FIXED POINT THEOREMS FOR SOME GENERALIZED CONTRACTIVE MULTI-VALUED MAPPINGS AND FUZZY MAPPINGS

Ramendra Krishna Bose and Mrinal Kanti Roychowdhury

Abstract

In this paper, first we give a theorem which generalizes the Banach contraction principle and fixed point theorems given by many authors, and then a fixed point theorem for a multi-valued (θ, L)-weak contraction. We extend the notion of (θ, L)-weak contraction to fuzzy mappings and obtain some fixed point theorems. A coincidence point theorem for a hybrid pair of mappings $f: X \rightarrow X$ and $T: X \rightarrow W(X)$ is established. Later on we prove a fixed point theorem for a different type of fuzzy mapping.

1. Introduction

Banach contraction principle plays a very important role in nonlinear analysis and has many generalizations (cf. [14] and the references therein). Recently, Suzuki gave a new type of generalization of the Banach contraction principle (cf. [20]). Then Kikkawa and Suzuki gave another generalization, which generalizes the work of Suzuki (cf. [20, Theorem 1]) and the Nadler fixed point theorem (cf. [16]). In [3], M. Berinde and V. Berinde extended the notion of weak contraction from single valued mappings to multi-valued mappings and obtained some convergence theorems for the Picard iteration associated with multi-valued weak contractions. As mentioned by Berinde and Berinde (cf. [3]), a lot of well-known contractive conditions considered in the literature contains (θ, L)-weak contraction as a special case. But this case, under consideration in this paper, is very general as unlike others the condition that $\theta+L<1$ is not required. For details one is referred to [3]. In [12], Kamran further extended the notion of weak contraction and introduced the notion of multi-valued f-weak contraction and generalized multi-valued f-weak contraction. In this paper in Theorem 3.1, we generalize the work of Kikkawa and Suzuki (cf. [14, Theorem 2]), Nadler (cf. [16]), Kamran (cf. [12, Theorem 2.9]), and Berinde and Berinde (cf. [3, Theorem 3]. In Theorem 3.4, we proved a fixed point theorem for a multi-valued (θ, L)-weak contraction defined on a nonempty

[^0]closed subset of a complete and convex metric space. In Theorem 4.1, a fixed point theorem for a (θ, L)-weak contractive fuzzy mapping is obtained which extends the result of Berinde and Berinde (cf. [3, Theorem 3]). In Theorem 4.2, a coincidence point theorem for a hybrid pair of mappings $f: X \rightarrow X$ and $T: X \rightarrow W(X)$; and in Theorem 4.3, a fixed point theorems for a (α, L)-weak contractive fuzzy mapping are obtained (definitions follow). Finally in Theorem 4.5 and in Theorem 4.7, we prove fixed point theorems for a different type of fuzzy mapping $T: X \rightarrow K(X)$.

2. Basic definitions and lemmas

In this section first we give the following basic definitions and lemmas for multivalued mappings, and then that for the fuzzy mappings. (X, d) always represents a metric space, H represents the Hausdorff distance induced by the metric $d, C B(X)$ denotes the family of nonempty closed and bounded subsets of X, and $C(X)$ the family of nonempty compact subsets of X. Let $\mathcal{P}(X)$ be the family of all nonempty subsets of X, and let $T: X \rightarrow \mathcal{P}(X)$ be a multi-valued mapping. An element $x \in X$ such that $x \in T(x)$ is called a fixed point of T. We denote by $F i x(T)$ the set of all fixed points of T, i.e.,

$$
\operatorname{Fix}(T)=\{x \in X: x \in T(x)\}
$$

Note that, x is a fixed point of a multi-valued mapping T if and only if $d(x, T(x))=$ 0 , whenever $T(x)$ is a closed subset of X.

Lemma 2.1. [16] Let A and B be nonempty compact subsets of a metric space (X, d). If $a \in A$, then there exists $b \in B$ such that $d(a, b) \leq H(A, B)$.

Definition 2.2. Let (X, d) be a complete metric space. X is said to be (metrically) convex if X has the property that for each $x, y \in X$ with $x \neq y$ there exists $z \in X, x \neq z \neq y$ such that

$$
d(x, z)+d(z, y)=d(x, y)
$$

Lemma 2.3. [5] If K is a nonempty closed subset of a complete and metrically convex metric space (X, d), then for any $x \in K, y \notin K$, there exists a point $z \in \partial K$ (the boundary of K) such that

$$
d(x, z)+d(z, y)=d(x, y)
$$

Definition 2.4. A multi-valued mapping $T: X \rightarrow C B(X)$ is said to be a multi-valued weak contraction or a multi-valued (θ, L)-weak contraction if and only if there exist two constants $\theta \in[0,1)$ and $L \geq 0$ such that

$$
H(T(x), T(y)) \leq \theta d(x, y)+L d(y, T(x))
$$

for all $x, y \in X$.

Definition 2.5. Let $f: X \rightarrow X$ and $T: X \rightarrow C B(X)$. The mapping T is said to be a multi-valued (f, θ, L)-weak contraction if and only if there exist two constants $\theta \in[0,1)$ and $L \geq 0$ such that

$$
H(T(x), T(y)) \leq \theta d(f(x), f(y))+L d(f(y), T(x))
$$

for all $x, y \in X$.
Lemma 2.6. [16] If $A, B \in C B(X)$ and $x \in A$, then for each positive number α there exists $y \in B$ such that $d(x, y) \leq H(A, B)+\alpha$, i.e., $d(x, y) \leq q H(A, B)$ where $q>1$.

Lemma 2.7. [16] Let $\left\{A_{n}\right\}$ be a sequence of sets in $C B(X)$, and suppose that $\lim _{n \rightarrow \infty} H\left(A_{n}, A\right)=0$, where $A \in C B(X)$. Then if $x_{n} \in A_{n}, n=1,2, \ldots$, and if $\lim _{n \rightarrow \infty} x_{n}=x_{0}$, it follows that $x_{0} \in A$.

Definition 2.8. [21] Let (X, d) be a metric space, $f: X \rightarrow X$ be a selfmapping and $T: X \rightarrow C B(X)$ be a multi-valued mapping. The mappings f and T are called R-weakly commuting if for a given $x \in X, f(T(x)) \in C B(X)$ and there exists some real number R such that

$$
H(f(T(x)), T(f(x))) \leq R d(f(x), T(x))
$$

Definition 2.9. [11] The mappings $f: X \rightarrow X$ and $T: X \rightarrow C B(X)$ are weakly compatible if they commute at their coincidence points, i.e., if $f(T(x))=$ $T(f(x))$ whenever $f(x) \in T(x)$.

Definition 2.10. [13] Let $T: X \rightarrow C B(X)$. The mapping $f: X \rightarrow X$ is said to be T-weakly commuting at $x \in X$ if $f(f(x)) \in T(f(x))$.

Note that R-weakly commuting mappings commute at their coincidence points.
A real linear space X with a metric d is called a metric linear space if $d(x+$ $z, y+z)=d(x, y)$ and $\alpha_{n} \rightarrow \alpha, x_{n} \rightarrow x \Longrightarrow \alpha_{n} x_{n} \rightarrow \alpha x$. Let (X, d) be a metric linear space. A fuzzy set A in a metric linear space X is a function from X into $[0,1]$. If $x \in X$, the function value $A(x)$ is called the grade of membership of x in A. The α-level set (or α-cut set) of A, denoted by A_{α}, is defined by

$$
\begin{aligned}
A_{\alpha} & =\{x: A(x) \geq \alpha\} \\
A_{0} & =\overline{\{x: A(x)>0\}} .
\end{aligned}
$$

Here \bar{B} denotes the closure of the (non-fuzzy) set B.
Definition 2.11. A fuzzy set A is said to be an approximate quantity if and only if A_{α} is compact and convex in X for each $\alpha \in[0,1]$ and $\sup _{x \in X} A(x)=1$.

Let $\mathcal{F}(X)$ be the collection of all fuzzy sets in X and $W(X)$ be a sub-collection of all approximate quantities. When A is an approximate quantity and $A\left(x_{0}\right)=1$ for some $x_{0} \in X, A$ is identified with an approximation of x_{0}. For $x \in X$, let
$\{x\} \in W(X)$ with membership function equal to the characteristic function χ_{x} of the set $\{x\}$.

Definition 2.12. Let $A, B \in W(X), \alpha \in[0,1]$. Then we define

$$
\begin{aligned}
p_{\alpha}(A, B) & =\inf _{x \in A_{\alpha}, y \in B_{\alpha}} d(x, y) \\
p(A, B) & =\sup _{\alpha} p_{\alpha}(A, B) \\
D_{\alpha}(A, B) & =H\left(A_{\alpha}, B_{\alpha}\right) \\
D(A, B) & =\sup _{\alpha} D_{\alpha}(A, B)
\end{aligned}
$$

where H is the Hausdorff distance induced by the metric d.
The function $D_{\alpha}(A, B)$ is called an α-distance between $A, B \in W(X)$, and D a metric on $W(X)$. We note that p_{α} is a non-decreasing function of α and thus $p(A, B)=p_{1}(A, B)$. In particular if $A=\{x\}$, then $p(\{x\}, B)=p_{1}(x, B)=$ $d\left(x, B_{1}\right)$. Next we define an order on the family $W(X)$, which characterizes the accuracy of a given quantity.

Definition 2.13. Let $A, B \in W(X)$. Then A is said to be more accurate than B, denoted by $A \subset B$ (or B includes A), if and only if $A(x) \leq B(x)$ for each $x \in X$.

The relation \subset induces a partial order on the family $W(X)$.
Definition 2.14. Let X be an arbitrary set and Y be any metric linear space. F is called a fuzzy mapping if and only if F is a mapping from the set X into $W(Y)$.

Definition 2.15. For $F: X \rightarrow W(X)$, we say that $u \in X$ is a fixed point of F if $\{u\} \subset F(u)$, i.e. if $u \in F(u)_{1}$.

Lemma 2.16. [10] Let $x \in X$ and $A \in W(X)$. Then $\{x\} \subset A$ if and only if $p_{\alpha}(x, A)=0$ for each $\alpha \in[0,1]$.

Remark 2.17. Note that from the above lemma it follows that for $A \in W(X)$, $\{x\} \subset A$ if and only if $p(\{x\}, A)=0$. If no confusion arises instead of $p(\{x\}, A)$, we will write $p(x, A)$.

Lemma 2.18. [10] $p_{\alpha}(x, A) \leq d(x, y)+p_{\alpha}(y, A)$ for each $x, y \in X$.
Lemma 2.19. [10] If $\left\{x_{0}\right\} \subset A$, then $p_{\alpha}\left(x_{0}, B\right) \leq D_{\alpha}(A, B)$ for each $B \in$ $W(X)$.

Lemma 2.20. [15] Let (X, d) be a complete metric linear space, $F: X \rightarrow W(X)$ be a fuzzy mapping and $x_{0} \in X$. Then there exists $x_{1} \in X$ such that $\left\{x_{1}\right\} \subset F\left(x_{0}\right)$.

REmark 2.21. Let $f: X \rightarrow X$ be a self map and $T: X \rightarrow W(X)$ be a fuzzy mapping such that $\cup\{T(X)\}_{\alpha} \subseteq f(X)$ for each $\alpha \in[0,1]$. Then from Lemma 2.20,
it follows that for any chosen point $x_{0} \in X$ there exist points $x_{1}, y_{1} \in X$ such that $y_{1}=f\left(x_{1}\right)$ and $\left\{y_{1}\right\} \subset T\left(x_{0}\right)$. Here $T(x)_{\alpha}=\{y \in X: T(x)(y) \geq \alpha\}$.

Definition 2.22. Let $f: X \rightarrow X$ be a self mapping and $T: X \rightarrow W(X)$ be a fuzzy mapping. Then a point $u \in X$ is said to be a coincidence point of f and T if $\{f(u)\} \subset T(u)$, i.e. if $f(u) \in T(u)_{1}$.

Definition 2.23. A fuzzy mapping $T: X \rightarrow W(X)$ is said to be a weak contraction or a (θ, L)-weak contraction if and only if there exist two constants $\theta \in[0,1)$ and $L \geq 0$ such that

$$
D(T(x), T(y)) \leq \theta d(x, y)+L p(y, T(x))
$$

for all $x, y \in X$.
Definition 2.24. A fuzzy mapping $T: X \rightarrow \mathcal{F}(X)$ is said to be a weak contraction or a (θ, L)-weak contraction if and only if there exist two constants $\theta \in[0,1)$ and $L \geq 0$ such that

$$
H\left(T(x)_{\alpha(x)}, T(y)_{\alpha(y)}\right) \leq \theta d(x, y)+L d\left(y, T(x)_{\alpha(x)}\right)
$$

for all $x, y \in X$ where $T(x)_{\alpha(x)}, T(y)_{\alpha(y)}$ are in $C B(X)$.
Definition 2.25. For a complete metric linear space X, let $f: X \rightarrow X$ be a self mapping and $F: X \rightarrow W(X)$ a fuzzy mapping. T is said to be a f-weak contraction or a (f, θ, L)-weak contraction if and only if there exist two constants $\theta \in[0,1)$ and $L \geq 0$ such that

$$
D(T(x), T(y)) \leq \theta d(f(x), f(y))+L p(f(y), T(x))
$$

Definition 2.26. A fuzzy mapping $T: X \rightarrow W(X)$ is said to be a generalized (α, L)-weak contraction if there exists a functions $\alpha:[0,+\infty) \rightarrow[0,1)$ satisfying $\lim \sup _{r \rightarrow t^{+}} \alpha(r)<1$ for every $t \in[0,+\infty)$, such that

$$
D(T(x), T(y)) \leq \alpha(d(x, y)) d(x, y)+L p(y, T(x))
$$

for all $x, y \in X$ and $L \geq 0$.
Lemma 2.27. [17] Let A be a subset of X. Let $\left\{A_{\alpha}: \alpha \in[0,1]\right\}$ be a family of subsets of A such that
(i) $A_{0}=A$,
(ii) $\alpha \leq \beta$ implies $A_{\beta} \subseteq A_{\alpha}$,
(iii) $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}, \lim _{n \rightarrow \infty} \alpha_{n}=\alpha$ implies $A_{\alpha}=\bigcup_{k=1}^{\infty} A_{\alpha_{k}}$.

Then the function $\phi: X \rightarrow I$ defined by $\phi(x)=\sup \left\{\alpha \in I: x \in A_{\alpha}\right\}$ has the property that $A_{\alpha}=\{x \in X: \phi(x) \geq \alpha\}$.

Conversely, in any fuzzy set μ in X the family of α-level sets of μ satisfies the above conditions from (i) to (iii).

The function ϕ in the above lemma is actually defined on the set A, but we can extend it to X by defining $\phi(x)=0$ for all $x \in X-A$. This lemma is known as Negoite-Ralescu representation theorem.

3. Multi-valued mappings

In this section we prove all the main theorems of this paper regarding multivalued mappings. Theorem 3.1 gives a generalization of Banach contraction principle. In Theorem 3.2 we have stated and proved a further generalization of Theorem 3.1 and Banach contraction theorem, and Theorem 3.4 concerns a multi-valued non-self weak contraction and its fixed point. In proving the existence of a fixed point of such a mapping, we follow the technique of Assad and Kirk (cf. [5]). Our theorems extend the results of several authors.

Theorem 3.1. Let (X, d) be a complete metric space and let $T: X \rightarrow C B(X)$. Suppose that there exists two constants $\theta \in[0,1)$ and $L \geq 0$ such that
$\eta(\theta) d(x, T(x)) \leq d(x, y)$ implies $H(T(x), T(y)) \leq \theta d(x, y)+L d(y, T(x))$
for all $x, y \in X$, where $\eta:[0,1) \rightarrow\left(\frac{1}{2+L}, \frac{1}{1+L}\right]$ defined by $\eta(\theta)=\frac{1}{1+\theta+L}$ is a strictly decreasing function. Then
(i) there exists $z \in X$ such that $z \in T(z)$, i.e., $F i x(T) \neq \emptyset$;
(ii) for any point $x_{0} \in X$, there exists an orbit $\left\{x_{n}\right\}$ of T at x_{0} with $x_{n+1} \in$ $T\left(x_{n}\right)$ such that $\left\{x_{n}\right\}$ converges to a fixed point z of T for which the following estimates hold:

$$
d\left(x_{n}, z\right) \leq \frac{h^{n}}{1-h} d\left(x_{0}, x_{1}\right) \text { for } n=0,1,2, \ldots
$$

and

$$
d\left(x_{n}, z\right) \leq \frac{h}{1-h} d\left(x_{n-1}, x_{n}\right) \text { for } n=1,2, \ldots
$$

for some $h<1$.
Proof. (i) Suppose $q>1$. We select a sequence $\left\{x_{n}\right\}$ in X in the following way. Let $x_{0} \in X$ and $x_{1} \in T\left(x_{0}\right)$. Then we have $\eta(\theta) d\left(x_{0}, T\left(x_{0}\right)\right) \leq \eta(\theta) d\left(x_{0}, x_{1}\right) \leq$ $d\left(x_{0}, x_{1}\right)$. Hence from the given hypothesis we have,

$$
H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \leq \theta d\left(x_{0}, x_{1}\right)+L d\left(x_{1}, T\left(x_{0}\right)\right)=\theta d\left(x_{0}, x_{1}\right)
$$

There exists a point $x_{2} \in T\left(x_{1}\right)$ such that

$$
d\left(x_{1}, x_{2}\right) \leq q H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \leq q\left[\theta d\left(x_{0}, x_{1}\right)+L d\left(x_{1}, T\left(x_{0}\right)\right)\right] \leq q \theta d\left(x_{0}, x_{1}\right)
$$

Since the above inequality is valid for any $q \geq 1$, we choose $q>1$ such that $h=q \theta<1$ for any $\theta \in[0,1)$. Thus, $d\left(x_{1}, x_{2}\right) \leq h d\left(x_{0}, x_{1}\right)$.

Let $x_{3} \in T\left(x_{2}\right)$ be such that $d\left(x_{2}, x_{3}\right) \leq q H\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)$. Note that $\eta(\theta) d\left(x_{1}, T\left(x_{1}\right)\right) \leq \eta(\theta) d\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, x_{2}\right)$, and so by the given hypothesis, $H\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \leq \theta d\left(x_{1}, x_{2}\right)+L d\left(x_{2}, T\left(x_{1}\right)\right)=\theta d\left(x_{1}, x_{2}\right)$. Hence we have, $d\left(x_{2}, x_{3}\right) \leq h d\left(x_{1}, x_{2}\right)$. Proceeding in this way we can obtain a sequence $\left\{x_{n}\right\}$ in X such that $d\left(x_{n-1}, x_{n}\right) \leq h d\left(x_{n-2}, x_{n-1}\right)$. It can easily be shown that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete let $x_{n} \rightarrow z \in X$.

Next we show that $d(z, T(x)) \leq \theta d(z, x)+L d(x, z)$ for all $x \in X \backslash\{z\}$. Since $x_{n} \rightarrow z$, for $x \in X \backslash\{z\}$ there exists $\nu \in \mathbb{N}$ such that $d\left(z, x_{n}\right) \leq \frac{1}{3} d(z, x)$ for all $n \in \mathbb{N}$ with $n \geq \nu$. Then we have,

$$
\begin{aligned}
\eta(\theta) d\left(x_{n}, T\left(x_{n}\right)\right) & \leq d\left(x_{n}, T\left(x_{n}\right)\right) \leq d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, z\right)+d\left(z, x_{n+1}\right) \\
& \leq \frac{1}{3} d(z, x)+\frac{1}{3} d(x, z)=\frac{2}{3} d(x, z)=d(x, z)-\frac{1}{3} d(x, z) \\
& \leq d(x, z)-d\left(x_{n}, z\right) \leq d\left(x, x_{n}\right)+d\left(x_{n}, z\right)-d\left(x_{n}, z\right) \\
& =d\left(x, x_{n}\right)
\end{aligned}
$$

i.e., $\eta(\theta) d\left(x_{n}, T\left(x_{n}\right)\right) \leq d\left(x_{n}, x\right)$ for $n \geq \nu$, which implies $H\left(T\left(x_{n}\right), T(x)\right) \leq$ $\theta d\left(x_{n}, x\right)+L d\left(x, T\left(x_{n}\right)\right)$ for $n \geq \nu$. For $n \geq \nu$, this implies

$$
\begin{aligned}
d\left(x_{n+1}, T(x)\right) & \leq \theta d\left(x_{n}, x\right)+\operatorname{Ld}\left(x, T\left(x_{n}\right)\right) \\
& \leq \theta d\left(x_{n}, x\right)+\operatorname{Ld}\left(x, x_{n+1}\right)
\end{aligned}
$$

Taking $n \rightarrow \infty$ we have, $d(z, T(x)) \leq \theta d(z, x)+L d(x, z)$ for all $x \in X \backslash\{z\}$. Next we show that

$$
\begin{equation*}
H(T(x), T(z)) \leq \theta d(x, z)+L d(z, T(x)) \text { for all } x \in X \tag{1}
\end{equation*}
$$

Equation (1) is satisfied when $x=z$. Now we take $x \neq z$. For every $n \in \mathbb{N}$ there exists $y_{n} \in T(x)$ such that $d\left(z, y_{n}\right) \leq d(z, T(x))+\frac{1}{n} d(x, z)$ as $d(z, T(x))=$ $\inf _{y \in T(x)} d(z, y)$. Consider the following

$$
\begin{aligned}
d(x, T(x)) & \leq d\left(x, y_{n}\right) \leq d(x, z)+d\left(z, y_{n}\right) \\
& \leq d(x, z)+d(z, T(x))+\frac{1}{n} d(x, z) \\
& \leq d(x, z)+(\theta+L) d(x, z)+\frac{1}{n} d(x, z) \\
& =\left(1+\theta+L+\frac{1}{n}\right) d(x, z) .
\end{aligned}
$$

Dividing both sides by $1+\theta+L$ we have,

$$
\frac{1}{1+\theta+L} d(x, T(x)) \leq\left(1+\frac{1}{n(1+\theta+L)}\right) d(x, z)
$$

for any n, and hence $\eta(\theta) d(x, T(x)) \leq d(x, z)$. Then by the given hypothesis, $H(T(x), T(z)) \leq \theta d(x, z)+L d(z, T(x))$ is satisfied for all $x \in X$. Now we have,

$$
\begin{aligned}
d(z, T(z)) & =\lim _{n \rightarrow \infty} d\left(x_{n+1}, T(z)\right) \leq \lim _{n \rightarrow \infty} H\left(T\left(x_{n}\right), T(z)\right) \\
& \leq \lim _{n \rightarrow \infty}\left\{\theta d\left(x_{n}, z\right)+L d\left(z, T\left(x_{n}\right)\right)\right\} \\
& \leq \lim _{n \rightarrow \infty}\left\{\theta d\left(x_{n}, z\right)+L\left[d\left(z, x_{n+1}\right)+d\left(x_{n+1}, T\left(x_{n}\right)\right)\right]\right\}=0
\end{aligned}
$$

which implies $d(z, T(z))=0$, and hence $z \in T(z)$, i.e., $F i x T \neq \emptyset$ as $T(z)$ is closed.

To prove (ii) let us proceed as follows: The sequence $\left\{x_{n}\right\}$ obtained in the proof of (i) are such that $x_{n+1} \in T\left(x_{n}\right)$ for $n \geq 0$ and satisfies

$$
d\left(x_{n}, x_{n+1}\right) \leq h d\left(x_{n-1}, x_{n}\right) \leq h^{2} d\left(x_{n-2}, x_{n-1}\right) \leq \cdots \leq h^{n} d\left(x_{0}, x_{1}\right)
$$

Also we have

$$
d\left(x_{n+k}, x_{n+k+1}\right) \leq h^{k+1} d\left(x_{n-1}, x_{n}\right) \text { for any } k \geq 0
$$

Using the above inequalities we have

$$
\begin{align*}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& \leq h^{n} d\left(x_{0}, x_{1}\right)+h^{n+1} d\left(x_{0}, x_{1}\right)+\cdots+h^{n+p-1} d\left(x_{0}, x_{1}\right) \\
& =h^{n} \frac{\left(1-h^{p}\right)}{1-h} d\left(x_{0}, x_{1}\right) \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& \leq h d\left(x_{n-1}, x_{n}\right)+h^{2} d\left(x_{n-1}, x_{n}\right)+\cdots+h^{p} d\left(x_{n-1}, x_{n}\right) \\
& =\frac{h\left(1-h^{p}\right)}{1-h} d\left(x_{n-1}, x_{n}\right) \tag{3}
\end{align*}
$$

Taking $p \rightarrow \infty$, and noting the fact that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=d\left(x_{n}, z\right)$ and $\lim _{p \rightarrow \infty} h^{p}=0$, from (2) and (3) we obtain the assertion (ii) of the Theorem.

The above theorem is a generalization of Theorem 2 of Kikkawa and Suzuki (cf. [14]) which is obtained when $L=0$. It is also a generalization of Theorem 3 of Berinde and Berinde (cf. [3]).

Corollary 3.1.1. [14, Theorem 2] Define a strictly decreasing function η from $[0,1)$ onto $\left(\frac{1}{2}, 1\right]$ by $\eta(r)=\frac{1}{1+r}$. Let (X, d) be a complete metric space and let T be a mapping from X into $C B(X)$. Assume that there exists $r \in[0,1)$ such that

$$
\eta(r) d(x, T(x)) \leq d(x, y) \text { implies } H(T(x), T(y)) \leq r d(x, y)
$$

for all $x, y \in X$. Then there exists $z \in X$ such that $z \in T(z)$.
Corollary 3.1.2. (Nadler [16]) Let (X, d) be a complete metric space and let T be a mapping from X into $C B(X)$. If there exists $r \in[0,1)$ such that

$$
H(T x, T y) \leq r d(x, y) \text { for all } x, y \in X
$$

then there exists $z \in X$ such that $z \in T z$.
Proof. Given that T satisfies the condition of Nadler's theorem, i.e.,

$$
\begin{equation*}
H(T x, T y) \leq r d(x, y) \text { for all } x, y \in X \text { and } r \in[0,1) \tag{4}
\end{equation*}
$$

we have to prove that there exists $z \in X$ such that $z \in T(z)$.

For any $x \in X, y \in T(x)$ we have $d(y, T(y)) \leq H(T(x), T(y))$. Hence by (4) we have,

$$
d(y, T(y)) \leq H(T(x), T(y)) \leq r d(x, y)
$$

i.e., $\eta(r) d(y, T(y)) \leq r d(x, y)$, i.e.

$$
\begin{equation*}
\eta(r) d(x, T(x)) \leq d(y, x)=d(x, y) \tag{5}
\end{equation*}
$$

as $r<1$ and $\eta(r)<1$. Hence by (4), (5) and Theorem 3.1 for $L=0$, it follows that there exists $z \in X$ such that $z \in T(z)$.

Theorem 3.2. Let (X, d) be a metric space, $T: X \rightarrow C B(X)$ and $f: X \rightarrow X$. Suppose that there exists two constants $\theta \in[0,1)$ and $L \geq 0$ such that

$$
\begin{aligned}
& \eta(\theta) d(f(x), T(x)) \leq d(f(x), f(y)) \quad \text { implies } \\
& \quad H(T(x), T(y)) \leq \theta d(f(x), f(y))+L d(f(y), T(x))
\end{aligned}
$$

for all $x, y \in X$, where $\eta:[0,1) \rightarrow\left(\frac{1}{2+L}, \frac{1}{1+L}\right]$ defined by $\eta(\theta)=\frac{1}{1+\theta+L}$ is a strictly decreasing function, $T(X) \subset f(X)$ and $f(X)$ is complete. Then
(i) the set of coincidence point of f and $T, C(f, T)$ is nonempty.
(ii) for any $x_{0} \in X$, there exists an f-orbit $O_{f}\left(x_{0}\right)=\left\{f\left(x_{n}\right): n=1,2,3 \ldots\right\}$ of T at the point x_{0} such that $f\left(x_{n}\right) \rightarrow f(u)$, where u is a coincidence point of f and T, for which the following estimates hold:

$$
\begin{aligned}
& d\left(f\left(x_{n}\right), f(u)\right) \leq \frac{h^{n}}{1-h} d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right), n=0,1,2, \ldots \\
& d\left(f\left(x_{n}\right), f(u)\right) \leq \frac{h}{1-h} d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right), n=1,2, \ldots
\end{aligned}
$$

for a certain constant $h<1$. Further, if f is R-weakly commuting at u and $f(f(u))=f(u)$, then f and T have a common fixed point.

Proof. Let $x_{0} \in X$, and $x_{1} \in X$ such that $f\left(x_{1}\right) \in T\left(x_{0}\right)$. Then $\eta(\theta) d\left(f\left(x_{0}\right), T\left(x_{0}\right)\right) \leq d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)$, and so by the given hypothesis we have

$$
H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \leq \theta d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)+L d\left(f\left(x_{1}\right), T\left(x_{0}\right)\right)=\theta d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) .
$$

Let $x_{2} \in X$ be such that $f\left(x_{2}\right) \in T\left(x_{1}\right)$ and then $d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq q H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)$ $\leq h d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)$, where $q>1$ and q is chosen in such a way that $h=q \theta<1$. Now

$$
\eta(\theta) d\left(f\left(x_{1}\right), T\left(x_{1}\right)\right) \leq \eta(\theta) d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right),
$$

which implies

$$
H\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \leq \theta d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)+L d\left(f\left(x_{2}\right), T\left(x_{1}\right)\right)=\theta d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) .
$$

Let $x_{3} \in X$ be such that $f\left(x_{3}\right) \in T\left(x_{2}\right)$ and then $d\left(f\left(x_{2}\right), f\left(x_{3}\right)\right) \leq q H\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)$ $\leq h d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq h^{2} d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)$. Proceeding in this way we obtain a sequence $\left\{f\left(x_{n}\right)\right\}$ in X. It can easily be shown that the sequence $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence in X. Since $f(X)$ is complete, the sequence converges to some
point $f(u) \in f(X)$. So there exists a positive integer ν such that for all $x \in X \backslash\{u\}$ we have $d\left(f\left(x_{n}\right), f(u)\right) \leq \frac{1}{3} d(f(x), f(u))$ for $n \geq \nu$. Then for $n \geq \nu$ we can write

$$
\begin{aligned}
\eta(\theta) d\left(f\left(x_{n}\right), T\left(x_{n}\right)\right) & \leq d\left(f\left(x_{n}\right), T\left(x_{n}\right)\right) \leq d\left(f\left(x_{n}\right), f\left(x_{n+1}\right)\right) \\
& \leq d\left(f\left(x_{n}\right), f(u)\right)+d\left(f(u), f\left(x_{n+1}\right)\right) \\
& \leq \frac{1}{3} d(f(x), f(u))+\frac{1}{3} d(f(x), f(u)) \\
& =d(f(x), f(u))-\frac{1}{3} d(f(x), f(u)) \\
& \leq d(f(x), f(u))-d\left(f\left(x_{n}\right), f(u)\right) \\
& \leq d\left(f(x), f\left(x_{n}\right)\right)+d\left(f\left(x_{n}\right), f(u)\right)-d\left(f\left(x_{n}\right), f(u)\right) \\
& =d\left(f\left(x_{n}\right), f(x)\right) .
\end{aligned}
$$

Hence from the given hypothesis it follows that

$$
H\left(T\left(x_{n}\right), T(x)\right) \leq \theta d\left(d\left(x_{n}\right), f(x)\right)+L d\left(f(x), T\left(x_{n}\right)\right) .
$$

This implies for any $n \geq \nu$,

$$
\begin{aligned}
d\left(f\left(x_{n+1}\right), T(x)\right) & \leq H\left(T\left(x_{n}\right), T(x)\right) \\
& \leq \theta d\left(f\left(x_{n}\right), f(x)\right)+\operatorname{Ld}\left(f(x), T\left(x_{n}\right)\right) \\
& \leq \theta d\left(f\left(x_{n}\right), f(x)\right)+\operatorname{Ld}\left(f(x), f\left(x_{n+1}\right)\right)+L d\left(f\left(x_{n+1}\right), T\left(x_{n}\right)\right) \\
& =\theta d\left(f\left(x_{n}\right), f(x)\right)+\operatorname{Ld}\left(f(x), f\left(x_{n+1}\right)\right) .
\end{aligned}
$$

Hence taking $n \rightarrow \infty$ we have $d(f(u), T(x) \leq \theta d(f(u), f(x))+L d(f(x), f(u))=$ $(\theta+L) d(f(x), f(u))$ for $x \in X \backslash\{u\}$. Next we show

$$
\begin{equation*}
H(T(x), T(u)) \leq \theta d(f(x), f(u))+L d(f(u), T(x)) \tag{6}
\end{equation*}
$$

for all $x \in X$. It is true if $x=u$. Suppose $x \neq u$. Since $d(f(u), T(x))=$ $\inf _{v \in T(x)} d(f(u), v)$, for each $n \in \mathbb{N}$ we can obtain a sequence $\left\{v_{n}\right\}$ in $T(x)$ such that $d\left(f(u), v_{n}\right) \leq d(f(u), T(x))+\frac{1}{n} d(f(x), f(u))$ for each $n \in \mathbb{N}$. Hence for $x \neq u$ we have

$$
\begin{aligned}
d(f(x), T(x)) & \leq d\left(f(x), v_{n}\right) \leq d(f(x), f(u))+d\left(f(u), v_{n}\right) \\
& \leq d(f(x), f(u))+d(f(u), T(x))+\frac{1}{n} d(f(x), f(u)) \\
& \leq d(f(x), f(u))+(\theta+L) d(f(x), f(u))+\frac{1}{n} d(f(x), f(u)) \\
& =\left(1+\theta+L+\frac{1}{n}\right) d(f(x), f(u)) .
\end{aligned}
$$

and so $\frac{1}{1+\theta+L} d(f(x), T(x)) \leq\left(1+\frac{1}{(1+\theta+L) n}\right) d(f(x), f(u))$ for any n, and hence

$$
\eta(\theta) d(f(x), T(x)) \leq d(f(x), f(u))
$$

which implies $H(T(x), T(u)) \leq \theta d(f(x), f(u))+L d(f(u), T(x))$, and hence (6) is proved. Now

$$
\begin{aligned}
d(f(u), T(u)) & =\lim _{n \rightarrow \infty} d\left(f\left(x_{n+1}\right), T(u)\right) \leq \lim _{n \rightarrow \infty} H\left(T\left(x_{n}\right), T(u)\right) \\
& \leq \lim _{n \rightarrow \infty}\left[\theta d\left(f\left(x_{n}\right), f(u)\right)+\operatorname{Ld}\left(f(u), T\left(x_{n}\right)\right)\right] \\
& \leq \lim _{n \rightarrow \infty}\left[\theta d\left(f\left(x_{n}\right), f(u)\right)+\operatorname{Ld}\left(f(u), f\left(x_{n+1}\right)+d\left(f\left(x_{n+1}\right), T\left(x_{n}\right)\right)\right]\right. \\
& =0
\end{aligned}
$$

and hence $f(u) \in T(u)$ which completes the proof of (i).
To prove (ii) let us proceed as follows: The sequence $\left\{f\left(x_{n}\right)\right\}$ obtained in the proof of (i) are such that $f\left(x_{n+1}\right) \in T\left(x_{n}\right)$ for $n \geq 0$ and satisfies

$$
\begin{aligned}
d\left(f\left(x_{n}\right), f\left(x_{n+1}\right)\right) & \leq h d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \leq h^{2} d\left(f\left(x_{n-2}\right), f\left(x_{n-1}\right)\right) \\
& \leq \cdots \leq h^{n} d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)
\end{aligned}
$$

Also we have

$$
d\left(f\left(x_{n+k}\right), f\left(x_{n+k+1}\right)\right) \leq h^{k+1} d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \text { for any } k \geq 0 \text { and } n \geq 1
$$

Using the above inequalities we have

$$
\begin{align*}
d\left(f\left(x_{n}\right),\right. & \left.f\left(x_{n+p}\right)\right) \\
& \leq d\left(f\left(x_{n}\right), f\left(x_{n+1}\right)\right)+d\left(f\left(x_{n+1}\right), f\left(x_{n+2}\right)\right)+\cdots+d\left(f\left(x_{n+p-1}\right), f\left(x_{n+p}\right)\right) \\
& \leq h^{n} d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)+h^{n+1} d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)+\cdots+h^{n+p-1} d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \\
\quad= & h^{n} \frac{\left(1-h^{p}\right)}{1-h} d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right), \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
d\left(f\left(x_{n}\right),\right. & \left.f\left(x_{n+p}\right)\right) \\
& \leq d\left(f\left(x_{n}\right), f\left(x_{n+1}\right)\right)+d\left(f\left(x_{n+1}\right), f\left(x_{n+2}\right)\right)+\cdots+d\left(f\left(x_{n+p-1}\right), f\left(x_{n+p}\right)\right) \\
& \leq h d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right)+h^{2} d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right)+\cdots+h^{p} d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \\
& =\frac{h\left(1-h^{p}\right)}{1-h} d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) . \tag{8}
\end{align*}
$$

Taking $p \rightarrow \infty$, and noting the fact that $\lim _{n \rightarrow \infty} d\left(f\left(x_{n}\right), f\left(x_{n+p}\right)\right)=d\left(f\left(x_{n}\right), f(u)\right)$ and $\lim _{p \rightarrow \infty} h^{p}=0$, from (7) and (8) we obtain the assertion (ii) of the Theorem.

If f is R-weakly commuting at u we have $H(f(T(u)), T(f(u))) \leq$ $R d(f(u), T(u))$. As $f(u) \in T(u)$ this implies $f(T(u))=T(f(u))$. Again $f(f(u))=$ $f(u)$, and so $f(u) \in T(u)$ implies $f(f(u)) \in f(T(u))=T(f(u))$, i.e., $f(u) \in$ $T(f(u))$. Hence, $f(u)$ is a fixed point of both f and T, i.e., f and T have a common fixed point.

REmark 3.3. In Definition 2.9 we need $f(T(x)) \in C B(X)$. If f is continuous and $T(x) \in C(X)$, then $f(T(X))$ also belongs to $C(X)$. The above theorem is
a generalization of Theorem 3.1, since by taking f as the identity mappings in Theorem 3.2 we obtain Theorem 3.1. It is easy to see that the map $f: X \rightarrow X$ is T-weakly commuting at a coincidence point of f and T. Hence Theorem 3.2 is generalization of Theorem 2.9 of Kamran (cf. [12]). In some sense the above theorem is also a generalization of Theorem 3 of Kikkawa and Suzuki (cf. [14]) in two directions: The mapping T is multi-valued and we have an additional term in the second inequality. If we take $L=0$ and $T: X \rightarrow X$ (single-valued), then we get Theorem 3 of [14] without the continuity condition on the mapping f, but with an additional condition that $f(X)$ is complete. If X is assumed to be compact then $f(X)$ is compact when f is continuous.

Theorem 3.4. Let K be a nonempty closed subset of a complete and convex metric space (X, d) and $T: K \rightarrow C B(X)$ be a multi-valued (θ, L)-weak contraction (see Definition 2.4). If $T(x) \subset K$ for each $x \in \partial K$ (the boundary of K), then T has a fixed point.

Proof. We select a sequence $\left\{x_{n}\right\}$ in the following way. Let $x_{0} \in K$ and $x_{1}^{\prime} \in T\left(x_{0}\right)$. If $x_{1}^{\prime} \in K$ let $x_{1}=x_{1}^{\prime}$; otherwise select a point $x_{1} \in \partial K$ s.t. $d\left(x_{0}, x_{1}\right)+$ $d\left(x_{1}, x_{1}^{\prime}\right)=d\left(x_{0}, x_{1}^{\prime}\right)$. Thus $x_{1} \in K$ and by Lemma 2.6 we can choose a point $x_{2}^{\prime} \in$ $T\left(x_{1}\right)$ so that $d\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \leq H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)+\theta$, where $\theta<1$. Now put $x_{2}^{\prime}=x_{2}$ if $x_{2}^{\prime} \in K$, otherwise let x_{2} be a point of ∂K such that $d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{2}^{\prime}\right)=d\left(x_{1}, x_{2}^{\prime}\right)$. By induction we can obtain a sequence $\left\{x_{n}\right\},\left\{x_{n}^{\prime}\right\}$ such that for $n=1,2,3, \ldots$
(i) $x_{n+1}^{\prime} \in T\left(x_{n}\right)$
(ii) $d\left(x_{n}^{\prime}, x_{n+1}^{\prime}\right) \leq H\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)+\theta^{n}$ where
(iii) $x_{n+1}^{\prime}=x_{n+1}$ if $x_{n+1}^{\prime} \in K$, or
(iv) $d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+1}^{\prime}\right)=d\left(x_{n}, x_{n+1}^{\prime}\right)$ if $x_{n+1}^{\prime} \notin K$. Now let

$$
\begin{aligned}
& P=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i}=x_{i}^{\prime}, i=1,2, \ldots\right\} \\
& Q=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i} \neq x_{i}^{\prime}, i=1,2, \ldots\right\}
\end{aligned}
$$

Observe that if $x_{n} \in Q$ for some n, then $x_{n+1} \in P$. Now for $n \geq 2$ we estimate the distance $d\left(x_{n}, x_{n+1}\right)$. There arises three cases:

Case 1. The case that $x_{n} \in P$ and $x_{n+1} \in P$. In this case we have,

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(x_{n}^{\prime}, x_{n+1}^{\prime}\right) \leq H\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)+\theta^{n} \\
& \leq \theta d\left(x_{n-1}, x_{n}\right)+\operatorname{Ld}\left(x_{n}, T\left(x_{n-1}\right)\right)+\theta^{n} \\
& \leq \theta d\left(x_{n-1}, x_{n}\right)+\theta^{n} .
\end{aligned}
$$

Case 2. The case that $x_{n} \in P$ and $x_{n+1} \in Q$. In this case we use (iv) and proceeding in the same way as Case 1 we obtain,
$d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, x_{n+1}^{\prime}\right)=d\left(x_{n}^{\prime}, x_{n+1}^{\prime}\right) \leq H\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right) \leq \theta d\left(x_{n-1}, x_{n}\right)+\theta^{n}$.
Case 3. The case that $x_{n} \in Q$ and $x_{n+1} \in P$. From the construction of the sequence $\left\{x_{n}\right\}$ it is clear that two consecutive terms of $\left\{x_{n}\right\}$ can not be in Q, and hence $x_{n-1} \in P$ and $x_{n-1}^{\prime}=x_{n-1}$. Using this below we obtain,

$$
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, x_{n}^{\prime}\right)+d\left(x_{n}^{\prime}, x_{n+1}\right)
$$

$$
\begin{aligned}
& =d\left(x_{n}, x_{n}^{\prime}\right)+d\left(x_{n}^{\prime}, x_{n+1}^{\prime}\right) \\
& \leq d\left(x_{n}, x_{n}^{\prime}\right)+H\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)+\theta^{n} \\
& \leq d\left(x_{n}, x_{n}^{\prime}\right)+\theta d\left(x_{n-1}, x_{n}\right)+\theta^{n} \quad(\text { as in Case 1 }) \\
& \leq d\left(x_{n}, x_{n}^{\prime}\right)+d\left(x_{n-1}, x_{n}\right)+\theta^{n} \\
& =d\left(x_{n-1}, x_{n}^{\prime}\right)+\theta^{n}=d\left(x_{n-1}^{\prime}, x_{n}^{\prime}\right)+\theta^{n} \\
& \leq H\left(T\left(x_{n-2}\right), T\left(x_{n-1}\right)\right)+\theta^{n-1}+\theta^{n} \quad(\text { as in Case } 2) \\
& \leq \theta d\left(x_{n-2}, x_{n-1}\right)+\theta^{n-1}+\theta^{n} .
\end{aligned}
$$

The only other possibility, $x_{n} \in Q, x_{n+1} \in Q$ can not occur. Thur for $n \geq 2$ we have

$$
d\left(x_{n}, x_{n+1}\right) \leq\left\{\begin{array}{l}
\theta d\left(x_{n-1}, x_{n}\right)+\theta^{n}, \text { or } \tag{9}\\
\theta d\left(x_{n-2}, x_{n-1}\right)+\theta^{n-1}+\theta^{n}
\end{array}\right.
$$

Let $\delta=\theta^{-1 / 2} \max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{2}\right)\right\}$. Now as in [5], it can be we proved that for $n \geq 1$,

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \theta^{n / 2}(\delta+n) \tag{10}
\end{equation*}
$$

From (10) it follows that

$$
d\left(x_{k}, x_{N}\right) \leq \delta \sum_{i=N}^{\infty}\left(\theta^{1 / 2}\right)^{i}+\sum_{i=N}^{\infty} i\left(\theta^{1 / 2}\right)^{i}, \quad k>N \geq 1
$$

This implies $\left\{x_{n}\right\}$ is a Cauchy sequence in K, and since X is complete and K is closed, $\left\{x_{n}\right\}$ converges to a point in K. Let $u=\lim _{n \rightarrow \infty} x_{n}$. Hence there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ each of whose terms is in the set P (i.e., $x_{n_{k}}=x_{n_{k}}^{\prime}$ for $k=1,2, \ldots)$. Thus by $(i), x_{n_{k}}^{\prime} \in T\left(x_{n_{k}-1}\right)$ for $k=1,2, \ldots$, and since $x_{n_{k}-1} \rightarrow u$ as $k \rightarrow \infty$ we have $T\left(x_{n_{k}-1}\right) \rightarrow T(u)$ as $k \rightarrow \infty$ in the Hausdorff metric. Hence it follows from Lemma 2.7 that $u \in T(u)$, i.e., T has a fixed point, which completes the proof.

4. Fuzzy mappings

Many authors considered the class of fuzzy sets with nonempty compact α-cut sets in a metric space or nonempty compact convex α-cut sets in a metric linear space, but some have given attention to class of fuzzy sets with nonempty closed and bounded α-cut sets in a metric space. Theorems 4.1-4.3 deal with fuzzy mappings with α-cut sets as nonempty, compact and convex subsets of X. Next following the work in $[2,7,22]$, we present Theorem 4.5 and Theorem 4.7 concerning a different kind of fuzzy mappings with special α-cut sets as nonempty, closed and bounded subsets of X.

THEOREM 4.1. Let (X, d) be a complete metric linear space and $T: X \rightarrow$ $W(X)$ be a (θ, L)-weak contractive fuzzy mapping (see Definition 2.24). Then
(i) $\operatorname{Fix}(T) \neq \emptyset$;
(ii) For any $x_{0} \in X$, there exists an orbit $\left\{x_{n}\right\}_{n=0}^{\infty}$ of T at the point x_{0} that converges to a fixed point u of T, for which the following estimates hold:

$$
\begin{aligned}
& d\left(x_{n}, u\right) \leq \frac{\theta^{n}}{1-\theta} d\left(x_{0}, x_{1}\right), n=0,1,2, \ldots \\
& d\left(x_{n}, u\right) \leq \frac{\theta}{1-\theta} d\left(x_{n-1}, x_{n}\right), n=1,2, \ldots
\end{aligned}
$$

Proof. Let $x_{0} \in X$. Then there exists $x_{1} \in X$ such that $\left\{x_{1}\right\} \subset T\left(x_{0}\right)$. If $D\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)=0$, then $T\left(x_{0}\right)=T\left(x_{1}\right)$, i.e., $\left\{x_{1}\right\} \subset T\left(x_{1}\right)$, which actually means that $\operatorname{Fix}(T) \neq \emptyset$. Let $D\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \neq 0$. Then by Lemmas 2.20 and 2.21, we can find $x_{2} \in X$ such that $\left\{x_{2}\right\} \subset T\left(x_{1}\right)$ and

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq H\left(T\left(x_{0}\right)_{1}, T\left(x_{1}\right)_{1}\right)=D_{1}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \\
& \leq D\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \leq \theta d\left(x_{0}, x_{1}\right)+L p\left(x_{1}, T\left(x_{0}\right)\right) \\
& \leq \theta d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

If $D\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)=0$ then $T\left(x_{1}\right)=T\left(x_{2}\right)$, i.e., $\left\{x_{2}\right\} \subset T\left(x_{2}\right)$. Otherwise, we assume $D\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \neq 0$ and $x_{3} \in X$ such that $\left\{x_{3}\right\} \subset T\left(x_{2}\right)$ and

$$
\begin{aligned}
d\left(x_{2}, x_{3}\right) & \leq H\left(T\left(x_{1}\right)_{1}, T\left(x_{2}\right)_{1}\right)=D_{1}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \\
& \leq D\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \leq \theta d\left(x_{1}, x_{2}\right)+L p\left(x_{2}, T\left(x_{1}\right)\right) \\
& \leq \theta d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

In this manner, we obtain an orbit $\left\{x_{n}\right\}_{n=0}^{\infty}$ at x_{0} for T satisfying

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \theta d\left(x_{n-1}, x_{n}\right), n=1,2, \ldots \tag{11}
\end{equation*}
$$

From (11) we obtain inductively,

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \theta^{n} d\left(x_{0}, x_{1}\right) \text { and } d\left(x_{n+k}, x_{n+k+1}\right) \leq \theta^{k+1} d\left(x_{n-1}, x_{n}\right) \tag{12}
\end{equation*}
$$

for $k \in \mathbb{N}, n \geq 1$. Now from (12) we have,

$$
\begin{align*}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& =\left(\theta^{n}+\theta^{n+1}+\cdots+\theta^{n+p-1}\right) d\left(x_{0}, x_{1}\right) \\
& =\frac{\theta^{n}\left(1-\theta^{p}\right)}{1-\theta} d\left(x_{0}, x_{1}\right) \tag{13}
\end{align*}
$$

which in view of $0<\theta<1$ shows that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, d) is complete, it follows that $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to some point in X. Let $u=\lim _{n \rightarrow \infty} x_{n}$. Then we have,

$$
\begin{aligned}
p(u, T(u)) & \leq d\left(u, x_{n+1}\right)+p\left(x_{n+1}, T(u)\right) \\
& \leq d\left(u, x_{n+1}\right)+D\left(T\left(x_{n}\right), T(u)\right) \\
& \leq d\left(u, x_{n+1}\right)+\theta d\left(x_{n}, u\right)+L p\left(u, T\left(x_{n}\right)\right) \\
& \leq d\left(u, x_{n+1}\right)+\theta d\left(x_{n}, u\right)+\operatorname{Ld}\left(u, x_{n+1}\right)+L p\left(x_{n+1}, T\left(x_{n}\right)\right) .
\end{aligned}
$$

Noting that $p\left(x_{n+1}, T\left(x_{n}\right)\right)=0$ and taking $n \rightarrow \infty$ we have, $p(u, T(u)) \leq 0 \Longrightarrow$ $p(u, T(u))=0 \Longrightarrow\{u\} \subset T(u)$.

From (13) taking $p \rightarrow \infty$ we have

$$
d\left(x_{n}, u\right) \leq \frac{\theta^{n}}{1-\theta} d\left(x_{0}, x_{1}\right), n=0,1,2, \ldots
$$

Again by (12) we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& =\left(\theta+\theta^{2}+\cdots+\theta^{p}\right) d\left(x_{n-1}, x_{n}\right) \\
& =\frac{\theta\left(1-\theta^{p}\right)}{1-\theta} d\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

Taking $p \rightarrow \infty$ we have,

$$
d\left(x_{n}, u\right) \leq \frac{\theta}{1-\theta} d\left(x_{n-1}, x_{n}\right)
$$

Hence the proof is complete.
THEOREM 4.2. Let (X, d) be a complete metric linear space, $f: X \rightarrow X$ be a self mapping, and $T: X \rightarrow W(X)$ be a (f, θ, L)-weak contractive fuzzy mapping (see Definition 2.25). Suppose $\cup\{T(X)\}_{\alpha} \subseteq f(X)$ for $\alpha \in[0,1]$ and $f(X)$ is complete. Then there exists $u \in X$ such that u is a coincidence point of f and T, that is $\{f(u)\} \subset T(u)$. Here $T(x)_{\alpha}=\{y \in X:(T(x))(y) \geq \alpha\}$.

Proof. Let $x_{0} \in X$ and $y_{0}=f\left(x_{0}\right)$. Since $\cup\{T(X)\}_{\alpha} \subset f(X)$ for each $\alpha \in[0,1]$, by Remark 2.21 for $x_{0} \in X$ there exist points $x_{1}, y_{1} \in X$ such that $y_{1}=f\left(x_{1}\right)$ and $\left\{y_{1}\right\} \subset T\left(x_{0}\right)$. By Remark 2.21 and Lemma 2.1, for $x_{1} \in X$ there exist points $x_{2}, y_{2} \in X$ such that $y_{2}=f\left(x_{2}\right)$ and $\left\{y_{2}\right\} \subset T\left(x_{1}\right)$, and

$$
\begin{aligned}
d\left(y_{1}, y_{2}\right) & \leq H\left(T\left(x_{0}\right)_{1}, T\left(x_{1}\right)_{1}\right) \leq D\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \\
& \leq \theta d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)+L p\left(f\left(x_{1}\right), T\left(x_{0}\right)\right)=\theta d\left(y_{0}, y_{1}\right)
\end{aligned}
$$

By repeating this process we can select points $x_{k}, y_{k} \in X$ such that $y_{k}=f\left(x_{k}\right)$ and $\left\{y_{k}\right\} \subset T\left(x_{k-1}\right)$, and hence

$$
\begin{align*}
d\left(y_{k}, y_{k+1}\right) & \leq H\left(T\left(x_{k-1}\right)_{1}, T\left(x_{k}\right)_{1}\right) \leq D\left(T\left(x_{k-1}\right), T\left(x_{k}\right)\right) \\
& \leq \theta d\left(f\left(x_{k-1}\right), f\left(x_{k}\right)\right)+L p\left(f\left(x_{k}\right), T\left(x_{k-1}\right)\right)=\theta d\left(y_{k-1}, y_{k}\right) \tag{14}
\end{align*}
$$

From (14) we obtain inductively,

$$
\begin{equation*}
d\left(y_{n}, y_{n+1}\right) \leq \theta^{n} d\left(y_{0}, y_{1}\right) \text { and } d\left(y_{n+k}, y_{n+k+1}\right) \leq \theta^{k+1} d\left(y_{k-1}, y_{k}\right) \tag{15}
\end{equation*}
$$

for all $k \in \mathbb{N}, n \geq 1$.

Now from (15), we have for any $p \geq 1$,

$$
\begin{aligned}
d\left(y_{n}, y_{n+p}\right) & \leq d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{n+2}\right)+\cdots+d\left(y_{n+p-1}, y_{n+p}\right) \\
& \leq\left(\theta^{n}+\theta^{n+1}+\cdots+\theta^{n+p-1}\right) d\left(y_{0}, y_{1}\right) \\
& =\frac{\theta^{n}\left(1-\theta^{p}\right)}{1-\theta} d\left(y_{0}, y_{1}\right)
\end{aligned}
$$

In view of $0<\theta<1$, we see that $\left\{y_{n}\right\}$ is a Cauchy sequence. Since $f(X)$ is complete, $\left\{y_{n}\right\}$ converges to some point in $f(X)$. Let $y=\lim _{n \rightarrow \infty} y_{n}$ and $u \in X$ be such that $y=f(u)$. Now

$$
\begin{aligned}
p(f(u), T(u)) & =p(y, T(u)) \leq d\left(y, y_{k+1}\right)+p\left(y_{k+1}, T(u)\right) \\
& \leq d\left(y, y_{k+1}\right)+D\left(T\left(x_{k}\right), T(u)\right) \\
& \leq d\left(y, y_{k+1}\right)+\theta d\left(f\left(x_{k}\right), f(u)\right)+L p\left(f(u), T\left(x_{k}\right)\right) \\
& \leq d\left(y, y_{k+1}\right)+\theta d\left(y_{k}, y\right)+L\left[d\left(y, y_{k+1}\right)+p\left(y_{k+1}, T\left(x_{k}\right)\right)\right]
\end{aligned}
$$

Noting that $p\left(y_{k+1}, T\left(x_{k}\right)\right)=0$ and the fact that $y_{k} \rightarrow y$ as $k \rightarrow \infty$ we have, $p(f(u), T(u))=0$, i.e., $\{f(u)\} \subset T(u)$.

THEOREM 4.3. Let (X, d) be a complete metric linear space and $T: X \rightarrow$ $W(X)$ be a generalized (α, L)-weak contraction (see Definition 2.26). Then T has a fixed point.

Proof. Let $x_{0} \in X$. Then by Lemma 2.20, there exists $x_{1} \in X$ such that $\left\{x_{1}\right\} \subset T\left(x_{0}\right)$. Now by Lemma 2.20 and Lemma 2.1, there exists a point $x_{2} \in X$ such that $\left\{x_{2}\right\} \subset T\left(x_{1}\right)$ and

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq H\left(T\left(x_{0}\right)_{1}, T\left(x_{1}\right)_{1}\right) \leq D\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \\
& \leq \alpha\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right)+L p\left(x_{1}, T\left(x_{0}\right)\right) \leq d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

By repeating this process we can select a point $x_{k+1} \in X$ such that $\left\{x_{k+1}\right\} \in T\left(x_{k}\right)$ and

$$
\begin{align*}
d\left(x_{k}, x_{k+1}\right) & \leq H\left(T\left(x_{k-1}\right)_{1}, T\left(x_{k}\right)_{1}\right) \leq D\left(T\left(x_{k-1}\right), T\left(x_{k}\right)\right) \\
& \leq \alpha\left(d\left(x_{k-1}, x_{k}\right)\right) d\left(x_{k-1}, x_{k}\right)+L p\left(\left(x_{k-1}, T\left(x_{k}\right)\right) \leq d\left(x_{k-1}, x_{k}\right)\right. \tag{16}
\end{align*}
$$

Let $d_{k}=d\left(x_{k-1}, x_{k}\right)$. Since d_{k} is a non-increasing sequence of nonnegative real numbers, therefore $\lim _{k \rightarrow \infty} d_{k}=c \geq 0$. By hypothesis we get $\lim \sup _{t \rightarrow c+} \alpha(t)<$ 1. Therefore there exists k_{0} such that $k \geq k_{0}$ implies that $\alpha\left(d_{k}\right)<h$, where $\lim \sup _{t \rightarrow c+} \alpha(t)<h<1$. Now by (16) we deduce that the sequence $\left\{d_{k}\right\}$ satisfies the following recurrence inequality:

$$
\begin{aligned}
d_{k+1} & \leq \alpha\left(d_{k}\right) d_{k} \leq \alpha\left(d_{k}\right) \alpha\left(d_{k-1}\right) d_{k-1} \cdots \\
& \leq \prod_{i=1}^{k} \alpha\left(d_{i}\right) d_{1} \leq \prod_{i=1}^{k_{0}-1} \alpha\left(d_{i}\right) \prod_{i=k_{0}}^{k} \alpha\left(d_{i}\right) d_{1} \leq \prod_{i=1}^{k_{0}-1} \alpha\left(d_{i}\right) h^{k-k_{0}+1} d_{1} \\
& \left.=C h^{k}, \quad \text { (where } C \text { is a generic positive constant }\right)
\end{aligned}
$$

Hence for $p \geq 1$ we have,

$$
\begin{aligned}
d\left(x_{k}, x_{k+p}\right) & \leq d\left(x_{k}, x_{k+1}\right)+d\left(x_{k+1}, x_{k+2}\right)+\cdots+d\left(x_{k+p-1}, x_{k+p}\right) \\
& =d_{k+1}+d_{k+2}+\cdots+d_{k+p-1} \leq C\left(h^{k}+h^{k+1}+\cdots+h^{k+p-1}\right) \\
& =C \frac{h^{k}\left(1-h^{p}\right)}{1-h} .
\end{aligned}
$$

which in view of $0<h<1$ shows that $\left\{x_{k}\right\}$ is a Cauchy sequence. Since X is complete, the sequence $\left\{x_{k}\right\}$ converges to some point in X. Let $u=\lim _{k \rightarrow \infty} x_{k}$. Now we have,

$$
\begin{aligned}
p(u, T(u)) & \leq d\left(u, x_{k+1}\right)+p\left(x_{k+1}, T(u)\right) \\
& \leq d\left(u, x_{k+1}\right)+D\left(T\left(x_{k}\right), T(u)\right) \\
& \leq d\left(u, x_{k+1}\right)+\alpha\left(d\left(x_{k}, u\right)\right) d\left(x_{k}, u\right)+L p\left(u, T\left(x_{k}\right)\right) \\
& \leq d\left(u, x_{k+1}\right)+\alpha\left(d\left(x_{k}, u\right)\right) d\left(x_{k}, u\right)+L\left[d\left(u, x_{k+1}\right)+p\left(x_{k+1}, T\left(x_{k}\right)\right)\right] .
\end{aligned}
$$

Using the fact that $x_{k+1} \in T\left(x_{k}\right)$ and the fact that $x_{k} \rightarrow u$ we have, $p(u, T(u)) \leq 0$, i.e., $p(u, T(u))=0$, i.e., $\{u\} \subset T(u)$. Hence the proof is complete.

Note. Du first introduced the concept of Reich-functions as follows (cf. [8]):
Definition 4.4. A function $\phi:[0, \infty) \rightarrow[0,1)$ is called to be a Reich-function (R-function for short) if for each $t \in[0, \infty)$ there exists $r_{t} \in[0,1)$ and $\epsilon_{t}>0$ such that $\phi(s) \leq r_{t}$ for all $s \in\left[t, t+\epsilon_{t}\right)$.

ExAMPLES. Let $\phi:[0, \infty) \rightarrow[0,1)$ be a function.
(i) Obviously, if ϕ is defined by $\phi(t)=c$, where $c \in[0,1)$, then ϕ is a R function;
(ii) If ϕ is nondecreasing function, then ϕ is a R-function;
(iii) It is easy to see that if ϕ satisfies $\limsup _{s \rightarrow t+} \phi(s)<1$ for all $t \in[0, \infty)$, then ϕ is a R-function.

Note that in Theorem 4.3, α is a R-function and so the proof of showing the sequence $\left\{x_{k}\right\}$ is Cauchy can be done in another way as follows. Since α is a R function, there exists $r_{c} \in[0,1)$ and $\epsilon_{c}>0$ such that $\phi(s) \leq r_{c}$ for all $s \in\left[c, c+\epsilon_{c}\right)$. Again $\left\{d_{k}\right\}$ being non-increasing and $d_{k} \rightarrow c$ as $k \rightarrow \infty$, there exists k_{0} such that for all $k \geq k_{0}$ we have $d_{k} \in\left[c, c+\epsilon_{c}\right.$). Hence, by (16) we have

$$
d_{k+1} \leq \alpha\left(d_{k}\right) d_{k} \leq r_{c} d_{k} \leq r_{c}^{2} d_{k-1} \leq \cdots \leq r_{c}^{k-k_{0}+1} d_{k_{0}} \leq r_{c}^{k} \frac{d_{k_{0}}}{r_{c}^{k_{0}-1}}
$$

Hence, for $p \geq 1$ we have

$$
\begin{aligned}
d\left(x_{k}, x_{k+p}\right) & \leq d\left(x_{k}, x_{k+1}\right)+d\left(x_{k+1}, x_{k+2}\right)+\cdots+d\left(x_{k+p-1}, x_{k+p}\right) \\
& \leq\left(r_{c}^{k}+r_{c}^{k+1}+\cdots+r_{c}^{k+p-1}\right) \frac{d_{k_{0}}}{r_{c}^{k_{0}-1}} \\
& =\frac{r_{c}^{k}\left(1-r_{c}^{p}\right)}{1-r_{c}} \frac{d_{k_{0}}}{r_{c}^{k_{0}-1}}
\end{aligned}
$$

which in view of $r_{c} \in[0,1)$ shows that $\left\{x_{k}\right\}$ is a Cauchy sequence.

THEOREM 4.5. Let (X, d) be a complete metric space and $T: X \rightarrow \mathcal{F}(X)$ be a (θ, L)-weak contractive fuzzy mapping satisfying the condition that for each $x \in X$ there is $\alpha(x) \in(0,1]$ such that $T(x)_{\alpha(x)}$ is a nonempty closed bounded subset of X. Then
(i) There exists a point $u \in X$ such that $u \in T(u)_{\alpha(u)}$;
(ii) For any $x_{0} \in X$, there exists an orbit $\left\{x_{n}\right\}_{n=0}^{\infty}$ of T at the point x_{0} that converges to a point $u \in X$, for which the following estimates hold:

$$
\begin{aligned}
& d\left(x_{n}, u\right) \leq \frac{h^{n}}{1-h} d\left(x_{0}, x_{1}\right), n=0,1,2, \ldots \\
& d\left(x_{n}, u\right) \leq \frac{h}{1-h} d\left(x_{n-1}, x_{n}\right), n=1,2, \ldots
\end{aligned}
$$

for a certain constant $h<1$, such that $u \in T(u)_{\alpha(u)}$.
Proof. Let $F: X \rightarrow \mathcal{F}(X)$ be a fuzzy mapping. By assumption, there exists $\alpha(x) \in(0,1]$ such that $F(x)_{\alpha(x)}$ is a nonempty closed and bounded subset of X. Let us now construct a sequence $\left\{x_{n}\right\}(n \geq 0)$ as follows. By α_{n+1} we denote $\alpha_{n+1}=\alpha\left(x_{n}\right)$ for $n \geq 0$. Let $x_{0} \in X$. Let $x_{1} \in T\left(x_{0}\right)_{\alpha_{1}}$ and $q>1$. Then there exists a point $x_{2} \in T\left(x_{1}\right)_{\alpha_{2}}$ such that

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq q H\left(T\left(x_{0}\right)_{\alpha_{1}}, T\left(x_{1}\right)_{\alpha_{2}}\right) \\
& \leq q \theta d\left(x_{0}, x_{1}\right)+q L d\left(x_{1}, T\left(x_{0}\right)_{\alpha_{1}}\right) \leq q \theta d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Let us choose $q>1$ in such a way that $h=q \theta<1$ for any $\theta \in[0,1)$, and then $d\left(x_{1}, x_{2}\right) \leq h d\left(x_{0}, x_{1}\right)$. Now for $x_{2} \in T\left(x_{1}\right)_{\alpha_{2}}$, there exists a point $x_{3} \in T\left(x_{2}\right)_{\alpha_{3}}$ such that

$$
\begin{aligned}
d\left(x_{2}, x_{3}\right) & \leq q H\left(T\left(x_{1}\right)_{\alpha_{2}}, T\left(x_{2}\right)_{\alpha_{3}}\right) \\
& \leq q \theta d\left(x_{1}, x_{2}\right)+q \operatorname{Ld}\left(x_{2}, T\left(x_{1}\right)_{\alpha_{2}}\right) \leq h d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

In this manner, we obtain an orbit $\left\{x_{n}\right\}_{n=0}^{\infty}$ at x_{0} for T satisfying

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq h d\left(x_{n-1}, x_{n}\right), n=1,2, \ldots \tag{17}
\end{equation*}
$$

From (17) we obtain inductively,

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq h^{n} d\left(x_{0}, x_{1}\right) \text { and } d\left(x_{n+k}, x_{n+k+1}\right) \leq h^{k+1} d\left(x_{n-1}, x_{n}\right) \tag{18}
\end{equation*}
$$

for $k \in \mathbb{N}, n \geq 1$. Now from (18) we have

$$
\begin{align*}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& =\left(h^{n}+h^{n+1}+\cdots+h^{n+p-1}\right) d\left(x_{0}, x_{1}\right) \\
& =\frac{h^{n}\left(1-h^{p}\right)}{1-h} d\left(x_{0}, x_{1}\right) \tag{19}
\end{align*}
$$

which in view of $0<h<1$ shows that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, d) is complete, it follows that $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to some point in X. Let $u=\lim _{n \rightarrow \infty} x_{n}$. Then we have,

$$
d\left(u, T(u)_{\alpha(u)}\right) \leq d\left(u, x_{n+1}\right)+d\left(x_{n+1}, T(u)_{\alpha(u)}\right)
$$

$$
\begin{aligned}
& \leq d\left(u, x_{n+1}\right)+d\left(T\left(x_{n}\right)_{\alpha_{n+1}}, T(u)_{\alpha(u)}\right) \\
& \leq d\left(u, x_{n+1}\right)+h d\left(x_{n}, u\right)+q L d\left(u, T\left(x_{n}\right)_{\alpha_{n+1}}\right) \\
& \leq d\left(u, x_{n+1}\right)+h d\left(x_{n}, u\right)+q L d\left(u, x_{n+1}\right)+q L d\left(x_{n+1}, T\left(x_{n}\right)_{\alpha_{n+1}}\right)
\end{aligned}
$$

Noting that $d\left(x_{n+1}, T\left(x_{n}\right)_{\alpha_{n+1}}\right)=0$ and taking $n \rightarrow \infty$ we have, $d\left(u, T(u)_{\alpha(u)}\right) \leq$ $0 \Longrightarrow d\left(u, T(u)_{\alpha(u)}\right)=0 \Longrightarrow u \in T(u)_{\alpha(u)}$.

From (19) taking $p \rightarrow \infty$ we have

$$
d\left(x_{n}, u\right) \leq \frac{h^{n}}{1-h} d\left(x_{0}, x_{1}\right), n=0,1,2, \ldots
$$

Again by (18) we have,

$$
\begin{aligned}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& =\left(h+h^{2}+\cdots+h^{p}\right) d\left(x_{n-1}, x_{n}\right) \\
& =\frac{h\left(1-h^{p}\right)}{1-h} d\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

Taking $p \rightarrow \infty$ we have, $d\left(x_{n}, u\right) \leq \frac{h}{1-h} d\left(x_{n-1}, x_{n}\right)$. This completes the proof.
Now we discuss a different type of fuzzy mapping. As defined earlier we know a fuzzy set in X is a function with domain X and range in $[0,1], \mathcal{F}(X)$ denotes the collection of all fuzzy set in X and $C B(X)$ represents the nonempty closed and bounded subsets of X. Let $K(X)$ be the set of all fuzzy sets $\mu: X \rightarrow[0,1]$ such that $\hat{\mu} \in C B(X)$ where $\hat{\mu}=\left\{x \in X: \mu(x)=\max _{y \in X} \mu(y)\right\}$, i.e., $K(X)=\{\mu \in$ $\mathcal{F}(X): \hat{\mu} \in C B(X)\}$.

A fuzzy mapping T is a mapping from X into $K(X)$. For a fuzzy mapping T : $X \rightarrow K(X)$ and a mapping $\Lambda: K(X) \rightarrow C B(X)$, the composition $\hat{T}=\Lambda \circ T: X \rightarrow$ $C B(X)$ is defined as $(\Lambda \circ T)(x)=\hat{T}(x)=\left\{y \in X: T(x)(y)=\max _{z \in X} T(x)(z)\right\}$. A point $x^{*} \in X$ is called a fixed point of a fuzzy mapping $T: X \rightarrow K(X)$ if $T\left(x^{*}\right)\left(x^{*}\right) \geq T\left(x^{*}\right)(x)$ for all $x \in X$, i.e., $T\left(x^{*}\right)\left(x^{*}\right)=\max _{y \in X} T\left(x^{*}\right)(y)$.

Lemma 4.6. [2] A point $x^{*} \in X$ is a fixed point of a fuzzy mapping $T: X \rightarrow$ $K(X)$ if and only if x^{*} is a fixed point of the induced mapping $\Lambda \circ T: X \rightarrow C B(X)$.

Now we define $\alpha(x)=\max _{y \in X} T(x)(y)$, and then $T(x)_{\alpha(x)}=\{y \in X:$ $\left.T(x)(y)=\max _{z \in X} T(x)(z)\right\}=\{y \in X: T(x)(y) \geq \alpha\}$. Then using Theorem 4.5 and Lemma 4.6, we get the following result.

Theorem 4.7. Let the fuzzy mapping $T: X \rightarrow K(X)$ be a (θ, L)-weak contractive fuzzy mapping. Then T has a fixed point.

Proof. By Theorem 4.5, there exists $u \in X$ such that $u \in T(u)_{\alpha(u)}$. But here $\alpha(u)$ by definition is $\max _{y \in X} T(u)(y)$, i.e. $u \in \hat{T}(u)$, i.e., u is a fixed point of the induced mapping \hat{T}. Then by Lemma $4.6, u$ is a fixed point of the fuzzy mapping $T: X \rightarrow K(X)$.

REFERENCES

[1] A. Azam, I. Beg, Common fixed points of fuzzy maps, Math. Comp. Modelling 49 (2009), 1331-1336.
[2] H.M. Abu-Donia, Common fixed point theorems for fuzzy mappings in metric space under ϕ-contraction condition, Chaos, Solitons \& Fractals 34 (2007), 538-543.
[3] M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. 326 (2007), 772-782.
[4] S.C. Arora, V. Sharma, Fixed point theorems for fuzzy mappings, Fuzzy Sets Syst. 110 (2000), 127-130.
[5] N.A. Assad, W.A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 553-562.
[6] J.S. Bae, Fixed pioint theorems for weakly contractive multivalued maps, J. Math. Anal. Appl. 284 (2003), 690-697.
[7] Shi Chuan, Common fuzzy hybrid fixed point theorems for sequence of fuzzy mappings, Internat. J. Math. \& Math. Sci. 20 (1997), 451-456.
[8] W.S. Du, Some generalizations of Mizoguchi-Takahashi's fixed point theorem, Int. J. Contemp. Math. Sciences 3 (2008), 1283-1288.
[9] R.K. Bose, D. Sahani, Fuzzy mapping and fixed point theorems, Fuzzy Sets Syst. 21 (1987), 53-58.
[10] S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl. 83 (1981), 566569.
[11] G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Applied Math. 29 (1998), 227-238.
[12] T. Kamran, Multivalued f-weakly Picard mappings, Nonlinear Analysis 67 (2007), 22892296.
[13] T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 299 (2004), 235-241.
[14] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Analysis 69 (2008), 2942-2949.
[15] B.S. Lee, S.J. Cho, A fixed point theorem for contractive type fuzzy mapping, Fuzzy Sets Syst. 61 (1994), 309-312.
[16] S.B. Nadlar, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[17] C.V. Negoita, D. Ralescu, Representation theorem for fuzzy concepts, Kybernetes 4 (1975), 169-174.
[18] R.A. Rashwan, M.A. Ahmad, Common fixed point theorems for fuzzy mappings, Arch. Math. (Brno) 38 (2002), 219-226.
[19] B.E. Rhoades, A common fixed point theorems for sequence of fuzzy mappings, Int. J. Math. Sci. 8 (1995), 447-450.
[20] T. Suzuki, A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869.
[21] N. Shahzad, T. Kamran, Coincidence points and R-weakly commuting maps, Arch. Math. 37 (2001), 179-183.
[22] P. Vijayaraju, M. Marudai, Fixed point theorems for fuzzy mappings, Fuzzy Sets Syst. 135 (2003), 401-408.
[23] Q. Zhang, Y. Song, Fixed point theory for generalized ϕ-weak contractions, Applied Math. Letters 22 (2009), 75-78.
(received 08.09.2009; in revised form 22.10.2009)
Department of Mathematics, The University of Texas-Pan American, 1201 West University Drive, Edinburg, TX 78539-2999, USA
E-mail: rkbose@utpa.edu, rkbose@hotmail.com, roychowdhurymk@utpa.edu

[^0]: 2010 AMS Subject Classification: 03E72, 47H04, 47H10, 54A40, 54H25, 54C60.
 Keywords and phrases: Contraction mapping; fixed point; Banach contraction principle; Hausdorff metric; fuzzy set; fuzzy mapping.

