left R-module N with Gpd (N) ≤ n.

Let In denote the class of all Gn-injective left R-modules and Fn denote the
class of all Gn-flat right R-modules.

Remark 3.2. (1) Recall that a left R-module A is called FP-injective if for
all finitely presented left R-modules N , Ext1R(N,A) = 0. Obviously, we have that
injective modules ⇒ FP-injective modules ⇒ Gn-injective modules.

(2) flat modules ⇒ Gn-flat modules.
(3) It is easy to see that In and Fn are closed under direct summands.
The character module of the left (right) R-module M is the right(left) R-

module M+ = HomZ(M, Q/Z). A well known theorem of Lambek [13] states that
M is a flat right R-module exactly if M+ is an injective left R-module.

Lemma 3.3. A right R-module B is Gn-flat if and only if its character module
B+ is a Gn-injective left R-module.

Proof. By the natural isomorphism

Ext1R(A,HomZ(B,Q/Z)) ∼= HomZ(TorR
1 (B, A), Q/Z),

where A is a left R-module and B is a right R-module.

Proposition 3.4. Let R be a ring. Then
(1) In and Fn are closed under pure submodules.



158 Linlin Li, Jiaqun Wei

(2) In is closed under direct products and Fn is closed under direct sums.

(3) In is closed under direct sums.

(4) In is closed under extension.

Proof. (1) Let M be a Gn-injective module and M1 a pure submodule of M .
Then we obtain a pure exact sequence 0 → M1 → M

π→ M/M1 → 0. Let N be
any finitely presented left R-module with Gpd (N) ≤ n. By applying the functor
HomR(N,−) to the above sequence, we can get an induced exact sequence 0 →
HomR(N,M1) → HomR(N, M)

HomR(N,π)−→ HomR(N,M/M1) → Ext1R(N, M1) →
Ext1R(N, M). By [20, Theorem 4.89], HomR(N, π) is epic. Note also Ext1R(N, M) =
0 for M ∈ In, so Ext1R(N, M1) = 0. It follows that M1 ∈ In, by the definition.

Let M be a Gn-flat module and N a pure submodule of M . Then applying the
functor HomZ(−, Q/Z) to the pure exact sequence 0 → N → M → M/N → 0, we
obtain a split exact sequence 0 → (M/N)+ → M+ → N+ → 0 by [20]. Thus N+ is
Gn-injective since direct summands of Gn-injective modules are also Gn-injective
and M+ is Gn-injective by lemma 3.3. So N is Gn-flat by Lemma 3.3 again.

(2) follows from the two natural isomorphisms Ext1R(N,
∏

Mi) ∼=∏
Ext1R(N, Mi) and TorR

1 (
⊕

Mi, N) ∼= ⊕
TorR

1 (Mi, N).

(3) Let Mi (i ∈ I) be a family of Gn-injective left R-module. For any finitely
presented left R-module N with Gpd (N) ≤ n, there is an exact sequence 0 → H →
F → N → 0, where F is finitely generated free and H is finitely generated. Then
we have the following commutative diagram with exact rows:

HomR(F,
⊕

Mi) → HomR(H,
⊕

Mi) → Ext1R(N,
⊕

Mi) → Ext1R(F,
⊕

Mi) = 0
α ↓ β ↓ γ ↓⊕

HomR(F,Mi) →
⊕

HomR(H, Mi) →
⊕

Ext1R(N,Mi) → 0

Since α and β are isomorphisms by [7, Exercise 16.3, p.189] (for F and H are
finitely generated), γ is an isomorphism by Five Lemma. Thus Ext1R(N,

⊕
Mi) ∼=⊕

Ext1R(N, Mi) = 0. So
⊕

Mi ∈ In .

(4) For any exact sequence 0 → A → B → C → 0, where A and C are
Gn-injective modules, we have an induced exact sequence · · · → Ext1R(N, A) →
Ext1R(N, B) → Ext1R(N, C) → · · · , where N is finitely presented with Gpd (N) ≤
n. Because Ext1R(N, A) = 0 = Ext1R(N, C), Ext1R(N, B) = 0. Hence B is Gn-
injective.

Theorem 3.5. Let R be a ring. Then

(1) (⊥In, In) is a complete cotorsion theory.

(2) (Fn,F⊥n ) is a perfect cotorsion theory.

Proof. (1) Let X denotes the class of all finitely presented left R-module N
with Gpd (N) ≤ n. Note that In = X⊥, so the result follows from [18, Theorem
10] and [4, Definition 7.1.5].
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(2) Denote by B the class of all left R-modules B with TorR
1 (N, B) = 0 for all

N ∈ Fn. Then we can known that N ∈ Fn if and only if TorR
1 (N, B) = 0 for all

B ∈ B. So (2) follows from [11, Lemma 1.11 and Theorem 2.8].

4. Gn-coherent rings

Definition 4.1. Let n be a non-negative integer or n = ∞. A ring R
is called left Gn-coherent in case every finitely generated submodule of a finitely
generated free left R-modules whose Gorenstein projective dimension ≤ n − 1 is
finitely presented.

Here we recall the definition of k-presentence. Let R be a ring. A left R-
module M is called k-presented if it has a finite k-presentation, i.e., there is an
exact sequence Fk → Fk−1 → · · · → F1 → F0 → M → 0 where every Fi is finitely
generated free left R-module.

Remark 4.2. (1) Left Gn-coherent rings are left n-coherent rings in [19] and
left G∞-coherent rings are left coherent.

(2) Let N be finitely presented left R-module with Gpd (N) ≤ n. If R is
Gn-coherent, then N is finitely k-presented for any nonnegative k.

Theorem 4.3. For a ring R, the following conditions are equivalent.
(1) R is left Gn-coherent.
(2) Direct products of Gn-flat right R-module are Gn-flat.
(3) Direct products of copies of RR are Gn-flat.
(4) TorR

m(
∏

Nα, A) ∼= ∏
TorR

m(Nα, A) (m is any non-negative integer) for
any family Nα of right R-modules and any finitely presented left R-module A with
Gpd (A) ≤ n.

(5) lim→ Extm
R (A,Mi) → Extm

R (A, lim→Mi) (m is any non-negative integer)
is an isomorphism for any finitely presented left R-module A with Gpd (A) ≤ n.

(6) Any direct limit of Gn-injective left R-modules is Gn-injective.

Proof. (4) ⇒ (2) ⇒ (3) and (5) ⇒ (6) are obvious.
(3) ⇒ (1). Let H be a finitely generated submodule of a finitely generated

free module F with Gpd (H) ≤ n− 1. We have an exact sequence 0 → H → F →
N → 0. Then N is finitely presented with Gpd (N) ≤ n by [8]. Consider now the
following exact commutative diagram:

TorR
1 (RI , N) −−−−→ RI

⊗
R H −−−−→ RI

⊗
R F −−−−→ RI

⊗
R N −−−−→ 0

f

y g

y h

y
0 −−−−→ HI −−−−→ F I −−−−→ N I −−−−→ 0

By hypothesis, RI is an Gn-flat right R-module, thus TorR
1 (N, RI) = 0. Since g

and h are isomorphisms by [4, Theorem 3.2.22] (for F and N are finitely presented),
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f is an isomorphism. Hence, H is finitely presented by [16, Proposition 2.5] and R
is Gn-coherent by the definition.

(1) ⇒ (4). Since R is Gn-coherent, every finitely presented left R-module A
with Gpd (A) ≤ n is finitely k-presented for any k. By [9, Lemma 2.10 (2)], we get
(4).

(1) ⇒ (5). Since R is Gn-coherent, every finitely presented left R-module A
with Gpd (A) ≤ n is finitely k-presented for any k. Then we get (5) by [9, Lemma
2.9 (2)].

(6) ⇒ (1). Let H be a finitely generated submodule of a finitely generated
free module F with Gpd (H) ≤ n − 1. We can get an exact sequence 0 → H →
F → N → 0. Then N is finitely presented with Gpd (N) ≤ n by [8]. Let (Mi)i∈I

be a family of injective left R-modules, where I is a directed set. Then lim→Mi is
Gn-injective by (6). Note that Ext1R(N, lim→Mi) = 0, so we have a commutative
diagram with exact rows:

HomR(N, lim→Mi) → HomR(F, lim→Mi) → HomR(H, lim→Mi) → 0
α ↓ β ↓ γ ↓

lim→HomR(N,Mi) → lim→HomR(F,Mi) → lim→HomR(H,Mi) → 0

Since α and β are isomorphisms by [16, Proposition 2.5] (for N and F are finitely
presented), γ is an isomorphism. So H is finitely presented by [16, Proposition 2.5]
again. Therefore R is Gn-coherent.

Let C be a subcategory of category of all R-modules. C is called coresolving
if it satisfies the following conditions: (1) all injective modules are in C; (2) C is
closed under cokernal of monomorphism; (3) C is closed under extension; (4) C is
closed under direct summands. Coresolving submodules are of important in many
areas(see for instance [7, 14]).

Theorem 4.4 The following are equivalent for a ring R:
(1) R is a left Gn-coherent ring.
(2) Every right R-module has an Fn-preenvelope.
(3) Extk

R(N, A) = 0 (k is a positive integer) for any finitely presented left
R-module N with Gpd (N) ≤ n and any A ∈ In.

(4) In is a coresolving subcategory.
(5) (⊥In, In) is a hereditary cotorsion theory.
(6) Quotients of Gn-injective left R-modules modulo pure submodules are Gn-

injective.
(7) Quotients of injective left R-modules modulo pure submodules are Gn-

injective.
(8) A left R-module A is Gn-injective if and only if its character module A+

is a Gn-flat right R-module.
(9) A left R-module A is Gn-injective if and only if its double character module

A++ is a Gn-injective left R-module.
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(10) For every injective left R-module E, the character module E+ is a Gn-flat
right R-module.

(11) A right R-module M is Gn-flat if and only if its double character module
M++ is a Gn-flat right R-module.

Proof. (1) ⇒ (2). Let N be any right R-module. By [4, Lemma 5.3.12], there
is an infinite cardinal number Nα such that for any R-homorphisim f : N → L
with L Gn-flat, there is a pure submodule Q of L such that Card(Q) ≤ Nα and
f(N) ⊆ Q. Note that Q is Gn-flat by Proposition 3.4 and Fn is closed under
products by Theorem 4.3, so N has an Fn-preenvelope by [4. Proposition 6.2.1].

(2) ⇒ (1). Since Fn is a preenveloping class and Fn is closed under direct
summands, Fn is closed under products by [10, Lemma 1], so (1) follows from
Theorem 4.3.

(1) ⇒ (3). Suppose R is Gn-coherent, and A is a Gn-injective left R-module.
For any finitely presented left R-module N with Gpd (N) ≤ n, we have the exact
sequence 0 → H → F → N → 0, where F is a finitely generated free module
and H is finitely generated. By [8], we have Gpd (H) ≤ n − 1, so H is finitely
presented by hypothesis. Hence Ext1R(H,A) = 0. From the induced exact sequence
Ext1R(H,A) → Ext2R(N, A) → Ext2R(F, A) = 0, we have Ext2R(N,A) = 0. Note H
is also finitely presented with Gpd (H) ≤ n, so Ext2R(H,A) = 0. From the exact
sequence Ext2R(H, A) → Ext3R(N,A) → Ext3R(F,A) = 0, we have Ext3R(N, A) = 0,
and so on, by induction, we get the conclusion.

(3) ⇒ (4). For any exact sequence 0 → N → M → L → 0 with N ∈ In and
M ∈ In, we get the induced exact sequence 0 = Ext1R(A,M) → Ext1R(A,L) →
Ext2R(A,N , where A is finitely presented with Gpd (A) ≤ n. Note Ext2R(A,N) = 0
by (3), so Ext1R(A,L) = 0. It follows L ∈ In. By the definition of coresolving
subcategory, Remark 3.2 (1) and (3) and Proposition 3.4 (4), we can get (4).

(4) ⇒ (5) is obvious by definitions.
(5) ⇒ (6). Suppose B is a pure submodule of a Gn-injective left R-module

A. We have the pure exact sequence 0 → B → A → A/B → 0, by (5) and the
definition of hereditary cotorsion theory, we get A/B is Gn-injective.

(6) ⇒ (7) is obvious.
(7) ⇒ (3). Take any finitely presented left R-module N with Gpd(N) ≤ n,

and A ∈ In. Evidently, Ext1R(N, A) = 0. Consider the exact sequence 0 →
A → E → E/A → 0 with E is injective, we have the induced exact sequence
Ext1R(N, E/A) → Ext2R(N,A) → Ext2R(N, E) = 0. By hypothesis, E/A ∈ In. So,
Ext1R(N, E/A) = 0. It follows that Ext2R(N,A) = 0. By induction, we can get
Extk

R(N, A) = 0(k is any positive integer).
(3) ⇒ (1). Assume every Gn-injective left R-module A satisfy Extk

R(N, A) =
0(k is any positive integer), for all finitely presented left R-module N with
Gpd (N) ≤ n. Suppose I is a finitely generated submodule of a finitely generated
free left R-module F with Gpd (I) ≤ n− 1. By the exact sequence 0 → I → F →
F/I → 0, we have that F/I is finitely presented with Gpd (F/I) ≤ n by [8]. Con-
sider the induced exact sequence 0 = Ext1R(F,A) → Ext1R(I,A) → Ext2R(F/I, A).
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By hypothesis Ext2R(F/I, A) = 0, hence Ext1R(I, A) = 0 for all Gn-injective left
R-module A. In particular, Ext1R(N,A) = 0 for all FP-injective left R-module A
by Remark 3.2 (1). As I is also finitely generated, we obtain I is finitely presented
by Enochs [3]. It follows R is left Gn-coherent by the definition.

(1) ⇒ (8). Let N be a finitely presented left R-module with Gpd (N) ≤ n.
Since R is a left Gn-coherent ring, then N is finitely k-presented for any k
by Remark 4.2 (2). We can get an isomorphism: TorR

n (HomZ(B, Q/Z), N) ∼=
HomZ(Extn

R(N, B), Q/Z) by [9]. Now (8) is easily obtained by the above isomor-
phism.

(8) ⇔ (9). By Lemma 3.3.
(8) ⇒ (11). By assumption and Lemma 3.3.
(11) ⇒ (10). Let E be an injective left R-module. By Lambek [12], every right

(left) R-module M embeds as a submodule in the character module of a free left
(right) R-module, so E is a direct summand of the character module F+ of a free
right R-module F . Then E+ is a direct summand of F++. Since F++ is Gn-flat
by hypothesis, E+ is a Gn-flat right R-module by Remark 3.2 (3).

(10) ⇒ (7). Let E be an injective left R-module containing a pure submodule
A. Then the pure exact sequence 0 → A → E → E/A → 0 induces the split
exact sequence 0 → (E/A)+ → E+ → A+ → 0. By hypothesis, E+ is Gn-flat, so
(E/A)+ is Gn-flat by Remark 3.2 (3). Hence (E/A)++ is Gn-injective by Lemma
3.3. Since E/A is a pure submodule of (E/A)++, it follows that E/A is Gn-injective
by Proposition 3.4.
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