2-NSR LEMMA AND QUOTIENT SPACE IN 2-NORMED SPACE

P. Riyas and K. T. Ravindran

Abstract

In this paper we discuss properties of compactness and compact operator on 2 -normed space. Also we consider a result which is similar to Riesz Lemma and its applications in 2-normed space. We introduce quotient space from the finite dimensional subspace of a 2 -normed space.

1. Introduction

The concept of a linear 2-normed space was introduced as a natural 2-metric analogue of that of a normed space. In 1963, Gähler introduced the notion of a 2-metric space, a real valued function of point-triples on a set X, whose abstract properties were suggested by the area function for a triangle determined by a triple in Euclidean space. In [4] S. Gähler introduced the following definition of a 2normed space.

2. Preliminaries

Definition 2.1. [4] Let X be a real linear space of dimension greater than 1. Suppose $\|$,$\| is a real valued function on X \times X$ satisfying the following conditions:

1. $\|x, y\|=0$ if and only if x and y are linearly independent,
2. $\|x, y\|=\|y, x\|$,
3. $\|\alpha x, y\|=|\alpha|\|x, y\|$,
4. $\|x+y, z\| \leq\|x, z\|+\|y, z\|$.

Then $\|$,$\| is called a 2-norm on X$ and the pair $(X,\|\|$,$) is called a 2-normed$ space. Some of the basic properties of 2-norms, are that they are non-negative and $\|x, y+x\|=\|x, y\|, \forall x, y \in X$ and $\forall \alpha \in \mathbf{R}$.

Definition 2.2. [2] Let X and Y be two 2-normed spaces and $T: X \rightarrow Y$ be a linear operator. For any $e \in X$, we say that the operator T is e-bounded if there

[^0]exists $M_{e}>0$ such that $\|T(x), T(e)\| \leq M_{e}\|x, e\|$ for all $x \in X$. An e-bounded operator T for every e will be called bounded.

Definition 2.3. [4] A sequence $\left\{x_{n}\right\}$ in a 2-normed space X is said to be convergent if there exists an element $x \in X$ such that

$$
\lim _{n \rightarrow \infty}\left\|\left\{x_{n}-x\right\}, y\right\|=0
$$

for all $x \in X$.
Definition 2.4. [4] Let X and Y be two 2-normed spaces and $T: X \rightarrow Y$ be a linear operator. The operator T is said to be sequentially continuous at $x \in X$ if for any sequence $\left\{x_{n}\right\}$ of X converging to x we have $T\left(\left\{x_{n}\right\}\right) \rightarrow T(x)$.

Definition 2.5. [2] The closure of a subset E of a 2-normed space X is denoted by \bar{E} and defined as the set of all $x \in X$ such that there is a sequence $\left\{x_{n}\right\}$ of E converging to x. We say that E is closed if $E=\bar{E}$.

For a 2-normed space we consider the subsets

$$
B_{e}(a, r)=\{x:\|x-a, e\|<r\}, \quad B_{e}[a, r]=\{x:\|x-a, e\| \leq r\}
$$

Definition 2.6. [2] A subset A of a 2-normed space X is said to be locally bounded if there exist $e \in X-\{0\}$ and $r>0$ such that $A \subseteq B_{e}(0, r)$.

Definition 2.7. [2] A subset B of a 2-normed space X is said to be compact if every sequence $\left\{x_{n}\right\}$ in B has a convergent subsequence in B.

Definition 2.8. [2] Let X and Y be two 2-normed spaces. A linear operator $T: X \rightarrow Y$ is called a compact operator if it maps every locally bounded sequence $\left\{x_{n}\right\}$ of X onto a sequence $\left\{T\left(x_{n}\right)\right\}$ in Y which has a convergent subsequence.

Lemma 2.9. [2] Let X and Y be two 2-normed spaces. If $T: X \rightarrow Y$ is a surjective bounded linear operator then T is sequentially continuous.

Corollary 2.10. [2] Let X and Y be two 2-normed spaces. Then every compact operator $T: X \rightarrow Y$ is bounded.

3. Main results

Lemma 3.1. Let X be a 2-normed space. If $B_{e}[a, r]$ is compact in X for some $a, e \in X$ and $r>0$ then X is of finite dimension.

Proof. Suppose that $B_{e}[a, r]$ is compact. The quotient space $X /\langle e\rangle$ is a normed space equipped with the norm

$$
\begin{aligned}
\|x+\langle e\rangle\|_{Q}= & \inf \left\{\frac{\|x, e\|}{\left\|e, e^{\prime}\right\|}: e^{\prime} \notin\langle e\rangle \&\left\|e, e^{\prime}\right\| \leq 1\right\} \\
& +\sup \left\{\frac{\|x, e\|}{\left\|e, e^{\prime}\right\|}: e^{\prime} \notin\langle e\rangle \&\left\|e, e^{\prime}\right\|>1\right\} \\
= & \|x, e\|+\sup \left\{\frac{\|x, e\|}{\left\|e, e^{\prime}\right\|}: e^{\prime} \notin\langle e\rangle \&\left\|e, e^{\prime}\right\|>1\right\}
\end{aligned}
$$

Define $A_{e}^{\prime}=\left\{x+\langle e\rangle:\|x-a+\langle e\rangle\|_{Q} \leq \frac{r}{\left\|e, e^{\prime}\right\|}\right\}$ and let $A=\bigcap\left\{A_{e^{\prime}}:\right.$ e and e^{\prime} are linearly independent $\}$. Then A is a closed ball in the normed space $X /\langle e\rangle$. We aim to show that A is a compact set in the normed space $X /\langle e\rangle$. For that let $\left\{x_{n}+\langle e\rangle\right\}$ be any sequence in A. Then

$$
\begin{gathered}
\left\|x_{n}+\langle e\rangle-(a+\langle e\rangle)\right\|_{Q}=\left\|x_{n}-a+\langle e\rangle\right\|_{Q} \leq \frac{r}{\left\|e, e^{\prime}\right\|} ; \forall e^{\prime} \notin\langle e\rangle \text { and } \forall n \\
\Rightarrow\left\|x_{n}-a, e\right\| \leq \frac{r}{\left\|e, e^{\prime}\right\|} ; \forall e^{\prime} \notin\langle e\rangle \text { and } \forall n
\end{gathered}
$$

In particular,

$$
\left\|x_{n}-a, e\right\| \leq r ; \forall n \Rightarrow x_{n} \in B_{e}[a, r] .
$$

Hence $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$ converges to a point x_{0}. We have

$$
\begin{aligned}
\| x_{n_{k}}+\langle e\rangle & -\left(x_{0}+\langle e\rangle\right)\left\|_{Q}=\right\| x_{n_{k}}-x_{0}+\langle e\rangle \|_{Q} \\
& =\left\|x_{n_{k}}-x_{0}, e\right\|+\sup \left\{\frac{\left\|x_{n_{k}}-x_{0}, e\right\|}{\left\|e, e^{\prime}\right\|}: e^{\prime} \notin\langle e\rangle \text { and }\left\|e, e^{\prime}\right\|>1\right\} \\
& =\left\|x_{n_{k}}-x_{0}, e\right\|\left[1+\sup \left\{\frac{1}{\left\|e, e^{\prime}\right\|}: e^{\prime} \notin\langle e\rangle \text { and }\left\|e, e^{\prime}\right\|>1\right\}\right] \\
& \Rightarrow \lim _{k \rightarrow \infty}\left\|x_{n_{k}}+\langle e\rangle-\left(x_{0}+\langle e\rangle\right)\right\|_{Q}=0 .
\end{aligned}
$$

Hence $\left\{x_{n_{k}}+\langle e\rangle\right\}$ is a convergent subsequence of $\left\{x_{n}+\langle e\rangle\right\}$. This implies that A is compact and so $X /\langle e\rangle$ is of finite dimension. Hence X is of finite dimension.

Here we introduce a result which is similar to Riesz Lemma.
Lemma 3.2. [2-NSR Lemma] Let X be a 2 -normed space and let $0 \neq e \in X$. Let r be any number such that $0<r<1$. Then there exists some $x_{r} \in X$ such that $\left\|x_{r}, e\right\|=1$ and $r<\left\|x_{r}, e\right\|$.

Proof. Since $\|x, e\|>0, \forall x \notin\langle e\rangle$, we have

$$
\begin{aligned}
\|x+\langle e\rangle\|_{Q} & =\|x, e\|+\sup \left\{\frac{\|x, e\|}{\left\|e, e^{\prime}\right\|}: e^{\prime} \notin\langle e\rangle \text { and }\left\|e, e^{\prime}\right\|>1\right\} \\
& >0 ; \quad \forall x \notin\langle e\rangle .
\end{aligned}
$$

Also, as $r<1,\|x, e\| \leq\|x+\langle e\rangle\|_{Q}<\frac{\|x+\langle e\rangle\|_{Q}}{r}, \forall x \notin\langle e\rangle$. Put $x_{r}=x /\|x, e\|$, so that $\left\|x_{r}, e\right\|=1$ and

$$
\left\|x_{r}+\langle e\rangle\right\|_{Q}=\left\|\frac{x}{\|x, e\|}+\langle e\rangle\right\|_{Q}>r
$$

Thus there exist $x_{r} \in X$ such that $\left\|x_{r}, e\right\|=1$ and $r<\left\|x_{r}, e\right\|$.
Remark. Let X be a 2 -normed space ad let Y be a finite dimensional subspace of X generated by $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Then X / Y is a normed space equipped with the norm

$$
\|x+Y\|_{Q}=\sum_{k=1}^{n}\left\|x+\left\langle e_{k}\right\rangle\right\|_{Q}
$$

Corollary 3.3. Let X be a 2-normed space and let Y be a finite dimensional subspace of X. Let r be any number such that $0<r<1$. Then there exists some $x_{r} \in X$ such that $r<\left\|x_{r}+Y\right\|_{Q} \leq 2$.

Proof. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a basis for Y. Then for any $x \notin Y$,

$$
\begin{aligned}
r & <\left\|\frac{x}{\left\|x, e_{k}\right\|}+\left\langle e_{k}\right\rangle\right\|_{Q} \leq 2 ; \text { for } k=1,2, \ldots, n \\
\Rightarrow r\left\|x, e_{k}\right\| & <\left\|x+\left\langle e_{k}\right\rangle\right\|_{Q} \\
& \leq 2\left\|x, e_{k}\right\| ; \text { for } k=1,2, \ldots, n \text { and for every } x \notin Y . \\
\Rightarrow r \sum_{k=1}^{n}\left\|x, e_{k}\right\| & <\| \| x+Y\left\|_{Q} \leq 2 \sum_{k=1}^{n}\right\| x, e_{k} \| .
\end{aligned}
$$

Put $x_{r}=x / \sum_{k=1}^{n}\left\|x, e_{k}\right\|$ so that $r<\left\|x_{r}+Y\right\| \leq 2$.
Lemma 3.4. Every finite dimensional subspace Y of a 2-normed space X is complete.

Proof. To prove the completeness of Y, we use mathematical induction on the dimension m of Y. Let $m=1$. Then $Y=\{k e: k \in \mathbf{R}\}$ with $e \neq 0$. If $\left\{x_{n}\right\}$ is a Cauchy sequence in Y with $x_{n}=k_{n} e$ then for every $x \in X,\left\|x_{n}-x_{m}, x\right\| \rightarrow 0$.

$$
\begin{gathered}
\left\|x_{n}-x_{m}, x\right\|=\left\|\left(k_{n}-k_{m}\right) e, x\right\|=\left|k_{n}-k_{m}\right|\|e, x\| ; \forall x \in X \\
\Rightarrow\left|k_{n}-k_{m}\right|=\frac{\left\|x_{n}-x_{m}, x\right\|}{\|x, e\|}, \forall x \notin\langle e\rangle
\end{gathered}
$$

It follows that $\left\{k_{n}\right\}$ is a Cauchy sequence in \mathbf{R} which is complete.
If $k_{n} \rightarrow k$ in \mathbf{R} then $x_{n} \rightarrow k e$ in Y. Thus Y is complete. Now assume that every $m-1$ dimensional subspace of X is complete. Let $\operatorname{dim} Y=m$ and let $\left\{x_{n}\right\}$ be a Cauchy sequence in Y. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a basis for Y and let $Z=\operatorname{span}\left\{e_{2}, e_{3}, \ldots, e_{n}\right\}$. Now for each $n=1,2,3, \ldots, x_{n}=k_{n} e_{1}+z_{n}$ for some $k_{n} \in \mathbf{R}$ and $z_{n} \in Z$.

$$
\begin{aligned}
\left\|x_{n}-x_{m}, x\right\| & =\left\|\left(k_{n}-k_{m}\right) e_{1}+\left(z_{n}-z_{m}\right), x\right\| \\
& =\left|k_{n}-k_{m}\right|\left\|e_{1}+\frac{\left(z_{n}-z_{m}\right)}{\left.k_{n}-k_{m}\right)}, x\right\| ; \forall x \in X .
\end{aligned}
$$

In particular,

$$
\left\|x_{n}-x_{m}, e_{2}\right\|=\left|k_{n}-k_{m}\right|\left\|e_{1}+\frac{\left(z_{n}-z_{m}\right)}{\left.k_{n}-k_{m}\right)}, e_{2}\right\|>\frac{\left|k_{n}-k_{m}\right|}{2}\left\|e_{1}+Z\right\|_{Q}
$$

It follows that $\left\{k_{n}\right\}$ a Cauchy sequence in \mathbf{R} which is complete. As $z_{n}=x_{n}-k_{n} e_{1}$, it follows that $\left\{z_{n}\right\}$ is a Cauchy sequence in Z which is complete. If $k_{n} \rightarrow k$ in R and $z_{n} \rightarrow z$ in Z, then $x_{n} \rightarrow k e_{1}+z$ in Y. Hence Y is complete.

Theorem 3.5. Let X be a 2-normed space and let T be a surjective compact operator on X and $0 \neq k \in \mathbf{R}$. If $\left\{x_{n}\right\}$ is a locally bounded sequence in X such
that $T\left(x_{n}\right)-k x_{n} \rightarrow y$ in X then there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges to x in X and $T(x)-k x=y$.

Proof. Since T is compact, there exist a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $T\left(x_{n_{k}}\right)$ converges to some $z \in X$. Then $k x_{n_{k}}=\left[k x_{n_{k}}-T\left(x_{n_{k}}\right)\right]+T\left(x_{n_{k}}\right)$ converges to $-y+z$ and so $\left\{x_{n_{k}}\right\} \rightarrow \frac{z-y}{k}=x$. Since T is sequentially continuous [2.9], $T\left(x_{n_{k}}\right) \rightarrow T(x)$. It follows that

$$
T(x)-k x=\lim _{k \rightarrow \infty}\left[T\left(x_{n_{k}}\right)-k x_{n_{k}}\right]=z-(-y+z)=y
$$

Theorem 2.6. Let X be a 2-normed space and $T: X \rightarrow X$. Let $0 \neq k \in \mathbf{R}$ and $0 \neq e \in X$ such that $(T-k I) X \subseteq\langle e\rangle$. Then there is some $x_{0} \in X$ such that $\left\|x_{0}, e\right\|=1$ and for every $y \in\langle e\rangle,\left\|T\left(x_{0}\right)-T(y), e\right\|>\frac{|k|}{4}$.

Proof. Let $Y=\langle e\rangle$. Then $T(y)=(T(y)-k y)+k y \subseteq Y+Y=Y, \forall y \in Y$. It follows that $T(Y) \subseteq Y$. Choose some $x_{0} \in X$ such that $\left\|x_{0}, e\right\|=1$ and $\frac{1}{2}<\left\|x_{0}+\langle e\rangle\right\|_{Q}$. For any $y \in Y$,

$$
\begin{aligned}
\left\|T\left(x_{0}\right)-T(y), e\right\| & =\left\|k x_{0}-\left[k x_{0}-T\left(x_{0}\right)+T(y)\right], e\right\| \\
& =|k|\left\|x_{0}-\frac{1}{k}\left[k x_{0}-T\left(x_{0}\right)+T(y)\right], e\right\| \\
& \geq \frac{|k|}{2}\left\|x_{0}-\frac{1}{k}\left[k x_{0}-T\left(x_{0}\right)+T(y)\right]+\langle e\rangle\right\|_{Q} \\
& =\frac{|k|}{2}\left\|x_{0}+\langle e\rangle\right\|_{Q}>\frac{|k|}{4} .
\end{aligned}
$$

Corollary 2.7. Let X be a 2-normed space and $T: X \rightarrow X$. Let $0 \neq k \in \mathbf{R}$ and let Y be a finite dimensional proper subspace of X such that $(T-k I) X \subseteq Y$. Then there is some $x_{0} \in X$ such that for every $x_{0}, y_{0} \in Y,\left\|T\left(x_{0}\right)-T(y), x\right\|>\frac{|k|}{4}$.

Proof. Let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be a basis for Y. Then $T(y)=(T(y)-k y)+$ $k y \subseteq Y+Y=Y, \forall y \in Y$ and so $T(Y) \subseteq Y$. Choose some $x_{0} \in X$ such that $\frac{1}{2}<\left\|x_{0}+Y\right\|_{Q}$. For any $x, y \in Y$,

$$
\begin{aligned}
\left\|T\left(x_{0}\right)-T(y), x\right\| & =\left\|k x_{0}-\left[k x_{0}-T\left(x_{0}\right)+T(y)\right], x\right\| \\
& =|k|\left\|x_{0}-\frac{1}{k}\left[k x_{0}-T\left(x_{0}\right)+T(y)\right], x\right\| \\
& \geq \frac{|k|}{2}\left\|x_{0}-\frac{1}{k}\left[k x_{0}-T\left(x_{0}\right)+T(y)\right]+Y\right\|_{Q} \\
& =\frac{|k|}{2}\left\|x_{0}+Y\right\|_{Q}>\frac{|k|}{4} .
\end{aligned}
$$

Acknowledgement. The authors wish to thank the referee for many helpful comments and suggestions.

REFERENCES

[1] Y.J. Cho, P.C.S. Lin, S.S. Kim, A. Misiak, Theory of 2-Inner Product Spaces, Nova Science, New York, 2001.
[2] F. Lael, K. Nouruzi, Compact operators defined on 2-normed and 2-probablistic normed spaces, Mathematical Problems in Engineering, Vol. 2009, Article ID 950234.
[3] S. Gähler, Siegfrid 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115-148.
[4] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1964), 1-43.
[5] F. Raymond W, C. Yeol Je, Geometry of Linear 2-Normed Spaces, Nova science publishers, Inc., Hauppauge, Ny, 2001.
(received 23.07.2009; in revised form 12.06.2010)
P. Riyas, P. G. Department and Research Centre, Payyannur College, Payyannur

E-mail: riyasmankadavu@gmail.com
K. T. Ravindran, P. G. Department and Research Centre, Payyannur College, Payyannur E-mail: drravindran@gmail.com

[^0]: 2010 AMS Subject Classification: 41A65, 41A15.
 Keywords and phrases: 2-normed space, locally bounded, compact operator, Riesz Lemma, e-bounded operator.

