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WAVELETS AND THE COMPLETE INVARIANCE PROPERTY

Rajeshwari Dubey and Aparna Vyas

Abstract. In this paper, we obtain that the space W of orthonormal wavelets enjoys the
complete invariance property with respect to homeomorphisms. Further, it is obtained that the
cylinder, the cone and the suspension of W possess the complete invariance property. Certain
subspaces of W are also considered in this connection.

1. Introduction

The set W of all one-dimensional orthonormal wavelets on R forms a subset
of the unit ball of the space L2(R). The topological property of path-connectivity
of W and certain subsets of W have drawn attention of several workers in the field
of wavelets during the past one decade [6, 7, 11, 14]. Such a study has also been
carried over to higher dimensional orthonormal wavelets.

In the same spirit, in this paper, we initiate the study of the topological notion
of the complete invariance property in respect of such sets. A topological space X
is said to possess the complete invariance property (CIP) if each of its non-empty
closed sets is the fixed point set, for some self-continuous map f on X [12]. In case
f can be found to be a homeomorphism, we say that the space enjoys the complete
invariance property with respect to a homeomorphism (CIPH) [8]. These notions
have been extensively studied in [1, 8, 9, 10, 12] and other references therein.

In the following Section 2, we describe necessary pre-requisites in two parts,
one for wavelets and the other for the notions of CIP and CIPH. In Section 3,
by introducing an action of the unit circle S1 on W, we obtain that the space W
of orthonormal wavelets and many of its subspaces such as the subspace of MRA
wavelets, the subspace of MSF wavelets and the subspace of MRA-MSF wavelets
are blessed with CIPH. Finally, we obtain that cylinders, cones and suspensions
over such spaces enjoy CIP.
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2. Pre-requisites

A. Wavelets
Let L1(R) be the collection of all Lebesgue integrable functions on R and L2(R)

be that of all Lebesgue square integrable functions on R. With the usual addition
and scalar multiplication of functions together with the inner-product 〈f, g〉 of
f, g ∈ L2(R) defined by

〈f, g〉 =
∫

R
f(x)g(x) dx,

L2(R) becomes a Hilbert space. The Fourier transform is defined by

f̂(ξ) =
∫

R
f(t)e−iξt dt,

where f ∈ L1(R) ∩ L2(R). This extends uniquely to an operator on L2(R).
An orthonormal wavelet or simply a wavelet of L2(R) is a function ψ ∈ L2(R)

such that
{
2j/2ψ(2jt− k) : j, k ∈ Z}

forms an orthonormal basis for L2(R). The
set of all wavelets is denoted by W.

Result 2.1. [5] A function ψ ∈ L2(R) is an orthonormal wavelet iff
(i) ||ψ||2 = 1,

(ii)
∑

j∈Z |ψ̂(2jξ)|2 = χR, for a.e., ξ ∈ R,

(iii)
∑

j≥0 ψ̂(2jξ) ψ̂(2j(ξ + 2qπ)) = 0, for a.e., ξ ∈ R and for q ∈ 2Z+ 1.

One of the methods of constructing orthonormal wavelets is based on the
existence of a family of closed subspaces of L2(R) satisfying certain properties.
Such a family is called a multiresolution analysis, or, simply an MRA.

Definition 2.2. [5] A pair ({Vj}j∈Z , ϕ) consisting of a family {Vj}j∈Z of
closed subspaces of L2(R) together with a function ϕ ∈ V0 is called a multiresolution
analysis (MRA) if it satisfies the following conditions:

(a) Vj ⊂ Vj+1, for all j ∈ Z,
(b) f ∈ Vj if and only if f(2(.)) ∈ Vj+1, for all j ∈ Z,
(c)

⋂
j∈Z Vj = {0},

(d)
⋃

j∈Z Vj = L2(R),

(e) {ϕ(.− k) : k ∈ Z} is an orthonormal basis for V0.

The function ϕ is called a scaling function for the given MRA. An MRA de-
termines a function ψ lying in the orthogonal complement of V0 in V1 which is an
orthonormal wavelet for L2(R). Such a ψ is called an MRA wavelet arising through
the MRA ({Vj}j∈Z , ϕ). The set of all MRA wavelets is denoted by WM .

For a wavelet ψ, the following

Dψ(ξ) =
∞∑

j=1

∑
k∈Z

∣∣∣ψ̂(2j(ξ + 2kπ))
∣∣∣
2
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describes the dimension function Dψ for ψ. We use the following characterization
of an MRA wavelet.

Result 2.3. [5] A wavelet ψ ∈ L2(R) is an MRA wavelet iff Dψ(ξ) = 1, for
almost every ξ ∈ R.

Dai and Larson [3] called a measurable set W of the real line to be a wavelet
set if the characteristic function χW on W is equal to

√
2π times the modulus of

the Fourier transform ψ̂ for some wavelet ψ on L2(R). A wavelet whose Fourier
transform has the support to be of smallest possible measure is called a minimally
supported frequency (MSF) wavelet [4]. In fact, an MSF wavelet ψ is a wavelet
which is associated with a wavelet set W in the sense that the support of ψ̂ is W .
The set of all MSF wavelets is denoted by WS .

B. CIP and CIPH

For a self-continuous map f on a topological space X, Fix f denotes the set of
all fixed points of X. A point x ∈ X is called fixed point of f if f(x) = x. While
dealing with the converse problem of Brouwer’s fixed point theorem, Robbins [10]
sowed the germ of the topological notion of the complete invariance property which
got the formal definition by Ward as follows:

Definition 2.4. [12] A topological space X is said to possess the complete
invariance property (CIP) if each of its non-empty closed sets is Fix f , for some
self-continuous map on X.

Definition 2.5. [8] A topological space X is said to possess the complete
invariance property with respect to homeomorphism (CIPH) if each of its non-empty
closed sets is the fixed point set, Fix f , for some self-homeomorphism on X.

To examine whether the property CIPH is possessed by a space, Ward, in his
paper [12], introduce the following notions.

Definition 2.6. (1) A space X has property Q if for every non-empty closed
subset K of X there is a point p ∈ K, a retract R of X containing K and a
deformation H : R× I −→ R such that H(x, t) 6= x if x 6= p and t > 0.

(2) If in (1) we omit p and stipulate that H(x, t) 6= x if x /∈ K and t > 0, then
we say that X has property Q(weak).

(3) A space X has property W if for every point p ∈ X, there is a deformation
H : X × I −→ X such that H(x, t) 6= x if x 6= p and t > 0.

(4) If in (3) H(x, t) 6= x, whenever t > 0, we say that X has property
W (strong).

Remark 2.7. W (strong) ⇒ W ⇒ Q ⇒ Q(weak).

Below we quote results which we use in the sequel.

Result 2.8. [9] A metric space (X, δ) having property W has CIP.
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Result 2.9. [8] A metric space X possessing a bounded metric on which the
unit circle S1 acts freely such that each orbit is isometric to S1, has CIPH.

For common notions and terminologies in wavelets and topology, we refer to
[2, 5, 13]. The unit closed interval [0, 1] of the real line is denoted by I.

3. Wavelet spaces and CIP

In this Section, we obtain a natural action of the multiplicative group of the
unit circle S1 on W which is a free action and provides orbits each of which is
isometric to S1. We further observe that the subsets WM , WS and WM ∩WS are
invariant subsets of the topological transformation group W. Employing Results
2.8 and 2.9, we obtain the following:

Theorem 3.1. The spaces W, WM , WS and WM ∩WS possess CIPH.

Theorem 3.2. The cylinder W × I possesses CIP. Also, cylinders WM × I,
WS × I and (WM ∩WS)× I possess CIP.

Theorem 3.3. The product space X × Y , where X,Y ∈ {W,WM ,WS ,

WM ∩WS
}
, has CIP.

Theorem 3.4. The cone C(W) of W possesses CIP. Also, cones C(WM ),
C(WS) and C(WM ∩WS) possess CIP.

Theorem 3.5. The suspension S(W) of W possesses CIP. Also, suspensions
S(WM ), S(WS) and S(WM ∩WS) possess CIP.

On account of Result 2.1, it is straightforward to see that for eiθ ∈ S1 and
ψ ∈ W , eiθ · ψ ∈ W. Thus, the map

η : S1 ×W →W
defined by η(eiθ, ψ) = eiθ.ψ, describes a free action of S1 on W. The following

(i) η(1, ψ) = ψ, and

(ii) η(eiθ1 , η(eiθ2 , ψ)) = η(ei(θ1+θ2), ψ)
are easily checked. For the continuity of η at (eiθ, ψ), we simply observe that

∥∥eiθ · ψ − eiθ1 · ψ1

∥∥
2
≤

∣∣eiθ − eiθ1
∣∣ + ‖ψ − ψ1‖2 ,

where (eiθ1 , ψ1) ∈ S1 ×W.
The orbit of ψ is given by

η(S1 × {ψ}) ≡ {
η(eiθ, ψ) : θ ∈ [0, 2π)

}

which is isometric to S1 via the map ϕ : η(S1×{ψ}) → S1 which sends eiθ ·ψ to eiθ.
Next, since the dimension function for ψ coincides with that of η(eiθ, ψ), it

follows from Result 2.3 that ψ is an MRA wavelet iff η(eiθ, ψ) is an MRA wavelet.
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Also, we note that ψ is an MSF wavelet iff η(eiθ, ψ) is an MSF wavelet. Thus
WM , WS and WM ∩WS are invariant sets in the topological transformation group
W with respect to the induced action. The orbits of these invariant sets remain
isometric to S1. Thus Theorem 3.1, follows from Result 2.9.

Proof of Theorem 3.2. In view of Result 2.8, it is sufficient to show that W× I
has the property W . The following shows that this property is enjoyed by both W
as well as by I.

(a) The map H1 : W × I →W defined by

H1(ψ, t) = eiπt · ψ,

where (ψ, t) ∈ W× I is a deformation such that for t > 0, H1(ψ, t) 6= ψ. Therefore,
W enjoys the property W (strong) and hence W .

(b) For each s ∈ I, the map H2 : I × I → I defined by

H2(x, t) = (1− t)x + ts,

where (x, t) ∈ I × I, is a deformation such that for t > 0 and x 6= s, H2(x, t) 6= x.
Thus, I has the property W .

Define H : (W × I)× I →W × I by

H((ψ, t1), t2) = (H1(ψ, t2),H2(t1, t2)).

It is easy to check that H is a deformation such that for t2 > 0 and (ψ, t1) 6= (ψ1, s),
H((ψ, t1), t2) 6= (ψ, t1). Thus W × I has the property W .

Proof of Theorem 3.3. It is similar to that of Theorem 3.2, by observing that
WM , WS and WM ∩WS possess the property W .

Proof of Theorem 3.4. It is sufficient to obtain that the cone C(W) has the
property W (strong). Since W has the property W (strong), there is a deformation

H : W × I →W
such that H(x, t) 6= x, if t > 0. Now, the map

H
′
: C(W)× I → C(W)

defined by H
′
([x, t], t

′
) = [H(x, t

′
), |t− t

′ |], where [x, t] ∈ C(W) and t′ ∈ I, shows
that C(W) has the property W (strong).

Proof of Theorem 3.5. It is similar to that of Theorem 3.4.
Remark 3.6. Analogous results to those in Theorems 3.1, 3.2, 3.3, 3.4 and 3.5

hold in case of a higher dimension as well.
Remark 3.7. [8] The complete invariance property is not necessarily preserved

under the product of spaces and by cones.
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