ON s-CLOSEDNESS AND S-CLOSEDNESS IN TOPOLOGICAL SPACES

Zbigniew Duszyński

Abstract. Some properties of sets s-closed or S-closed relative to a space, and s-closed or S-closed subspaces, are obtained. Relationships between some of them are indicated. New characterizations of Hausdorff spaces in terms of s-closedness and α -compactness relative to a space, are obtained.

1. Preliminaries

Throughout the paper (X, τ) (or (Y, σ)) denotes a topological space. For a subset S of (X,τ) , int (S) (or int_X(S)), cl(S) (or cl_X(S), or cl_{τ}(X)) stand for the interior of S and the closure of S, respectively. If $X_0 \subset X$, then (X_0, τ_{X_0}) denotes a subspace of (X, τ) , and $\operatorname{int}_{X_0}(.)$, $\operatorname{cl}_{X_0}(.)$ are interior and closure operators (respectively) in (X_0, τ_{X_0}) . CO (X, τ) is the intersection of τ and $\{X \setminus S : S \in$ τ }. A subset S of (X, τ) is said to be regular open (resp. regular closed) if S = int (cl(S)) (resp. S = cl(int(S))). A set S is said to be α -open [28] (resp. semiopen [22], semi-closed [8], preopen [25], semi-preopen (or β -open) [2,1]) in (X, τ) , if $S \subset \operatorname{int} (\operatorname{cl} (\operatorname{int} (S)))$ (resp. $S \subset \operatorname{cl} (\operatorname{int} (S)), S \supset \operatorname{int} (\operatorname{cl} (S)), S \subset \operatorname{int} (\operatorname{cl} (S)), S \subset$ cl (int (cl (S)))). A subset S of (X, τ) is semi-open if and only if there exists a $U \in \tau$ such that $U \subset S \subset \operatorname{cl}(U)$ [22]. The collection of all regular open (resp. regular closed, α -open, semi-open, semi-closed, preopen, semi-preopen) subsets of (X, τ) is denoted by RO (X, τ) (resp. RC (X, τ) , τ^{α} , SO (X, τ) , SC (X, τ) , PO (X, τ) , SPO (X, τ)). The family τ^{α} forms a topology on X such that $\tau \subset \tau^{\alpha}$. An S is said to be *semi-regular* [10] (see also [5] and [41]) if it is both semi-closed and semi-open in (X,τ) . We denote SO $(X,\tau) \cap$ SC $(X,\tau) =$ SR (X,τ) . We have in each (X,τ) , $\operatorname{RO}(X,\tau) \cup \operatorname{RC}(X,\tau) \subset \operatorname{SR}(X,\tau)$ [41, Lemma 2.3], and $\operatorname{RO}(X,\tau) \cap \operatorname{RC}(X,\tau) =$ $CO(X,\tau)$ (see for instance [11,]). The semi-closure [8] (resp. the semi-interior [8]) of an $S \subset X$ is the intersection of all semi-closed subsets of (X, τ) containing S (resp. the union of all semi-open subsets of (X, τ) contained in S), and is denoted

²⁰¹⁰ AMS Subject Classification: 54G99.

Keywords and phrases: α -open, semi-open, semi-preopen, semi-regular sets; s-closed, S-closed.

¹⁹⁹

respectively by $\operatorname{scl}(S)$ (or $\operatorname{scl}_X(S)$) and $\operatorname{sint}_X(S)$. The union of any family of semiopen subsets of (X, τ) is semi-open as well [22].

A space (X, τ) is said to be *extremally disconnected* (briefly *e.d.*) if $cl(S) \in \tau$ for any $S \in \tau$.

A subset A of a space (X, τ) is said to be *s*-closed [10] (resp. *S*-closed [32], *N*-closed [7], quasi-*H*-closed [38]) relative to (X, τ) , if every cover $\{V_{\alpha}\}_{\alpha\in\nabla} \subset$ SO (X, τ) (resp. $\{V_{\alpha}\}_{\alpha\in\nabla} \subset$ SO (X, τ) , $\{V_{\alpha}\}_{\alpha\in\nabla} \subset \tau$, $\{V_{\alpha}\}_{\alpha\in\nabla} \subset \tau$) of A admits a finite subfamily $\nabla_0 \subset \nabla$ such that $A \subset \bigcup_{\alpha\in\nabla_0} \operatorname{scl}(V_{\alpha})$ (resp. $A \subset \bigcup_{\alpha\in\nabla_0} \operatorname{cl}(V_{\alpha})$, $A \subset \bigcup_{\alpha\in\nabla_0} \operatorname{int}(\operatorname{cl}(V_{\alpha}))$, $A \subset \bigcup_{\alpha\in\nabla_0} \operatorname{cl}(V_{\alpha})$). In the case A = X, (X, τ) is said to be *s*-closed [10] (resp. *S*-closed [42]). (X_0, τ_{X_0}) is called an *s*-closed (resp. *S*-closed) subspace of (X, τ) if it is *s*-closed (resp. *S*-closed) as a space.

The following results are useful in the sequel:

- 1. Let $S \subset A \in SO(X, \tau)$. Then $S \in SO(X, \tau)$ if and only if $S \in SO(A, \tau_A)$ [29, Theorem 5].
- 2. In any space (X, τ) ,

$$\operatorname{scl}(S) = S \cup \operatorname{int}(\operatorname{cl}(S)) \qquad [2, \text{ Theorem 1.5(a)}],$$

$$\operatorname{cl}_{\tau^{\alpha}}(S) = S \cup \operatorname{cl}(\operatorname{int}(\operatorname{cl}(S))) \qquad [2, \text{ Theorem 1.5(c)}]$$

- 3. In any space (X, τ) , $cl_{\tau^{\alpha}}(V) = cl_{\tau}(V)$ for each $V \in SO(X, \tau)$ [17, Lemma 1(i)].
- 4. In any e.d. space $(X, \tau), \tau^{\alpha} = SO(X, \tau)$ [19, Theorem 2.9].

2. s-closedness

In [4] the following two results have been stated.

THEOREM 1. [4, Theorem 1] Let $A \in \text{PO}(X, \tau)$. Then (A, τ_A) is s-closed if and only if A is s-closed relative to (X, τ) .

THEOREM 2. [4, Theorem 2] Let $A \subset B \subset X$, where $B \in \text{PO}(X, \tau)$. Then, the set A is s-closed relative to (B, τ_B) if and only if it is s-closed relative to (X, τ) .

Proofs for these theorems are based on [12, Theorem 2.7], which states that $\operatorname{SR}(A, \tau_A) = \operatorname{SR}(X, \tau) \cap A$ (i.e., $\operatorname{SR}(A, \tau_A) = \{S \cap A : S \in \operatorname{SR}(X, \tau)\}$) for any space (X, τ) and any $A \in \operatorname{PO}(X, \tau)$. Unfortunately, the proof for $\operatorname{SR}(A, \tau_A) \subset \operatorname{SR}(X, \tau) \cap A$ given in [12] is far from clear (it is worth to see [20, Lemma 3]). We shall give a proof for [12, Theorem 2.7]. It will make use of the subsequent lemmas.

LEMMA 1. [37, Teorema 3.2] Let X_0 be an arbitrary subset of a space (X, τ) . If $A \in SO(X_0, \tau_{X_0})$, then $A = X_0 \cap B$ for some $B \in SO(X, \tau)$.

LEMMA 2. Let (X, τ) be a space and $X_0 \in \text{PO}(X, \tau)$.

- (a) [34, Lemma 2.2] One has $B \cap X_0 \in SO(X_0, \tau_{X_0})$ for every $B \in SO(X, \tau)$.
- (b) [34, Lemma 2.3] One has $B \cap X_0 \in SC(X_0, \tau_{X_0})$ for every $B \in SC(X, \tau)$.

COROLLARY 1. If $A \in \text{PO}(X, \tau)$ then $\text{SR}(X, \tau) \cap A \subset \text{SR}(A, \tau_A)$.

LEMMA 3. [34, Theorem 2.4]. If $A \subset X_0 \in \text{PO}(X,\tau)$ then $X_0 \cap \text{scl}_X(A) = \text{scl}_{X_0}(A)$.

LEMMA 4. [33, Lemma 3.5] If either $A \in SO(X, \tau)$ or $B \in SO(X, \tau)$ then

 $\operatorname{int} \left(\operatorname{cl} \left(A \cap B \right) \right) = \operatorname{int} \left(\operatorname{cl} \left(A \right) \right) \cap \operatorname{int} \left(\operatorname{cl} \left(B \right) \right).$

LEMMA 5. Let (X, τ) be any space. The following statements are equivalent: (a) $S \in SR(X, \tau)$.

- (b) [10, Proposition 2.1(c)] There exists a set $U \in \operatorname{RO}(X, \tau)$ such that $U \subset S \subset \operatorname{cl}_X(U)$.
- (c) [41, Lemma 2.2(iii)] $S = \operatorname{scl}_X(\operatorname{sint}_X(S)).$

LEMMA 6. (compare [10, Proposition 2.2]) If $S \in \text{SPO}(X, \tau)$ then $\text{scl}(S) \in \text{SR}(X, \tau)$.

Proof. By the use of [2, Theorem 1.5(a)] we obtain

int $(\operatorname{cl}(S)) \subset \operatorname{scl}(S) = S \cup \operatorname{int}(\operatorname{cl}(S)) \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(S))) \cup \operatorname{int}(\operatorname{cl}(S)) = \operatorname{cl}(\operatorname{int}(\operatorname{cl}(S))).$ Thus, by Lemma 5(b), scl(S) \in SR(X, τ).

THEOREM 3. [12, Theorem 2.7] For any space (X, τ) , if $X_0 \in \text{PO}(X, \tau)$ then

$$\operatorname{SR}(X_0, \tau_{X_0}) = \operatorname{SR}(X, \tau) \cap X_0.$$

Proof. In view of Corollary 1 only the inclusion $\operatorname{SR}(X_0, \tau_{X_0}) \subset \operatorname{SR}(X, \tau) \cap X_0$ requires a proof. Let $S \in \operatorname{SR}(X_0, \tau_{X_0})$ be arbitrarily chosen. By Lemmas 5(c) and 3 we have $\operatorname{scl}_{X_0}(\operatorname{sint}_{X_0}(S)) = X_0 \cap \operatorname{scl}_X(\operatorname{sint}_{X_0}(S))$.

Obviously $\operatorname{sint}_{X_0}(S) \in \operatorname{SO}(X_0, \tau_{X_0})$, so by Lemma 1, $\operatorname{sint}_{X_0}(S) = X_0 \cap B$ for some set $B \in \operatorname{SO}(X, \tau)$. We are to show that $X_0 \cap B \in \operatorname{SPO}(X, \tau)$. Indeed, by Lemma 4 we have the following inclusions:

$$X_0 \cap B \subset \operatorname{int} (\operatorname{cl} (X_0)) \cap \operatorname{cl} (\operatorname{int} (B)) \subset \subset \operatorname{cl} (\operatorname{int} (\operatorname{cl} (X_0)) \cap \operatorname{int} (\operatorname{cl} (B))) = \operatorname{cl} (\operatorname{int} (\operatorname{cl} (X_0 \cap B))).$$

Finally, $\operatorname{scl}_X(X_0 \cap B) \in \operatorname{SR}(X, \tau)$, by Lemma 6, and the proof is complete.

REMARK 1. Theorems 1 and 2 may be proved independently of Theorem 3 by using Lemmas 1, 2(a), 3, and Lemma 7 below. Details are omitted (it is worth to see for instance [32, Theorems 3.1 and 3.2] and left to the reader.

LEMMA 7. Let $B \in \text{PO}(X,\tau)$ and $V \in \text{SO}(X,\tau)$. Then $B \cap \text{scl}(V) \subset \text{scl}(B \cap V)$.

Proof. By [2, Theorem 1.5(a)] and Lemma 4 we have $B \cap \operatorname{scl}(V) = B \cap (V \cup \operatorname{int}(\operatorname{cl}(V))) = (B \cap V) \cup (B \cap \operatorname{int}(\operatorname{cl}(V))) \subset (B \cap V) \cup (\operatorname{int}(\operatorname{cl}(B)) \cap \operatorname{int}(\operatorname{cl}(V))) = \operatorname{scl}(B \cap V). \blacksquare$

REMARK 2. It is interesting to recall that if $B \in \text{PO}(X, \tau)$ and $V \in \text{SO}(X, \tau)$, then $B \cap \text{cl}(V) \subset \text{cl}(B \cap V)$ [35, Lemma 2.1]. The latter inclusion is equivalent the following: $B \cap \text{cl}_{\tau^{\alpha}}(V) \subset \text{cl}_{\tau^{\alpha}}(B \cap V)$ for every $B \in \text{PO}(X, \tau^{\alpha})$ and $V \in \text{SO}(X, \tau^{\alpha})$. It is so since SO $(X, \tau^{\alpha}) = \text{SO}(X, \tau)$ [28, Proposition 3], PO $(X, \tau^{\alpha}) = \text{PO}(X, \tau)$ [20, Corollary 2.5(a)], $\text{cl}_{\tau^{\alpha}}(V) = \text{cl}_{\tau}(V)$ [17, Lemma 1(i)], and $\text{cl}_{\tau^{\alpha}}(B \cap V) \supset$ $\text{cl}_{\tau}(B \cap V)$ (to prove this one use Lemma 4 and [2, Theorem 1.5(c)]).

We omit details in the proofs of the next three corollaries.

COROLLARY 2. Let $A \subset X_0 \subset X_1 \subset X$ and $X_0, X_1 \in \text{PO}(X, \tau)$. Then A is s-closed relative to (X_0, τ_{X_0}) if and only if A is s-closed relative to (X_1, τ_{X_1}) .

Proof. Theorem 2. \blacksquare

COROLLARY 3. Let $A \in \text{PO}(X_0, \tau_{X_0})$ and $X_0 \in \text{PO}(X, \tau)$. Then A is an s-closed subspace of (X_0, τ_{X_0}) if and only if A is an s-closed subspace of (X, τ) .

Proof. This follows from Theorems 1–2 and [26, Lemma 2.2]: if $A \in \text{PO}(X_0, \tau_{X_0})$ and $X_0 \in \text{PO}(X, \tau)$ then $A \in \text{PO}(X, \tau)$.

Corollary 3 improves [4, Corollary 1].

COROLLARY 4. Let $A \in \text{PO}(X_0, \tau_{X_0})$, $X_0 \in \text{PO}(X_1, \tau_{X_1})$, and $X_1 \in \text{PO}(X, \tau)$. Then A is an s-closed subspace of (X_0, τ_{X_0}) if and only if it is an s-closed subspace of (X_1, τ_{X_1}) .

Proof. By Corollary 2 and [26, Lemma 2.2]. ■

DEFINITION 1. A subset S of a space (X, τ) is said to be *sspo-closed relative* to (X, τ) if, for every cover $\{V_{\alpha} : \alpha \in \nabla\} \subset \text{SPO}(X, \tau)$ of S there is a finite set of indices $\nabla_0 \subset \nabla$ such that $S \subset \bigcup_{\alpha \in \nabla_0} \operatorname{scl}_X(V_{\alpha})$. If S = X, then (X, τ) is called an *sspo-closed space*.

THEOREM 4. In any space (X, τ) and for any subset S of it, the following statements are equivalent:

- (a) S is sspo-closed relative to (X, τ) ,
- (b) S is s-closed relative to (X, τ) .

Proof. (a) \Rightarrow (b). Obvious, since SO $(X, \tau) \subset$ SPO (X, τ) .

(a) \Leftarrow (b). Let $\{V_{\alpha} : \alpha \in \nabla\} \subset \text{SPO}(X,\tau)$ cover a set S. Then, $S \subset \bigcup_{\alpha \in \nabla} \operatorname{scl}_X(V_{\alpha})$. Since S is *s*-closed relative to (X,τ) if and only if each semiregular cover of S admits a finite subcover [10, Proposition 4.1], application of Lemma 6 completes the proof.

LEMMA 8. Let A be an arbitrary subset of a space (X, τ) . If $U \in \text{SPO}(A, \tau_A)$ then

$$\operatorname{int}_X(A) \cap U \subset \operatorname{cl}_X(\operatorname{int}_X(\operatorname{cl}_X(U))).$$

Proof. Using the equality $\operatorname{int}_X(E) = \operatorname{int}_A(E) \cap \operatorname{int}_X(A)$ that holds for any subset $E \subset A$ [36, Exercise 7(vi)], we calculate as follows:

$$\operatorname{int}_{X}(A) \cap U \subset \operatorname{int}_{X}(A) \cap \operatorname{cl}_{A}\left(\operatorname{int}_{A}\left(\operatorname{cl}_{A}(U)\right)\right) \subset \operatorname{int}_{X}(A) \cap \operatorname{cl}_{X}\left(\operatorname{int}_{A}\left(\operatorname{cl}_{A}(U)\right)\right) \subset \operatorname{cl}_{X}\left(\operatorname{int}_{X}(A) \cap \operatorname{int}_{A}\left(\operatorname{cl}_{A}(U)\right)\right) = \operatorname{cl}_{X}\left(\operatorname{int}_{X}\left(\operatorname{cl}_{A}(U)\right)\right) \subset \operatorname{cl}_{X}\left(\operatorname{int}_{X}\left(\operatorname{cl}_{X}(U)\right)\right). \quad \blacksquare$$

COROLLARY 5. If $A \in \tau$ and $U \in \text{SPO}(A, \tau_A)$, then $U \in \text{SPO}(X, \tau)$. COROLLARY 6. If $A \in \tau$ and $U \in \text{SPO}(A, \tau_A)$, then $\text{cl}_A(U) \in \text{SPO}(X, \tau)$.

LEMMA 9. If $A \in \tau$ and $V \in \text{SPO}(X, \tau)$, then $A \cap V \in \text{SPO}(A, \tau_A)$.

Proof. We have

$$A \cap V \subset A \cap \operatorname{cl}_X(\operatorname{int}_X(\operatorname{cl}_X(V))) \subset \operatorname{cl}_A(A \cap \operatorname{int}_X(\operatorname{cl}_X(V))) =$$

= $\operatorname{cl}_A(\operatorname{int}_A(A \cap \operatorname{cl}_X(V))) \subset \operatorname{cl}_A(\operatorname{int}_A(\operatorname{cl}_A(A \cap V))).$

THEOREM 5. Let (X, τ) be a space and $A \in \tau$. The following are equivalent:

- (a) (A, τ_A) is sspo-closed,
- (b) (A, τ_A) is s-closed.

Proof. (a) \Rightarrow (b). Making use of Theorems 1 and 4 we will show A is *sspo*closed relative to (X, τ) . Suppose $\{V_{\alpha} : \alpha \in \nabla\} \subset \text{SPO}(X, \tau)$ is a cover of A. By Lemma 9, $\{A \cap V_{\alpha} : \alpha \in \nabla\} \subset \text{SPO}(A, \tau_A)$ covers A and hence we get $A = \bigcup_{\alpha \in \nabla_0} \operatorname{scl}_A(A \cap V_{\alpha})$ for some finite $\nabla_0 \subset \nabla$. It is easy to see that by Lemma 3, $A \subset \bigcup_{\alpha \in \nabla_0} \operatorname{scl}_X(V_{\alpha})$. Thus (A, τ_A) is *s*-closed.

(a) (b). Suppose A is s-closed relative to (X, τ) (utilize Theorem 1). Let $\{U_{\alpha} : \alpha \in \nabla\} \subset \text{SPO}(A, \tau_A)$ be a cover of A. We have $\{U_{\alpha} : \alpha \in \nabla\} \subset \text{SPO}(X, \tau)$ (Corollary 2) and $A \subset \bigcup_{\alpha \in \nabla} \operatorname{scl}_X(U_{\alpha})$, where $\{\operatorname{scl}_X(U_{\alpha}) : \alpha \in \nabla\} \subset \operatorname{SR}(X, \tau)$. By [10, Proposition 4.1], $A \subset \bigcup_{\alpha \in \nabla_0} \operatorname{scl}_X(U_{\alpha})$ for some finite $\nabla_0 \subset \nabla$. Hence, using Lemma 3 we get that $A = \bigcup_{\alpha \in \nabla_0} \operatorname{scl}_A(U_{\alpha})$. This completes the proof.

LEMMA 10. [12] (compare also [24, Example 3.3(ii)]). If $V \in SO(X, \tau)$ and $W \subset X$, the following holds:

$$V \cap \operatorname{scl}(W) \subset \operatorname{cl}(\operatorname{scl}(V \cap W)).$$

THEOREM 6. Let $A, B \in SC(X, \tau)$ and $A \cap B \in SO(X, \tau)$. If A and B are both s-closed relative to (X, τ) , then $A \cap B$ is also s-closed relative to (X, τ) .

Proof. Let $A \cap B \subset \bigcup_{\alpha \in \nabla} V_{\alpha}$ where $V_{\alpha} \in \mathrm{SO}(X, \tau)$ for each $\alpha \in \nabla$. We have $A \subset (X \setminus B) \cup \bigcup_{\alpha \in \nabla} V_{\alpha}$ and $B \subset (X \setminus A) \cup \bigcup_{\alpha \in \nabla} V_{\alpha}$, where $X \setminus A, X \setminus B \in \mathrm{SO}(X, \tau)$. By hypothesis there are finite subfamilies $\nabla_1, \nabla_2 \subset \nabla$ with

$$A \subset \operatorname{scl} (X \setminus B) \cup \bigcup_{\alpha \in \nabla_1} \operatorname{scl} (V_{\alpha}) \quad \text{and}$$
$$B \subset \operatorname{scl} (X \setminus A) \cup \bigcup_{\alpha \in \nabla_2} \operatorname{scl} (V_{\alpha}).$$

It follows easily from Lemma 10 that

$$A \cap B = (A \cap B) \cap (A \cup B) \subset \bigcup_{\alpha \in \nabla_1} \operatorname{scl}(V_\alpha) \cup \bigcup_{\alpha \in \nabla_2} \operatorname{scl}(V_\alpha).$$

Thus, $A \cap B$ is s-closed relative to (X, τ) .

COROLLARY 7. If $A, B \in SC(X, \tau)$, $A \cap B \in SO(X, \tau)$, and A, B are both s-closed relative to (X, τ) , then $A \cap B$ is an s-closed subspace of (X, τ) .

Proof. Follows from Theorem 6 and [20, Theorem 4]. ■

It is of worth to compare Corollary 7 with [14, Theorem 2.2].

THEOREM 7. Let $A, B \in SO(X, \tau)$ and $A \cap B = \emptyset$. If a set $A \cup B$ is s-closed relative to (X, τ) , then B and A are s-closed relative to (X, τ) .

Proof. Similar to that of Theorem 28 below—one uses Lemma 10. ■

The notion of S-connectedness has been introduced by Pipitone and Russo in [37]: (X, τ) is S-connected if there are no two nonempty sets $A_1, A_2 \in SO(X, \tau)$ such that $X = A_1 \cup A_2$ and $A_1 \cap A_2 = \emptyset$. A space that is not S-connected is said to be S-disconnected.

COROLLARY 8. Let (X, τ) be an S-disconnected and s-closed space. Then there exists a nonempty set $B \in SO(X, \tau)$ which is s-closed relative to (X, τ) and is an s-closed subspace of (X, τ) .

Proof. By Theorem 7 and [21, Theorem 4]. \blacksquare

THEOREM 8. Let (X, τ) be s-closed and $A \in SR(X, \tau)$. Then $X \setminus A$ is an s-closed subspace of (X, τ) .

Proof. Let $X \setminus A \subset \bigcup_{\alpha \in \nabla} V_{\alpha}$ where $\{V_{\alpha} : \alpha \in \nabla\} \subset \operatorname{SR}(X, \tau)$. Then $X = A \cup \bigcup_{\alpha \in \nabla} V_{\alpha}$, and by [10, Proposition 3.1] there exists some finite $\nabla_0 \subset \nabla$ with $X = A \cup \bigcup_{\alpha \in \nabla_0} V_{\alpha}$. So, $X \setminus A$ is s-closed relative to (X, τ) and by [21, Theorem 4] it is an s-closed subspace.

THEOREM 9. Let $A \in CO(X, \tau)$ be a set s-closed relative to (X, τ) . Then (X, τ) is s-closed if and only if $X \setminus A$ is an s-closed subspace of it.

Proof. Necessity. Theorem 8. Sufficiency. By Theorem 1, $X \setminus A$ is s-closed relative to (X, τ) . Hence $X = A \cup (X \setminus A)$ is s-closed relative to (X, τ) [4, Theorem 4]; i.e., (X, τ) is s-closed.

LEMMA 11. Let $B \in SR(X, \tau)$, $A \subset X$, and $A \cup B$ be s-closed relative to (X, τ) . Then, $A \setminus B$ is s-closed relative to (X, τ) .

Proof. Follows easily from [10, Proposition 4.1] and the identity $A \setminus B = (A \cup B) \cap (X \setminus B)$.

THEOREM 10. Let, in a space (X, τ) , (A, τ_A) and (B, τ_B) be s-closed subspaces. If $A \in \tau^{\alpha}$ and $B \in CO(X, \tau)$, then $(A \setminus B, \tau_{A \setminus B})$ is an s-closed subspace of (X, τ) .

Proof. By Theorem 1, A and B are s-closed relative to (X, τ) . Using [4, Theorem 4] and Lemma 11 we get that $A \setminus B$ is s-closed relative to (X, τ) . It is enough now to recall that $CO(X, \tau) = CO(X, \tau^{\alpha})$

REMARK 3. The above Theorems 7 to 10 should be compared with respective Theorems 28 to 31 in the sequel (Section 4).

Recall the following notions [10, p.227]: a point x of a space (X, τ) is said to be a *semi* θ -adherent point of a subset $S \subset X$ if $S \cap \operatorname{scl}_X(U) \neq \emptyset$ for every set $U \in \operatorname{SO}(X, \tau)$ with $x \in U$. The set of all semi θ -adherent points of an S is called the *semi* θ -closure of S in (X, τ) . A set $S \subset X$ is called *semi* θ -closed if the semi θ -closure of S is S.

THEOREM 11. Let $A \in \text{SPO}(X, \tau)$. If $A \cup (X \setminus \text{scl}_X(A))$ is s-closed relative to (X, τ) , then A is s-closed relative to (X, τ) .

Proof. Let $A \subset \bigcup_{\alpha \in \nabla} V_{\alpha}$ where $\{V_{\alpha} : \alpha \in \nabla\} \subset \mathrm{SR}(X,\tau)$. By Lemma 6, $\mathrm{scl}_X(A) \in \mathrm{SR}(X,\tau)$ and hence $\mathrm{scl}_X(A)$ is semi θ -closed [12, Proposition 2.3(b)]. Thus, for each $x \in X \setminus \mathrm{scl}_X(A)$ there exists $V_x \in \mathrm{SO}(X,\tau)$ with $x \in V_x$, such that $\mathrm{scl}_X(V_x) \subset X \setminus \mathrm{scl}_X(A)$. The family $\{\mathrm{scl}_X(V_x) : x \in X \setminus \mathrm{scl}_X(A)\} \cup \{V_{\alpha} : \alpha \in \nabla\}$ covers the set $A \cup (X \setminus \mathrm{scl}_X(A))$. Thus, by hypothesis, there exists a finite $\nabla_0 \subset \nabla$ with $A \subset \bigcup_{\alpha \in \nabla_0} V_{\alpha}$.

COROLLARY 9. Let (X, τ) be an s-closed space and $A \in \text{SPO}(X, \tau)$. If $\operatorname{scl}_X(A) \setminus A \in \operatorname{SR}(X, \tau)$ then A is s-closed relative to (X, τ) .

Proof. By the proof of Theorem 8 the set $X \setminus (\operatorname{scl}_X(A) \setminus A)$ is s-closed relative to (X, τ) . Apply now Theorem 11.

A space (X, τ) is said to be *weakly*- \mathcal{T}_2 [40], if each point of X can be expressed as an intersection of regular closed subsets of (X, τ) . In [10, Proposition 4.3] the following is proved: if K is s-closed relative to a weakly- \mathcal{T}_2 space, then K is semi θ -closed in (X, τ) .

THEOREM 12. Let $A \subseteq X$ be a set s-closed relative to (X, τ) . Assume that

for each
$$x \in X \setminus A$$
 and $y \in A$, there exist sets
 $V_x \in \tau^{\alpha}, V_y \in \text{SO}(X, \tau), V_x \ni x, V_y \ni y$, with $V_x \cap V_y = \emptyset$. (1)

Then, A is semi θ -closed in (X, τ) .

Proof. Pick an arbitrary $x_0 \in X \setminus A$. For each $y \in A$, there exist sets $V_{x_0,y} \in \tau^{\alpha}$, $V_{x_0,y} \ni x_0$, and $V_y \in SO(X,\tau)$, $V_y \ni y$, with $V_{x_0,y} \cap V_y = \emptyset$. Thus, $\{V_y : y \in A\}$ covers A and, as A is s-closed relative to (X,τ) , we have $A \subset \bigcup_{i=1}^n \operatorname{scl}(V_{y_i})$ for some $y_1, \ldots, y_n \in A$. Making use of Lemma 7 (or Lemma 10) we get $V_{x_0,y_i} \cap$

 $\operatorname{scl}(V_{y_i}) = \emptyset$, $i = 1, \ldots, n$. We have also $A \subset \bigcup_{i=1}^n \operatorname{scl}(V_{y_i}) = V \in \operatorname{SO}(X, \tau)$ and $x_0 \in \bigcap_{i=1}^n V_{x_0, y_i} = B \in \tau^{\alpha}$. So, by [17, Lemma 1(i)],

$$B \cap \operatorname{cl}_{\tau}(V) = B \cap \operatorname{cl}_{\tau^{\alpha}}(V) \subset \operatorname{cl}_{\tau^{\alpha}}(B \cap V) = \emptyset,$$

where $\operatorname{cl}_{\tau}(V) \in \operatorname{SR}(X, \tau)$. This implies that $x_0 \in X \setminus \operatorname{cl}_{\tau}(V) \in \operatorname{SR}(X, \tau)$; i.e., there is a $U \in \operatorname{SO}(X, \tau)$ containing x_0 such that $\operatorname{scl}_X(U) \cap A = \emptyset$. Thus, x_0 is not a semi θ -adherent point of A and hence A is semi θ -closed.

EXAMPLE 1. There exist a space (X, τ) which is not weakly- \mathcal{T}_2 , and a subset $A \subsetneq X$ such that (1) of Theorem T12 holds. Indeed, if $X = \{a, b, c, d, e\}, \tau = \{\emptyset, X, \{a, b\}, \{c, d\}, \{e\}\}$, then consider $A = \{c, d, e\}$.

REMARK 4. Recall that (X, τ) is called a *semi-T*₂-*space* [23], if for any distinct points $x_1, x_2 \in X$ there exist disjoint $V_1, V_2 \in SO(X, \tau)$ with $V_1 \ni x_1$ and $V_2 \ni x_2$. Using [19, Theorem 2.9] and the fact that (X, τ) is \mathcal{T}_2 if and only if (X, τ^{α}) is \mathcal{T}_2 [11, Theorem 3], we obtain that every e.d. semi- \mathcal{T}_2 space is \mathcal{T}_2 . So, directly from [10, Proposition 4.3] we infer what follows: in any e.d. semi- \mathcal{T}_2 space (X, τ) , every subset *s*-closed relative to (X, τ) is semi θ -closed in (X, τ) .

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *semi-continuous* [22] (resp. *s-open* [6]) if $f^{-1}(V) \in \text{SO}(X, \tau)$ (resp. $f(U) \in \sigma$) for every $V \in \sigma$ (resp. $U \in \text{SO}(X, \tau)$). An f is semi-continuous if and only if for every $S \subset X$, $f(\operatorname{scl}_X(S)) \subset \operatorname{cl}_Y(f(S))$ [9, Theorem 1.16].

THEOREM 13. Consider a function $f: (X, \tau) \to (Y, \sigma)$ and a subset G s-closed relative to (X, τ) .

(a) If f is semi-continuous and s-open then f(G) is \mathcal{N} -closed relative to (Y, σ) .

(b) If f is semi-continuous then f(G) is quasi \mathcal{H} -closed relative to (Y, σ) .

Proof. (a) Let $\{V_{\alpha} : \alpha \in \nabla\} \subset \sigma$ be a cover of f(G). Then $\{f^{-1}(V_{\alpha}) : \alpha \in \nabla\} \subset SO(X, \tau)$ is a cover of G. There is a finite $\nabla_0 \subset \nabla$ such that $G \subset \bigcup_{\alpha \in \nabla_0} \operatorname{scl}_X(f^{-1}(V_{\alpha}))$. As f is semi-continuous and s-open, we obtain

$$f(G) \subset \bigcup_{\alpha \in \nabla_0} f\left(\operatorname{scl}_X\left(f^{-1}(V_\alpha)\right)\right) \subset \bigcup_{\alpha \in \nabla_0} \operatorname{int}_Y\left(\operatorname{cl}_Y\left(f\left(f^{-1}(V_\alpha)\right)\right)\right)$$
$$\subset \bigcup_{\alpha \in \nabla_0} \operatorname{int}_Y\left(\operatorname{cl}_Y(V_\alpha)\right).$$

Thus, f(G) is \mathcal{N} -closed relative to (Y, σ) .

(b) Similar to the case (a). \blacksquare

Semi-continuity and s-openness are independent notions, as seen by the example below.

EXAMPLE 2. (a). Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}, \{a\}\}, Y = \{a, b, c, d\},$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, d\}, \{a, b, d\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$ as the identity on X. One checks that f is semi-continuous. But, f is not s-open since $f(\{a, b\}) \notin \sigma$.

(b). Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}\}$, and $\sigma = \{\emptyset, X, \{c\}, \{a, b\}\}$. Let again $f : (X, \tau) \to (X, \sigma)$ be the identity on X. Then f is s-open not being semi-continuous as $f^{-1}(\{c\}) \notin SO(X, \tau)$.

DEFINITION 2. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be SR-*open* (resp. R-*open*), if $f(U) \in SR(Y, \sigma)$ (resp. $f(U) \in RO(Y, \sigma)$) for every $U \in SR(X, \tau)$ (resp. $U \in RO(X, \tau)$).

THEOREM 14. Let a set B be s-closed relative to (Y, σ) . If a bijection $f : (X, \tau) \to (Y, \sigma)$ is SR-open then $f^{-1}(B)$ is s-closed relative to (X, τ) .

Proof. Use [10, Proposition 4.1]. ■

A function $f : (X, \tau) \to (Y, \sigma)$ is called *a.c.H.* ([18, 25] and [39, Theorem 4]) if $f^{-1}(V) \in \text{PO}(X, \tau)$ for every $V \in \sigma$.

THEOREM 15. If a function $f : (X, \tau) \to (Y, \sigma)$ is a.c.H. and R-open, then it is SR-open.

Proof. Let $A \in \text{SR}(X, \tau)$. There exists a set $U \in \text{RO}(X, \tau)$ such that $U \subset A \subset \text{cl}_X(U)$ [10, Proposition 2.1]. Since f is a.c.H., $f(\text{cl}_X(S)) \subset \text{cl}_Y(f(S))$ for every $S \in \tau$ [39, Theorem 6]. Thus, by R-openness of f and, again, by [10, Proposition 2.1] we obtain that f is SR-open. ■

3. Hausdorffness of spaces

In this section we offer some characterizations of \mathcal{T}_2 and semi- \mathcal{T}_2 spaces.

THEOREM 16. A space (X, τ) is \mathcal{T}_2 if and only if, for each $A \subsetneq X$ s-closed relative to (X, τ) and each point $x \in X \setminus A$ there exist disjoint sets $U_1, U_2 \in$ RO (X, τ) with $U_1 \ni x$ and $U_2 \supset A$.

Proof. Necessity. Let $x_0 \in X \setminus A$ be arbitrary. By Hausdorffness of (X, τ) , for each $y \in A$ there are disjoint $V_{x_0,y}, V_y \in \tau^{\alpha}$ with $V_{x_0,y} \ni x_0$ and $V_y \ni y$ [17, Theorem 3]. Since A is s-closed relative to $(X, \tau), A \subset \bigcup_{i=1}^n \operatorname{scl}(V_{y_i})$ for certain $y_1, \ldots, y_n \in A$. It is enough to show that

$$\operatorname{scl}\left(\bigcap_{i=1}^{n} V_{x_{0},y_{i}}\right) \cap \operatorname{scl}\left(\bigcup_{i=1}^{n} \operatorname{scl}\left(V_{y_{i}}\right)\right) = \emptyset$$

because $\operatorname{scl}(S) = \operatorname{int}(\operatorname{cl}(S))$ for any $S \in \tau^{\alpha} \subset \operatorname{PO}(X, \tau)$ [20, Proposition 2.7(a)]. Indeed, we get by Lemma 7 (for instance), [8, Theorem 1.7(4)], and Lemma 4:

$$\operatorname{scl}\left(\bigcap_{i=1}^{n} V_{x_{0}, y_{i}}\right) \cap \operatorname{scl}\left(\bigcup_{i=1}^{n} \operatorname{scl}\left(V_{y_{i}}\right)\right) \subset \operatorname{scl}\left(\operatorname{scl}\left(\bigcap_{i=1}^{n} V_{x_{0}, y_{i}}\right) \cap \bigcup_{i=1}^{n} \operatorname{scl}\left(V_{y_{i}}\right)\right)$$
$$\subset \operatorname{scl}\left(\operatorname{scl}\left(\bigcap_{i=1}^{n} V_{x_{0}, y_{i}}\right) \cap \operatorname{scl}\left(\bigcup_{i=1}^{n} V_{y_{i}}\right)\right)$$
$$= \operatorname{scl}\left(\operatorname{int}\left(\operatorname{cl}\left(\bigcap_{i=1}^{n} V_{x_{0}, y_{i}} \cap \bigcup_{i=1}^{n} V_{y_{i}}\right)\right)\right) = \operatorname{scl}\left(\operatorname{int}\left(\operatorname{cl}\left(\emptyset\right)\right)\right) = \emptyset.$$

Thus, if we put

$$U_1 = \operatorname{scl}\left(\bigcap_{i=1}^n V_{x_0, y_i}\right) \in \operatorname{RO}(X, \tau), \quad U_2 = \operatorname{scl}\left(\bigcup_{i=1}^n \operatorname{scl}(V_{y_i})\right) \in \operatorname{RO}(X, \tau),$$

then

$$x_0 \in U_1, \quad A \subset U_2, \quad \text{and } U_1 \cap U_2 = \emptyset.$$

Sufficiency. This is clear as every singleton is s-closed relative to (X, τ) (compare [10, Proposition 4.1]).

Recall that a subset A of a space (X, τ) is said to be α -compact relative to (X, τ) [3], if every τ^{α} -cover of A admits a finite subcover.

THEOREM 17. A space (X, τ) is \mathcal{T}_2 if and only if, for each $A \subsetneq X$, α -compact relative to (X, τ) and each point $x \in X \setminus A$, there exist disjoint sets $U_1, U_2 \in$ RO (X, τ) with $U_1 \ni x$ and $U_2 \supset A$.

Proof. Very similar to that of Theorem 16 (after few modifications—details left to the reader). \blacksquare

In [15] the author has proved that a space (X, τ) is semi- \mathcal{T}_2 if and only if, for any distinct $x, y \in X$, there are sets $U_x, U_y \in \mathrm{SR}(X, \tau)$ such that $x \in U_x$, $y \in U_y, U_x \cap U_y = \emptyset$. So, since every singleton is s-closed relative to (X, τ) [10, Proposition 4.1], we get as a corollary

THEOREM 18. Assume that for each subset $A \subsetneq X$, s-closed relative to (X, τ) , and for each point $x \in X \setminus A$, there exist disjoint $U_1, U_2 \in \text{SR}(X, \tau)$ with $U_1 \ni x$ and $U_2 \supset A$. Then (X, τ) is semi- \mathcal{T}_2 .

Combining Theorem 18 with [21, Theorem 6] we obtain the following characterization of e.d. semi- \mathcal{T}_2 spaces.

THEOREM 19. An e.d. space (X, τ) is semi- \mathcal{T}_2 if and only if, for any $A \subsetneq X$, s-closed relative to (X, τ) , and each $x \in X \setminus A$, there exist disjoint semi-regular subsets U and V with $U \ni x$ and $V \supset A$.

4. S-closedness

The following result has been stated by Khan, Ahmad, and Noiri [21, Theorem 5]: if every semi-regular subset of an e.d. space (X, τ) is an s-closed subspace of (X, τ) , then (X, τ) is s-closed. In this theorem $'(X, \tau)$ is s-closed' may be replaced by $'(X, \tau)$ is S-closed' since in e.d. spaces these two notions coincide [27, Theorem 14]. Moreover, the next result we state shows that after this replacement, the assumption $'(X, \tau)$ is e.d.' becomes superfluous.

THEOREM 20. If every semi-regular subset of (X, τ) is an s-closed subspace of (X, τ) , then (X, τ) is S-closed.

Proof. Suppose $\{V_{\alpha} : \alpha \in \nabla\} \subset \text{SO}(X,\tau)$ is a cover of (X,τ) . Take into consideration a set $\operatorname{cl}_X(V_{\beta}) \neq X$ with $V_{\beta} \neq \emptyset$. Obviously, $\operatorname{cl}_X(V_{\beta}) \in \operatorname{SR}(X,\tau)$ and

hence $X \setminus \operatorname{cl}_X(V_\beta) \in \operatorname{SR}(X,\tau)$ as well. By hypothesis $X \setminus \operatorname{cl}_X(V_\beta)$ is an *s*-closed subspace of (X,τ) , and since it is open in (X,τ) , we infer from Theorem 1 that $X \setminus \operatorname{cl}_X(V_\beta)$ is *s*-closed relative to (X,τ) . We have $X \setminus \operatorname{cl}_X(V_\beta) \subset \bigcup_{\alpha \in \nabla} V_\alpha$ and there is a finite $\nabla_0 \subset \nabla$ such that

$$X \setminus \operatorname{cl}_X(V_\beta) \subset \bigcup_{\alpha \in \nabla_0} \operatorname{scl}_X(V_\alpha)$$

Thus, one gets $X = \bigcup_{\alpha \in \nabla_0 \cup \{\beta\}} \operatorname{cl}_X(V_\alpha)$. This shows that (X, τ) is S-closed.

In [32, Theorem 3.1] Noiri proved that if $A \in \tau^{\alpha}$, then the subspace (A, τ_A) is \mathcal{S} -closed if and only if it is \mathcal{S} -closed relative to (X, τ) . Combining this result with Theorem 1, it is easy to show that for $A \in \tau^{\alpha}$, if (A, τ_A) is *s*-closed then it is \mathcal{S} -closed. The theorem below is a strong improvement of this corollary.

THEOREM 21. Let A be an arbitrary subset of (X, τ) . If (A, τ_A) is s-closed then it is S-closed.

Proof. Let $\{U_{\alpha} : \alpha \in \nabla\} \subset \text{SO}(A, \tau_A)$ be a cover of A. By assumption, there is a finite $\nabla_0 \subset \nabla$ such that $A = \bigcup_{\alpha \in \nabla_0} \operatorname{scl}_A(U_{\alpha})$. So, $A = \bigcup_{\alpha \in \nabla_0} \operatorname{cl}_A(U_{\alpha})$.

THEOREM 22. Let $A \in \tau^{\alpha}$ be a subset of an e.d. space (X, τ) . Then, (A, τ_A) is S-closed if and only if it is s-closed.

Proof. Let (A, τ_A) be S-closed. By [32, Theorem 3.1] it is equivalent A being S-closed relative to (X, τ) . By means of [27, Theorem 14] and Theorem 1, the latter is equivalent (A, τ_A) being s-closed.

REMARK 5. The following is an interesting consequence of [27, Theorem 14]: for any subset A of (X, τ) such that (A, τ_A) is e.d., (A, τ_A) is S-closed if and only if A is s-closed.

In [14, Theorem 2.7] the author proved that if $A \in \tau^{\alpha}$ is an \mathcal{S} -closed subspace of (X, τ) , then $(\operatorname{scl}_X(A), \tau_{\operatorname{scl}_X(A)})$ is also \mathcal{S} -closed. Since $\operatorname{scl}_X(A) = \operatorname{int}_X(\operatorname{cl}_X(A))$ for any $A \in \operatorname{PO}(X, \tau)$ [20, Proposition 2.7(a)], by the use of Theorem 22 it follows that if $A \in \tau^{\alpha}$ is an *s*-closed subspace of an e.d. (X, τ) , then $(\operatorname{scl}_X(A), \tau_{\operatorname{scl}_X(A)})$ is *s*-closed too. This result shall be extended to $A \in \operatorname{PO}(X, \tau)$ (in e.d. spaces) in Theorem 23 below.

LEMMA 12. For any (X, τ) and $S_1, S_2 \subset X$,

$$\operatorname{int} \left(\operatorname{cl} \left(S_1 \cup S_2 \right) \right) = \operatorname{int} \left(\operatorname{cl} \left(\operatorname{int} \left(\operatorname{cl} \left(S_1 \right) \right) \cup \operatorname{int} \left(\operatorname{cl} \left(S_2 \right) \right) \right) \right)$$

Proof. Clearly, int $(cl(S_1)) \cup int (cl(S_2)) \subset int (cl(S_1 \cup S_2))$. Next, we calculate as follows: int $(cl(S_1 \cup S_2)) \subset cl(int (cl(S_1 \cup S_2))) = cl(int (cl(S_1) \cup cl(S_2)))$ = $cl(int (cl(S_1))) \cup cl(int (cl(S_2)))$ by the dual to Lemma 4. So,

 $\operatorname{int}\left(\operatorname{cl}\left(S_{1}\cup S_{2}\right)\right)\subset\operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}\left(S_{1}\right)\right)\cup\operatorname{int}\left(\operatorname{cl}\left(S_{2}\right)\right)\right)\subset\operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}\left(S_{1}\cup S_{2}\right)\right)\right),$

and this concludes the proof. \blacksquare

LEMMA 13. Let (X, τ) be e.d. Then for every $S_1, S_2 \subset X$,

$$\operatorname{int} \left(\operatorname{cl} \left(S_1 \cup S_2 \right) \right) = \operatorname{int} \left(\operatorname{cl} \left(S_1 \right) \right) \cup \operatorname{int} \left(\operatorname{cl} \left(S_2 \right) \right).$$

Proof. Follows easily from Lemma 12. ■

LEMMA 14. In any (X, τ) , if $A \subset X$ and $U \in SO(scl_X(A), \tau_{scl_X(A)})$ then $U \cap A \in SO(A, \tau_A)$.

Proof. For a certain $O \in \tau$, $V = O \cap \operatorname{scl}_X(A) \subset U \subset \operatorname{cl}_{\operatorname{scl}_X(A)}(V)$. Then $V \subset U \subset \operatorname{cl}_X(V) \cap \operatorname{scl}_X(A) \subset \operatorname{cl}_X(O \cap \operatorname{cl}_X(A)) \cap \operatorname{scl}_X(A) \subset \operatorname{cl}_X(O \cap A) \cap \operatorname{scl}_X(A) \subset \operatorname{cl}_X(O \cap A)$. Therefore we obtain

$$O \cap A \subset U \cap A \subset \operatorname{cl}_X(O \cap A) \cap A = \operatorname{cl}_A(O \cap A). \quad \blacksquare$$

THEOREM 23. Let (A, τ_A) be an s-closed subspace of e.d. (X, τ) , where $A \in$ PO (X, τ) . Then the subspace $(\operatorname{scl}_X(A), \tau_{\operatorname{scl}_X(A)})$ is s-closed.

Proof. Let $\{U_{\alpha} : \alpha \in \nabla\} \subset \text{SO}\left(\operatorname{scl}_{X}(A), \tau_{\operatorname{scl}_{X}(A)}\right)$ cover $\operatorname{scl}_{X}(A)$. By Lemma 14 the family $\{U_{\alpha} \cap A : \alpha \in \nabla\} \subset \text{SO}\left(A, \tau_{A}\right)$ forms a cover of A. Since (A, τ_{A}) is *s*-closed, $A = \bigcup_{\alpha \in \nabla_{0}} \operatorname{scl}_{A}(U_{\alpha} \cap A)$ for some finite $\nabla_{0} \subset \nabla$. Hence by Lemma 3 and by [20, Proposition 2.7(a)] we get $A \subset \bigcup_{\alpha \in \nabla_{0}} (\operatorname{int}_{X}(\operatorname{cl}_{X}(A)) \cap \operatorname{scl}_{X}(U_{\alpha}))$, and since (X, τ) is e.d. we have by Lemmas 13 and 4

$$\operatorname{scl}_X(A) \subset \operatorname{int}_X \left(\operatorname{cl}_X \left(\bigcup_{\alpha \in \nabla_0} \left(\operatorname{int}_X (\operatorname{cl}_X(A)) \cap \operatorname{scl}_X(U_\alpha) \right) \right) \right) \right)$$
$$= \bigcup_{\alpha \in \nabla_0} \left(\operatorname{int}_X (\operatorname{cl}_X(A)) \cap \operatorname{int}_X (\operatorname{cl}_X (\operatorname{scl}_X(U_\alpha))) \right).$$

So, as $\operatorname{scl}_X(U_\alpha) \in \operatorname{SC}(X,\tau)$, $\alpha \in \nabla_0$, we obtain $\operatorname{scl}_X(A) = \bigcup_{\alpha \in \nabla_0} \operatorname{scl}_{\operatorname{scl}_X(A)}(U_\alpha)$. Thus $\operatorname{scl}_X(A)$ is *s*-closed.

LEMMA 15. Let $A \in \text{SO}(X, \tau)$. If $(\text{int}_X(A), \tau_{\text{int}_X(A)})$ is s-closed, then for any cover $\{V_i : i \in \nabla\} \subset \text{SPO}(X, \tau)$ of A there is some finite $\nabla_0 \subset \nabla$ such that $A \subset \bigcup_{i \in \nabla_0} \text{cl}_{\tau^{\alpha}}(V_i)$.

Proof. Let $\emptyset \neq \operatorname{int}_X(A) \subset A \subset \bigcup_{i \in \nabla} V_i$, where $V_i \in \operatorname{SPO}(X, \tau)$ for each $i \in \nabla$. Then $\operatorname{int}_X(A) = \bigcup_{i \in \nabla} (\operatorname{int}_X(A) \cap V_i)$ and by Lemma 9 we have

$$\operatorname{int}_X(A) \cap V_i \in \operatorname{SPO}\left(\operatorname{int}_X(A), \tau_{\operatorname{int}_X(A)}\right)$$

for $i \in \nabla$. By hypothesis there exists a finite $\nabla_0 \subset \nabla$ with

$$\operatorname{int}_X(A) = \bigcup_{i \in \nabla_0} \operatorname{scl}_{\operatorname{int}_X(A)} \left(\operatorname{int}_X(A) \cap V_i \right)$$

(see Theorem 5). Making use of Lemmas 3 and 8 we get

 $\operatorname{int}_X(A) \subset \bigcup_{i \in \nabla_0} \operatorname{scl}_X \left(\operatorname{int}_X(A) \cap \left(\operatorname{int}_X(A) \cap V_i \right) \right) \subset \bigcup_{i \in \nabla_0} \operatorname{cl}_X \left(\operatorname{int}_X \left(\operatorname{cl}_X(V_i) \right) \right).$

On the other hand, by [2, Theorem 1.5(c)], $cl_{\tau^{\alpha}}(V) = cl_X(int_X(cl_X(V)))$ for each $V \in SPO(X, \tau)$. Therefore, since $A \in SO(X, \tau)$,

$$A \subset \bigcup_{i \in \nabla_0} \mathrm{cl}_{\tau^{\alpha}}(V_i). \quad \blacksquare$$

THEOREM 24. Let $A \in SO(X, \tau)$. If the subspace $(int_X(A), \tau_{int_X(A)})$ is sclosed then (A, τ_A) is S-closed.

Proof. Let $A = \bigcup_{i \in \nabla} U_i$ where $U_i \in SO(A, \tau_A)$ for each $i \in \nabla$. By [29, Theorem 5], $U_i \in SO(X, \tau)$. Since $SO(X, \tau) \subset SPO(X, \tau)$, from Lemma 15 we infer that for some finite $\nabla_0 \subset \nabla$, $A \subset \bigcup_{i \in \nabla_0} cl_{\tau^{\alpha}}(U_i) = \bigcup_{i \in \nabla_0} cl_{\tau}(U_i)$ [17, Lemma 1(i)]. Consequently, $A = \bigcup_{i \in \nabla_0} cl_A(U_i)$.

By [19, Theorem 2.9] we have for each subset S of X that $cl_{\tau^{\alpha}}(S) = scl_X(S)$. Thus, by [17, Lemma 1(i)], it leads to the following theorem.

THEOREM 25. Let (X, τ) be an e.d. space. Any of the two conditions: 'for every semi-open (or open) cover \mathcal{U} of $A \subset X$ there is a finite subfamily \mathcal{U}_0 with $A \subset \operatorname{scl}_X(\bigcup \mathcal{U}_0)$ ', coincides with any of the properties: 'A is S-closed relative to (X, τ) ', 'A is s-closed relative to (X, τ) ', 'A is N-closed relative to (X, τ) ', 'A is quasi \mathcal{H} -closed relative to (X, τ) '.

Proof. We use [27, Theorem 14] (the reader is advised to compare [27, Theorem 2]. \blacksquare

The following result has been stated in [5, Theorem 2]: a space (X, τ) is Sclosed if and only if every cover $\{V_{\alpha} : \alpha \in \nabla\} \subset \operatorname{RC}(X, \tau)$ of X admits a finite subcover. This fact is a particular case of our next theorem.

THEOREM 26. A subset A of (X, τ) is S-closed relative to (X, τ) if and only if every cover $\{V_{\alpha} : \alpha \in \nabla\} \subset \operatorname{RC}(X, \tau)$ of A admits a finite subcover.

Proof. Necessity. Let $A \subset \bigcup_{\alpha \in \nabla} V_{\alpha}$ where $V_{\alpha} \in \operatorname{RC}(X, \tau) \subset \operatorname{SO}(X, \tau)$ for each $\alpha \in \nabla$. So, by our assumption, $A \subset \bigcup_{\alpha \in \nabla_0} \operatorname{cl}(V_{\alpha}) = \bigcup_{\alpha \in \nabla_0} V_{\alpha}$ for some finite $\nabla_0 \subset \nabla$.

Sufficiency. Let $A \subset \bigcup_{\alpha \in \nabla} V_{\alpha}$ where $V_{\alpha} \in \mathrm{SO}(X, \tau)$ for each $\alpha \in \nabla$. Obviously $A \subset \bigcup_{\alpha \in \nabla} \mathrm{cl}(V_{\alpha})$ and since $\mathrm{cl}(S) = \mathrm{cl}(\mathrm{int}(S))$ for every $S \in \mathrm{SO}(X, \tau)$ [30, Lemma 2], we get by hypothesis that there exists a finite $\nabla_0 \subset \nabla$ with $A \subset \bigcup_{\alpha \in \nabla_0} \mathrm{cl}(V_{\alpha})$.

LEMMA 16. Let $A \in \text{RO}(X, \tau)$. Then for each $G \subset A$, $G \in \text{RO}(X, \tau)$ if and only if $G \in \text{RO}(A, \tau_A)$.

Proof. Strong necessity. Let $A \in \tau$. We have

 $G = A \cap \operatorname{int}_X(\operatorname{cl}_X(G)) = \operatorname{int}_X(A \cap \operatorname{cl}_X(G)) = \operatorname{int}_X(\operatorname{cl}_A(G)) = \operatorname{int}_A(\operatorname{cl}_A(G)).$

Sufficiency. This has been shown in the proof of [4, Theorem 6]. \blacksquare

In [31, Theorem 1.3] the following was proved: (X, τ) is S-closed if and only if its every proper subset $S \in \text{RO}(X, \tau)$ is S-closed.

THEOREM 27. Let $A \in \text{RO}(X, \tau)$. Then, the subspace (A, τ_A) is S-closed if and only if every proper subset $G \subset A$ with $G \in \text{RO}(X, \tau)$ is S-closed.

THEOREM 28. Let $A \in SO(X, \tau)$, $B \in PO(X, \tau)$, $A \cap B = \emptyset$. If the union $A \cup B$ is S-closed relative to (X, τ) , then B is S-closed relative to (X, τ) .

Proof. Let a family $\mathcal{F} \subset \text{SO}(X, \tau)$ be a cover of B. Then, the family $\mathcal{F} \cup \{A\}$ covers $A \cup B$. There exist $V_1, \ldots, V_n \in \mathcal{F}$ such that $A \cup B \subset \operatorname{cl}(A) \cup \bigcup_{i=1}^n \operatorname{cl}(V_i)$. So, by [35, Lemma 2.1] (see Remark 2) we obtain $B \subset \bigcup_{i=1}^n \operatorname{cl}(V_i)$. This completes the proof. ■

By [13, Theorem 1] the author has proved that a space (X, τ) is S-disconnected if and only if there exists nonempty $U_1 \in SO(X, \tau)$, $U_2 \in \tau^{\alpha}$ such that $X = U_1 \cup U_2$ and $\emptyset = U_1 \cap U_2$. Directly from this result together with Theorem 28, follows

COROLLARY 10. Let (X, τ) be an S-disconnected and S-closed space. Then there exists a nonempty set $B \in \tau^{\alpha}$ which is S-closed relative to (X, τ) (hence it is also such a subspace of (X, τ) [32, Theorem 3.1]).

THEOREM 29. Let (X, τ) be S-closed and $A \in CO(X, \tau)$. Then $X \setminus A$ is an S-closed subspace of (X, τ) .

Proof. Let $X \setminus A \subset \bigcup_{\alpha \in \nabla} V_{\alpha}$ where $\{V_{\alpha} : \alpha \in \nabla\} \subset \operatorname{RC}(X, \tau)$. By [5, Theorem 2] there is a finite $\nabla_0 \subset \nabla$ such that $X \subseteq A \cup \bigcup_{\alpha \in \nabla_0} V_{\alpha}$. From Theorem 26 we infer that $X \setminus A$ is S-closed relative to (X, τ) . Therefore, in view of [32, Theorem 3.1], $X \setminus A$ is S-closed as a subspace.

THEOREM 30. Let $A \in CO(X, \tau)$ be an S-closed subspace of (X, τ) . Then, (X, τ) is S-closed if and only if $X \setminus A$ is an S-closed subspace of (X, τ) .

Proof. Necessity. Theorem 29.

Sufficiency. By [32, Theorem 3.1], the set $X \setminus A$ is S-closed relative to (X, τ) . Thus, by [32, Theorem 3.6], $X = A \cup (X \setminus A)$ is S-closed relative to (X, τ) ; i.e., (X, τ) is S-closed.

LEMMA 17. Let $A \subset X$ be arbitrary, $B \in \text{RC}(X, \tau)$, an let $A \cup B$ be S-closed relative to (X, τ) . Then $A \setminus B$ is S-closed relative to (X, τ) .

Proof. This follows from Theorem 26.

THEOREM 31. Let (A, τ_A) and (B, τ_B) be S-closed subspaces of (X, τ) . If $A, B \in CO(X, \tau)$ then $(A \setminus B, \tau_{A \setminus B})$ is S-closed too.

Proof. Use [32, Theorems 3.1 and 3.6] and Lemma 17. \blacksquare

REFERENCES

- M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), 24–32.
- [3] R. H. Atia, S. N. El-Deeb, A. S. Mashhour, *a-compactness and a-homeomorphism*, preprint.
- [4] C. K. Basu, On locally s-closed spaces, Inter. J. Math. Math. Sci. 19 (1996), 67–74.
- [5] D. E. Cameron, Properties of S-closed spaces, Proc. Amer. Math Soc. 72 (1978), 581–586.
- [6] D. E. Cameron, G. Woods, s-continuous and s-open mappings, preprint.
- [7] D. Carnahan, Locally nearly-compact spaces, Bolletino U.M.I. (4)6 (1972), 146–153.
- [8] C. G. Crossley, S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99–112.
- C. G. Crossley, S. K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci. 22 (1971), 123–126.
- [10] G. Di Maio, T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math. 18 (1987), 226–233.
- [11] K. Dlaska, N. Ergun, M. Ganster, On the topology generated by semi-regular sets, Indian J. Pure Appl. Math. 25 (1994), 1163–1170.
- [12] Ch. Dorsett, Semiregularization spaces and the semi closure operator, s-closed spaces, and quasi-irresolute functions, Indian J. Pure Appl. Math. 21 (1990), 416–422.
- [13] Z. Duszyński, On some concepts of weak connectedness of topological spaces, Acta Math. Hungar. 110 (2006), 81–90.
- [14] Z. Duszyński, Remarks on S-closedness in topological spaces, Bolletino U.M.I. (8)10-B (2007), 469–483.
- [15] Z. Duszyński, A note on sets s- or S-closed relative to a space and some separation axioms, Ann. Univ. Bucuresti, Seria Mat. 57 (2008), 31–38.
- [16] Z. Duszyński, On pre-semi-open mappings, Inter. J. Math. Game Th. Algebra 17 (2009), 255–267.
- [17] G. L. Garg, D. Sivaraj, Semitopological properties, Mat. Vesnik 36 (1984), 137–142.
- [18] T. Husain, Almost continuous mappings, Prace Mat. 10 (1966), 1–7.
- [19] D. S. Janković, On locally irreducible spaces, Ann. Soc. Sci. Bruxelles 97 (1983), 59-72.
- [20] D. S. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungar. 46 (1985), 83–92.
- [21] M. Khan, B. Ahmad, T. Noiri, On s-closed subspaces, Indian J. Pure Appl. Math. 28 (1997), 175–179.
- [22] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [23] S. N. Maheshwari, R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles 89 (1975), 395-402.
- [24] H. Maki, K. Chandrasekhara Rao, M. Nagoor Gani, On generalizing semi-open sets and preopen sets, Pure Appl. Math. Sci. 49 (1999), 17–29.
- [25] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [26] A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math. 13 (1982), 1119–1123.
- [27] M. N. Mukherjee, C. K. Basu, On S-closed and s-closed spaces, Bull. Malaysian Math. Sci. (S.S.) 15 (1992), 1–7.
- [28] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [29] T. Noiri, Remarks on semi-open mappings, Bull. Cal. Math. Soc. 65 (1973), 197-201.
- [30] T. Noiri, On semi-continuous mappings, Lincei-Rend. Sc. fis. mat. e nat. 54 (1973), 210-214.
- [31] T. Noiri, On S-closed spaces, Ann. Soc. Sci. Bruxelles 91 (1977), 189–194.

- [32] T. Noiri, On S-closed subspaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 64 (1978), 157–162.
- [33] T. Noiri, On α-continuous functions, Čas. pěst. mat. 109 (1984), 118–126.
- [34] T. Noiri, B. Ahmad, A note on semi-open functions, Math. Sem. Notes Kobe Univ. 10 (1982), 437–441.
- [35] T. Noiri, A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, A note on S-closed subspaces, Math. Sem. Notes Kobe Univ. 10 (1982), 431–435.
- [36] W. J. Pervin, Foundations of general topology, Academic Press, New York-London, 1964.
- [37] V. Pipitone, G. Russo, Spazi semiconnessi a spazi semiaperti, Rend. Circ. Mat. Palermo 24 (1975), 273–285.
- [38] J. R. Porter, J. Thomas, On H-closed and minimal Haussdorff spaces (1), Trans. Amer. Math. Soc. 138 (1969), 159–170.
- [39] D. A. Rose, Weak continuity and almost continuity, Inter. J. Math. Math. Sci. 7 (1984), 311–318.
- [40] T. Soundararajan, Weakly Hausdorff spaces and cardinality of topological spaces, General Topology and its Application to Modern Analysis and Algebra III, Proc. Conf. Kampur 1968, Academia, Prague, (1971), 301–306.
- [41] S. F. Tadros, A. B. Khalaf, On regular semi-open sets and s^{*}-closed spaces, Tamkang J. Math. 23 (1992), 337–348.
- [42] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335–338.

(received 25.05.2009; in revised form 03.11.2009)

Institute of Mathematics, Casimirus the Great University, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

E-mail: imathQukw.edu.pl