COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS OF COMPLEX ORDER

B. A. Frasin

Abstract. Let $\mathcal{Q}_{b}(\Phi, \Psi ; \alpha)$ be the class of normalized analytic functions defined in the open unit disk and satisfying

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f(z) * \Phi(z)}{f(z) * \Psi(z)}-1\right)\right\}>\alpha
$$

for nonzero complex number b and for $0 \leq \alpha<1$. Sufficient condition, involving coefficient inequalities, for $f(z)$ to be in the class $\mathcal{Q}_{b}(\Phi, \Psi ; \alpha)$ is obtained. Our main result contains some interesting corollaries as special cases.

1. Introduction and definitions

Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},
$$

which are analytic in the open unit disk $\mathcal{U}=\{z: z \in \mathbf{C}$ and $|z|<1\}$. Furthermore, let \mathcal{P} be the class of functions $p(z)$ of the form $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$, which are analytic in \mathcal{U}.

A function $f(z) \in \mathcal{A}$ is said to be starlike of complex order $b\left(b \in \mathbf{C}^{*}:=\mathbf{C} \backslash\{0\}\right)$ and type $\alpha(0 \leq \alpha<1)$, that is $f(z) \in \mathcal{S}_{b}^{*}(\alpha)$, if and only if

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>\alpha \quad\left(z \in \mathcal{U} ; b \in \mathbf{C}^{*}\right)
$$

and is said to be convex of complex order $b\left(b \in \mathbf{C}^{*}\right)$ and type $\alpha(0 \leq \alpha<1)$, denoted by $\mathcal{C}_{b}(\alpha)$ if and only if

$$
\operatorname{Re}\left\{1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad\left(z \in \mathcal{U} ; b \in \mathbf{C}^{*}\right)
$$

Note that $\mathcal{S}_{b}^{*}(0)=\mathcal{S}_{b}^{*}$ and $\mathcal{C}_{b}(0)=\mathcal{C}_{b}$ are the classes considered earlier by Nasr and Auof [6] and Wiatrowski [10]. Also, $\mathcal{S}_{1}^{*}(\alpha)=\mathcal{S}^{*}(\alpha)$ and $\mathcal{C}_{1}(\alpha)=\mathcal{C}(\alpha)$ which are,

[^0]respectively, the familiar classes of starlike functions of order $\alpha(0 \leq \alpha<1)$ and convex functions of order $\alpha(0 \leq \alpha<1)$.

Further, let $\mathcal{P}_{b}(\alpha)$ denote the class of functions $f(z) \in \mathcal{A}$ such that

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(f^{\prime}(z)-1\right)\right\}>\alpha \quad\left(0 \leq \alpha<1, z \in \mathcal{U} ; b \in \mathbf{C}^{*}\right)
$$

When $b=1$, the class $\mathcal{P}_{1}(\alpha)$ reduces to the class $\mathcal{P}(\alpha)$ of analytic functions studied in $[5,7,9]$.

Given two analytic functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}$ their convolution or Hadamard product $f(z) * g(z)$ is defined by

$$
f(z) * g(z)=z+\sum_{n=2}^{\infty} a_{n} c_{n} z^{n} \quad(z \in \mathcal{U})
$$

By using this product we introduce the class of prestarlike functions of complex order $b\left(b \in \mathbf{C}^{*}\right)$ and type $\alpha(0 \leq \alpha<1)$, which is denoted by $\mathcal{R}_{b}(\alpha)$. Thus $f(z) \in \mathcal{A}$ is said to be prestarlike function of complex order $b\left(b \in \mathbf{C}^{*}\right.$ and type $\alpha(0 \leq \alpha<1)$, if and only if $f(z) * s_{\alpha}(z) \in \mathcal{S}_{b}^{*}(\alpha)$ where $s_{\alpha}(z)=z(1-z)^{2 \alpha-2}=z+\sum_{n=2}^{\infty} C(\alpha, n) z^{n}$; $C(\alpha, n)=\prod_{j=2}^{n} \frac{j-2 \alpha}{(n-1)!}(n \geq 2)$. It may be noted that $\mathcal{R}_{b}(0)=\mathcal{C}_{b}(0)$ and $\mathcal{R}_{b}(1 / 2)=$ $\mathcal{S}_{b}^{*}(1 / 2)$. When $b=1$, the class $\mathcal{R}_{1}(\alpha)$ reduces to the class $\mathcal{R}(\alpha)$ of prestarlike functions of order $\alpha(0 \leq \alpha<1)$ (see [8]).

Making use of the Hadamard product, Frasin [1] introduced and studied the following class of analytic functions:

Definition 1.1. Let $b\left(b \in \mathbf{C}^{*}\right)$ and $\alpha(0 \leq \alpha<1)$ be given. Let the functions

$$
\Phi(z)=z+\sum_{n=2}^{\infty} \lambda_{n} z^{n} \quad \text { and } \quad \Psi(z)=z+\sum_{n=2}^{\infty} \mu_{n} z^{n}
$$

be analytic in \mathcal{U}, such that $\lambda_{n} \geq 0, \mu_{n} \geq 0$ and $\lambda_{n} \geq \mu_{n}$ for $n \geq 2$, we say that $f(z) \in \mathcal{A}$ is in $\mathcal{Q}_{b}(\Phi, \Psi ; \alpha)$ if $f(z) * \Psi(z) \neq 0$ and

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f(z) * \Phi(z)}{f(z) * \Psi(z)}-1\right)\right\}>\alpha \quad(z \in \mathcal{U})
$$

We note that, by suitably choosing of $\Phi(z)$ and $\Psi(z)$ we obtain the above subclasses of \mathcal{A} of complex order b and type $\alpha: \mathcal{Q}_{b}\left(\frac{z}{(1-z)^{2}}, \frac{z}{1-z} ; \alpha\right)=\mathcal{S}_{b}^{*}(\alpha)$; $\mathcal{Q}_{b}\left(\frac{z+z^{2}}{(1-z)^{3}}, \frac{z}{(1-z)^{2}} ; \alpha\right)=\mathcal{C}_{b}(\alpha) ; \mathcal{Q}_{b}\left(\frac{z}{(1-z)^{2}}, z ; \alpha\right)=\mathcal{P}_{b}(\alpha)$ and $\mathcal{Q}_{b}\left(\frac{z+(1-2 \alpha) z^{2}}{(1-z)^{3-2 \alpha}}, \frac{z}{(1-z)^{2-2 \alpha}} ; \alpha\right)=\mathcal{R}_{b}(\alpha)$.

In fact many new subclasses of \mathcal{A} of complex order b and type α can be defined and studied by suitably choosing $\Phi(z)$ and $\Psi(z)$. For example,

$$
\mathcal{Q}_{b}\left(\frac{z}{1-z}, z ; \alpha\right):=\mathcal{T}_{b}(\alpha)=\left\{f(z) \in \mathcal{A}: \operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f(z)}{z}-1\right)\right\}>\alpha\right\}
$$

and

$$
\mathcal{Q}_{b}\left(\frac{z+z^{2}}{(1-z)^{3}}, z ; \alpha\right): \mathcal{M}_{b}(\alpha)=\left\{f(z) \in \mathcal{A}: \operatorname{Re}\left\{1+\frac{1}{b}\left(\left(z f^{\prime}(z)\right)^{\prime}-1\right)\right\}>\alpha\right\}
$$

and so on.

In this paper, we obtain sufficient condition, involving coefficient inequalities, for $f(z)$ to be in the class $\mathcal{Q}_{b}(\Phi, \Psi ; \alpha)$. Several special cases and consequences of these coefficient inequalities are also pointed out.

In order to derive our main results, we have to recall here the following lemmas:
Lemma 1.1. [4] A function $p(z) \in \mathcal{P}$ satisfies $\operatorname{Re} p(z)>0(z \in \mathcal{U})$ if and only if $p(z) \neq \frac{x-1}{x+1}(z \in \mathcal{U})$ for all $|x|=1$.

Lemma 1.2. A function $f(z) \in \mathcal{A}$ is in $\mathcal{Q}_{b}(\Phi, \Psi ; \alpha)$ if and only if $1+$ $\sum_{n=2}^{\infty} A_{n} z^{n-1} \neq 0$ where

$$
A_{n}=\frac{\lambda_{n}+(2 b-1-2 \alpha b) \mu_{n}+x\left(\lambda_{n}-\mu_{n}\right)}{2 b(1-\alpha)} a_{n}
$$

and $\lambda_{1}=\mu_{1}=1$.
Proof. Applying Lemma 1.1, we have

$$
\begin{equation*}
\frac{1+\frac{1}{b}\left(\frac{f(z) * \Phi(z)}{f(z) * \Psi(z)}-1\right)-\alpha}{1-\alpha} \neq \frac{x-1}{x+1} \quad(z \in \mathcal{U} ; x \in \mathbf{C} ; \quad|x|=1) \tag{1.1}
\end{equation*}
$$

Then, we need not consider Lemma 1.1 for $z=0$, because it follows that $p(0)=$ $1 \neq \frac{x-1}{x+1}$ for all $|x|=1$. From (1.1), it follows that

$$
(x+1)(f(z) * \Phi(z))+(2 b-1-2 \alpha b-x)(f(z) * \Psi(z)) \neq 0
$$

Thus, we have $2 b(1-\alpha) z+\sum_{n=2}^{\infty}\left[\lambda_{n}+(2 b-1-2 \alpha b) \mu_{n}+x\left(\lambda_{n}-\mu_{n}\right)\right] a_{n} z^{n} \neq 0$ $(z \in \mathcal{U} ; x \in \mathbf{C} ;|x|=1)$, or, equivalently,

$$
\begin{equation*}
2 b(1-\alpha) z\left(1+\sum_{n=2}^{\infty} \frac{\lambda_{n}+(2 b-1-2 \alpha b) \mu_{n}+x\left(\lambda_{n}-\mu_{n}\right)}{2 b(1-\alpha)} a_{n} z^{n-1}\right) \neq 0 \tag{1.2}
\end{equation*}
$$

$(z \in \mathcal{U} ; x \in \mathbf{C} ;|x|=1)$. Now, dividing both sides of (1.2) by $2 b(1-\alpha) z(z \neq 0)$, we obtain

$$
1+\sum_{n=2}^{\infty} \frac{\lambda_{n}+(2 b-1-2 \alpha b) \mu_{n}+x\left(\lambda_{n}-\mu_{n}\right)}{2 b(1-\alpha)} a_{n} z^{n-1} \neq 0
$$

$(z \in \mathcal{U} ; x \in \mathbf{C} ;|x|=1)$, which completes the proof of Lemma 1.2.

2. Coefficient conditions for functions in the class $\mathcal{Q}_{b}(\Phi, \Psi ; \alpha)$

With the help of Lemma 1.2, we have
Theorem 2.1. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(\lambda_{k}+(2 b-1-2 \alpha b) \mu_{k}\right)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l}\right|\right. \\
& \left.+\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(\lambda_{k}-\mu_{k}\right)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l}\right|\right) \leq 2|b|(1-\alpha) \\
& \left(0 \leq \alpha<1 ; b \in \mathbf{C}^{*} ; \gamma, \delta \in \mathbf{R}\right), \text { then } f(z) \in \mathcal{Q}_{b}(\Phi, \Psi ; \alpha) .
\end{aligned}
$$

Proof. Note that $(1-z)^{\gamma} \neq 0,(1+z)^{\delta} \neq 0(\gamma, \delta \in \mathbf{R} ; z \in \mathcal{U})$. Thus to prove that $1+\sum_{n=2}^{\infty} A_{n} z^{n-1} \neq 0$, it is sufficient that

$$
\begin{aligned}
& \left(1+\sum_{n=2}^{\infty} A_{n} z^{n-1}\right)(1-z)^{\gamma}(1+z)^{\delta} \\
& =1+\sum_{n=2}^{\infty}\left[\sum_{l=1}^{n}\left\{\sum_{k=1}^{l} A_{k}(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right] z^{n-1} \neq 0
\end{aligned}
$$

where $A_{0}=0$ and $A_{1}=1$. Therefore, if $f(z) \in \mathcal{A}$ satisfies

$$
\sum_{n=2}^{\infty}\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l} A_{k}(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right| \leq 1
$$

that is, if

$$
\begin{aligned}
& \left.\frac{1}{2|b|(1-\alpha)} \sum_{n=2}^{\infty} \right\rvert\, \sum_{l=1}^{n}\left\{\sum _ { k = 1 } ^ { l } \left(\lambda_{k}+(2 b-1-2 \alpha b) \mu_{k}\right.\right. \\
& \left.\left.\quad+x\left[\lambda_{k}-\mu_{k}\right]\right)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\} \left.\binom{\delta}{n-l} \right\rvert\, \\
& \leq \frac{1}{2|b|(1-\alpha)} \sum_{n=2}^{\infty}\left(\left\lvert\, \sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(\lambda_{k}+(2 b-1-2 \alpha b) \mu_{k}\right)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\} \times\right.\right. \\
& \left.\left.\times\binom{\delta}{n-l}|+|x|| \sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(\lambda_{k}-\mu_{k}\right)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l} \right\rvert\,\right) \\
& \leq 1 \quad\left(0 \leq \alpha<1 ; b \in \mathbf{C}^{*} ; x \in \mathbf{C} ;|x|=1 ; \gamma, \delta \in \mathbf{R}\right)
\end{aligned}
$$

then $f(z) \in \mathcal{Q}_{b}(\Phi, \Psi ; \alpha)$ and so the proof is completed.

3. Particular cases

By considering some special cases of the analytic functions $\Phi(z)$ and $\Psi(z)$, we deduce the following coefficient conditions for functions $f(z)$ to be in the subclasses $\mathcal{S}_{\alpha}^{*}(b), \mathcal{C}_{\alpha}(b), \mathcal{P}_{\alpha}(b)$ and $\mathcal{R}_{\alpha}(b)$ of analytic functions of complex order $b\left(b \in \mathbf{C}^{*}\right)$ and type $\alpha(0 \leq \alpha<1)$ as defined in Section 1.

Letting $\Phi(z)=z /(1-z)^{2}$ and $\Psi(z)=z /(1-z)$ in Theorem 2.1, we have
Corollary 3.1 If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}(k+2 b-1-2 \alpha b)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l}\right|\right. \\
\left.+\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}(k-1)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l}\right|\right) \leq 2|b|(1-\alpha)
\end{aligned}
$$

for some $\alpha(0 \leq \alpha<1), b \in \mathbf{C}^{*}$ and $\gamma, \delta \in \mathbf{R}$, then $f(z) \in \mathcal{S}_{\alpha}^{*}(b)$. In particular, for $\gamma=\delta=0$, if $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\sum_{n=2}^{\infty}\{|n+2 b-1-2 \alpha b|+(n-1)\}\left|a_{n}\right| \leq 2|b|(1-\alpha)
$$

for some $\alpha(0 \leq \alpha<1)$ and $b \in \mathbf{C}^{*}$, then $f(z) \in \mathcal{S}_{\alpha}^{*}(b)$.

Letting $\Phi(z)=\left(z+z^{2}\right) /(1-z)^{3}$ and $\Psi(z)=z /(1-z)^{2}$ in Theorem 2.1, we have

Corollary 3.2. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k^{2}+(2 b-1-2 \alpha b) k\right)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l}\right|\right. \\
\left.+\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k^{2}-k\right)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l}\right|\right) \leq 2|b|(1-\alpha)
\end{aligned}
$$

for some $\alpha(0 \leq \alpha<1), b \in \mathbf{C}^{*}$ and $\gamma, \delta \in \mathbf{R}$, then $f(z) \in \mathcal{C}_{b}(\alpha)$. In particular, for $\gamma=\delta=0$, if $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\sum_{n=2}^{\infty} n\{|n-1+2 b|+(n-1)\}\left|a_{n}\right| \leq 2|b|(1-\alpha)
$$

for some $\alpha(0 \leq \alpha<1)$ and $b \in \mathbf{C}^{*}$, then $f(z) \in \mathcal{C}_{b}(\alpha)$.
Letting $\Phi(z)=\left(z+(1-2 \alpha) z^{2}\right) /(1-z)^{3-2 \alpha}$ and $\Psi(z)=z /(1-z)^{2-2 \alpha}$ in Theorem 2.1, we have

Corollary 3.3. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{aligned}
\sum_{n=2}^{\infty}(\mid & \sum_{l=1}^{n}\left\{\left.\sum_{k=1}^{l}\left(C(\alpha, k)(k+(2 b-1-2 \alpha b))(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l} \right\rvert\,\right. \\
& \left.+\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l} C(\alpha, k)(k-1)(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l}\right|\right) \leq 2|b|(1-\alpha)
\end{aligned}
$$

for some $\alpha(0 \leq \alpha<1), b \in \mathbf{C}^{*}$ and $\gamma, \delta \in \mathbf{R}$, then $f(z) \in \mathcal{R}_{b}(\alpha)$. In particular, for $\gamma=\delta=0$, if $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\sum_{n=2}^{\infty} C(\alpha, n)[|n+2 b-1-2 \alpha b|+(n-1)]\left|a_{n}\right| \leq|b|(1-\alpha)
$$

for some $\alpha(0 \leq \alpha<1)$ and $b \in \mathbf{C}^{*}$, then $f(z) \in \mathcal{R}_{b}(\alpha)$.
Letting $\Phi(z)=z /(1-z)^{2}$ and $\Psi(z)=z$ in Theorem 2.1, we have
Corollary 3.4. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\sum_{n=2}^{\infty}\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l} k(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l}\right| \leq|b|(1-\alpha)
$$

for some $\alpha(0 \leq \alpha<1), b \in \mathbf{C}^{*}$ and $\gamma, \delta \in \mathbf{R}$, then $f(z) \in \mathcal{P}_{b}(\alpha)$. In particular, for $\gamma=\delta=0$, if $f(z) \in \mathcal{A}$ satisfies the following condition $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq|b|(1-\alpha)$ for some $\alpha(0 \leq \alpha<1)$ and $b \in \mathbf{C}^{*}$, then $f(z) \in \mathcal{P}_{b}(\alpha)$.

Letting $\Phi(z)=z /(1-z)$ and $\Psi(z)=z$ in Theorem 2.1, we have
Corollary 3.5. If $f(z) \in \mathcal{A}$ satisfies the following condition

$$
\sum_{n=2}^{\infty}\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}(-1)^{l-k}\binom{\gamma}{l-k} a_{k}\right\}\binom{\delta}{n-l}\right| \leq|b|(1-\alpha)
$$

for some $\alpha(0 \leq \alpha<1)$, $b \in \mathbf{C}^{*}$ and $\gamma, \delta \in \mathbf{R}$, then $f(z) \in \mathcal{T}_{b}(\alpha)$. In particular, for $\gamma=\delta=0$, if $f(z) \in \mathcal{A}$ satisfies the following condition $\sum_{n=2}^{\infty}\left|a_{n}\right| \leq|b|(1-\alpha)$ for some $\alpha(0 \leq \alpha<1)$ and $b \in \mathbf{C}^{*}$, then $f(z) \in \mathcal{T}_{b}(\alpha)$.

REmARK 3.6. (i) If we set $\alpha=0$ in Corollary 3.1 and Corollary 3.2, we have sufficient conditions for functions $f(z)$ to be in the classes $\mathcal{S}^{*}(b)$ and $\mathcal{C}(b)$ obtained by Hayami and Owa in [2].
(ii) If we set $b=1$ in Corollary 3.1 and Corollary 3.2, we have sufficient conditions for functions $f(z)$ to be in the classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{C}(\alpha)$ obtained by Hayami et al. in [4].
(iii) If we set $b=1$ in Corollary 3.4 and Corollary 3.5 , we have sufficient conditions for functions $f(z)$ to be in the classes $\mathcal{P}(\alpha)$ and $\mathcal{T}(\alpha)$ obtained by Hayami and Owa in [3].

Acknowledgement. The author would like to thank the referees for their helpful comments and suggestions.

REFERENCES

[1] B.A. Frasin, Family of analytic functions of complex order, Acta Mathematica Academiae Paedagogicae Nyíegyháziensis, 2 (2006), 179-191.
[2] T. Hayami, S. Owa, New properties for starlike and convex functions of complex order, Int. Journal Math. Analysis, 1 (2010), 39-62.
[3] T. Hayami, S. Owa, Coefficient conditions for certain univalent functions, Int. J. Open Problems Comput. Sci. Math. 1 (2008), 53-65.
[4] T. Hayami, S. Owa, H.M. Srivastava, Coefficient inequalities for certain classes of analytic and univalent functions, J. Ineq. Pure Appl. Math. 8 (2007), 1-10.
[5] Y. Kim, S. Lee, H.M. Srivastava, Some properties of convolution operators in the class $P_{\alpha}(\beta)$, J. Math. Anal. Appl. 187 (1994), 498-512.
[6] M.A. Nasr, M.K. Aouf, Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
[7] S.M. Sarangi, B.A. Uralegaddi, The radius of convexity and starlikeness of certain classes of analytic functions with negative coefficients I, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 65 (1978), 34-42.
[8] H. Silverman, E.M. Silvia, Prestarlike functions with negative coefficients, Internat. J. Math. and Maths. Sci. 2 (1979), 427-439.
[9] H.M. Srivastava, S. Owa, Certain classes of analytic functions with varying arguments, J. Math. Anal. Appl. 136 (1988), 217-228.
[10] P. Wiatroski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lődz Nauk. Mat.-Przyrod 39 (1970), 75-85.
(received 27.04.2010; in revised form 13.06.2010)

Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan
E-mail: bafrasin@yahoo.com

[^0]: 2010 AMS Subject Classification: 30C45.
 Keywords and phrases: Analytic functions; Starlike and convex functions of complex order; Hadamard product; Coefficient inequalities.

