COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS OF COMPLEX ORDER

B. A. Frasin

Abstract. Let $Q_b(\Phi, \Psi; \alpha)$ be the class of normalized analytic functions defined in the open unit disk and satisfying

$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f(z)*\Phi(z)}{f(z)*\Psi(z)}-1\right)\right\} > \alpha$$

for nonzero complex number b and for $0 \leq \alpha < 1$. Sufficient condition, involving coefficient inequalities, for f(z) to be in the class $\mathcal{Q}_b(\Phi, \Psi; \alpha)$ is obtained. Our main result contains some interesting corollaries as special cases.

1. Introduction and definitions

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk $\mathcal{U} = \{z : z \in \mathbf{C} \text{ and } |z| < 1\}$. Furthermore, let \mathcal{P} be the class of functions p(z) of the form $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$, which are analytic in \mathcal{U} .

A function $f(z) \in \mathcal{A}$ is said to be starlike of complex order b ($b \in \mathbb{C}^* := \mathbb{C} \setminus \{0\}$) and type α ($0 \le \alpha < 1$), that is $f(z) \in \mathcal{S}_b^*(\alpha)$, if and only if

$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)\right\} > \alpha \qquad (z \in \mathcal{U}; \ b \in \mathbf{C}^*),$$

and is said to be convex of complex order b ($b \in \mathbf{C}^*$) and type α ($0 \le \alpha < 1$), denoted by $\mathcal{C}_b(\alpha)$ if and only if

$$\operatorname{Re}\left\{1+\frac{1}{b}\frac{zf''(z)}{f'(z)}\right\} > \alpha \qquad (z \in \mathcal{U}; \ b \in \mathbf{C}^*).$$

Note that $\mathcal{S}_b^*(0) = \mathcal{S}_b^*$ and $\mathcal{C}_b(0) = \mathcal{C}_b$ are the classes considered earlier by Nasr and Auof [6] and Wiatrowski [10]. Also, $\mathcal{S}_1^*(\alpha) = \mathcal{S}^*(\alpha)$ and $\mathcal{C}_1(\alpha) = \mathcal{C}(\alpha)$ which are,

²⁰¹⁰ AMS Subject Classification: 30C45.

 $Keywords\ and\ phrases:$ Analytic functions; Starlike and convex functions of complex order; Hadamard product; Coefficient inequalities.

B.A. Frasin

respectively, the familiar classes of starlike functions of order α ($0 \le \alpha < 1$) and convex functions of order α ($0 \le \alpha < 1$).

Further, let $\mathcal{P}_b(\alpha)$ denote the class of functions $f(z) \in \mathcal{A}$ such that

$$\operatorname{Re}\left\{1+\frac{1}{b}(f'(z)-1)\right\} > \alpha \qquad (0 \le \alpha < 1, \ z \in \mathcal{U}; \ b \in \mathbf{C}^*).$$

When b = 1, the class $\mathcal{P}_1(\alpha)$ reduces to the class $\mathcal{P}(\alpha)$ of analytic functions studied in [5, 7, 9].

Given two analytic functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = z + \sum_{n=2}^{\infty} c_n z^n$ their convolution or Hadamard product f(z) * g(z) is defined by

$$f(z) * g(z) = z + \sum_{n=2}^{\infty} a_n c_n z^n \qquad (z \in \mathcal{U}).$$

By using this product we introduce the class of prestarlike functions of complex order $b \ (b \in \mathbf{C}^*)$ and type $\alpha \ (0 \le \alpha < 1)$, which is denoted by $\mathcal{R}_b(\alpha)$. Thus $f(z) \in \mathcal{A}$ is said to be prestarlike function of complex order $b \ (b \in \mathbf{C}^*$ and type $\alpha \ (0 \le \alpha < 1)$, if and only if $f(z) * s_\alpha(z) \in \mathcal{S}_b^*(\alpha)$ where $s_\alpha(z) = z(1-z)^{2\alpha-2} = z + \sum_{n=2}^{\infty} C(\alpha, n) z^n$; $C(\alpha, n) = \prod_{j=2}^n \frac{j-2\alpha}{(n-1)!} \ (n \ge 2)$. It may be noted that $\mathcal{R}_b(0) = \mathcal{C}_b(0)$ and $\mathcal{R}_b(1/2) = \mathcal{S}_b^*(1/2)$. When b = 1, the class $\mathcal{R}_1(\alpha)$ reduces to the class $\mathcal{R}(\alpha)$ of prestarlike functions of order $\alpha \ (0 \le \alpha < 1)$ (see [8]).

Making use of the Hadamard product, Frasin [1] introduced and studied the following class of analytic functions:

DEFINITION 1.1. Let $b \ (b \in \mathbf{C}^*)$ and $\alpha \ (0 \le \alpha < 1)$ be given. Let the functions

$$\Phi(z) = z + \sum_{n=2}^{\infty} \lambda_n z^n$$
 and $\Psi(z) = z + \sum_{n=2}^{\infty} \mu_n z^n$

be analytic in \mathcal{U} , such that $\lambda_n \geq 0$, $\mu_n \geq 0$ and $\lambda_n \geq \mu_n$ for $n \geq 2$, we say that $f(z) \in \mathcal{A}$ is in $\mathcal{Q}_b(\Phi, \Psi; \alpha)$ if $f(z) * \Psi(z) \neq 0$ and

$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f(z)*\Phi(z)}{f(z)*\Psi(z)}-1\right)\right\} > \alpha \qquad (z \in \mathcal{U}).$$

We note that, by suitably choosing of $\Phi(z)$ and $\Psi(z)$ we obtain the above subclasses of \mathcal{A} of complex order b and type α : $\mathcal{Q}_b\left(\frac{z}{(1-z)^2}, \frac{z}{1-z}; \alpha\right) = \mathcal{S}_b^*(\alpha);$ $\mathcal{Q}_b\left(\frac{z+z^2}{(1-z)^3}, \frac{z}{(1-z)^2}; \alpha\right) = \mathcal{C}_b(\alpha); \mathcal{Q}_b\left(\frac{z}{(1-z)^2}, z; \alpha\right) = \mathcal{P}_b(\alpha)$ and $\mathcal{Q}_b\left(\frac{z+(1-2\alpha)z^2}{(1-z)^{3-2\alpha}}, \frac{z}{(1-z)^{2-2\alpha}}; \alpha\right) = \mathcal{R}_b(\alpha).$

In fact many new subclasses of \mathcal{A} of complex order b and type α can be defined and studied by suitably choosing $\Phi(z)$ and $\Psi(z)$. For example,

$$\mathcal{Q}_b\left(\frac{z}{1-z}, z; \alpha\right) := \mathcal{T}_b(\alpha) = \left\{ f(z) \in \mathcal{A} : \operatorname{Re}\left\{ 1 + \frac{1}{b} \left(\frac{f(z)}{z} - 1\right) \right\} > \alpha \right\},$$

and

$$\mathcal{Q}_b\left(\frac{z+z^2}{(1-z)^3}, z; \alpha\right) : \mathcal{M}_b(\alpha) = \left\{f(z) \in \mathcal{A} : \operatorname{Re}\left\{1 + \frac{1}{b}\left((zf'(z))' - 1\right)\right\} > \alpha\right\}$$

and so on.

74

In this paper, we obtain sufficient condition, involving coefficient inequalities, for f(z) to be in the class $\mathcal{Q}_b(\Phi, \Psi; \alpha)$. Several special cases and consequences of these coefficient inequalities are also pointed out.

In order to derive our main results, we have to recall here the following lemmas:

LEMMA 1.1. [4] A function $p(z) \in \mathcal{P}$ satisfies $\operatorname{Re} p(z) > 0$ $(z \in \mathcal{U})$ if and only if $p(z) \neq \frac{x-1}{x+1}$ $(z \in \mathcal{U})$ for all |x| = 1.

LEMMA 1.2. A function $f(z) \in \mathcal{A}$ is in $\mathcal{Q}_b(\Phi, \Psi; \alpha)$ if and only if $1 + \sum_{n=2}^{\infty} A_n z^{n-1} \neq 0$ where

$$A_n = \frac{\lambda_n + (2b - 1 - 2\alpha b)\mu_n + x(\lambda_n - \mu_n)}{2b(1 - \alpha)}a_n$$

and $\lambda_1 = \mu_1 = 1$.

Proof. Applying Lemma 1.1, we have

$$\frac{1 + \frac{1}{b} \left(\frac{f(z) * \Phi(z)}{f(z) * \Psi(z)} - 1 \right) - \alpha}{1 - \alpha} \neq \frac{x - 1}{x + 1} \quad (z \in \mathcal{U}; \ x \in \mathbf{C}; \ |x| = 1).$$
(1.1)

Then, we need not consider Lemma 1.1 for z = 0, because it follows that $p(0) = 1 \neq \frac{x-1}{x+1}$ for all |x| = 1. From (1.1), it follows that

$$(x+1)(f(z) * \Phi(z)) + (2b-1-2\alpha b - x)(f(z) * \Psi(z)) \neq 0.$$

Thus, we have $2b(1-\alpha)z + \sum_{n=2}^{\infty} [\lambda_n + (2b-1-2\alpha b)\mu_n + x(\lambda_n - \mu_n)] a_n z^n \neq 0$ $(z \in \mathcal{U}; x \in \mathbf{C}; |x| = 1)$, or, equivalently,

$$2b(1-\alpha)z\left(1+\sum_{n=2}^{\infty}\frac{\lambda_n + (2b-1-2\alpha b)\mu_n + x(\lambda_n - \mu_n)}{2b(1-\alpha)}a_n z^{n-1}\right) \neq 0$$
 (1.2)

 $(z \in \mathcal{U}; x \in \mathbb{C}; |x| = 1)$. Now, dividing both sides of (1.2) by $2b(1 - \alpha)z \ (z \neq 0)$, we obtain

$$1 + \sum_{n=2}^{\infty} \frac{\lambda_n + (2b - 1 - 2\alpha b)\mu_n + x(\lambda_n - \mu_n)}{2b(1 - \alpha)} a_n z^{n-1} \neq 0$$

 $(z\in\mathcal{U};\,x\in\mathbf{C};\,|x|=1),$ which completes the proof of Lemma 1.2. \blacksquare

2. Coefficient conditions for functions in the class $Q_b(\Phi, \Psi; \alpha)$

With the help of Lemma 1.2, we have

THEOREM 2.1. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$\sum_{n=2}^{\infty} \left(\left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (\lambda_{k} + (2b - 1 - 2\alpha b)\mu_{k})(-1)^{l-k} \binom{\gamma}{l-k} a_{k} \right\} \binom{\delta}{n-l} \right| + \left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (\lambda_{k} - \mu_{k})(-1)^{l-k} \binom{\gamma}{l-k} a_{k} \right\} \binom{\delta}{n-l} \right| \right) \le 2 |b| (1-\alpha)$$

$$(0 \le \alpha < 1; \ b \in \mathbf{C}^{*}; \ \gamma, \delta \in \mathbf{R}), \ then \ f(z) \in \mathcal{Q}_{b}(\Phi, \Psi; \alpha).$$

Proof. Note that $(1-z)^{\gamma} \neq 0$, $(1+z)^{\delta} \neq 0$ ($\gamma, \delta \in \mathbf{R}$; $z \in \mathcal{U}$). Thus to prove that $1 + \sum_{n=2}^{\infty} A_n z^{n-1} \neq 0$, it is sufficient that

$$\left(1 + \sum_{n=2}^{\infty} A_n z^{n-1}\right) (1-z)^{\gamma} (1+z)^{\delta}$$

$$= 1 + \sum_{n=2}^{\infty} \left[\sum_{l=1}^{n} \left\{\sum_{k=1}^{l} A_k (-1)^{l-k} \binom{\gamma}{l-k}\right\} \binom{\delta}{n-l} \right] z^{n-1} \neq 0,$$

where $A_0 = 0$ and $A_1 = 1$. Therefore, if $f(z) \in \mathcal{A}$ satisfies

$$\sum_{n=2}^{\infty} \left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} A_k(-1)^{l-k} \binom{\gamma}{l-k} \right\} \binom{\delta}{n-l} \right| \le 1,$$

that is, if

$$\begin{aligned} \frac{1}{2|b|(1-\alpha)} \sum_{n=2}^{\infty} \left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (\lambda_{k} + (2b-1-2\alpha b)\mu_{k} + x[\lambda_{k}-\mu_{k}])(-1)^{l-k} \binom{\gamma}{l-k} a_{k} \right\} \binom{\delta}{n-l} \right| \\ &\leq \frac{1}{2|b|(1-\alpha)} \sum_{n=2}^{\infty} \left(\left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (\lambda_{k} + (2b-1-2\alpha b)\mu_{k})(-1)^{l-k} \binom{\gamma}{l-k} a_{k} \right\} \times \left(\binom{\delta}{n-l} \right) \right| + |x| \left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (\lambda_{k}-\mu_{k})(-1)^{l-k} \binom{\gamma}{l-k} a_{k} \right\} \binom{\delta}{n-l} \right| \right) \\ &\leq 1 \qquad (0 \leq \alpha < 1; \ b \in \mathbf{C}^{*}; \ x \in \mathbf{C}; \ |x| = 1; \ \gamma, \delta \in \mathbf{R}), \end{aligned}$$

then $f(z) \in \mathcal{Q}_b(\Phi, \Psi; \alpha)$ and so the proof is completed.

3. Particular cases

By considering some special cases of the analytic functions $\Phi(z)$ and $\Psi(z)$, we deduce the following coefficient conditions for functions f(z) to be in the subclasses $S^*_{\alpha}(b)$, $\mathcal{C}_{\alpha}(b)$, $\mathcal{P}_{\alpha}(b)$ and $\mathcal{R}_{\alpha}(b)$ of analytic functions of complex order b ($b \in \mathbb{C}^*$) and type α ($0 \leq \alpha < 1$) as defined in Section 1.

Letting $\Phi(z) = z/(1-z)^2$ and $\Psi(z) = z/(1-z)$ in Theorem 2.1, we have

COROLLARY 3.1 If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$\sum_{n=2}^{\infty} \left(\left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (k+2b-1-2\alpha b)(-1)^{l-k} \binom{\gamma}{l-k} a_k \right\} \binom{\delta}{n-l} \right| + \left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (k-1)(-1)^{l-k} \binom{\gamma}{l-k} a_k \right\} \binom{\delta}{n-l} \right| \right) \le 2 \left| b \right| (1-\alpha)$$

for some α $(0 \leq \alpha < 1)$, $b \in \mathbf{C}^*$ and $\gamma, \delta \in \mathbf{R}$, then $f(z) \in \mathcal{S}^*_{\alpha}(b)$. In particular, for $\gamma = \delta = 0$, if $f(z) \in \mathcal{A}$ satisfies the following condition:

$$\sum_{n=2}^{\infty} \{ |n+2b-1-2\alpha b| + (n-1) \} |a_n| \le 2 |b| (1-\alpha)$$

for some α ($0 \le \alpha < 1$) and $b \in \mathbf{C}^*$, then $f(z) \in \mathcal{S}^*_{\alpha}(b)$.

76

Letting $\Phi(z) = (z + z^2)/(1 - z)^3$ and $\Psi(z) = z/(1 - z)^2$ in Theorem 2.1, we have

COROLLARY 3.2. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$\sum_{n=2}^{\infty} \left(\left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (k^2 + (2b - 1 - 2\alpha b)k)(-1)^{l-k} \binom{\gamma}{l-k} a_k \right\} \binom{\delta}{n-l} \right| + \left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (k^2 - k)(-1)^{l-k} \binom{\gamma}{l-k} a_k \right\} \binom{\delta}{n-l} \right| \right) \le 2 \left| b \right| (1-\alpha)$$

for some α ($0 \leq \alpha < 1$), $b \in \mathbf{C}^*$ and $\gamma, \delta \in \mathbf{R}$, then $f(z) \in \mathcal{C}_b(\alpha)$. In particular, for $\gamma = \delta = 0$, if $f(z) \in \mathcal{A}$ satisfies the following condition:

$$\sum_{n=2}^{\infty} n\{|n-1+2b|+(n-1)\} |a_n| \le 2 |b| (1-\alpha)$$

for some α ($0 \leq \alpha < 1$) and $b \in \mathbf{C}^*$, then $f(z) \in \mathcal{C}_b(\alpha)$.

Letting $\Phi(z)=(z+(1-2\alpha)z^2)/(1-z)^{3-2\alpha}$ and $\Psi(z)=z/(1-z)^{2-2\alpha}$ in Theorem 2.1, we have

COROLLARY 3.3. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$\sum_{n=2}^{\infty} \left(\left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (C(\alpha,k)(k+(2b-1-2\alpha b))(-1)^{l-k} \binom{\gamma}{l-k} a_k \right\} \binom{\delta}{n-l} \right| + \left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} C(\alpha,k)(k-1)(-1)^{l-k} \binom{\gamma}{l-k} a_k \right\} \binom{\delta}{n-l} \right| \right) \le 2 \left| b \right| (1-\alpha)$$

for some α $(0 \leq \alpha < 1)$, $b \in \mathbb{C}^*$ and $\gamma, \delta \in \mathbb{R}$, then $f(z) \in \mathcal{R}_b(\alpha)$. In particular, for $\gamma = \delta = 0$, if $f(z) \in \mathcal{A}$ satisfies the following condition:

$$\sum_{n=2}^{\infty} C(\alpha, n) [|n+2b-1-2\alpha b| + (n-1)] |a_n| \le |b| (1-\alpha)$$

for some α ($0 \leq \alpha < 1$) and $b \in \mathbf{C}^*$, then $f(z) \in \mathcal{R}_b(\alpha)$.

Letting $\Phi(z) = z/(1-z)^2$ and $\Psi(z) = z$ in Theorem 2.1, we have

COROLLARY 3.4. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$\sum_{n=2}^{\infty} \left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} k(-1)^{l-k} \binom{\gamma}{l-k} a_k \right\} \binom{\delta}{n-l} \right| \le |b| (1-\alpha)$$

for some α ($0 \leq \alpha < 1$), $b \in \mathbf{C}^*$ and $\gamma, \delta \in \mathbf{R}$, then $f(z) \in \mathcal{P}_b(\alpha)$. In particular, for $\gamma = \delta = 0$, if $f(z) \in \mathcal{A}$ satisfies the following condition $\sum_{n=2}^{\infty} n |a_n| \leq |b| (1-\alpha)$ for some α ($0 \leq \alpha < 1$) and $b \in \mathbf{C}^*$, then $f(z) \in \mathcal{P}_b(\alpha)$.

Letting $\Phi(z) = z/(1-z)$ and $\Psi(z) = z$ in Theorem 2.1, we have

COROLLARY 3.5. If $f(z) \in \mathcal{A}$ satisfies the following condition

$$\sum_{n=2}^{\infty} \left| \sum_{l=1}^{n} \left\{ \sum_{k=1}^{l} (-1)^{l-k} \binom{\gamma}{l-k} a_k \right\} \binom{\delta}{n-l} \right| \le |b| (1-\alpha)$$

B.A. Frasin

for some α ($0 \leq \alpha < 1$), $b \in \mathbf{C}^*$ and $\gamma, \delta \in \mathbf{R}$, then $f(z) \in \mathcal{T}_b(\alpha)$. In particular, for $\gamma = \delta = 0$, if $f(z) \in \mathcal{A}$ satisfies the following condition $\sum_{n=2}^{\infty} |a_n| \leq |b| (1 - \alpha)$ for some α ($0 \leq \alpha < 1$) and $b \in \mathbf{C}^*$, then $f(z) \in \mathcal{T}_b(\alpha)$.

REMARK 3.6. (i) If we set $\alpha = 0$ in Corollary 3.1 and Corollary 3.2, we have sufficient conditions for functions f(z) to be in the classes $\mathcal{S}^*(b)$ and $\mathcal{C}(b)$ obtained by Hayami and Owa in [2].

(*ii*) If we set b = 1 in Corollary 3.1 and Corollary 3.2, we have sufficient conditions for functions f(z) to be in the classes $S^*(\alpha)$ and $C(\alpha)$ obtained by Hayami et al. in [4].

(*iii*) If we set b = 1 in Corollary 3.4 and Corollary 3.5, we have sufficient conditions for functions f(z) to be in the classes $\mathcal{P}(\alpha)$ and $\mathcal{T}(\alpha)$ obtained by Hayami and Owa in [3].

ACKNOWLEDGEMENT. The author would like to thank the referees for their helpful comments and suggestions.

REFERENCES

- B.A. Frasin, Family of analytic functions of complex order, Acta Mathematica Academiae Paedagogicae Nyíegyháziensis, 2 (2006), 179–191.
- [2] T. Hayami, S. Owa, New properties for starlike and convex functions of complex order, Int. Journal Math. Analysis, 1 (2010), 39–62.
- [3] T. Hayami, S. Owa, Coefficient conditions for certain univalent functions, Int. J. Open Problems Comput. Sci. Math. 1 (2008), 53–65.
- [4] T. Hayami, S. Owa, H.M. Srivastava, Coefficient inequalities for certain classes of analytic and univalent functions, J. Ineq. Pure Appl. Math. 8 (2007), 1–10.
- [5] Y. Kim, S. Lee, H.M. Srivastava, Some properties of convolution operators in the class P_α(β), J. Math. Anal. Appl. 187 (1994), 498–512.
- [6] M.A. Nasr, M.K. Aouf, Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985), 1–12.
- [7] S.M. Sarangi, B.A. Uralegaddi, The radius of convexity and starlikeness of certain classes of analytic functions with negative coefficients I, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 65 (1978), 34–42.
- [8] H. Silverman, E.M. Silvia, Prestarlike functions with negative coefficients, Internat. J. Math. and Maths. Sci. 2 (1979), 427–439.
- [9] H.M. Srivastava, S. Owa, Certain classes of analytic functions with varying arguments, J. Math. Anal. Appl. 136 (1988), 217–228.
- [10] P. Wiatroski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lődz Nauk. Mat.-Przyrod 39 (1970), 75–85.

(received 27.04.2010; in revised form 13.06.2010)

Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan

E-mail: bafrasin@yahoo.com